: , 2.0, 3.0, 2.0, (%) ( 2.

Size: px
Start display at page:

Download ": , 2.0, 3.0, 2.0, (%) ( 2."

Transcription

1 Ver 8 ( c T. Miw, ) - 1 -

2 : , 2.0, 3.0, 2.0, (%) ( 2.0) ( 3.0) + ( 2.0) {21, 25, 20, 21, 28} 5 x 1, x 2, x 3, x 4, x 5 x x x 1 + x 2 + x 3 + x 4 + x x j - 2 -

3 1.2 {30, 19, 25, 27, 29} : n x x 1 + x x n n 1 n x j n x 1, x 2,..., x n (x j x) 0 n x 1, x 2,..., x n x 1/n : V[ x] σ2 n 1/n (1) (2) (3) ( ) ( ) (x j + y j ) x j + y j ( ) (c x j ) c x j c n c - 3 -

4 n x 1, x 2,..., x n x j x 1 + x x n (1.1) (1.1) x j j 1 n 1 n x 1, x 2,..., x n T x : T x 1 + x x n : x x 1 + x x n n x j (1.2) 1 n x j T n (1.3) 2 x j j (j 1, 2,..., n) x j j 2 (j 1, 2,..., n) 1 n 2 j n j n 2 n (n + 1) 2 n (n + 1)(2n + 1) x j j i j k x i x k i, j, k, l,... k1 s t x i x j x k x s x α x 1 + x x n k1 s1 α1 j j 2-4 -

5 n x j j j x j x j x 2 x 1,..., x n x x n c, j y 1,..., y n n ( ) ( ) (1) (x j + y j ) x j + y j (1.4) (2) (3) (4) ( ) (c x j ) c x j c n c ( ) ( ) (c x j + y j ) c x j + y j (1.5) (1.6) (1.7) (1), (2), (3) 2 (1) (2) (4) (1) (2) (4) 3 x 1,..., x n x j x x j x (j 1,..., n) (evition) n (x j x) 0 (1.8) 3 (1.8) (sum of squres) (x j x) 2 x 2 j n x 2 x 2 j T 2 n (1.9) 4 (1.9) 4 n x j x (j 1,..., n) 2 n (1.8) 1 n 1 x 1 x,..., x n 1 x x n x n n 1 n 1 (egrees of freeom) - 5 -

6 (1.9) n x2 j T 2 /n n (x j x) 2 5 c, y j c x j + (j 1,..., n) x j c y j ȳ c x + (1.10) (y j ȳ) 2 c 2 (x j x) 2 (1.11) y j 5 (1.10) (1.11) {p 1,..., p n } {x 1,..., x n } p j (j 1,..., n) p j 0, p j 1 2 µ σ p 1,..., p n ( p j 1) 1 2 j n p 1 p 2 p j p n x 1 x 2 x j x n y 1 y 2 y j y n y j c x j + x j p j µ (1.12) (x j µ) 2 p j σ (1.13) (x j µ) p j 0 (1.14) σ 2 x 2 j p j µ 2 (1.15) 6 6 (1.14) (1.15) c, y j c x j + (j 1,..., n) y j (1.12) (1.13) µ y y j p j σ 2 y (y j µ y ) 2 p j - 6 -

7 y y j µ, σ 2 µ y c µ + σ 2 y c 2 σ 2 (1.16) (1.17) σy (1.16) (1.17) m n i j x ij (i 1,..., m; j 1,..., n) m n 1.3x ij 1 i i 1 m 2 j j 1 n 1.3 m n x ij j i 1 2 j n 1 x 11 x 12 x 1j x 1n T 1. x 1. 2 x 21 x 22 x 2j x 2n T 2. x i x i1 x i2 x ij x in T i. x i m x m1 x m2 x mj x mn T m. x m. T. 1 T. 2 T. j T. n T.. x. 1 x. 2 x. j x. n x.. i T i. x i. (i 1,..., m) T i. x ij x i1 + x i2 + + x in x i. T i./n. T i. x ij i j j T. j x. j (j 1,..., n) T. j x ij x 1j + x 2j + + x mj x. j T. j /m T.. ( ) T.. T i. x ij T. j ( m ) x ij x ij x ij - 7 -

8 i j m n x.. x.. T.. m n m n x ij x.. x ij x.. (x ij x..) 2 (x ij x i.) 2 + n ( x i. x..) 2 (1.18) (1.18) 9 8 x ij i j i n i n 1, n 2,..., n m 1 n 1 x 1j (j 1,..., n 1 ) 2 n 2 x 2j (j 1,..., n 2 ) i n i x ij (j 1,..., n i ) x ij x ij n i 1 x 11 x 1n1 n 1 T 1. x 1. T 1./n 1 2 x 21 x 2n2 n 2 T 2. x 2. T 2./n 2.. i x i1 x ini n i T i. x i. T i./n i..... m x m1 x mnm n m T m. x m. T m./n m N T.. x.. T../N T i. x i. n i T i. x ij x i1 + x i2 + + x ini x i. T i. n i ( n i ) T.. T i. x ij 2 n i i j T i. x ij i T.. T i. ) x ij ( n i

9 N n i n 1 + n n m x.. T.. N x ij x.. n i (x ij x..) 2 n i (x ij x i.) 2 + n i ( x i. x..) 2 (1.19) (1.19) i 1 m j 1 n i j x ij i p i j q j x ij p i q j x ij x ij ( m ) ( ) p i q j p i q j (1.20) 10 (1.20) x j j 1 n n 1 x j x 0 + x x n 1 j0 j p j p 0 + p p n + j0-9 -

10 1.3 f(x) b 1.1 f(x) 0 ( x b) K f(x) x K f(x) 0 ( x b) 1.2 K f(x) x K f(x) K 0 f(x) K b 0 b f(x) f(x) x K 1 K 2 + K 3 f(x) K 1 K 3 0 K 2 b 1.3 f(x), b f(x) x f(t) t f(z) z i k f(x) f(x) F (x) F (x) f(x) x f(x) b f(x) x F (b) F () [ F (x) ] b (1.21)

11 F (b) F () [ F (x) ] b c, x g(x) (1) (2) (3) (4) {f(x) + g(x)} x {c f(x)} x c f(x) x + g(x) x (1.22) f(x) x (1.23) c x c (b ) (1.24) {c f(x) + g(x)} x c f(x) x + g(x) x (1.25) (1.21) (1) - (4) 1.2 (1) - (4) (4) (1) (2) (1) (2) (4) 1.2 (1) - (4) 11 f(x) 0 ( x b), f(x) x 1 f(x) 2 µ σ 2 x f(x) x (1.26) (x µ) 2 f(x) x (1.27) σ 2 (x µ) f(x) x 0 (1.28) x 2 f(x) x µ 2 (1.29) (1.28) (1.29) c, y g(x) c x + y g(x) (1.26) (1.27) µ y σ 2 y y f(x) x (y µ y ) 2 f(x) x g(x) f(x) x (g(x) µ y ) 2 f(x) x

12 µ y c µ + σ 2 y c 2 σ 2 (1.30) (1.31) σy (1.30) (1.31) c x F (x) x c f(t) t (1.32) t x x F (x) x f(x) f(t) F (x + x) F (x) c x x + x F (x) f(x) (1.33) x F (x + x) F (x) F (x) lim x x 0 x F (x + x) F (x) 1.4 x f(x) x 0 f(x) (1.32) F (x) b f(x) x F (b) F () [ F (x) ] b 1.5 F (x) f(x) G(x) G(x) f(x) x {G(x) F (x)} f(x) f(x) 0 x G(x) F (x) C C G(x) F (x) + C [ ] b b G(x) G(b) G(b) F (b) F () f(x) x f(x) 1.5 c F (b) F () b

13 F (x) f(x) x f(x) x F (b) F () [ F (x) ] b f(x) x x b 0 f(x) x f(x) x 0 f(x) x lim b f(x) x lim b 0 f(x) x f(x) x f(t) F (x) 1 t 0 x < t < 0 f(t) 1 0 t < t < x F (x) x f(t) t f(t) t 0 t 1 f(t) x t x 1.7 x 0 < x 0 F (x) f(t) t x 0 x x <

14 1.4 y f(x) x x f(x) lim f(x + x) f(x) x 0 x (1.34) (x, f(x)) 1.8 y x, f (x), f(x) f (x) f(x) 1.8 x x x f(x) f(x) f(x) f(x) x (1.34) f(x) x f(x) x x > 0 x 0 x < 0 x 0 f(x) x 1.9 f(x) x x 0 f(0) 0 f(0 + x) f(0) lim x>0 x x 0 lim x<0 x 0 f(0 + x) f(0) x x lim x>0 x 0 lim x<0 x 0 x lim x>0 x 0 x x lim x<0 x 0 x x 1 x x f(x) x 0 x f(x) x x 0 c, x g(x) (1) {f(x) + g(x)} f (x) + g (x) (1.35) (2) {c f(x)} c f (x) (1.36) (3) x c 0 (1.37) (4) {c f(x) + g(x)} c f (x) + g (x) (1.38) (1) (2)

15 : (x 1,..., x n ) f(x)... :... (1) ( 1 + 2) ( 1) + ( 2) (2) ( ) () (1) (2) (liner) (1) (2) (4) (4) ( ) 1 ( 1) + 2 ( 2) (1) (2) (4) 3 () {f(x) g(x)} f (x) g(x) + f(x) g (x) (1.39) { 1 } g (x) (b) g(x) g(x) 2 (1.40) { f(x) } f (x) g(x) f(x) g (x) (c) g(x) g(x) 2 (1.41) () y f(z), z g(x) y f(g(x)) y x y z z (1.42) x (e) x f 1 1 (x) f (f 1 (1.43) (x)) 13 (1.39) - (1.43) 13 (1.39) (1.21) f (x) g(x) x ( ) {f(x) g(x)} f(x) g (x) x {f(x) g(x)} x f(x) g (x) x [ f(x) g(x) ] b f(x) g (x) x (1.44) 14 (1.42) f(z) z c 13 f(g(x)) g (x) x (1.45) z g(x), g(c), b g() F (z) f(z) F (z) z f(z) z F (b) F ()

16 z g(x), g(c), b g() F F (g(x)) x z z x f(z) g (x) f(g(x)) g (x) c f(g(x)) g (x) x F (g()) F (g(c)) F (b) F () f(z) z 14 x xn n x n 1 n x x x 1 x ex e x, x x (ln ) x x ln x 1 x sin x cos x, x cos x sin x, x 1 x sin 1 (x) 1 x 2 ( 1 < x < 1) ( 1 ) x x 2 x, 1/2 x tn x 1 cos 2 x f(x) f (x) x f (x) < 0 f (x) 0 f (x) > 0 f(x) f(x) f(x) f(x) x b 1) f(x) x 3 x 0 2) 1.10 f(x) 1.10 b 15 n x 1,..., x n f() (x j ) 2 (1.46)

17 x 1,..., x n f() f() f() (x j ) 2 (1) (x j ) 2 y z 2, z (x j ) 2 z 2 (x j ) (x j ) z x j ( 2) (x j ) 2 ( n x j ) 2 (n x n ) 2 n ( x) x f () 0 f() < x x > x f () 0 + f() (x j x) 2 n (x j x) 0 f() f() (x j ) 2 (x j x) 2 + (x j x) 2 + (x j x + x ) 2 ( x ) ( x ) ( x ) 2 (x j x) (x j x) 2 + n ( x ) x f() f() 2 f() x f() n x 1,..., x n x x j 2 f() (x j ) exp(x) e x e x > 1 + x (x > 0) (1.47) e x > 1 + x + x2 2 (x > 0) (1.48)

18 e 0 1, e x > 1 (x > 0), f 1 (x) e x (1 + x) f 1 (0) e f 1(x) e x 1 > 0 (x > 0) x ex e x 1.6 x > 0 f 1 (x) > 0 f 1(x) > 0 (x > 0) (1.47) f 2 (x) e x (1 + x + x2 2 ) f 2 (0) e f 2(x) e x (1 + x) f 1 (x) > 0 (x > 0) f 2 (x) > 0 (x > 0) (1.48) x e x x e x < x 0 (x ) (1.49) 1 + x + x2 2 n e x > 1 + x + x xn n! x n e x 0 (x ) (x > 0) e x x x n ln z z 1 ln z z 0 1 lim 0 ln z z 1 x ln z (z e x ) e c 0 (c ) z x ex 1 ln z z 0 c x z x x 0 c x e x x f (x) e x, g(x) x [ x e x] 0 0 c e x x [ x e x] 0 c [ e x] 0 c c c e c 1 + e c 1 (c )

19 1.5 2 x, y z f(x, y) y y b f(x, b) x x f(x + x, b) f(x, b) f(x, b) lim x x 0 x (1.50) x x y b 1.11 x b b y f(x + x, y) f(x, y) f(x, y) lim x x 0 x (1.51) f(x, y) f(x, b) b 1.11 x y b (1.50) (1.51) x y 18 f(x, y) x 2 + 3x y + 2y 2 y f(x, y) 2x + 3y x y x f(x, y) 3x + 4y y y 18 (x, y) D f(x, y) f(x, y) 1.11 x, y f(x, y) 0, x f(x, y) 0 y D n (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ) b f(, b) (y j b x j ) 2 (1.52) x j, y j (j 1,..., n) b 14 ˆb f(, b) b b (x j x) (y j ȳ), â ȳ ˆb x (x j x)

20 ˆb 4 x 1,..., x n ˆb, (x 1, y 1 ),..., (x n, y n ) 20 19, b f(, b) (y j b x j ) 2 (y j â ˆb x j ) 2 + (y j â ˆb x j + â + ˆb x j b x j ) 2 19 { } 2 (â ) + (ˆb b) xj (y j â ˆb x j ) 2 f(â, ˆb) â, b ˆb f(, b) y j â ˆb x j y j ȳ ˆb (x j x) {y j ȳ ˆb (x j x)} 0 {y j ȳ ˆb (x j x)} x j {y j ȳ ˆb (x j x)} (x j x) (1.52) f(, b) b b y j b x j z j f(, b) f(, b) (y j b x j ) 2 (z j ) 2 15 b â z ȳ b x f(, b) g(b) (z j z) 2 {y j ȳ b (x j x)} 2 b b b 2 ˆb (x j x)(y j ȳ) (x j x) 2 g(b)

21 1.6 ( > 0, 1) f(x) f(x) x > 0 ( < x < ) (1.53) 1 x 1 x 1 x ( < x < ) f(x) 0.5 x e e x 2 2 x (1) f( x) x 1 x (2) f(0) x (3) > 1 f(x) x lim x x 0 lim x x (4) 0 < < 1 f(x) x lim x x lim x x 0 (5) x, y f(x + y) x+y x y f(x) f(y) e f(x) e x exp(x) ( < x < ) (1.54) e x exp(x) e x exp(x) x ex e x (1.55) x (1.55) e φ(x) 1 e x2 /2 1 exp ( x2 ) 2π 2π φ(x) 1/ 2π (1.56) x

22 exp( x 2 /2) x 0 lim x exp( x2 /2) 0 lim x exp( x2 /2) 0 (1.55) (1.42) exp( x 2 /2) x exp ( x2 2 ) exp ( x2 2 ) ( x 2 x 2 ) x exp ( x2 2 ) 22 ( > 0, 1) x y x y y f(x) log x (1.57) x > 0 f(x) log x y ( < y < ) f(x) log 2 x ln x log 0.5 x (y log x, x y ) (1) f(1/x) log (1/x) log x (2) f(1) log 1 0 (3) > 1 f(x) log x lim log x x 0 lim log x x (4) 0 < < 1 f(x) log x lim log x x 0 lim log x x (5) x > 0, y > 0 f(x y) log (x y) log x + log y f(x) + f(y) 10 log 10 x log 10 x log x e log e x ln x log e x ln x log x ln x log 10 x x

23 f(x) ln x x ln x 1, (x 0) (1.58) x x ln x 1 x x ex e x 1.7 n r n P r n P r np r n (n 1) (n 2) (n r + 1) }{{} r (1.59) A 3 n A 1 A 2 A n n A 1, A 2,..., A n r r 1 2 r n n 1 n r A 3 A 1 A 4 A 4 A 3 r r 3 r A n 1 2 n 1 r r 1 n (r 1) n r np n n (n 1) (n 2) n! (1.60) n! 1 n n n P r np r n (n 1) (n 2) (n r + 1) n! (n r)! (1.61) 0! 1 15 (1.61)

24 n r r n C r n C r ( ) n nc r n P r n! r r! r! (n r)! (1.62) n P r 1 r r! n C r n P r /r! 1.15 r 3 A 1, A 3, A 4 3! 6 {A 1, A 3, A 4 }, {A 1, A 4, A 3 }, {A 3, A 1, A 4 }, {A 3, A 4, A 1 }, {A 4, A 1, A 3 }, {A 4, A 3, A 1 } ( ) n n C r ( ) r n r ( ( n r) n r) r 0 nc 0 n! 0! (n 0)! n! 0! n! 1 (1.62) ( ) ( ) n n nc r n C n r, r n r r n 10 C 8 10C 8 10 C 2 10 P 2 2! (1.63) 2 (p + q) n n {}}{ (p + q) (p + q) (p + q) nc r p r q n r (1.64) r0 (p + q) n n + 1 p r q n r (r 0, 1,..., n) p r q n r n (p + q) r p n C r p r q n r n C r

25 1.8 [] / [] α A lph [ǽlf@] β B bet [bí:t@] / [béit@, bí:t@] γ Γ gmm [gǽm@] δ elt [élt@] ε, ɛ E epsilon [epsáil@n, épsil@n, -lòn, ] / [éps@lòn, -l@n] ζ Z zet [zí:t@] / [zéit@, zí:t@] η H et [í:t@] / [éit@, í:t@] θ Θ thet [Tí:t@] / [Téit@, Tí:t@] ι I iot [ióut@] κ K kpp [kǽp@] λ Λ lmb [lǽm@] µ M mu [mju:] / [mju:, mu:] ν N nu [nju:] / [nu:, nju:] ξ Ξ xi [si, ksi, gzi, zi] / [zi, si] o O omicron -kr@n, Ómik-] / [ÓmikrÒn, óumikròn] π Π pi [pi] ρ P rho [rou] σ Σ sigm [sígm@] τ T tu [tu, to:] υ Υ upsilon [jú:psil@n, -lòn, ju:psáil@n, 2ps-] / [ 2ps@lÒn, jú:ps@lòn] φ, ϕ Φ phi [fi] χ X chi [ki] ψ Ψ psi [psi] / [si, psi] ω Ω omeg [óumig@, oumí:g@] / [ouméig@, oumég@, oumí:g@] α β γ δ ε ζ η θ ι κ λ µ ν ξ o π ρ σ τ υ φ χ ψ ω γ χ r x γ r χ x X λ 1 RAMUDA ?

26 1.9 1 (1) (x j + y j ) (x 1 + y 1 ) + + (x n + y n ) ( ) ( ) (x x n ) + (y y n ) x j + y j (2) (3) ( ) (c x j ) c x c x n c (x x n ) c x j c c } + {{ + } c n c n 2 ( ) ( ) (4) (c x j + y j ) c x j + y j ( ) ( ) c x j + y j (1) (2) (4) c 1 (1) 0 (2) 3 (x j x) x j x T n x 0 1 (4) 2 (3) 3 4 x j x j n x (x j x) 2 (x 2 j 2 x x j + x 2 ) x 2 j 2 x x j + x 2 x 2 j 2 x (n x) + n x 2 x 2 j n x 2 x 2 j T 2 /n 5 ȳ 1 y j 1 (c xj + ) c xj + 1 c x + n n n n (y j ȳ) 2 {(c x j + ) (c x + )} 2 {c (x j x)} 2 c 2 (x j x)

27 6 p j 1 (x j µ) p j x j p j µ p j µ µ p j µ µ 0 σ 2 (x j µ) 2 p j (x 2 j 2µ x j + µ 2 ) p j x 2 j p j 2µ x j p j + µ 2 p j x 2 j p j 2µ µ + µ 2 x 2 j p j µ 2 7 µ y σy 2 y j p j (c x j + ) p j c x j p j + p j c µ + (y j µ y ) 2 p j {(c x j + ) (c µ + )} 2 p j {c (x j µ)} 2 p j c 2 (x j µ) 2 p j c 2 σ 2 8 (x ij x..) 2 (x ij x i. + x i. x..) 2 (x ij x i.) (x ij x i.) 2 + n ( x i. x..) 2 (x ij x i.)( x i. x..) + ( x i. x..) 2 x i. x.. j (x ij x i.)( x i. x..) ( x i. x..) (x ij x i.) 0 ( x i. x..) 2 n ( x i. x..) 2 9 n i (x ij x..) 2 n i (x ij x i. + x i. x..) 2 n i n i (x ij x i.) (x ij x i.)( x i. x..) + n i (x ij x i.) 2 + n i ( x i. x..) 2 n i ( x i. x..)

28 8 n i n i (x ij x i.)( x i. x..) 0 ( x i. x..) 2 n i ( x i. x..) 2 10 ( ) x ij ( ) p i q j p i j ) (p i q j q j i ( m ) ( ) p i q j (1.39) (1.42) { } f(x + x) g(x + x) f(x) g(x) f(x) g(x)) lim x x 0 x f(x + x) g(x + x) f(x) g(x + x) + f(x) g(x + x) f(x) g(x) lim x 0 x {f(x + x) f(x)} g(x + x) f(x){g(x + x) g(x)} lim + lim x 0 x x 0 x f (x) g(x) + f(x) g (x) (1.40) (1.41) (1.39) (1.42) y f(z), z g(x) g(x + x) z + z f(g(x + x)) f(g(x)) x f(g(x + x)) f(g(x)) g(x + x) g(x) g(x + x) g(x) x f(z + z) f(z) g(x + x) g(x) y z x z z x f(f 1 (x)) x x 14 f(, b) n (y j b x j ) 2 b f(, b) 2 (y j b x j )

29 b b f(, b) 2 x j (y j b x j ), b â, ˆb (1) (2) (yj â ˆb x j ) n ȳ n â n ˆb x 0 xj (y j â ˆb x j ) x j y j n â x ˆb x 2 j 0 (1) (3) â ȳ ˆb x (3) (2) (4) xj y j n x ȳ ˆb ( x 2 j n x 2 ) x 2 j n x 2 (x j x) 2 (xj x)(y j ȳ) x j y j x y j ȳ x j + n x ȳ x j y j n x ȳ (4) (5) ˆb (x j x)(y j ȳ) (x j x) 2 15 np r n (n 1) (n 2) (n r + 1) n (n 1) (n 2) (n r + 1) (n r) 2 1 (n r) 2 1 n! (n r)!

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/085221 このサンプルページの内容は, 初版 1 刷発行時のものです. i +α 3 1 2 4 5 1 2 ii 3 4 5 6 7 8 9 9.3 2014 6 iii 1 1 2 5 2.1 5 2.2 7

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

8 i, III,,,, III,, :!,,,, :!,,,,, 4:!,,,,,,!,,,, OK! 5:!,,,,,,,,,, OK 6:!, 0, 3:!,,,,! 7:!,,,,,, ii,,,,,, ( ),, :, ( ), ( ), :... : 3 ( )...,, () : ( )..., :,,, ( ), (,,, ),, (ϵ δ ), ( ), (ˆ ˆ;),,,,,,!,,,,.,,

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

L A TEX ver L A TEX LATEX 1.1 L A TEX L A TEX tex 1.1 1) latex mkdir latex 2) latex sample1 sample2 mkdir latex/sample1 mkdir latex/sampl

L A TEX ver L A TEX LATEX 1.1 L A TEX L A TEX tex 1.1 1) latex mkdir latex 2) latex sample1 sample2 mkdir latex/sample1 mkdir latex/sampl L A TEX ver.2004.11.18 1 L A TEX LATEX 1.1 L A TEX L A TEX tex 1.1 1) latex mkdir latex 2) latex sample1 sample2 mkdir latex/sample1 mkdir latex/sample2 3) /staff/kaede work/www/math/takase sample1.tex

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

Ver.2.2 20.07.2 3 200 6 2 4 ) 2) 3) 4) 5) (S45 9 ) ( 4) III 6) 7) 8) 9) ) 2) 3) 4) BASIC 5) 6) 7) 8) 9) ..2 3.2. 3.2.2 4.2.3 5.2.4 6.3 8.3. 8.3.2 8.3.3 9.4 2.5 3.6 5 2.6. 5.6.2 6.6.3 9.6.4 20.6.5 2.6.6

More information

/02/18

/02/18 3 09/0/8 i III,,,, III,?,,,,,,,,,,,,,,,,,,,,?,?,,,,,,,,,,,,,,!!!,? 3,,,, ii,,,!,,,, OK! :!,,,, :!,,,,,, 3:!,, 4:!,,,, 5:!,,! 7:!,,,,, 8:!,! 9:!,,,,,,,,, ( ),, :, ( ), ( ), 6:!,,, :... : 3 ( )... iii,,

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

確率論と統計学の資料

確率論と統計学の資料 5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,, 6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

統計学のポイント整理

統計学のポイント整理 .. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n 1, R f : R R,.,, b R < b, f(x) [, b] f(x)dx,, [, b] f(x) x ( ) ( 1 ). y y f(x) f(x)dx b x 1: f(x)dx, [, b] f(x) x ( ).,,,,,., f(x)dx,,,, f(x)dx. 1.1 Riemnn,, [, b] f(x) x., x 0 < x 1 < x 2 < < x n 1

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

τ τ

τ τ 1 1 1.1 1.1.1 τ τ 2 1 1.1.2 1.1 1.1 µ ν M φ ν end ξ µ ν end ψ ψ = µ + ν end φ ν = 1 2 (µφ + ν end) ξ = ν (µ + ν end ) + 1 1.1 3 6.18 a b 1.2 a b 1.1.3 1.1.3.1 f R{A f } A f 1 B R{AB f 1 } COOH A OH B 1.3

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

0406_total.pdf

0406_total.pdf 59 7 7.1 σ-ω σ-ω σ ω σ = σ(r), ω µ = δ µ,0 ω(r) (6-4) (iγ µ µ m U(r) γ 0 V (r))ψ(x) = 0 (7-1) U(r) = g σ σ(r), V (r) = g ω ω(r) σ(r) ω(r) (6-3) ( 2 + m 2 σ)σ(r) = g σ ψψ (7-2) ( 2 + m 2 ω)ω(r) = g ω ψγ

More information

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l 1 1 ϕ ϕ ϕ S F F = ϕ (1) S 1: F 1 1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l : l r δr θ πrδr δf (1) (5) δf = ϕ πrδr

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta 009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n

More information