Size: px
Start display at page:

Download ""

Transcription

1 Sgr.A 2 saida@daido-it.a.jp Sgr.A Rapidit

2 A 36 A A.2 Imaginar Rapidit

3 K A r a (t K K q(t v = d q(t = dt K A r a (t K K r a (t = r a (t q(t K a a(t = d2 r a (t dt 2 = a a (t d v dt = a a(t v F = m a = [m/s] A B [m/s] Light from B ( Newton Light [m/s] + v 2 [m/s]... NO!! v a [m/s] Light from A + v a [m/s]... NO!! Rest K 1 K 2 v 2 [m/s] ( Newton A B [m/s] Light from B ( Einstein Light [m/s] [m/s]... OK!! v a [m/s] Light from A [m/s]... OK!! Rest K 1 K 2 v 2 [m/s] ( Einstein 6.4 3

4 1.2 K (t,,, z K K v K (t,,, z v O K K O t K t K K t- K t t = v K t - K t t = v K K t- t - K t = K t = t:k t':k' t =1 Light = 1 O = v/ ( K-sstem v_ ' = - t t' t' = 1 Light O ' = 1 ( K'-sstem K O AO = BO K A P B K A P K P B K O P t B t 1 Light t 1 O P A -t 1 Light ( K-sstem K O K t- K O R P B O R 4

5 R K ( t r, r (1 P B t = + t 1 (2 (1 t E ( t 2, 2 = ( (3 t EO = DO D ( t 2, 2 v + t 1, v v + t 1 (4 D AP t = + 2 t 2 (5 (1 (4 R ( t r, r = ( v v + t 1, v + t 1 K t- t = v t K O K O t _ t' : t = v t 1 B t 2 E v _ t r R ' : t = - 2 O P t r = r t 1 D -t 1 A -t 2 2 ( K-sstem Light DO = EO v v + t 1 r = v + t 1 t 2 = v + t 1 v 2 = v + t 1 [se] [m] [m/se] [se] [m] [se] [m/se] [m/se] [m] or [se] [m/se] [se] or [m] 5 5

6 t m A B - : ( a, a A - : ( a, a - : ( b, b B - : ( b, b - - a b Newton... Eulidean Spae r [m] A ' r ' a B ' b B ' b b a r 2 = ( a - b 2 + ( a - b 2 [m 2 ] = (' a - ' b 2 + (' a - ' b 2 A ' a ' 2 A B r [m] - - r [m] r 2 = ( a b 2 + ( a b 2 = ( a b 2 + ( a b 2 (

7 2 2 (2.1 B r r = r ±r ' r r ' = r = -r ' = r -r ' = -r -r r 2 = = ' 2 + ' 2 ( t,,, z P, Q P Q s [m] t 4 tp tq t t' P p (K-sstem s [m] Q q ' t t'q t'p 'p t' P s [m] 'q (K'-sstem 4 t t Q ' 7

8 (2.1 4 s 2 s 2 (t t- s = (t t - s ±s D t- D d < s t - D d < s t- t D d > s 2 [ ] -s t' (or t s ' d (or d -s D s ' (or If s 2 = 2 t' 2 + ' 2 = 2 t d < s, ' d < s t In K'-sstem ' d > s Contradition! t' ' d > s ' s Einstein... Non-Eulidean Spae-time! D 4 ( K K ( t,,, z v K t = ± 1.2 K t = ± (t = (t = 0 ( t,,, z (t z 2 (t z 2 = 0 (t z K ( t,,, z P ( t p, p, p, z p, Q ( t q, q, q, z q P Q 4 s 2 s 2 = 2 ( t p t q 2 + ( p q 2 + ( p q 2 + ( z p z q 2 (3.1 (3.1 s or 8

9 3.2 (3.1 s (3.1 Q K K 3 v = ( v 1, v 2, v 3 K P ( t p, p, p, z p K P ( t p, p, p, z p K OP 4 2 s p 2 = (t p 2 + p 2 + p 2 + z p 2 (3.2a K OP 4 2 s p 2 = (t p 2 + p 2 + p 2 + z p 2 (3.2b s 2 p = s p 2 s 2 p = s p 2 v P 6 w 1 = p t p w 2 = p t p w 3 = z p t p (3.3a w 1 = p t p w 2 = p t p w 3 = z p t p (3.3b a µ µ = 0, 1, 2, 3 t p = a 0 t p + a 1 p + a 2 p + a 3 z p (3.4 (3.3 (3.4 5 s p 2 = s p 2 (3.3a (3.4 t p = (a 0 + a 1 w 1 + a 2 w 2 + a 3 w 3 t p (3.3b (3.2b s 2 p = (w w w (t p 2 = (w w w (a 0 + a 1 w 1 + a 2 w 2 + a 3 w 3 2 (t p 2 (3.3a (3.2a s 2 p = f s 2 p, where f = w 2 s 2 p = (w w w (t p w w 2 w w w (a 0 + a 1 w 1 + a 2 w 2 + a 3 w 3 2 (3.5 (3.5 2 v f v f = f( v v (3.5 s 2 p = f s 2 p (3.6 9

10 (3.5 (3.6 sp 2 = f s p 2 = f 2 sp 2 f = 1 or 1 f 3 f K K 3 v p = p, z p = z p (and z (and z P ( t p, p, p, z p = ( 0, 0, p, 0 ( t p, p, p, z p = ( 0, 0, p, 0 s 2 f s p 2 (3.6 p = 2 p = p 2 = s p 2 (3.2 f s p 2 = s p 2 f = +1 s p 2 = s p 2 [ ] ' t' O t p = ' p P. = ' ( t,,, z ( 0, 0, 0, 0 4 s s 2 = onst. 3 (t z 2 = onst. K K K v [m/s] K ( t, K ( t, t T K ( t T, T = ( a, 0 OT 4 s T 2 = a 2 X K ( t X, X = ( 0, b OX 4 s X 2 = +b 2 = -b X': '= -b Hb T: t = a t t' T': t' = a Ha Light T': t' = -a Light Ha t = -a X': ' = b ' X: = b Hb Ha : - (t = - a 2 ( = - (t' 2 + ' 2 Hb : - (t = b 2 ( = - (t' 2 + ' 2 10

11 2 t T t OT 4 s T 2 = s T 2 (= a 2 X OX 4 s X 2 = s 2 X (= +b 2 t T t = a 2 X = b t T T 2 t- T H a (t = a 2 (= s T 2, t t = v H a t- T K T ( t T, T s T 2 = s 2 T (t T 2 + T 2 = a 2 t T = 0 t T = a T K t = a K T ( t T, T = ( a, 0 X X 2 t- t X H b (t = +b 2 (= s X 2, t = v H b t- X K X ( t X, X s X 2 = s 2 X (t X 2 + X 2 = b 2 t t X = 0 X = b X K = b K X ( t X, X = ( 0, b t t' T H a t = T t = a K T X H b t = X = b K X Light K K v Ha T T' ' X' X Hb ( ase : a < b 11

12 K K T K T A K T B K K K A = A t = t A K B B: t > a T: t = a A: t < a t K rest t = B t = t B K T = T t = t T = a? t' t' T': t' = a K' v Ha ' t A < a, t B > a K A T K K T B K K B t B K K (1 K ( t, K H a (t = a 2 (= s 2 K T ( t T, T K t t = v ( a 2 T ( t T, T =, v a 1 (v/ 2 1 (v/ 2 T (2 K B ( t B, B = ( t T, 0 K B = K T a K B t B = (3 1 (v/ 2 t K T t T = t B 1 ( v T = a K T B K (v/ 2 γ-fator γ = 1/ 1 (v/

13 K K K K b [m] K K b t- = X K b X = b D K b K D = b K D < b b K < b K K K b K rest t(k v? b [m] K' t'(k' Hb ' X': ' = b X: = b D: < b K D D K K (1 K ( t, K H b (t = b 2 (= sx 2 K X ( t X, X K t = v ( v b 2 X ( t X, X =, b 1 (v/ 2 1 (v/ 2 (2 X t /v t = v ( X + t X (3 D ( t D, D = ( 0, X v t X K b K = D = [ 1 ( v 2 ] X = b 1 ( v 2 K K K b 1 ( v 2 γ-fator γ = 1/ 1 (v/ 2 5 K K b K K b 1 (v/ 2 b t- K 13

14 { K ( t, 2 K ( t, ( t, ( t, K K v K ( t e, e [ ] E, z K ( t e, e t e = 1 1 (v/ 2 ( t e v e, e = 1 1 (v/ 2 ( v t e + e (5.1 K K' v rest (no aeleration t e t(k t e ' t'(k' E S E = S E ' ( t, ( t, ' (5.1 K K O e ' e K ( t e, e K ( t e, e (5.1 ( t e, e ( t e, e v K K v (5.1 t e = 1 1 (v/ 2 ( t e + v e, e = 1 1 (v/ 2 ( v t e + e ( (5.1 E K ( t e, e E 4 (

15 1 A B K t t = v A E t = v ( e + t e K A ( 1 ( te 1 (v/ 2 v v ( e, te 1 (v/ 2 v e t = v B E t t = v ( e + t e K B ( v ( v 1 (v/ 2 t 1 ( v e + e, 1 (v/ 2 t e + e t e O t(k A t e ' t'(k' 2 A B K A t B K A ( t e, 0 K B ( 0, e ( ( OA 2 te = 1 (v/ 2 v 2 e K (t e 2 K 1 ( v OB 2 = 1 (v/ 2 t 2 e + e K K e t E t e 0 t e v e e 0 e vt e t e = 1 ( te v 1 (v/ 2 e t e e e = 1 ( v 1 (v/ 2 t e + e (5.1 [ ] e ' B e E ' (5.3a (5.3b 1 2 A.1 15

16 t(k t'(k' K B t B K ( t B, v X t B T = v t T = v t B t = vt K ( t T, 0 (5.1 t T 4.2 = t B (v/ 2 t B 1 (v/ 2 = t B 1 ( v K T B K 2 B O T' 1 1 (v/ ( ' t(k t'(k' 4.3 (1 K X K ( t X, X X 4.3 K ( 0, b K (5.1 (5.2 t X = 0 + (v/ b 1 (v/ 2 ( v X ( t X, X = 0 + b X = 1 (v/ 2 b 1 (v/ 2, O D X' b 1 (v/ 2 ' 4.3 K X 4.3 (2, (3 K D K K b K = b 1 ( v K K K b 2 1 ( v (

17 5.5 Rapidit 5.1 E K K (5.1 1 t e = t e osh ψ e sinh ψ osh ψ = γ := 1 (v/ 2 e = t e sinh ψ + e osh ψ sinh ψ = v (5.4 γ γ v γ osh2 ψ sinh 2 ψ = 1, 1 osh ψ <, < sinh ψ < ψ Rapidit 3 v Rapidit ψ v = tanh ψ ( < ψ < ( (5.1 K K 3 K K K K 3 K K v = ( v, v, v z (v, 0, 0 1 π 2 θ 2 z ϕ (5.6 z K z v ' z' K' ' π_ 2 θ θ 2nd rotation φ (v,v,v z θ z v.osθ φ v.sinθ v.sinθ.osφ (v,0,0 1st rotation v.sinθ z v.sinθ.sinφ 1st-rot. : about ais 2nd-rot. : about z ais 17

18 (5.6 1 (v, 0, 0, ( v, v, v z v os θ 0 sin θ v = v z sin θ 0 os θ v 0 0 =: R 1 ( θ (5.6 2 ( v, v, v z (v, v, v z v os ϕ sin ϕ 0 v v = sin ϕ os ϕ 0 v v z v z v v sin θ 0 = 0 0 v os θ v v = v z =: R 2 (ϕ 5.1 (5.1 t z = γ γ(v/ 0 0 γ(v/ γ t z =: L (v t z, ( θ = π 2 θ (5.7 v sin θ os ϕ v sin θ sin ϕ v os θ (5.8, γ = 1 ( v ( (5.6 L (v L gen ( v ( ( ( L gen ( v = L (v 0 R 2 (ϕ 0 R 1 ( θ = γ γ v 1 + (γ 1 v2 v 2 γ v (γ 1 v v v (γ 1 v2 v R 1 ( θ γ v z ( R 2 ( ϕ (γ 1 v v z v 2 (γ 1 v v z v (γ 1 v2 z v t z = L gen( v t z = γ ( t v + v + v z z [ γ t (γ 1 v + v + v z z v 2 [ γ t (γ 1 v + v + v z z v 2 [ γ t (γ 1 v + v + v z z v 2 v (5.8 ] v ] v ] v, γ = 1 1 v 2 2 (5.10 (5.11 γ 3 v v = ( v, v, v z r = (,, z v r = v + v + v z z (5.11 ( t v r = γ t t as [ r v r ] = r γ t (γ 1 v 2 v r t v as (

19 (5.10 (5.11 K ( t, r K ( t, r 0 (5.6 1, 2 R(θ, ϕ = ( R 2 (ϕ ( R 1 ( θ R1 1 ( θ = R 1 ( θ, R2 1 (ϕ = R 2( ϕ R(θ, ϕ ( 1 ( 1 ( ( R (θ, ϕ = = 0 R 1 ( θ 0 R 2 (ϕ 0 R 1 ( θ 0 R 2 ( ϕ ( ( t t K = R(θ, ϕ r r 0 ( ( t t K = R(θ, ϕ r K K K K 5.6 (5.9 ( t, r 0 ( t, r 0 ( t r 0 r 0 ( t = L (v r 0 (5.9 (5.6 1, 2 ( ( ( t t R(θ, ϕ = R(θ, ϕ L (v = R(θ, ϕ L (v R 1 t (θ, ϕ R(θ, ϕ r 0 r 0 r 0 ( t r = L gen ( v ( t r L gen ( v = R(θ, ϕ L (v R 1 (θ, ϕ (5.13 (5.10 ( K K v { K ( t, K ( t,,z K K u A v u v, u K' v K u' u =? A K A u 19

20 6.2 t(k t'(k' t- K K ( t, K ( t, K A u A t- u A t- K u u = u + v u < u + v t = (t = 1 t = v t' light ' = A v = 2 3, u = 2 3 [ ] u = u + v = (4/3 t- K t K K t' = (t' = 1 light A A t ' = ' = u' ' K A u < 6.3 u v, u, t = (t = 1 t(k t'(k' light ' = = _ 3 2 t' = t' light A (t' = 1 t ' t = ' = ' = 2 _ 3 - (t' 2 + ' 2 = - (t =

21 K A u K A u A A P u v, u, t(k t'(k' A t' = t = light ' ' = t = t p t' = t' p t t' (A P ' = v = u ' = u' = = p ' = ' p ( t p, p K A P ( t p, p K ( t p, p ( t p, p K K v (5.2 ( t p = γ t p + v p 1 ( v γ = (6.1 p = γ t p + 1 (v/ 2 p P K A u u = p t p K A u u = p t p = p t p (6.2a (6.2b (6.2b (6.1 u = (6.2a vt p + p t p + (v/ = p v + p/t p 1 + (v p/( 2 t p u = u + v 1 + u v 2 ( v = 2 3, u = 2 3 u = (4/3 1 + (2/ = (4/3 1 + (4/9 = 12 (< 13 21

22 Rapidit K K v Rapidit ψ v = tanh ψ K A u Rapidit ϕ u = tanh ϕ (6.3 u = tan ϕ + tanh ψ 1 + tanh ϕ tanh ψ = tanh(ϕ + ψ (6.4 K K (6.3 Rapidit 6.4 (6.3 u = ( u ( v + (u v/ v = and/or u = 0 u Rapidit ϕ + ψ < tanh(ϕ + ψ < 1 [ ] = [m/s] (6.3 K A u = K v K A u = [ ] A K K v { K ( t,,, z K ( t,,, z K' u' A u =? =, z = z v 6.1 K K 3 u A v = (v,0,0 K K u = ( u, u, u z K A 3 u = ( u, u, u z 22

23 K K u u 6.3 u = u + v 1 + (u v/ 2 K K, z u, u z z z t t- t t Projetion of A's world line onto t- plane t A t p A P K ( t p, p, p, z p K ( t p, p, p, z p P O p K K 6.1 (t p, p (t p, p (6.1 K K A O u = p A t- t p u = p A t - t p, z or, z (6.1 t p t p p = p Projetion of A's world line onto t'-' plane A t t' t' p P u = p t p γ p = t p + (v/ p u = p t p u z = γ u 1 + (u v/ 2 ' O = ' p = ' p K K ( u + v u 1 (v/ 2 K A 3 u =, 1 + u v u v 2 u =, u z 1 (v/ u v 2 1 [1 (v/2 ] [1 (u / 2 ] [ 1 + (u v/ 2 ] 2 u = u u u = 6.4 (6.5 23

24 Rapidit u Rapidit ϕ = ( ϕ, ϕ, ϕ z u = ( tanh ϕ, tanh ϕ, tanh ϕ z v Rapidit ψ v = tanh ψ u = ( sinh( ϕ + ψ osh( ϕ z + ψ, sinh ϕ osh( ϕ + ψ, sinh ϕ z osh( ϕ z + ψ (6.6 tanh α = sinh α osh α 6.6 (6.4 t light 6.4 P OK NO! P P 4 3, z t- z t-- t light t Q R Q R P R P R Q P R t 24

25 four vetor τ τ τ K ( t,,, z ( P (τ : t(τ, (τ, (τ, z(τ 4 v 4 P (τ v 4 := d OP(τ dτ = ( dt(τ dτ v 4 4 K 3 v = ( d( τ(t, dt df( τ(t dt, d(τ dτ d( τ(t dt,, d(τ dτ, d( τ(t dt dz(τ dτ t t(τ = dτ df ( dt 1 df dt dτ = dτ dτ 3 v = [ v 4 ] [ v 4 ] 4 p 4 m p 4 := m v 4 = ( m dt(τ, m d(τ, m d(τ, m dz(τ dτ dτ dτ dτ p 4 m dt(τ/dτ 7.2 K 3 p = [ p 4 ] [ p 4 ] P(τ (τ τ (7.1 (7.2 O t (K OP(τ+ τ τ OP(τ τ+ τ OP(τ τ v = lim 4 τ 0 t(τ O t (K v 4 1 τ OP(τ = d OP(τ dτ τ p = m 4 v 4 P(τ (τ 25

26 7.2 K ( t,,, z K 3 v K ( t,,, z K E v = 4 K τ = t K' v m 2 1 (v/ 2 observed energ t (K t' = τ p 4 t(τ P(τ (τ light ' τ = K ( t(τ, (τ, 0, 0 K P (τ = ( τ, 0, 0, 0 K K K v (5.2 t(τ = γ ( τ + 0 = γ τ (τ = γ ( vτ + 0, γ = = γ v τ 1 1 (v/ 2 4 v 4 ( γ, γ v, 0, 0 K v 4 = (, 0, 0, 0 K (7.3 4 p 4 (7.2 (7.3 p 4 = m v 4 = ( m γ, m v γ, 0, 0 K ( m, 0, 0, 0 K (7.4 v < [ γ = 1 ( v ] 2 1/2 1( v 2 3 = K p 4 = m + m 2 K p 4 = m ( v ( v 4 (v 6 + O 2 3m( v (v 6 + m O 4 K p 4 = 1 [ m m v2 + v 2 O ( v ] 2 26

27 v/ 0 mv 2 /2 4 p 4 = 1 ( K (7.5 (7.4 (7.5 v E v = m 2 γ = m 2 1 (v/ 2 E 0 = m 2 ( K S v, z K S S K u ( S u > v K T λ = u T v wave u u ( S T S : wave soure λ = u T S O P K S u u 6 or t P R O t':s K world sheet for one period of wave A light ' P λ' λ K : rest observer A ' B 27

28 K λ = PA S λ = PB P, A K ( t p, p [ P S ( T, 0 P S t p = γ T 1 (5.1 (5.2, γ = p = γ v T 1 (v/ 2 K A ( t a, a t a = t p t a = (/u a K u t a = γ T a = γ u T K λ = a p = γ ( u v T = γ ( u v λ (6.3 u = u v 1 (uv/ 2 λ = ut S K v λ = γ ( u v T = γ T = γ u v u u ( 1 uv 2 λ T (8.1a (8.1b f = 1/T, f = 1/T f = 1 γ u u v f T K R t r = T T S P t p = T (8.1 u = 8.2 K S 3 v = ( v, v, v z v α (u,0,0 K z S K K 3 ( u, 0, 0 u, T, λ = u T, u, T, λ = u T 8.1 S (8.1a (8.1b (8.1 28

29 S K S K v ( ( P γ v (8.1 γ v ( λ = γ ( u v T = γ 1 u v 2 λ T = γ u v T u f = 1 u f γ u v, γ = 1 1 v 2 / 2 (8.2 S v α v = v os α u = K K v (< K ( t,, z K ( t, K A V A > V A A K A A K A t t t' light ' A: if V A > K-sstem t' Time Mahine!? ' R A A' K'-sstem A R K A

30 10 K K v K ( t,, z K ( t, K K K 4.2 K K K K K v K t r = β :R I S 2 = -α 2 Q light S 2 = -δ 2 t q = δ :Q K t(k O K' t' ' I: t i' = 2α t i = 2β t I ' < t I P: t p ' = α (< β K-sstem Contradit! t'(k' I O I: t i' = 2α t i = 2δ P: t r ' = α (>δ ' K'-sstem t i' > t i K K K O K K O I K [ A] K K K P (t p = α < β (= t r I K t i = 2β K t i = 2α [ B] K K K Q K (t p = α > δ (= t q I K t i = 2δ K t i = 2α A B K K K K 30

31 C (, λ ( (λ, (λ C v = ( d(λ dλ, d(λ dλ v C 4 λ C (λ C p v O (λ Vetor on a flat Plane (, C λ ( d(λ C v = dλ, d(λ (11.1 dλ v C v p Tangent Plane v 4 4 p - surfae v Tangent Plane at p p p (λ v p (λ C Vetor on a Curved Surfae 31

32 2 2 p θ ative transformation θ passive transformation p θ v v' Vetor rotation (ative rotation ' p v No differene on the flat Plane θ ' Coordinate rotation (passive rotation p v v' ' p v ' Vetor rotation (ative rotation Coordinate rotation (passive rotation These are different on the Curved Surfae! 32

33 ( v, v - 2 v = ( v, v p ' = g(, v C ' = f(, Coordinate Transformation (passive transformation (, (, = (,, (, (11.2 = (, v p C v λ C 33

34 11.1 (11.1 C (, C ( (λ, (λ (11.2 (, C ( (λ, (λ ( := ( (λ, (λ, ( (λ, (λ (11.3 v (11.1 ( d(λ ( v, v = dλ, d(λ (, dλ v = ( d ( v, v (λ = dλ, d (λ (, dλ (11.3 d (λ = d(λ (, dλ dλ + d(λ (, at C dλ at C d (λ = d(λ (, dλ dλ + d(λ (, at C dλ at C (11.4 (11.5a (11.5b (, / at C (, = (λ, = (λ v = ( v v = Λ ( v v Λ = at C (11.6 v - (v, v - (v, v 1 ( v (, 2 (, (v, v ( (11.6 (, (v, v (, (v, v Λ 2 n (11.6 n n n n n v = v 1 v 2. v n = Λ v 1 v 2. v n, Λ = n n n n 1 2 n at C (

35

36 A A ( v v v K v E a(v, b(v, f(v, g(v ansatz t e = a(v t e + b(v e (A.1a e = f(v t e + g(v e (A.1b a(v, b(v, f(v, g(v (A.1 (5.1 a(v, b(v, f(v, g(v (A.1 E (t e 2 + e 2 = (t e 2 + e 2 ( s e 2 = s e 2 (A.2 t-, t - t t = (/v, = 0 (A.3a t = (v/, t = 0 (A.3b t =, t = (A.3 (5.1 (A.1 E E t 5 36

37 1 E t t e = (A.3a v e (A.1b e = [ v f(v + g(v ] e e = 0 2 E t e = v (A.3b e (A.1a t e = [ v a(v + b(v ] e t e = 0 f(v = v g(v b(v = v a(v (A.4 (A.5 3 E t e = e (A.3 t e = e (A.1 t e = [ a(v + b(v ] e e = [ f(v + g(v ] e a(v + b(v = f(v + g(v (A.4 (A.5 4 ( 1 v (A.1 (A.4 (A.5 (A.6 t e = a(v ( t e v e e = g(v ( v t ( v e + e = a(v t e + e ( v a(v = 1 g(v a(v = g(v (A.6 a(v [ (A.2 (A.7 (t e e = a(v 2 1 ( v ] 2 ( (te e [ a(v 2 1 ( v ] 2 5 a(v = 1 a(v = 1 1 (v/ 2 or 1 1 (v/ 2 K v = 0 t = t, = v = 0 (A.1a t e = t e a(0 = 1 > 0 b(0 = 0 1 (A.8 2 a(v a(v = 1 (v/ 2 a(v (A.7 (5.1 a(v, b(v, f(g, g(v (A.1 [ ] (A.7 (A.8 A.2 Imaginar Rapidit 5.5 Rapidit (5.5 A K K 3 v 37

38 K Rapidit ψ v = tanh ψ (5.5 K ( t, K ( t, =, z = z -z t- t - (5.1 Rapidt ψ (5.4 K K' v rest (no aeleration Imaginar Time Imaginar Rapidit Rapidit (5.4 t or τ := it Imaginar Time i = 1 t or τ := it 4 s 2 = (t z 2 = (τ z 2 0 t = iτ ( τ, ( τ, Imarinar Rapidit Imaginar Rapidit ψ or ζ := iψ 2 sinh ψ = e iζ e iζ = 2 i sin ζ 2 osh ψ = e iζ + e iζ = 2 os ζ τ Rapidit (5.4 = τ os ζ sin ζ = τ sin ζ + os ζ ζ (A.9 τ Imaginar angle: ζ τ' ' Invariant Cirle Coneived Eulidean Spae Mathematial Transformation τ = -it ( ζ = -iψ t(k t'(k' ψ Invariant Hperbora light (ψ ' Rapidit: ψ Real Minkowski Spaetime (seen from K 38

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

1 3 1.1.......................... 3 1............................... 3 1.3....................... 5 1.4.......................... 6 1.5........................ 7 8.1......................... 8..............................

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

70 : 20 : A B (20 ) (30 ) 50 1

70 : 20 : A B (20 ) (30 ) 50 1 70 : 0 : A B (0 ) (30 ) 50 1 1 4 1.1................................................ 5 1. A............................................... 6 1.3 B............................................... 7 8.1 A...............................................

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 = #A A A. F, F d F P + F P = d P F, F P F F A. α, 0, α, 0 α > 0, + α +, α + d + α + + α + = d d F, F 0 < α < d + α + = d α + + α + = d d α + + α + d α + = d 4 4d α + = d 4 8d + 6 http://mth.cs.kitmi-it.c.jp/

More information

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t) 338 7 7.3 LCR 2.4.3 e ix LC AM 7.3.1 7.3.1.1 m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x k > 0 k 5.3.1.1 x = xt 7.3 339 m 2 x t 2 = k x 2 x t 2 = ω 2 0 x ω0 = k m ω 0 1.4.4.3 2 +α 14.9.3.1 5.3.2.1 2 x

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta 009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

genron-3

genron-3 " ( K p( pasals! ( kg / m 3 " ( K! v M V! M / V v V / M! 3 ( kg / m v ( v "! v p v # v v pd v ( J / kg p ( $ 3! % S $ ( pv" 3 ( ( 5 pv" pv R" p R!" R " ( K ( 6 ( 7 " pv pv % p % w ' p% S & $ p% v ( J /

More information

chap03.dvi

chap03.dvi 99 3 (Coriolis) cm m (free surface wave) 3.1 Φ 2.5 (2.25) Φ 100 3 r =(x, y, z) x y z F (x, y, z, t) =0 ( DF ) Dt = t + Φ F =0 onf =0. (3.1) n = F/ F (3.1) F n Φ = Φ n = 1 F F t Vn on F = 0 (3.2) Φ (3.1)

More information

untitled

untitled ( 9:: 3:6: (k 3 45 k F m tan 45 k 45 k F m tan S S F m tan( 6.8k tan k F m ( + k tan 373 S S + Σ Σ 3 + Σ os( sin( + Σ sin( os( + sin( os( p z ( γ z + K pzdz γ + K γ K + γ + 9 ( 9 (+ sin( sin { 9 ( } 4

More information

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 : 2016 4 1 1 2 1.1......................................... 2 1.2................................... 2 2 2 2.1........................................ 2 2.2......................................... 3 2.3.........................................

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

5. F(, 0) = = 4 = 4 O = 4 =. ( = = 4 ) = 4 ( 4 ), 0 = 4 4 O 4 = 4. () = 8 () = 4

5. F(, 0) = = 4 = 4 O = 4 =. ( = = 4 ) = 4 ( 4 ), 0 = 4 4 O 4 = 4. () = 8 () = 4 ... A F F l F l F(p, 0) = p p > 0 l p 0 P(, ) H P(, ) P l PH F PF = PH PF = PH p O p ( p) + = { ( p)} = 4p l = 4p (p 0) F(p, 0) = p O 3 5 5. F(, 0) = = 4 = 4 O = 4 =. ( = = 4 ) = 4 ( 4 ), 0 = 4 4 O 4 =

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

KENZOU

KENZOU KENZOU 2008 8 2 3 2 3 2 2 4 2 4............................................... 2 4.2............................... 3 4.2........................................... 4 4.3..............................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1 ABCD ABD AC BD E E BD : () AB = AD =, AB AD = () AE = AB + () A F AD AE = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD AB + AD AB + 7 9 AD AB + AD AB + 9 7 4 9 AD () AB sin π = AB = ABD AD

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O : 2014 4 10 1 2 2 3 2.1...................................... 3 2.2....................................... 4 2.3....................................... 4 2.4................................ 5 2.5 Free-Body

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 : 9 ( ) 9 5 I II III A B (0 ) 5 I II III A B (0 ), 6 8 I II A B (0 ), 6, 7 I II A B (00 ) OAB A B OA = OA OB = OB A B : P OP AB Q OA = a OB = b () OP a b () OP OQ () a = 5 b = OP AB OAB PAB a f(x) = (log

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

85 4

85 4 85 4 86 Copright c 005 Kumanekosha 4.1 ( ) ( t ) t, t 4.1.1 t Step! (Step 1) (, 0) (Step ) ±V t (, t) I Check! P P V t π 54 t = 0 + V (, t) π θ : = θ : π ) θ = π ± sin ± cos t = 0 (, 0) = sin π V + t +V

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

1 B64653 1 1 3.1....................................... 3.......................... 3..1.............................. 4................................ 4..3.............................. 5..4..............................

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

untitled

untitled ( ) c a sin b c b c a cos a c b c a tan b a b cos sin a c b c a ccos b csin (4) Ma k Mg a (Gal) g(98gal) (Gal) a max (K-E) kh Zck.85.6. 4 Ma g a k a g k D τ f c + σ tanφ σ 3 3 /A τ f3 S S τ A σ /A σ /A

More information

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ 1 1 1.1 (Isaac Newton, 1642 1727) 1. : 2. ( ) F = ma 3. ; F a 2 t x(t) v(t) = x (t) v (t) = x (t) F 3 3 3 3 3 3 6 1 2 6 12 1 3 1 2 m 2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t)

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t 1 1 2 2 2r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t) V (x, t) I(x, t) V in x t 3 4 1 L R 2 C G L 0 R 0

More information

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n 3 () 3,,C = a, C = a, C = b, C = θ(0 < θ < π) cos θ = a + (a) b (a) = 5a b 4a b = 5a 4a cos θ b = a 5 4 cos θ a ( b > 0) C C l = a + a + a 5 4 cos θ = a(3 + 5 4 cos θ) C a l = 3 + 5 4 cos θ < cos θ < 4

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( ) 2 9 2 5 2.2.3 grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = g () g () (3) grad φ(p ) p grad φ φ (P, φ(p )) y (, y) = (ξ(t), η(t)) ( ) ξ (t) (t) := η (t) grad f(ξ(t), η(t)) (t) g(t) := f(ξ(t), η(t))

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

sikepuri.dvi

sikepuri.dvi 2009 2 2 2. 2.. F(s) G(s) H(s) G(s) F(s) H(s) F(s),G(s) H(s) : V (s) Z(s)I(s) I(s) Y (s)v (s) Z(s): Y (s): 2: ( ( V V 2 I I 2 ) ( ) ( Z Z 2 Z 2 Z 22 ) ( ) ( Y Y 2 Y 2 Y 22 ( ) ( ) Z Z 2 Y Y 2 : : Z 2 Z

More information

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a 009 I II III 4, 5, 6 4 30. 0 α β α β l 0 l l l l γ ) γ αβ ) α β. n n cos k n n π sin k n π k k 3. a 0, a,..., a n α a 0 + a x + a x + + a n x n 0 ᾱ 4. [a, b] f y fx) y x 5. ) Arcsin 4) Arccos ) ) Arcsin

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 = 5 5. 5.. A II f() f() F () f() F () = f() C (F () + C) = F () = f() F () + C f() F () G() f() G () = F () 39 G() = F () + C C f() F () f() F () + C C f() f() d f() f() C f() f() F () = f() f() f() d =

More information

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2 1.500 m X Y 0.200 m 0.200 m 0.200 m 0.200 m 0.200 m 0.000 m 1.200 m m 0.150 m 0.150 m m m 2 24.5 N/ 3 18.0 N/ 3 30.0 0.60 ( ) qa 50.79 N/ 2 0.0 N/ 2 20.000 20.000 15.000 15.000 X(m) Y(m) (kn/m 2 ) 10.000

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π 8 Biot-Svt Ampèe Biot-Svt 8.1 Biot-Svt 8.1.1 Ampèe B B B = µ 0 2π. (8.1) B N df B ds A M 8.1: Ampèe 107 108 8 0 B line of mgnetic induction 8.1 8.1 AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b. 2009 7 9 1 2 2 2 3 6 4 9 5 14 6 18 7 23 8 25 9 26 10 29 11 32 12 35 A 37 1 B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t),

More information

,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c

,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c 29 2 1 2.1 2.1.1.,., 5.,. 2.1.1,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c v., V = (u, w), = ( / x, / z). 30 2.1.1: 31., U p(z),

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

t (x(t), y(t)), a t b (x(a), y(a)) t ( ) ( ) dy s + dt dt dt [a, b] a a t < t 1 < < t n b {(x(t i ), y(t i ))} n i ( s(t) ds ) ( ) dy dt + dt dt ( ) d

t (x(t), y(t)), a t b (x(a), y(a)) t ( ) ( ) dy s + dt dt dt [a, b] a a t < t 1 < < t n b {(x(t i ), y(t i ))} n i ( s(t) ds ) ( ) dy dt + dt dt ( ) d 1 13 Fall Semester N. Yamada Version:13.9.3 Chapter. Preliminalies (1 3) Chapter 1. (4 16) Chapter. (17 9) Chapter 3. (3 49) Chapter 4. (5 63) Chapter 5. (64 7) Chapter 6. (71 8) 11, ISBN 978-4-535-618-4.

More information

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a ... A a a a 3 a n {a n } a a n n 3 n n n 0 a n = n n n O 3 4 5 6 n {a n } n a n α {a n } α {a n } α α {a n } a n n a n α a n = α n n 0 n = 0 3 4. ()..0.00 + (0.) n () 0. 0.0 0.00 ( 0.) n 0 0 c c c c c

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( ) 81 4 2 4.1, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. 82 4.2. ζ t + V (ζ + βy) = 0 (4.2.1), V = 0 (4.2.2). (4.2.1), (3.3.66) R 1 Φ / Z, Γ., F 1 ( 3.2 ). 7,., ( )., (4.2.1) 500 hpa., 500 hpa (4.2.1) 1949,.,

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1) ( ) 1., : ;, ;, ; =. ( ).,.,,,., 2.,.,,.,.,,., y = f(x), f ( ).,,.,.,., U R m, F : U R n, M, f : M R p M, p,, R m,,, R m. 2009 A tamaru math.sci.hiroshima-u.ac.jp 1 ,.,. 2, R 2, ( ).,. 2.1 2.1. I R. c

More information

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト 名古屋工業大の数学 年 ~5 年 大学入試数学動画解説サイト http://mathroom.jugem.jp/ 68 i 4 3 III III 3 5 3 ii 5 6 45 99 5 4 3. () r \= S n = r + r + 3r 3 + + nr n () x > f n (x) = e x + e x + 3e 3x + + ne nx f(x) = lim f n(x) lim

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 { 04 zz + iz z) + 5 = 0 + i z + i = z i z z z 970 0 y zz + i z z) + 5 = 0 z i) z + i) = 9 5 = 4 z i = i) zz i z z) + = a {zz + i z z) + 4} a ) zz + a + ) z z) + 4a = 0 4a a = 5 a = x i) i) : c Darumafactory

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information