_KyoukaNaiyou_No.4

Size: px
Start display at page:

Download "_KyoukaNaiyou_No.4"

Transcription

1 理科教科内容指導論 I : 物理分野 物理現象の定量的把握第 4 回

2 ( 実験 ) データの眺め ~ 統計学の基礎続き 統計のはなし 基礎 応 娯楽 (Best selected business books) 村平 科技連出版社 1836 円

3 前回の復習と今回以降の 標 東京 学 善 郎 Web サイトより データ ヒストグラム 代表値 ( 平均値 最頻値 中間値 ) 分布の散らばり 集団の分布 ( ヒストグラム ) が分かれば代表値や散らばりは計算できる à 集団の分布 のパターンを理解することが重要 集団の分布 のパターンの重要な つである 正規分布 を理解

4 前回の復習と今回以降の 標 データ ヒストグラム 代表値 ( 平均値 最頻値 中間値 ) 分布の散らばり 集団の分布 ( ヒストグラム ) が分かれば代表値や散らばりは計算できる à 集団の分布 のパターンを理解することが重要 集団の分布 のパターンの重要な つである 正規分布 を理解する

5 集団の分布のパターンの表し ヒストグラムを使えば良い à ヒストグラムの 積は その値の範囲に属するデータの数と 例する この 積が 60~80 点の 数に 例 この考え を連続的な数にも拡張したものを確率密度分布と呼ぶ à 積がその値の範囲に属するデータの割合と 例する 割合 本 成 男性の の分布 (cm) この 積が 175~180 cm の の割合に 例

6 様々な分布 集団の分布 à 割合の分布 à 確率の分布 ( 確率分布 ) 分布のパターンは様々 指数分布 ワイブル分布 確率 ( 割合 ) 事故と事故の間の時間の分布 確率 ( 割合 ) 様々な部品の故障までの時間の分布 値 値 様分布 パレート分布 コーシー分布 超幾何分布 etc... 興味があれば統計学の教科書 ( 統計学 など ) を読んでみいて下さい 案外 いです

7 正規分布 無限に広がる 釣鐘状の左右対称な分布 最頻値と中間値と平均値が 致した素直な分布 々な物がこの分布に従うことが知られている 物の 体重 試験の点数 ( 厳密には違う )etc. 測定の誤差 ( 誤差分布 ) 平均値の分布... 中 極限定理 数の法則正規分布 確率 ( 割合 ) 値

8 正規分布 平均 μ ( ミュー ) と標準偏差 σ ( シグマ ) の値を決めると分布の形が決まる 平均 μ 標準偏差 σ の正規分布を N(μ, σ 2 ) と表記する 確率 ( 割合 ) f 平均 μ f (x) = 1 2πσ exp " $ (x µ) 2 # 2σ 2 標準偏差 σ 2 % ' & 値 x

9 正規分布 平均 μ ( ミュー ) と標準偏差 σ ( シグマ ) の値を決めると分布の形が決まる 平均 μ 標準偏差 σ の正規分布を N(μ, σ 2 ) と表記する 確率 ( 割合 ) f N(0,1) N(0,2 2 ) N(0,3 2 ) f (x) = N(3,2 2 ) 1 2πσ exp " $ (x µ) 2 # 2σ 2 2 % ' & 値 x

10 正規分布の特徴 平均 μ から標準偏差 σ を単位としてある幅をとると その範囲の 積がどんな正規分布 N(μ,σ 2 ) の場合にも等しい値になる 0.5 μ=0 確率 ( 割合 ) f N (0,1 2 ) 68.3 % -1σ +1σ= % -2σ +2σ= 値 x

11 正規分布の特徴 平均 μ から標準偏差 σ を単位としてある幅をとると その範囲の 積がどんな正規分布 N(μ,σ 2 ) の場合にも等しい値になる 0.5 確率 ( 割合 ) f μ=0 N (0,2 2 ) 68.3 % -1σ +1σ= % -2σ +2σ= 値 x

12 正規分布の特徴 平均 μ から標準偏差 σ を単位としてある幅をとると その範囲の 積がどんな正規分布 N(μ,σ 2 ) の場合にも等しい値になる 0.5 確率 ( 割合 ) f μ=3 N (3,2 2 ) 68.3 % -1σ +1σ= % -2σ +2σ= 値 x

13 正規分布表 ( 上側確率 ) 他に表の流儀は幾つかあります EXCEL でも 1-NORMSDIST(z) で計算可能 例えば μ+1.24σ 以上が全体に占める割合は 10.7% μ zσ

14 ( 例題 ) 松坂 輔と 翔平 松坂 は 本 男性の中ではどれくらい背が い か? cm 彼らより背の い 本 男性は全体の何 % いるか? 本 男性の の分布は正規分布だと仮定して計算してみる H25 年度 30~34 歳 本 男性 平均 μ cm 標準偏差 σ 5.5 cm ( 総務省統計局 = &releaseCount=2) cm Wikipedia

15 ( 例題 ) 松坂 輔と 翔平 H25 年度 30~34 歳 本 男性 平均 μ cm 標準偏差 σ 5.5 cm ( 総務省統計局 cm 松坂 輔 平均からズレ =10.5 cm 標準偏差でこのズレを表すと 10.5/5.5 = 1.91 σ 1.91σ 以上が占める割合は 2.81 % 1/( )=36 松坂より背の い 本 男性は全体の 2.81 % で 36 に 1 くらい cm Wikipedia

16 ( 例題 ) 松坂 輔と 翔平 H25 年度 30~34 歳 本 男性 平均 μ cm 標準偏差 σ 5.5 cm ( 総務省統計局 cm 翔平 cm より背の い 本 男性は全体の % で に 1 くらい Wikipedia

17 ( 例題 ) 松坂 輔と 翔平 H25 年度 30~34 歳 本 男性 平均 μ cm 標準偏差 σ 5.5 cm ( 総務省統計局 翔平 平均からズレ =20.5 cm 標準偏差でこのズレを表すと 20.5/5.5 = 3.73 σ 3.73σ 以上が占める割合は % 1/( )= より背の い 本 男性は全体の % で に 1 くらい cm cm Wikipedia

18 ( 例題 ) 東 理 III はどのくらい凄いのか? 受験 の学 ( 得点 ) は正規分布だと仮定する この仮定はあまり正しくないです

19 標準得点 ( 偏差値 ) 標準得点 " Z i = x i x % $ ' # σ & 平均や標準偏差の異なる集団に属するデータを 集団の中でどの辺りに位置するか で表すことで 互いに 較できるようにする 数 平均 400 点標準偏差 150 点 550 点 得点 700 点 平均 600 点標準偏差 100 点 ある模試の得点分布 どちらも標準得点 ( 偏差値 ) は 60

20 ( 例題 ) 東 理 III はどのくらい凄いのか? 受験 の学 ( 得点 ) は正規分布だと仮定する この仮定はあまり正しくないです 偏差値 ( 標準得点 ) は平均 50 標準偏差 10 にした得点 N(50, 10 2 ) の分布 μ=50 σ= 年度偏差値 東 理 III に るには全受験 の上位 % 以上に る必要がある

21 ( 例題 ) 東 理 III はどのくらい凄いのか? 受験 の学 ( 得点 ) は正規分布だと仮定する この仮定はあまり正しくないです 偏差値 ( 標準得点 ) は平均 50 標準偏差 10 にした得点 N(50, 10 2 ) の分布 μ=50 σ= 年度偏差値 74.8 à 2.48σ σ 以上の占める割合は 0.657% 東 理 III に るには全受験 の上位 0.657% 以上に る必要がある 希少性 という意味では cm (= ) 以上の男性と同じ

22 正規分布の加法性 N(μ 1,σ 12 ) の分布の x と N(μ 2,σ 22 ) の分布の y がある時 ax+by の分布は N(aμ 1 +bμ 2, (aσ 1 ) 2 +(bσ 2 ) 2 ) となる ( 正規分布の加法性 ) 本 男性成 の分布 N(172.5 cm, (5.5 cm) 2 ) 本 性成 の分布 N(158.7 cm, (5.3 cm) 2 ) H25 年度 30~34 歳 ( 総務省統計局 無作為に 本 成 男 2 名を選び出すと その の和の分布は N( cm, cm 2 ) =N(331.2 cm, 58.3 cm 2 ) =N(331.2 cm, (7.6 cm) 2 ) 平均 μ=331.2 cm 標準偏差 σ=(58.3) 0.5 =7.6 cm

23 正規分布の加法性 N(μ 1,σ 12 ) の分布の x と N(μ 2,σ 22 ) の分布の y がある時 ax+by の分布は N(aμ 1 +bμ 2, (aσ 1 ) 2 +(bσ 2 ) 2 ) となる ( 正規分布の加法性 ) 確率 ( 割合 ) y: 性 N(158.7, ) x: 男性 N(172.5,5.5 2 ) 確率 ( 割合 ) x+y: 任意の男 の の和 N(331.2,7.6 2 ) (cm) (cm)

24 正規分布の加法性 N(μ 1,σ 12 ) の分布の x と N(μ 2,σ 22 ) の分布の y がある時 ax+by の分布は N(aμ 1 +bμ 2, (aσ 1 ) 2 +(bσ 2 ) 2 ) となる ( 正規分布の加法性 ) 本 男性成 の分布 N(172.5 cm, (5.5 cm) 2 ) 本 性成 の分布 N(158.7 cm, (5.3 cm) 2 ) H25 年度 30~34 歳 ( 総務省統計局 無作為に 本 成 男 2 名を選ぶと その の差の分布は N( cm, ( cm) 2 ) もし世の中の男 カップルが 差とは無作為に相 を選んでいるとしたら 逆 差カップル ( 性の が い ) は全体の % 差カップル ( 男性の が 30 cm 以上 い ) は全体の %

25 x-y: 任意の男 の の差 ( 男 - ) の分布 確率 ( 割合 ) 男性 性の 差 (cm)

26 x-y: 任意の男 の の差 ( 男 - ) の分布 この分布の μ と σ は? 確率 ( 割合 ) 逆 差 ( 性の が い ) カップル 差 ( 男 差 30 cm 以上 ) カップル 男性 性の 差 (cm)

27 正規分布の加法性 N(μ 1,σ 12 ) の分布の x と N(μ 2,σ 22 ) の分布の y がある時 ax+by の分布は N(aμ 1 +bμ 2, (aσ 1 ) 2 +(bσ 2 ) 2 ) となる ( 正規分布の加法性 ) 本 男性成 の分布 N(172.5 cm, (5.5 cm) 2 ) 本 性成 の分布 N(158.7 cm, (5.3 cm) 2 ) H25 年度 30~34 歳 ( 総務省統計局 無作為に 本 成 男 2 名を選び出すと その の差の分布は N( cm, (-5.3) 2 cm 2 ) =N(13.8 cm, 58.3 cm 2 ) =N(13.8 cm, (7.6 cm) 2 ) 平均 μ=13.8 cm 標準偏差 σ=(58.3) 0.5 =7.6 cm

28 正規分布の加法性 N(μ 1,σ 12 ) の分布の x と N(μ 2,σ 22 ) の分布の y がある時 ax+by の分布は N(aμ 1 +bμ 2, (aσ 1 ) 2 +(bσ 2 ) 2 ) となる ( 正規分布の加法性 ) 本 男性成 の分布 N(172.5 cm, (5.5 cm) 2 ) 本 性成 の分布 N(158.7 cm, (5.3 cm) 2 ) H25 年度 30~34 歳 ( 総務省統計局 確率 ( 割合 ) y: 性 N(158.7, ) x: 男性 N(172.5,5.5 2 ) x-y: 任意の男 の の差 N(13.8,7.6 2 ) (cm) (cm)

29 正規分布の加法性 N(μ 1,σ 12 ) の分布の x と N(μ 2,σ 22 ) の分布の y がある時 ax +by の分布は N(aμ 1 +bμ 2, (aσ 1 ) 2 +(bσ 2 ) 2 ) となる ( 正規分布の加法性 ) 本 男性成 の分布 N(172.5 cm, (5.5 cm) 2 ) 本 性成 の分布 N(158.7 cm, (5.3 cm) 2 ) H25 年度 30~34 歳 ( 総務省統計局 無作為に 本 成 男 2 名を選ぶと その の差の分布は N(13.8 cm, (7.6 cm) 2 ) もし世の中の男 カップルが 差とは無作為に相 を選んでいるとしたら 逆 差カップル ( 性の が い ) は全体の 3.44% (1/29) (0-13.8)/7.6=-1.82σ 差カップル ( 男性の が 30 cm 以上 い ) は全体の 1.66% (1/60) ( )/7.6=2.13σ

30 中 極限定理 数の法則 中 極限定理 どんな確率分布であれ たくさんのランダムな数の和の分布は 正規分布に近づく 例 ) サイコロ ( 様分布 ) を 100 回振った和の分布は 正規分布に近づく この定理のため 正規分布は世の中のあちこちに現れる 数の法則 サンプル数を増やしていくと サンプルから計算した平均は真の平均に近づく 例 ) 本 男性 10 から計算した平均 より 1000 から計算した平均 の が 本 男性の真の平均 に近い 当たり前 ただし 正規分布の加法性と中 極限定理が 数の法則の成 を保証している

31 興味があれば こちらをどうぞ... 統計学 ( 基礎統計学 I) 東京 学教養学部統計学教室東京 学出版 3024 円

統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ :

統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ : 統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ : https://goo.gl/qw1djw 正規分布 ( 復習 ) 正規分布 (Normal Distribution)N (μ, σ 2 ) 別名 : ガウス分布 (Gaussian Distribution) 密度関数 Excel:= NORM.DIST

More information

<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63>

<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63> 第 4 回二項分布, ポアソン分布, 正規分布 実験計画学 009 年 月 0 日 A. 代表的な分布. 離散分布 二項分布大きさ n の標本で, 事象 Eの起こる確率を p とするとき, そのうち x 個にEが起こる確率 P(x) は二項分布に従う. 例さいころを 0 回振ったときに の出る回数 x の確率分布は二項分布に従う. この場合, n = 0, p = 6 の二項分布になる さいころを

More information

Microsoft PowerPoint - 基礎・経済統計6.ppt

Microsoft PowerPoint - 基礎・経済統計6.ppt . 確率変数 基礎 経済統計 6 確率分布 事象を数値化したもの ( 事象ー > 数値 の関数 自然に数値されている場合 さいころの目 量的尺度 数値化が必要な場合 質的尺度, 順序的尺度 それらの尺度に数値を割り当てる 例えば, コインの表が出たら, 裏なら 0. 離散確率変数と連続確率変数 確率変数の値 連続値をとるもの 身長, 体重, 実質 GDP など とびとびの値 離散値をとるもの 新生児の性別

More information

<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63>

<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63> 第 4 回二項分布, ポアソン分布, 正規分布 実験計画学 A. 代表的な分布. 離散分布 二項分布大きさ n の標本で, 事象 Eの起こる確率を p とするとき, そのうち x 個にEが起こる確率 P(x) は二項分布に従う. 例さいころを 0 回振ったときに の出る回数 x の確率分布は二項分布に従う. この場合, n 0, p 6 の二項分布になる さいころを 0 回振ったときに が 0 回出る

More information

第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均

第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均 第 3 回講義の項目と概要 016.8.9 1.3 統計的手法入門 : 品質のばらつきを解析する 1.3.1 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均 :AVERAGE 関数, 標準偏差 :STDEVP 関数とSTDEVという関数 1 取得したデータそのものの標準偏差

More information

母平均 母分散 母標準偏差は, が連続的な場合も含めて, すべての個体の特性値 のすべての実現値 の平均 分散 標準偏差であると考えてよい 有限母集団で が離散的な場合, まさにその意味になるが, そうでない場合も, このように理解してよい 5 母数 母集団から定まる定数のこと 母平均, 母分散,

母平均 母分散 母標準偏差は, が連続的な場合も含めて, すべての個体の特性値 のすべての実現値 の平均 分散 標準偏差であると考えてよい 有限母集団で が離散的な場合, まさにその意味になるが, そうでない場合も, このように理解してよい 5 母数 母集団から定まる定数のこと 母平均, 母分散, . 無作為標本. 基本的用語 推測統計における基本的な用語を確認する 母集団 調査の対象になる集団のこと 最終的に, 判断の対象になる集団である 母集団の個体 母集団を構成する つ つのもののこと 母集団は個体の集まりである 個体の特性値 個体の特性を表す数値のこと 身長や体重など 特性値は, 変量ともいう 4 有限母集団と無限母集団 個体の個数が有限の母集団を 有限母集団, 個体の個数が無限の母集団を

More information

Microsoft Word - Stattext07.doc

Microsoft Word - Stattext07.doc 7 章正規分布 正規分布 (ormal dstrbuto) は 偶発的なデータのゆらぎによって生じる統計学で最も基本的な確率分布です この章では正規分布についてその性質を詳しく見て行きましょう 7. 一般の正規分布正規分布は 平均と分散の つの量によって完全に特徴付けられています 平均 μ 分散 の正規分布は N ( μ, ) 分布とも書かれます ここに N は ormal の頭文字を 表わしています

More information

Microsoft PowerPoint - statistics pptx

Microsoft PowerPoint - statistics pptx 統計学 第 17 回 講義 母平均の区間推定 Part- 016 年 6 14 ( )3 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u toyama.ac.jp website: http://www3.u toyama.ac.jp/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を

More information

Microsoft PowerPoint - Statistics[B]

Microsoft PowerPoint - Statistics[B] 講義の目的 サンプルサイズの大きい標本比率の分布は正規分布で近似できることを理解します 科目コード 130509, 130609, 110225 統計学講義第 19/20 回 2019 年 6 月 25 日 ( 火 )6/7 限 担当教員 : 唐渡広志 ( からと こうじ ) 研究室 : email: website: 経済学研究棟 4 階 432 号室 kkarato@eco.u-toyama.ac.jp

More information

情報工学概論

情報工学概論 確率と統計 中山クラス 第 11 週 0 本日の内容 第 3 回レポート解説 第 5 章 5.6 独立性の検定 ( カイ二乗検定 ) 5.7 サンプルサイズの検定結果への影響練習問題 (4),(5) 第 4 回レポート課題の説明 1 演習問題 ( 前回 ) の解説 勉強時間と定期試験の得点の関係を無相関検定により調べる. データ入力 > aa

More information

Microsoft PowerPoint - stat-2014-[9] pptx

Microsoft PowerPoint - stat-2014-[9] pptx 統計学 第 17 回 講義 母平均の区間推定 Part-1 014 年 6 17 ( )6-7 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u-toyama.ac.j website: htt://www3.u-toyama.ac.j/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を

More information

EBNと疫学

EBNと疫学 推定と検定 57 ( 復習 ) 記述統計と推測統計 統計解析は大きく 2 つに分けられる 記述統計 推測統計 記述統計 観察集団の特性を示すもの 代表値 ( 平均値や中央値 ) や ばらつきの指標 ( 標準偏差など ) 図表を効果的に使う 推測統計 観察集団のデータから母集団の特性を 推定 する 平均 / 分散 / 係数値などの推定 ( 点推定 ) 点推定値のばらつきを調べる ( 区間推定 ) 検定統計量を用いた検定

More information

Microsoft PowerPoint - データ解析基礎4.ppt [互換モード]

Microsoft PowerPoint - データ解析基礎4.ppt [互換モード] データ解析基礎. 正規分布と相関係数 keyword 正規分布 正規分布の性質 偏差値 変数間の関係を表す統計量 共分散 相関係数 散布図 正規分布 世の中の多くの現象は, 標本数を大きくしていくと, 正規分布に近づいていくことが知られている. 正規分布 データ解析の基礎となる重要な分布 平均と分散によって特徴づけることができる. 平均値 : 分布の中心を表す値 分散 : 分布のばらつきを表す値 正規分布

More information

Microsoft PowerPoint - Inoue-statistics [互換モード]

Microsoft PowerPoint - Inoue-statistics [互換モード] 誤差論 神戸大学大学院農学研究科 井上一哉 (Kazuya INOUE) 誤差論 2011 年度前期火曜クラス 1 講義内容 誤差と有効数字 (Slide No.2~8 Text p.76~78) 誤差の分布と標準偏差 (Slide No.9~18 Text p.78~80) 最確値とその誤差 (Slide No.19~25 Text p.80~81) 誤差の伝播 (Slide No.26~32 Text

More information

<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63>

<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63> 第 7 回 t 分布と t 検定 実験計画学 A.t 分布 ( 小標本に関する平均の推定と検定 ) 前々回と前回の授業では, 標本が十分に大きいあるいは母分散が既知であることを条件に正規分布を用いて推定 検定した. しかし, 母集団が正規分布し, 標本が小さい場合には, 標本分散から母分散を推定するときの不確実さを加味したt 分布を用いて推定 検定しなければならない. t 分布は標本分散の自由度 f(

More information

Microsoft PowerPoint - statistics pptx

Microsoft PowerPoint - statistics pptx 統計学 第 16 回 講義 母平均の区間推定 Part-1 016 年 6 10 ( ) 1 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u-toyama.ac.jp website: http://www3.u-toyama.ac.jp/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を

More information

様々なミクロ計量モデル†

様々なミクロ計量モデル† 担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル

More information

統計学の基礎から学ぶ実験計画法ー1

統計学の基礎から学ぶ実験計画法ー1 第 部統計学の基礎と. 統計学とは. 統計学の基本. 母集団とサンプル ( 標本 ). データ (data) 3. 集団の特性を示す統計量 基本的な解析手法 3. 統計量 (statistic) とは 3. 集団を代表する統計量 - 平均値など 3.3 集団のばらつきを表す値 - 平方和 分散 標準偏差 4. ばらつき ( 分布 ) を表す関数 4. 確率密度関数 4. 最も重要な正規分布 4.3

More information

<4D F736F F D208EC08CB18C7689E68A E F1939D8C E82E646F63>

<4D F736F F D208EC08CB18C7689E68A E F1939D8C E82E646F63> 第 5 回統計的推定 実験計画学 A. 統計的推定と検定母集団から無作為抽出した標本から母集団についてなんらかの推論を行う. この場合, 統計から行う推論には統計的 ( ) と統計的 ( ) の 2つがある. 推定統計的に標本の統計量から母集団の母数 ( 母平均, 母標準偏差など ) を推論することを統計的推定という. 例 : 視聴率調査を 200 人に対して行い, 番組 Aの視聴率を推定した. 検定統計的に標本の統計量から母数に関する予想の真偽を検証することを統計的検定という.

More information

森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て

森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て . 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,0 年に 回の渇水を対象として計画が立てられる. このように, 水利構造物の設計や, 治水や利水の計画などでは, 年に 回起こるような降雨事象 ( 最大降雨強度, 最大連続干天日数など

More information

データ解析

データ解析 データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第

More information

モジュール1のまとめ

モジュール1のまとめ 数理統計学 第 0 回 復習 標本分散と ( 標本 ) 不偏分散両方とも 分散 というのが実情 二乗偏差計標本分散 = データ数 (0ページ) ( 標本 ) 不偏分散 = (03 ページ ) 二乗偏差計 データ数 - 分析ではこちらをとることが多い 復習 ここまで 実験結果 ( 万回 ) 平均 50Kg 標準偏差 0Kg 0 人 全体に小さすぎる > mea(jkke) [] 89.4373 標準偏差

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,. 23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%

More information

確率分布 - 確率と計算 1 6 回に 1 回の割合で 1 の目が出るさいころがある. このさいころを 6 回投げたとき,1 度も 1 の目が出ない確率を求めよ. 5 6 /6 6 =15625/46656= (5/6) 6 = ある市の気象観測所での記録では, 毎年雨の降る

確率分布 - 確率と計算 1 6 回に 1 回の割合で 1 の目が出るさいころがある. このさいころを 6 回投げたとき,1 度も 1 の目が出ない確率を求めよ. 5 6 /6 6 =15625/46656= (5/6) 6 = ある市の気象観測所での記録では, 毎年雨の降る 確率分布 - 確率と計算 6 回に 回の割合で の目が出るさいころがある. このさいころを 6 回投げたとき 度も の目が出ない確率を求めよ. 5 6 /6 6 =565/46656=.48 (5/6) 6 =.48 ある市の気象観測所での記録では 毎年雨の降る日と降らない日の割合は概ね :9 で一定している. 前日に発表される予報の精度は 8% で 残りの % は実際とは逆の天気を予報している.

More information

CAEシミュレーションツールを用いた統計の基礎教育 | (株)日科技研

CAEシミュレーションツールを用いた統計の基礎教育 | (株)日科技研 CAE シミュレーションツール を用いた統計の基礎教育 ( 株 ) 日本科学技術研修所数理事業部 1 現在の統計教育の課題 2009 年から統計教育が中等 高等教育の必須科目となり, 大学でも問題解決ができるような人材 ( 学生 ) を育てたい. 大学ではコンピューター ( 統計ソフトの利用 ) を重視した教育をより積極的におこなうのと同時に, 理論面もきちんと教育すべきである. ( 報告 数理科学分野における統計科学教育

More information

スライド 1

スライド 1 計測工学第 12 回以降 測定値の誤差と精度編 2014 年 7 月 2 日 ( 水 )~7 月 16 日 ( 水 ) 知能情報工学科 横田孝義 1 授業計画 4/9 4/16 4/23 5/7 5/14 5/21 5/28 6/4 6/11 6/18 6/25 7/2 7/9 7/16 7/23 2 誤差とその取扱い 3 誤差 = 測定値 真の値 相対誤差 = 誤差 / 真の値 4 誤差 (error)

More information

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル 春学期統計学 I 記述統計と推測統計 担当 : 長倉大輔 ( ながくらだいすけ ) 1 本日の予定 本日はまず記述統計と推測統計の違い 推測統計学の基本的な構造について説明します 2 記述統計と推測統計 統計学とは? 与えられたデータの背後にある 特性 法則 を 検証 発見 分析 するための手法の開発 その応用などに関わる学問の事です 3 記述統計と推測統計 データの種類 データの種類はおおまかに

More information

Microsoft PowerPoint slide2forWeb.ppt [互換モード]

Microsoft PowerPoint slide2forWeb.ppt [互換モード] 講義内容 9..4 正規分布 ormal dstrbuto ガウス分布 Gaussa dstrbuto 中心極限定理 サンプルからの母集団統計量の推定 不偏推定量について 確率変数, 確率密度関数 確率密度関数 確率密度関数は積分したら. 平均 : 確率変数 分散 : 例 ある場所, ある日時での気温の確率. : 気温, : 気温 が起こる確率 標本平均とのアナロジー 類推 例 人の身長の分布と平均

More information

untitled

untitled 分析の信頼性を支えるもの データ評価のための統計的方法 確率分布と平均値の推定 検定 田中秀幸 1 はじめに前回は, 統計的手法を適用するために意味のあるデータをどのように取得するのかについて, 母集団と標本について, 期待値 分散 標準偏差について解説した 今回は, 統計的推定 検定の基礎となる確率分布とその確率分布を用いた推定 検定について解説する 2 確率分布 測定データを取得したとき, そのデータのばらつきを視覚的に表すために,

More information

<4D F736F F D208D A778D5A8A778F4B8E7793B CC A7795D2816A2E646F6378>

<4D F736F F D208D A778D5A8A778F4B8E7793B CC A7795D2816A2E646F6378> 高等学校学習指導要領解説数学統計関係部分抜粋 第 部数学第 2 章各科目第 節数学 Ⅰ 3 内容と内容の取扱い (4) データの分析 (4) データの分析統計の基本的な考えを理解するとともに, それを用いてデータを整理 分析し傾向を把握できるようにする アデータの散らばり四分位偏差, 分散及び標準偏差などの意味について理解し, それらを用いてデータの傾向を把握し, 説明すること イデータの相関散布図や相関係数の意味を理解し,

More information

Microsoft PowerPoint - 測量学.ppt [互換モード]

Microsoft PowerPoint - 測量学.ppt [互換モード] 8/5/ 誤差理論 測定の分類 性格による分類 独立 ( な ) 測定 : 測定値がある条件を満たさなければならないなどの拘束や制約を持たないで独立して行う測定 条件 ( 付き ) 測定 : 三角形の 3 つの内角の和のように, 個々の測定値間に満たすべき条件式が存在する場合の測定 方法による分類 直接測定 : 距離や角度などを機器を用いて直接行う測定 間接測定 : 求めるべき量を直接測定するのではなく,

More information

統計的データ解析

統計的データ解析 統計的データ解析 011 011.11.9 林田清 ( 大阪大学大学院理学研究科 ) 連続確率分布の平均値 分散 比較のため P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c

More information

カイ二乗フィット検定、パラメータの誤差

カイ二乗フィット検定、パラメータの誤差 統計的データ解析 008 008.. 林田清 ( 大阪大学大学院理学研究科 ) 問題 C (, ) ( x xˆ) ( y yˆ) σ x πσ σ y y Pabx (, ;,,, ) ˆ y σx σ y = dx exp exp πσx ただし xy ˆ ˆ はyˆ = axˆ+ bであらわされる直線モデル上の点 ( ˆ) ( ˆ ) ( ) x x y ax b y ax b Pabx (,

More information

統計学 Ⅱ8-9 章 確率分布 確率の条件 8 ページ p: 確率関数 p は の関数とみなせる 確率分布 : すべてのに関する = または p の分布 グラフや表で表わすことが多い サイコロの例 : 計 縦軸は p または = 棒の幅は 線 確率 p.. = / / / / / / サイコロの目の

統計学 Ⅱ8-9 章 確率分布 確率の条件 8 ページ p: 確率関数 p は の関数とみなせる 確率分布 : すべてのに関する = または p の分布 グラフや表で表わすことが多い サイコロの例 : 計 縦軸は p または = 棒の幅は 線 確率 p.. = / / / / / / サイコロの目の 統計学 Ⅱ8-9 章 章確率と確率分布. 確率変数と離散的確率分布 確率変数 確率分布. 確率変数の平均と分散 確率変数 の平均と期待値 確率変数 の分散 期待値の性質 期待値の一般的な定義 基準化確率変数 歪度 尖度. 同時確率 周辺確率 条件付確率 項確率モデル 同時確率と同時確率分布 周辺確率 一般的な場合の同時確率 周辺確率 条件付確率 ベイズの定理. つの確率変数の平均 分散 共分散 変数の関数の期待値

More information

3章 度数分布とヒストグラム

3章 度数分布とヒストグラム 3 章度数分布とヒストグラム データの中の分析 ( 記述統計 ) であれ データの外への推論 ( 推測統計 ) であれ まず データの持つ基本的特性を把握することが重要である 1 分析の流れ データの分布 ( 散らばり ) を 度数分布表にまとめ グラフ化する 3 章 グラフに 平均値や分散など 分布の特徴を示す客観的な数値を加える 4 5 6 章 データが母集団からのランダムサンプルならば 母集団についての推測を行う

More information

基礎統計

基礎統計 基礎統計 第 11 回講義資料 6.4.2 標本平均の差の標本分布 母平均の差 標本平均の差をみれば良い ただし, 母分散に依存するため場合分けをする 1 2 3 分散が既知分散が未知であるが等しい分散が未知であり等しいとは限らない 1 母分散が既知のとき が既知 標準化変量 2 母分散が未知であり, 等しいとき 分散が未知であるが, 等しいということは分かっているとき 標準化変量 自由度 の t

More information

不偏推定量

不偏推定量 不偏推定量 情報科学の補足資料 018 年 6 月 7 日藤本祥二 統計的推定 (statistical estimatio) 確率分布が理論的に分かっている標本統計量を利用する 確率分布の期待値の値をそのまま推定値とするのが点推定 ( 信頼度 0%) 点推定に ± で幅を持たせて信頼度を上げたものが区間推定 持たせた幅のことを誤差 (error) と呼ぶ 信頼度 (cofidece level)

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

統計学 Ⅱ(06) 0 章 0 章 統計学の基本的な考え方 データ = 母集団から抽出された標本とみなす 実際に標本抽出されたデータ 視聴率, 失業率 そうでないデータ GDP, 株価, 為替レート, 試験の得点 このようなデータも母集団からの標本とみなす ( 母集団を想定する ) cf. 例題 0

統計学 Ⅱ(06) 0 章 0 章 統計学の基本的な考え方 データ = 母集団から抽出された標本とみなす 実際に標本抽出されたデータ 視聴率, 失業率 そうでないデータ GDP, 株価, 為替レート, 試験の得点 このようなデータも母集団からの標本とみなす ( 母集団を想定する ) cf. 例題 0 統計学 Ⅱ(06) 0 章 0 章 0 章標本抽出と標本分布. 母集団と標本 () 視聴率調査 () 有限母集団と無限母集団 (3) データと母集団. 標本抽出法 () 全数調査と標本調査 () 無作為抽出と有意抽出 (3) 単純無作為抽出法 (4) 層別抽出法 (5) 多段抽出法 (6) 系統抽出法 (7) その他の抽出法 3. 標本平均 の標本分布 () 標本平均の標本分布の例 () 標本平均

More information

相関係数と偏差ベクトル

相関係数と偏差ベクトル 相関係数と偏差ベクトル 経営統計演習の補足資料 07 年 月 9 日金沢学院大学経営情報学部藤本祥二 相関係数の復習 r = s xy s x s y = = n σ n i= σn i= n σ n i= n σ i= x i xҧ y i തy x i xҧ n σ n i= y i തy x i xҧ x i xҧ y i തy σn i= y i തy 式が長くなるので u, v の文字で偏差を表すことにする

More information

Microsoft PowerPoint - statistics08_03.ppt [互換モード]

Microsoft PowerPoint - statistics08_03.ppt [互換モード] 授業担当 : 徳永伸一 東京医科歯科大学教養部 数学講座 前回 ( 第 2 回 ) の授業の概要 : 第 1 回 ( 教科書第 9 章 順列 組合せと確率 ほぼ全部 ) の復習 教科書第 10 章 記述統計 S. TOKUNAGA 2 1 Overview 確率 (9 章 ) 記述統計 (10 章 ) 情報の要約 表やグラフで表す 代表値 ( 平均など ) や散布度 ( 分散など ) を求める 確率モデル

More information

<4D F736F F D2090B695A8939D8C768A E F AA957A82C682948C9F92E8>

<4D F736F F D2090B695A8939D8C768A E F AA957A82C682948C9F92E8> 第 8 回 t 分布と t 検定 生物統計学 A.t 分布 ( 小標本に関する平均の推定と検定 ) 前々回と前回の授業では, 標本が十分に大きいあるいは母分散が既知であることを条件に正規分布を用いて推定 検定した. しかし, 母集団が正規分布し, 標本が小さい場合には, 標本分散から母分散を推定するときの不確実さを加味したt 分布を用いて推定 検定しなければならない. t 分布は標本分散の自由度 f(

More information

Microsoft PowerPoint - statistics pptx

Microsoft PowerPoint - statistics pptx 統計学 第 回 講義 仮説検定 Part-3 06 年 6 8 ( )3 限 担当教員 唐渡 広志 ( からと こうじ ) 研究室 経済学研究棟 4 階 43 号室 email kkarato@eco.u-toyama.ac.j webite htt://www3.u-toyama.ac.j/kkarato/ 講義の目的 つの 集団の平均 ( 率 ) に差があるかどうかを検定する 法を理解します keyword:

More information

Hara-statistics

Hara-statistics 全学共通授業科目 物理学実験平成 3 年度前期測定値の扱い方と誤差論 講義 神戸大学大学院理学研究科物理学専攻原俊雄 測定値を他人に提示するとき なぜ 誤差を考えなければならないのか? なぜ 誤差を測定値に付けなければならないのか? そもそも 誤差とは何か? 人間は 測定により真の値を知ることができるか? 人間は 真の値を知ることはできない 人間は 工夫することによって 限りなく真の値に近づくことができる

More information

0415

0415 今回の授業の狙い 基本的な統計量を求め 活用できること 章統計量と確率分布のと確率分布の活用 part 統計解析で用いる代表的な確率分布の特徴を 把握すること 統計解析の全体像 統計解析での注意点 ()( サンプリング サンプル 測定 母集団 何らかの意味で同質性が期待できるものの集団 e 日本人男性同じ条件で作った製品 母集団 推定 アクション 事実に基づく判断 データからモノをいう データ解析

More information

対数正規分布

対数正規分布 対数正規分布 ~lognormal distribution~ 平成 0 年 3 月 中央大学理工学部物理学科 4 年 香取研究室 浅野翔 金田佐和子 目次. 対数正規分布とその性質. はじめに. モーメント.3 グラフの概形.4 比例効果の法則と中心極限定理. グラフ 累積分布日本の都道府県の人口分布 (945 年 ) 日本の都道府県の人口分布 (965,985,003 年 ) 無脊椎動物の平均寿命の分布

More information

講義「○○○○」

講義「○○○○」 講義 システムの信頼性 内容. 直列システムの信頼性. 並列システムの信頼性 3. 直列 並列の複合システムの信頼性 4. 信頼性向上のための手法 担当 : 倉敷哲生 ビジネスエンジニアリング専攻 システムの構成 種々の機械や構造物, システムを分割していけば. 個々の要素 サブシステム となる. サブシステムの組み合わせ方式 直列系 並列系 m/ 冗長系 待機冗長系 3 直列システムの信頼性 直列系

More information

ビジネス統計 統計基礎とエクセル分析 正誤表

ビジネス統計 統計基礎とエクセル分析 正誤表 ビジネス統計統計基礎とエクセル分析 ビジネス統計スペシャリスト エクセル分析スペシャリスト 公式テキスト正誤表と学習用データ更新履歴 平成 30 年 5 月 14 日現在 公式テキスト正誤表 頁場所誤正修正 6 知識編第 章 -3-3 最頻値の解説内容 たとえば, 表.1 のデータであれば, 最頻値は 167.5cm というたとえば, 表.1 のデータであれば, 最頻値は 165.0cm ということになります

More information

Microsoft PowerPoint - データ解析基礎2.ppt

Microsoft PowerPoint - データ解析基礎2.ppt データ解析基礎. 度数分布と特性値 keyword データの要約 度数分布表, ヒストグラム 分布の中心を表す基本統計量 平均, 最頻値, 中央値 分布のばらつきを表す統計量 分散, 標準偏差 統計データの構造 - データ解析の目的 具体的な対象 ( 母集団 ) についての調査結果 ( 標本をどう加工 処理し, 有益な情報を引き出すかである. 加工 処理するための調査結果として, データ ( 観測データ

More information

( ) ( ) 20 11 11-13 15 20 21 ( ) 114cm 100cm 85cm () () 11 18 19 19-25 26 ( 1 ) 1 2 10 ( ) () 11 16 19 21 24-13 20 3 20 ( ) ( ) 14 15 19 20 23 29 13 20 4/15 600 400 5 7 1 8 5 7 20 3 1999 1000 100 86

More information

禁無断転載 第 3 章統計的手法に用いられる分布 All rights reserved (C) 芳賀 第 1 節我々の身の回りにある代表的分布と性質 1. 分布の表わし方我々の身の回りにある全てのものは ばらつきを持っています 収集したデータを分析していくためには このばらつきがどのような分布にな

禁無断転載 第 3 章統計的手法に用いられる分布 All rights reserved (C) 芳賀 第 1 節我々の身の回りにある代表的分布と性質 1. 分布の表わし方我々の身の回りにある全てのものは ばらつきを持っています 収集したデータを分析していくためには このばらつきがどのような分布にな 第 3 章統計的手法に用いられる分布 第 節我々の身の回りにある代表的分布と性質. 分布の表わし方我々の身の回りにある全てのものは ばらつきを持っています 収集したデータを分析していくためには このばらつきがどのような分布になっているかを明確に表現し 分析 比較を行えるようにしなければなりません この手法を覚えるようにしましょう () 分布の示し方収集した分布の全体的状態を目視で確認 比較するためには

More information

<4D F736F F F696E74202D B835E82CC8EED97DE B835E82CC834F BB F0955C82B793C190AB926C>

<4D F736F F F696E74202D B835E82CC8EED97DE B835E82CC834F BB F0955C82B793C190AB926C> 統計の種類 統計学 データの種類データのグラフ化中心を表す特性値 記述統計母集団 ( 調査対象の集団 ) をすべて調査でき その調査結果に基づき データをまとめる統計 推測統計母集団 ( 調査対象の集団 ) をすべて調査できないが 一部のデータから母集団の状況を推測する統計 外れ値 データの中には 他の観測値に比べて著しく離れた値が含まれている場合があります ( 入力ミスではなく ) このような値のことを外れ値といいます

More information

講座内容 第 1 週 データサイエンスとは 第 2 週 分析の概念と事例ビジネス課題解決のためのデータ分析基礎 ( 事例と手法 )1 第 3 週 分析の具体的手法ビジネス課題解決のためのデータ分析基礎 ( 事例と手法 )2 第 4 週 ビジネスにおける予測と分析結果の報告ビジネス課題解決のためのデー

講座内容 第 1 週 データサイエンスとは 第 2 週 分析の概念と事例ビジネス課題解決のためのデータ分析基礎 ( 事例と手法 )1 第 3 週 分析の具体的手法ビジネス課題解決のためのデータ分析基礎 ( 事例と手法 )2 第 4 週 ビジネスにおける予測と分析結果の報告ビジネス課題解決のためのデー 社会人のためのデータサイエンス演習第 2 週 : 分析の概念と事例第 1 回 :Analysis( 分析 ) とは講師名 : 今津義充 1 講座内容 第 1 週 データサイエンスとは 第 2 週 分析の概念と事例ビジネス課題解決のためのデータ分析基礎 ( 事例と手法 )1 第 3 週 分析の具体的手法ビジネス課題解決のためのデータ分析基礎 ( 事例と手法 )2 第 4 週 ビジネスにおける予測と分析結果の報告ビジネス課題解決のためのデータ分析基礎

More information

第7章

第7章 5. 推定と検定母集団分布の母数を推定する方法と仮説検定の方法を解説する まず 母数を一つの値で推定する点推定について 推定精度としての標準誤差を説明する また 母数が区間に存在することを推定する信頼区間も取り扱う 後半は統計的仮説検定について述べる 検定法の基本的な考え方と正規分布および二項確率についての検定法を解説する 5.1. 点推定先に述べた統計量は対応する母数の推定値である このように母数を一つの値およびベクトルで推定する場合を点推定

More information

講義ノート p.2 データの視覚化ヒストグラムの作成直感的な把握のために重要入力間違いがないか確認するデータの分布を把握する fig. ヒストグラムの作成 fig. ヒストグラムの出力例 度数分布表の作成 データの度数を把握する 入力間違いが無いかの確認にも便利 fig. 度数分布表の作成

講義ノート p.2 データの視覚化ヒストグラムの作成直感的な把握のために重要入力間違いがないか確認するデータの分布を把握する fig. ヒストグラムの作成 fig. ヒストグラムの出力例 度数分布表の作成 データの度数を把握する 入力間違いが無いかの確認にも便利 fig. 度数分布表の作成 講義ノート p.1 前回の復習 尺度について数字には情報量に応じて 4 段階の種類がある名義尺度順序尺度 : 質的データ間隔尺度比例尺度 : 量的データ 尺度によって利用できる分析方法に差異がある SPSS での入力の練習と簡単な操作の説明 変数ビューで変数を設定 ( 型や尺度に注意 ) fig. 変数ビュー データビューでデータを入力 fig. データビュー 講義ノート p.2 データの視覚化ヒストグラムの作成直感的な把握のために重要入力間違いがないか確認するデータの分布を把握する

More information

統計Ⅰ 第1回 序説~確率

統計Ⅰ 第1回 序説~確率 授業担当 : 徳永伸一 東京医科歯科大学教養部 数学講座 あらためて注意しておきたいこと ( 前期のはじめに注意したこと +α) 後期の授業は今日を含め ( たった )6 回 成績評価は前期試験 + 後期試験で 後期の方が比重が大きいですが前期の出来が悪かった人はハンデがあると思ってください 後期試験の出題範囲には前期授業の内容も含まれます 復習も怠りなく 欠席した場合は次回までに要点の確認を 次回の授業までに授業スライドを

More information

Python-statistics5 Python で統計学を学ぶ (5) この内容は山田 杉澤 村井 (2008) R によるやさしい統計学 (

Python-statistics5   Python で統計学を学ぶ (5) この内容は山田 杉澤 村井 (2008) R によるやさしい統計学 ( http://localhost:8888/notebooks/... Python で統計学を学ぶ (5) この内容は山田 杉澤 村井 (2008) R によるやさしい統計学 (http://shop.ohmsha.co.jp/shop /shopdetail.html?brandcode=000000001781&search=978-4-274-06710-5&sort=) を参考にしています

More information

スライド 1

スライド 1 移動体観測を活用した交通 NW の リアルタイムマネジメントに向けて : プローブカーデータを用いた動的 OD 交通量のリアルタイム推定 名古屋大学山本俊行 背景 : マルチモード経路案内システム PRONAVI 2 プローブカーデータの概要 プローブカー : タクシー 157 台 蓄積用データ収集期間 : 22 年 1 月 ~3 月,1 月 ~23 年 3 月 データ送信はイベントベース : 車両発進

More information

Probit , Mixed logit

Probit , Mixed logit Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,

More information

Microsoft PowerPoint - sc7.ppt [互換モード]

Microsoft PowerPoint - sc7.ppt [互換モード] / 社会調査論 本章の概要 本章では クロス集計表を用いた独立性の検定を中心に方法を学ぶ 1) 立命館大学経済学部 寺脇 拓 2 11 1.1 比率の推定 ベルヌーイ分布 (Bernoulli distribution) 浄水器の所有率を推定したいとする 浄水器の所有の有無を表す変数をxで表し 浄水器をもっている を 1 浄水器をもっていない を 0 で表す 母集団の浄水器を持っている人の割合をpで表すとすると

More information

3章 度数分布とヒストグラム

3章 度数分布とヒストグラム 度数分布とヒストグラム データとは 複雑な確率ゲームから生まれたと考えてよい データ分析の第一歩として データの持つ基本的特性を把握することが重要である 分析の流れ データの分布 ( 散らばり ) を 度数分布表にまとめ グラフ化する グラフに 平均値や分散など 分布の特徴を示す客観的な数値を加える データが母集団からのランダムサンプルならば 母集団についての推測を行う 度数分布とヒストグラムの作成

More information

日心TWS

日心TWS 2017.09.22 (15:40~17:10) 日本心理学会第 81 回大会 TWS ベイジアンデータ解析入門 回帰分析を例に ベイジアンデータ解析 を体験してみる 広島大学大学院教育学研究科平川真 ベイジアン分析のステップ (p.24) 1) データの特定 2) モデルの定義 ( 解釈可能な ) モデルの作成 3) パラメタの事前分布の設定 4) ベイズ推論を用いて パラメタの値に確信度を再配分ベイズ推定

More information

統計学 Ⅱ( 章 ( 区間推定のシミュレーション 母平均 μ の区間推定 X ~ N, のとき X T ~ 自由度 1の t分布 1 自由度 -1のt 分布の97.5% 点 :t.975 P t T t この式に T を代入する t.975 母集団

統計学 Ⅱ( 章 ( 区間推定のシミュレーション 母平均 μ の区間推定 X ~ N, のとき X T ~ 自由度 1の t分布 1 自由度 -1のt 分布の97.5% 点 :t.975 P t T t この式に T を代入する t.975 母集団 統計学 Ⅱ(16 11-1 章 11 章母集団パラメータの推定 1. 信頼区間 (1 点推定と区間推定 ( 区間推定のシミュレーション (3 母平均 μの信頼区間 (4 母比率 pの信頼区間 (5 母比率 pのより厳密な信頼区間. 点推定量の特性 (1 標本平均 X の持つ望ましい性質 ( 不偏性 (3 推定量の分散と有効性 (4 平均 乗誤差 MEと最小分散性 (5 一致性 (6 チェビシェフの不等式

More information

講義「○○○○」

講義「○○○○」 講義 信頼度の推定と立証 内容. 点推定と区間推定. 指数分布の点推定 区間推定 3. 指数分布 正規分布の信頼度推定 担当 : 倉敷哲生 ( ビジネスエンジニアリング専攻 ) 統計的推測 標本から得られる情報を基に 母集団に関する結論の導出が目的 測定値 x x x 3 : x 母集団 (populaio) 母集団の特性値 統計的推測 標本 (sample) 標本の特性値 分布のパラメータ ( 母数

More information

平均値 () 次のデータは, ある高校生 7 人が ヵ月にカレーライスを食べた回数 x を調べたものである 0,8,4,6,9,5,7 ( 回 ) このデータの平均値 x を求めよ () 右の表から, テレビをみた時間 x の平均値を求めよ 階級 ( 分 ) 階級値度数 x( 分 ) f( 人 )

平均値 () 次のデータは, ある高校生 7 人が ヵ月にカレーライスを食べた回数 x を調べたものである 0,8,4,6,9,5,7 ( 回 ) このデータの平均値 x を求めよ () 右の表から, テレビをみた時間 x の平均値を求めよ 階級 ( 分 ) 階級値度数 x( 分 ) f( 人 ) データの分析 データの整理右の度数分布表は,A 高校の 0 人について, 日にみたテレビの時間を記入したものである 次の問いに答えよ () テレビをみた時間が 85 分未満の生徒は何人いるか () テレビをみた時間が 95 分以上の生徒は全体の何 % であるか (3) 右の度数分布表をもとにして, ヒストグラムをかけ 階級 ( 分 ) 階級値度数相対 ( 分 ) ( 人 ) 度数 55 以上 ~65

More information

ii 2. F. ( ), ,,. 5. G., L., D. ( ) ( ), 2005.,. 6.,,. 7.,. 8. ( ), , (20 ). 1. (75% ) (25% ). 60.,. 2. =8 5, =8 4 (. 1.) 1.,,

ii 2. F. ( ), ,,. 5. G., L., D. ( ) ( ), 2005.,. 6.,,. 7.,. 8. ( ), , (20 ). 1. (75% ) (25% ). 60.,. 2. =8 5, =8 4 (. 1.) 1.,, (1 C205) 4 8 27(2015) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7.... 1., 2014... 2. P. G., 1995.,. 3.,. 4.. 5., 1996... 1., 2007,. ii 2. F. ( ),.. 3... 4.,,. 5. G., L., D. ( )

More information

Information Theory

Information Theory 前回の復習 情報をコンパクトに表現するための符号化方式を考える 情報源符号化における基礎的な性質 一意復号可能性 瞬時復号可能性 クラフトの不等式 2 l 1 + + 2 l M 1 ハフマン符号の構成法 (2 元符号の場合 ) D. Huffman 1 前回の練習問題 : ハフマン符号 符号木を再帰的に構成し, 符号を作る A B C D E F 確率 0.3 0.2 0.2 0.1 0.1 0.1

More information

平成 7 年度数学 (3) あるゲームを 回行ったときに勝つ確率が. 8のプレイヤーがいる このゲームは 回ごとに独 立であるとする a. このゲームを 5 回行う場合 中心極限定理を用いると このプレイヤーが 5 回以上勝つ確率 は である. 回以上ゲームをした場合 そのうちの勝ち数が 3 割以上

平成 7 年度数学 (3) あるゲームを 回行ったときに勝つ確率が. 8のプレイヤーがいる このゲームは 回ごとに独 立であるとする a. このゲームを 5 回行う場合 中心極限定理を用いると このプレイヤーが 5 回以上勝つ確率 は である. 回以上ゲームをした場合 そのうちの勝ち数が 3 割以上 平成 7 年度数学 数学 ( 問題 ) 問題 から問題 3 を通じて必要であれば ( 付表 ) に記載された数値を用いなさい 問題. 次の ()~() の各問について 空欄に当てはまる最も適切なものをそれぞれの選択肢 の中から選び 解答用紙の所定の欄にマークしなさい なお 同じ選択肢を複数回選択してもよい 各 5 点 ( 計 6 点 ) ()つのサイコロを振る試行を 回繰り返すこととする 回目と 回目の試行でともにの目が出る事象を

More information

Microsoft PowerPoint - 代表値と散布度.ppt [互換モード]

Microsoft PowerPoint - 代表値と散布度.ppt [互換モード] データ解析基礎. 度数分布と特性値 keyword データの要約 度数分布表, ヒストグラム 分布の中心を表す基本統計量 平均, 最頻値, 中央値 分布のばらつきを表す統計量 分散, 標準偏差 統計データの構造 - データ解析の目的 具体的な対象 ( 母集団 ) についての調査結果 ( 標本をどう加工 処理し, 有益な情報を引き出すかである. 加工 処理するための調査結果として, データ ( 観測データ

More information

データの整理 ( 度数分布表とヒストグラム ) 1 次元のデータの整理の仕方として代表的な ものに度数分布表とヒストグラムがあります 度数分布表観測値をその値に応じていくつかのグループ ( これを階級という ) に分類し 各階級に入る観測値の数 ( これを度数という ) を数えて表にしたもの 2

データの整理 ( 度数分布表とヒストグラム ) 1 次元のデータの整理の仕方として代表的な ものに度数分布表とヒストグラムがあります 度数分布表観測値をその値に応じていくつかのグループ ( これを階級という ) に分類し 各階級に入る観測値の数 ( これを度数という ) を数えて表にしたもの 2 春学期統計学 I データの整理 : 度数分布 標本分散 等 担当 : 長倉大輔 ( ながくらだいすけ ) 1 データの整理 ( 度数分布表とヒストグラム ) 1 次元のデータの整理の仕方として代表的な ものに度数分布表とヒストグラムがあります 度数分布表観測値をその値に応じていくつかのグループ ( これを階級という ) に分類し 各階級に入る観測値の数 ( これを度数という ) を数えて表にしたもの

More information

切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. (

切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. ( 統計学ダミー変数による分析 担当 : 長倉大輔 ( ながくらだいすけ ) 1 切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. ( 実際は賃金を就業年数だけで説明するのは現実的はない

More information

したがって ばらつきを表すには 偏差の符号をなくしてから平均化する必要がある そのひとつの方法は 1 偏差の絶対値を用いることである 偏差の絶対値の算術平均を 平均偏差 という ( )/5=10.8 偏差の符号を取るもうひとつの方法は 2それを2 乗することです 偏差の2 乗の算

したがって ばらつきを表すには 偏差の符号をなくしてから平均化する必要がある そのひとつの方法は 1 偏差の絶対値を用いることである 偏差の絶対値の算術平均を 平均偏差 という ( )/5=10.8 偏差の符号を取るもうひとつの方法は 2それを2 乗することです 偏差の2 乗の算 統計学テキストの69ページに 平均偏差 分散 標準偏差 変動係数 標準誤差 信頼区間に関する記述がある 分布を考える分布の中心の位置 ( 例 ) 65 53 44 78 50 の数値の算術平均は (65+53+44+78+50)/5=58 である 此れだけでは 分布の状態がわからない ばらつきの程度を表すには最大値と最小値との差 (78-44)=34 これをレンジ ( 範囲 ) と言う しかし 両端の数字だけでは

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

青焼 1章[15-52].indd

青焼 1章[15-52].indd 1 第 1 章統計の基礎知識 1 1 なぜ統計解析が必要なのか? 人間は自分自身の経験にもとづいて 感覚的にものごとを判断しがちである 例えばある疾患に対する標準治療薬の有効率が 50% であったとする そこに新薬が登場し ある医師がその新薬を 5 人の患者に使ったところ 4 人が有効と判定されたとしたら 多くの医師はこれまでの標準治療薬よりも新薬のほうが有効性が高そうだと感じることだろう しかし

More information

Microsoft Word - apstattext04.docx

Microsoft Word - apstattext04.docx 4 章母集団と指定値との量的データの検定 4.1 検定手順今までは質的データの検定の方法を学んで来ましたが これからは量的データについてよく利用される方法を説明します 量的データでは データの分布が正規分布か否かで検定の方法が著しく異なります この章ではまずデータの分布の正規性を調べる方法を述べ 次にデータの平均値または中央値がある指定された値と違うかどうかの検定方法を説明します 以下の図 4.1.1

More information

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル 時系列分析 変量時系列モデルとその性質 担当 : 長倉大輔 ( ながくらだいすけ 時系列モデル 時系列モデルとは時系列データを生み出すメカニズムとなるものである これは実際には未知である 私たちにできるのは観測された時系列データからその背後にある時系列モデルを推測 推定するだけである 以下ではいくつかの代表的な時系列モデルを考察する 自己回帰モデル (Auoregressive Model もっとも頻繁に使われる時系列モデルは自己回帰モデル

More information

ダンゴムシの 交替性転向反応に 関する研究 3A15 今野直輝

ダンゴムシの 交替性転向反応に 関する研究 3A15 今野直輝 ダンゴムシの 交替性転向反応に 関する研究 3A15 今野直輝 1. 研究の動機 ダンゴムシには 右に曲がった後は左に 左に曲がった後は右に曲がる という交替性転向反応という習性がある 数多くの生物において この習性は見受けられるのだが なかでもダンゴムシやその仲間のワラジムシは その行動が特に顕著であるとして有名である そのため図 1のような道をダンゴムシに歩かせると 前の突き当りでどちらの方向に曲がったかを見ることによって

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション オペレーションズリサーチとゲーム理論 (3 日目 ) 兵庫県立大学 円谷友英 今日の対象 : 待ち行列 (Queuing theory) はじめに 質問です 待つことは好きですか? 最近, あなたは待ちましたか? どこかで? どんな場面で? なにを? 何のために? どのように? なぜ待つことになりましたか? 何かが待っている ( と思われる ) 状態に気が付きましたか? 今日の対象 : 待ち行列 (Queuing

More information

Microsoft PowerPoint 確率レジュメA

Microsoft PowerPoint 確率レジュメA 確率統計レジュメ集 ( 前半 ) 202.04.0 版 立命館大学 電子情報デザイン学科 この講義の目標 進め方 この講義は指定教科書の内容をしっかりと理解することを目的とする. 配布するレジュメは その理解を助けるための資料である. 必ず 教科書に書かれた基礎的な内容をひとつひとつ理解するように努めること. レジュメの空欄の箇所は 教科書からそのヒントを見つけることができる. 予習時に教科書を読み

More information

Microsoft Word - å“Ÿåłžå¸°173.docx

Microsoft Word - å“Ÿåłžå¸°173.docx 回帰分析 ( その 3) 経済情報処理 価格弾力性の推定ある商品について その購入量を w 単価を p とし それぞれの変化量を w p で表 w w すことにする この時 この商品の価格弾力性 は により定義される これ p p は p が 1 パーセント変化した場合に w が何パーセント変化するかを示したものである ここで p を 0 に近づけていった極限を考えると d ln w 1 dw dw

More information

Microsoft PowerPoint - LectureB1handout.ppt [互換モード]

Microsoft PowerPoint - LectureB1handout.ppt [互換モード] 本講義のスコープ 都市防災工学 後半第 回 : イントロダクション 千葉大学大学院工学研究科建築 都市科学専攻都市環境システムコース岡野創 耐震工学の専門家として知っていた方が良いが 敷居が高く 入り口で挫折しがちな分野をいくつか取り上げて説明 ランダム振動論 地震波形に対する構造物応答の理論的把握 減衰と地震応答 エネルギーバランス 地震動の各種スペクトルの相互関係 震源モデル 近年では震源モデルによる地震動予測が良く行われている

More information

(3) 検定統計量の有意確率にもとづく仮説の採否データから有意確率 (significant probability, p 値 ) を求め 有意水準と照合する 有意確率とは データの分析によって得られた統計値が偶然おこる確率のこと あらかじめ設定した有意確率より低い場合は 帰無仮説を棄却して対立仮説

(3) 検定統計量の有意確率にもとづく仮説の採否データから有意確率 (significant probability, p 値 ) を求め 有意水準と照合する 有意確率とは データの分析によって得られた統計値が偶然おこる確率のこと あらかじめ設定した有意確率より低い場合は 帰無仮説を棄却して対立仮説 第 3 章 t 検定 (pp. 33-42) 3-1 統計的検定 統計的検定とは 設定した仮説を検証する場合に 仮説に基づいて集めた標本を 確率論の観点から分析 検証すること 使用する標本は 母集団から無作為抽出されたものでなければならない パラメトリック検定とノンパラメトリック検定 パラメトリック検定は母集団が正規分布に従う間隔尺度あるいは比率尺度の連続データを対象とする ノンパラメトリック検定は母集団に特定の分布を仮定しない

More information

Microsoft Word - lec_student-chp3_1-representative

Microsoft Word - lec_student-chp3_1-representative 1. はじめに この節でのテーマ データ分布の中心位置を数値で表す 可視化でとらえた分布の中心位置を数量化する 平均値とメジアン, 幾何平均 この節での到達目標 1 平均値 メジアン 幾何平均の定義を書ける 2 平均値とメジアン, 幾何平均の特徴と使える状況を説明できる. 3 平均値 メジアン 幾何平均を計算できる 2. 特性値 集めたデータを度数分布表やヒストグラムに整理する ( 可視化する )

More information

スライド 1

スライド 1 担当 : 田中冬彦 016 年 4 月 19 日 @ 統計モデリング 統計モデリング 第二回配布資料 文献 : A. J. Dobson and A. G. Barnett: An Introduction to Generalized Linear Models 3rd ed., CRC Press. 配布資料の PDF は以下からも DL できます. 短縮 URL http://tinyurl.com/lxb7kb8

More information

数値計算法

数値計算法 数値計算法 008 4/3 林田清 ( 大阪大学大学院理学研究科 ) 実験データの統計処理その 誤差について 母集団と標本 平均値と標準偏差 誤差伝播 最尤法 平均値につく誤差 誤差 (Error): 真の値からのずれ 測定誤差 物差しが曲がっていた 測定する対象が室温が低いため縮んでいた g の単位までしかデジタル表示されない計りで g 以下 計りの目盛りを読み取る角度によって値が異なる 統計誤差

More information

Microsoft PowerPoint - 資料04 重回帰分析.ppt

Microsoft PowerPoint - 資料04 重回帰分析.ppt 04. 重回帰分析 京都大学 加納学 Division of Process Control & Process Sstems Engineering Department of Chemical Engineering, Koto Universit manabu@cheme.koto-u.ac.jp http://www-pse.cheme.koto-u.ac.jp/~kano/ Outline

More information

/27 (13 8/24) (9/27) (9/27) / / / /16 12

/27 (13 8/24) (9/27) (9/27) / / / /16 12 79 7 79 6 14 7/8 710 10 () 9 13 9/17 610 13 9/27 49 7 14 7/8 810 1 15 8/16 11 811 1 13 9/27 (13 8/24) (9/27) (9/27) 49 15 7/12 78 15 7/27 57 1 13 8/24 15 8/16 12 810 10 40 1 Wikipedia 13 8/18, 8/28 79

More information

14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手

14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手 14 化学実験法 II( 吉村 ( 洋 014.6.1. 最小 乗法のはなし 014.6.1. 内容 最小 乗法のはなし...1 最小 乗法の考え方...1 最小 乗法によるパラメータの決定... パラメータの信頼区間...3 重みの異なるデータの取扱い...4 相関係数 決定係数 ( 最小 乗法を語るもう一つの立場...5 実験条件の誤差の影響...5 問題...6 最小 乗法の考え方 飲料水中のカルシウム濃度を

More information

Microsoft Word - histgram.doc

Microsoft Word - histgram.doc 1. ヒストグラムと等高線図 データ解析の一つの目的に データ源の分布を求めることがある しかし 最初から特定の分布を仮定して分析を進めることは結構危険 ヒストグラムは1 次元確率分布を推定する一番わかりやすい方法 ヒストグラムで重要なのは区切りの幅 これ次第で結果が変わる Excel では標準アドインソフト ( 分析ツール ) を使うと簡単にヒストグラムが作成できる 1.1 分析ツールを使えるようにする

More information

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 67 A Section A.1 0 1 0 1 Balmer 7 9 1 0.1 0.01 1 9 3 10:09 6 A.1: A.1 1 10 9 68 A 10 9 10 9 1 10 9 10 1 mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 A.1. 69 5 1 10 15 3 40 0 0 ¾ ¾ É f Á ½ j 30 A.3: A.4: 1/10

More information

<4D F736F F D BD8A7091AA97CA8AED8B4082CC90AB945C8DB782C982E682E98CEB8DB782C982C282A E646F6378>

<4D F736F F D BD8A7091AA97CA8AED8B4082CC90AB945C8DB782C982E682E98CEB8DB782C982C282A E646F6378> (2) 測量器機の性能差による誤差につい (1) 多角 ( 混合 ) 測量における誤差について,(2) 測量器機の性能差による誤差につい, (3) 多角 ( 混合 ) 測量の計算方式による誤差について,(4) 多角 ( 混合 ) 測量における相対誤差についてのなかの (2) です 現在, 境界測量に使われている測量器機はトータルステーション (TS) と言いまして距離と角度を同じ器機で測定出来るものです,

More information

Microsoft Word - appendix_b

Microsoft Word - appendix_b 付録 B エクセルの使い方 藪友良 (2019/04/05) 統計学を勉強しても やはり実際に自分で使ってみないと理解は十分ではあ りません ここでは 実際に統計分析を使う方法のひとつとして Microsoft Office のエクセルの使い方を解説します B.1 分析ツールエクセルについている分析ツールという機能を使えば さまざまな統計分析が可能です まず この機能を使えるように設定をします もし

More information

Medical3

Medical3 Chapter 1 1.4.1 1 元配置分散分析と多重比較の実行 3つの治療法による測定値に有意な差が認められるかどうかを分散分析で調べます この例では 因子が1つだけ含まれるため1 元配置分散分析 one-way ANOVA の適用になります また 多重比較法 multiple comparison procedure を用いて 具体的のどの治療法の間に有意差が認められるかを検定します 1. 分析メニュー

More information

テレビ学習メモ 数学 Ⅰ 第 40 回 第 5 章データの分析 相関係数 監修 執筆 湯浅弘一 今回学ぶこと データの分析の最終回 今までの代表値を複合し ながら 2 種類のデータの関係を数値化します 相関係数は 相関がどの程度強いのかを表しています 学習のポイント 12 種類のデータの相関関係を

テレビ学習メモ 数学 Ⅰ 第 40 回 第 5 章データの分析 相関係数 監修 執筆 湯浅弘一 今回学ぶこと データの分析の最終回 今までの代表値を複合し ながら 2 種類のデータの関係を数値化します 相関係数は 相関がどの程度強いのかを表しています 学習のポイント 12 種類のデータの相関関係を テレビ学習メモ 第 40 回 第 5 章データの分析 監修 執筆 湯浅弘一 今回学ぶこと データの分析の最終回 今までの代表値を複合し ながら 2 種類のデータの関係を数値化します は 相関がどの程度強いのかを表しています 学習のポイント 12 種類のデータのを 1 つの数値で表す 2共分散と 3実際のデータからを求める ポイント 1 2 種類のデータのを 1 つの数値で表す 2 種類のデータの散らばりは散布図で見ることができました

More information

Statistical inference for one-sample proportion

Statistical inference for one-sample proportion RAND 関数による擬似乱数の生成 魚住龍史 * 浜田知久馬東京理科大学大学院工学研究科経営工学専攻 Generating pseudo-random numbers using RAND function Ryuji Uozumi * and Chikuma Hamada Department of Management Science, Graduate School of Engineering,

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領 数と式 (1) 式の計算二次の乗法公式及び因数分解の公式の理解を深め 式を多面的にみたり目的に応じて式を適切に変形したりすること 東京都立町田高等学校学力スタンダード 整式の加法 減法 乗法展開の公式を利用できる 式を1 つの文字におき換えることによって, 式の計算を簡略化することができる 式の形の特徴に着目して変形し, 展開の公式が適用できるようにすることができる 因数分解因数分解の公式を利用できる

More information

4 段階推定法とは 予測に使うモデルの紹介 4 段階推定法の課題 2

4 段階推定法とは 予測に使うモデルの紹介 4 段階推定法の課題 2 4 段階推定法 羽藤研 4 芝原貴史 1 4 段階推定法とは 予測に使うモデルの紹介 4 段階推定法の課題 2 4 段階推定法とは 交通需要予測の実用的な予測手法 1950 年代のアメリカで開発 シカゴで高速道路の需要予測に利用 日本では 1967 年の広島都市圏での適用が初 その後 1968 年の東京都市圏など 人口 30 万人以上の 56 都市圏に適用 3 ゾーニング ゾーニングとネットワークゾーン間のトリップはゾーン内の中心点

More information

オートマトン 形式言語及び演習 1. 有限オートマトンとは 酒井正彦 形式言語 言語とは : 文字列の集合例 : 偶数個の 1 の後に 0 を持つ列からなる集合 {0, 110, 11110,

オートマトン 形式言語及び演習 1. 有限オートマトンとは 酒井正彦   形式言語 言語とは : 文字列の集合例 : 偶数個の 1 の後に 0 を持つ列からなる集合 {0, 110, 11110, オートマトン 形式言語及び演習 1 有限オートマトンとは 酒井正彦 wwwtrscssinagoya-uacjp/~sakai/lecture/automata/ 形式言語 言語とは : 文字列の集合例 : 偶数個の 1 の後に 0 を持つ列からなる集合 {0, 110, 11110, } 形式言語 : 数学モデルに基づいて定義された言語 認識機械 : 文字列が該当言語に属するか? 文字列 機械 受理

More information

Microsoft PowerPoint - 構造力学Ⅰ第03回.pptx

Microsoft PowerPoint - 構造力学Ⅰ第03回.pptx 分布荷重の合力 ( 効果 ) 前回の復習 ( 第 回 ) p. 分布荷重は平行な力が連続して分布していると考えられる 例 : 三角形分布 l dx P=ql/ q l qx q l 大きさ P dx x 位置 Px 0 x x 0 l ql 0 : 面積に等しい 0 l l 重心に等しいモーメントの釣合より ( バリノンの定理 ) l qx l qx ql q 3 l ql l xdx x0 xdx

More information