Dynkin Serre Weyl

Size: px
Start display at page:

Download "Dynkin Serre Weyl"

Transcription

1 Dynkin Naoya Enomoto paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie Lie ( ) Killing form sl 2 (C) ( ) Lie Cartan ( ) Killing ( ) sl Dynkin Dynkin henon@s00x0427.mbox.media.kyoto-u.ac.jp 1 1

2 Dynkin Serre Weyl A n 1 sl n B n so 2n C n sp 2n D n so 2n G E 6, E 7, E 8, F II Dynkin Dynkin 32 III Dynkin 32 7 SO(3) 32 IV Dynkin 32 V Quiver Dynkin 32 VI Painlevé Dynkin 32 2

3 0 Introduction 3

4 I ( ) Lie Dynkin Dynkin Lie Dynkin 1 ( ) Lie ( ) Lie ( ) Killing sl 2 (C) 1.1 Lie ( ) Lie Lie 1.1. ( ) g Lie g [, ] : g g C (L1)[ ] [x, y] = [y, x] (L2)[Jacobi ] [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (x, y, z g) (1.1) Lie (1) g 1, g 2 Lie f([x, y]) = [f(x), f(y)] f : g 1 g 2 Lie V End(V ) [A, B] := AB BA Lie f : g End(V ) Lie Lie g (2) g ad : g End(g); g ad g = [g, ] (1.2) g g (3) Lie g h [h, h] h Lie g a [g, a] a a g (4) g [x, y] = 0 Lie Lie Lie Lie Lie 1.3. Lie Lie (1) Lie (2) (3) 3 (4) Lie g g = a 0 a 1 a 2 a r = {0} a i /a i+1 Lie g Lie 4 Lie g τ(g) g 4

5 ( 5 )Lie 1.4. gl n (k) Lie sl n (k) := {x gl n (k) tr(x) = 0} (1.3) so n (k) := {x gl n (k) t x + x = 0} (1.4) sp 2m (k) := {x gl 2m (k) t xj + Jx = 0} (n = 2m) (1.5) J = ( 0 E m E m 0 ) 1.2 Killing form g Killing g ( ) 1.5. Lie g ( ), g- [x, y], z = x, [y, z] Rad, := {x g g y x, y = 0} Rad, = {0}, Remark 1.6., Rad, (ad, g) g Lie Rad, = g {0}, (g, V ) Lie B V (x, y) := tr(π(x)π(y)) (x, y g) g ad B(x, y) := tr(ad x ad y ) (x, y g) (1.6) g Killing 1.8. Cartan s criterion Lie g (1) g (2) Killing B Cartan Lie Remark Schur 1.9. g Lie g Killing 5 n 5

6 [ ] g 2 0 g Remark g = g g g Schur Schur Schur (g, V ) End g (V ) = C Id V g End g (g) = C Id g [ ] T End(V ) T λ v( 0) 1 T v = λv T := T λid V T End(V ) Ker T V V {0} 0 v Ker T Ker T = V T = 0 T = λid V g 1.3 sl 2 (C) sl 2 (C) Lie Lie sl 2 sl 2 = {X M 2 (K) tr X = 0} Lie 3 ( ) ( ) ( e =, f =, h = ) (1.7) [h, e] = 2e, [h, f] = 2f, [e, f] = h (1.8) sl 2 (C) ( ) sl 2 (C) (sl 2, V ) h v hv = cv ev, fv c + 2, c 2 (sl 2, V ) (1) V h ev 0 = 0 v 0 ( ) (2) v 0 ( ) n n Z 0 dim V = n + 1 sl 2 [ ] [ ] h(ev) = ([h, e] + eh)v = 2ev + cev = (c + 2)ev, h(fv) = ([h, f] + fh)v = 2fv + cv = (c 2)v h v {v, ev, e 2 v, } V 0 e k+1 v = 0 v 0 := e k v 6

7 ev 0 = 0 h n {v 0, fv 0, f 2 v 0, } r f r+1 v 0 = 0 f r v 0 0 {f i v 0 i r} sl 2 - V V = r i=0 C(f i v 0 ) v i = f i v 0 0 = (ef r+1 r r+1 e)v 0 ( f r+1 v 9 = fv r = 0, ev 0 = 0) = [e, f r+1 ]v 0 = (r + 1)(h r)v 0 ( [e, f k ] = k(h (k 1)) ) = (r + 1)(n r)v 0 v 0 0 (r + 1)(n r) = 0 r 0 r n = r dim V = r + 1 = n + 1 (1)(2) [ ] Remark [e, f k ] = k(h (k 1)) hf = f(h 2), (h + 2)f = fh [e, f n ] = [e, f]f n 1 + f[e, f]f n f n 1 [e, f] = hf n 1 + fhf n f n 1 h ( [e, f] = h) = hf n 1 + (h + 2)f n (h + 2(n 1))f n 1 ( f ) = (nh + n(n 1))f n 1 = nf n 1 (h 2(n 1) + (n 1)) ( f ) = nf n 1 (h (n 1)) Remark sl 2 h e Cv 0 f Cv 1 fig. Cv 2 sl 2 Cv r Remark

8 m( ) m( ) e f k m k m V m k 0 k 1 k 2 k 3 V 3 V 2 V 1 V 0 V [0] V [1] V [2] V [3] V [m] V [m] V = V m, V = m Z V k m = dim V [m] m=0 V [m] dim V 0 = k m, dim V 1 = m:even m:odd m k m 2 ( ) Lie Lie Killing sl Cartan ( ) Lie Lie 2.1. g Lie h Cartan 2 (1) h (2) g ad H (H h) Remark 2.2. Cartan 2 Cartan h 1, h 2 6 ϕ Inn(g) ϕ(h 1 ) = h 2 Cartan g 6 8

9 ad(h) gl(g) g ad(h) (root space decomposition) x g ad(h) [h, x] = λ h x λ h = α(h) α : h h λ h C α h (h ) α g α = {x g [h, x] = α(h)x h h} 2.3. Φ = {α h α 0, g α {0}} α Φ g g α α g ad(h) ( ) g = g 0 g α Remark 2.4. g 0 X g [h, X] = 0 ( h h) h g 0 h h = g 0 ( ) g = h g α α Φ α Φ 2.2 ( ) Killing Killing g Lie Cartan h g ( ) g = h g α α Φ 2.5. (1) [g α, g β ] g α+β (2) dim g α = dim g α (3) Killing B g α g α := {x g B(x, y) = 0 y g α } g α = β α g β (4) B h B h h 9

10 [ ] (1) B h h, x g α, y g β [h, [x, y]] = [[h, x], y] + [x, [h, y]] ( Jacobi ) = [α(x)x, y] + [x, β(h)y] ( x g α, y g β ) = (α(h) + β(h))[x, y] = (α + β)(h)[x, y] (2),(3) (1) x g α, y g β ad(x) ad(y)g γ = [x, [y, g γ ]] g α+β+γ g ad(x) ad(y) α + β 0 0 β α B(x, y) = tr(ad(x) ad(y)) = 0 g β g α g α β α g β dim g = n B dim g α = n dim g α g α β α g β dim g α β α dim g β = n dim g α dim g α dim g α α α (2) dim g α = dim g β (3) (4) (3) α = 0 β α h = α Φ g α h h = {0} (4) Remark 2.6. (1) α, β Φ α + β Φ g α+β = 0 Hom(V V, C) = Hom(V, V ) {V } {V = V } 10

11 B h h φ h 1 t φ h B(t φ, h) = φ(h) Killing sl (1) Φ h dim h = j Φ j 1 (2) α Φ α Φ (3) α Φ, x g α, y g α [x, y] = B(x, y)t α (4) α Φ dim([g α, g α ]) = 1 t α (5) α Φ α(t α ) = B(t α, t α ) 0 (6) α Φ 0 x α g α y α g α x α, y α, h α = [x α, y α ] 3 Lie sl 2 (C) Lie 2t α (7) h α = B(t α, t α ), t α = t α α(h α ) = 2 [ ] (1) Φ h g C g C Φ β 1,, β k h 1,, h k h h 1,, h j x 1 β i (h 1 ) + + x j β i (h j ) = 0 (1 i k) k(< j) x 1,, x j C = x 1 h x j h j 0 C h α(c) = 0 ( α Φ) g g g g = h + α Φ g α [C, g] = [C, h] + α [C, g α ] = [C, h] + α α(c)g α = 0 [C, g] = 0 H g (2) dim g α = dim g α α Φ dim g α 0 dim g α 0 α Φ (3) α Φ, x g α, y g α h h B(h, [x, y]) = B([h, x], y) ( B ) = α(h)b(x, y) ( x g α ) = B(t α, h)b(x, y) ( t α ) = B(B(x, y)t α, h) [x, y] g 0 = h, B(x, y)t α h [x, y] B(x, y)t α h h B h h [x, y] = B(x, y)t α (4) (3) [g α, g α ] t α [g α, g α ] 0 0 x g α B(x, g α ) = 0 B(x, g) = 0 B B(x, y) 0 y g α [x, y] = B(x, y)t α 0 (5) α(t α ) = 0 x g α, y g α [t α, x] = α(t α )x = 0, [t α, y] = α(t α )y = 0 x, y (4) B(x, y) 0 B(x, y) = 1 [x, y] = t α S = x, y, t α g 3 Lie 11

12 [S, S] = t α [g, DS] = 0 S Lie ad(t α ) t α h Cartan ad(t α ) ad(t α ) = 0 t α = 0 α = 0 (6) 0 x α g α y g α B(x α, y α ) = 2 B(t α, t α ) (5) B(t α, t α ) 0 (4) B(x, y) 0 (3) h α = 2t α B(t α, t α ) [x α, y α ] = B(x α, y α )t α = h α [h α, x α ] = 2 α(t α ) [t α, x α ] = 2 α(t α ) α(t α)x α = 2x α [h α, y α ] = 2y α S α = x α, y α, h α = sl 2 (7) h α α(h α ) = 2 α(t α ) α(t α) = 2 h h B(t α, h) = α(h) B t α = t α B(t α + t α, h) = α(h) α(h) = ( ) sl 2 g sl S α = x α, y α, h α = sl 2 (1) α Φ dim g α = 1 0 x α x α x α [x α, y α ] = h α y α g α (2) α φ cα Φ c = ±1 (3) α, β Φ β(h α ) Z β β(h α ) Φ (4) α, β, α + β Φ [g α, g β ] = g α+β (5) α, β Φ β ±α p, q Z β pα, β + qα Φ p i q i β + iα Φ β(h α ) = p q (6) g Lie {g α } α Φ [ ] (1),(2) (3) (6) sl 2 (1),(2) STEP.1 sl 2 M 12

13 M = h c 0 g cα x α, y α, h α S α = sl2 X, Y, H sl 2 ad xα, ad yα, ad hα g sl 2 - M g sl 2 - m M m = j m j (m j g cj α c j = 0 h ) ad(h α )(m) = [h α, m] = j [h α, m j ] = j c j α(h α )m j M ad(x α )(m) = [x α, m] = j [x α, m j ] g α+cj α ad(y α )(m) = [y α, m] = j [y α, m j ] g α+cj α M sl 2 STEP.2 2c Z ad hα v g cα ad(h α )(v) = [h α, v] = cα(h α )v = 2cv 2c Z STEP.3 (1),(2) V m, V [m], k m M Remark1.14 h V 0 = h g k/2 = V k V ±2 = g ±α h α h V [0] h h α h t α h α α(h) = B(t α, h) = 0 α(h) = 0 [x α, h] = α(h)x α = 0 [y α, h] = 0 h 1 h V [0] dim h = l h α h - l 1 h α h l 1 V [0] = k 0 h α, x α, y α = S α V [2] 1 V [2] = k 2 l = dim h = dim V 0 = m:even k m k 0 = l 1, k 2 = 1, k m = 0 (m : even, m 4) dim g α = dim V 2 = k 2 + k 4 + = 1 dim g 2α = dim V 4 = k 4 + k 6 + = 0 dim g 3α = dim V 6 = k 6 + k 8 + = 0 2α, 3α, 2α, 3α, 1 2α 2 α 1 2 α 0 = dim g (1/2)α = dim V 1 = m:odd k m 13

14 (1),(2) k m = 0 (m : odd) (3) (6) sl 2 β ±α K = i Z g β+iα sl 2 - g β+iα {0} i dim g β+iα = 1 (1) g β+iα 0 β(h α ) + 2i i Z 0 1 i 1 i 2 ad hα m, m 2,, m p, q β + iα β pα,, β + qα (β(h α ) + 2q) = β(h α ) 2p β(h α ) = p q (5) p q p q β β(h α )α = β (p q)α (3) (4) dim g α+β = 1 ad xα (g β ) {0} (6) h [x α, y α ] = h α 2.4 g Lie h Cartan g ( ) g = h g α Φ h α 1,, α r Φ h g Killing form B (α, β) := B(t α, t β ) h (, ) t α α(h) = B(t α, h) ( h h) h β Φ k β = c i α i α Φ 2.9. c i Q Proof k (β, α j ) = c i (α i, α j ) (j = 1, 2,, k) 14

15 β(h α ) Z 2(β, α j ) k (α j, α j ) = 2(α i, α j ) (α j, α j ) c i (j = 1, 2,, k) ( ) 2(β, α) (α, α) = 2β(t α) B(t α, t α ) = β(h α) Z ( ) B α 1,, α k h ( ) c i Q ad h h 0- g α α(h) B(h, h ) = tr(ad h ad h ) = α Φ α(h)α(h ) γ, δ h (γ, δ) = α φ α(t γ )α(t δ ) = α Φ(α, γ)(α, δ) β Φ (β, β) = α Φ(α, β) 2 0 E = α 1,, α k R (γ, γ) 0 ( γ E) (γ, γ) = 0 α Φ (α, γ) = 0 B γ = 0 k E (, ) α 1,, α k Φ E 2.5 g ( ) Lie g Cartan h ad(h) g g = h α Φ g α g α = {x g [h, x] = α(h)x h h} g 0 = h Φ = {α h α 0, g α {0}} h g g Φ g Killing h h h {α 1,, α l } h R Φ h R C αβ = 2(β, α) (α, α) 15

16 C αβ = β(h α ) C αβ Z β C αβ α Φ C αβ α σ α Φ h R Φ 4 (R1) Φ 0 / Φ (R2) α Φ, c R cα Φ c = ±1 (R3) α, β Φ α Φ σ α Φ (R4) E R Φ C αβ = α, β := 2(α, β) (α, α) Z E Φ 4 ( ) Lie g Cartan h Φ Dynkin Lie E R l (, ) l E E ( 7 ) 3.1. E Φ E ( ) (R1) Φ 0 / Φ (R2) α Φ, c R cα Φ c = ±1 (R3) α, β Φ α Φ σ α Φ (R4) E R Φ C αβ = α, β := 2(α, β) (α, α) Z Remark 3.2. E (, ) 0 α E α E P α β E P α σ α (β) σ α (β) = β 2(α, β) (α, α) α = β C αβα E = Rα P α β = cα + γ σ α (β) = cα + γ = β 2cα (α, β) = c(α, α) c = (α, β)/(α, α) C αβ 7 Lie E 16

17 4 1 1 E = R 2 E = R 2 A 1 A 1 A 1 A E Φ Φ Φ 1, Φ 2 Φ 1 Φ 2 = φ, Φ 1 Φ 2 = Φ, Φ 1 Φ A 2 B 2 (= C 2 ) 2 G Dynkin 8 G 2 17

18 3.2 α, β Φ (α, β) 0 α, β α, β α β ( ) α α (α, β) = α β cos θ (cos θ) 2 = (α, β) > 0 ( ) (α, β)2 α 2 β 2 = C αβc βα 4 C αβ, C βα 0 cos θ 1 C αβ C βα = 1, 2, 3 ( ), ( ) C αβ C βα α, β θ C αβ C βα (cos θ) 2 θ C αβ C βα β / α 1 1/4 π/ /2 π/ /4 π/ β β β π/3 π/4 α α π/6 α 3.4. α, β Φ (1) (α, β) > 0 α β Φ (2) (α, β) < 0 α + β Φ (3) Z p, q 0 β + iα Φ q i p [ ] (1) (α, β) > 0 α β C βα = 1 (R3) Φ σ β (α) = α C βα β = α β 18

19 α > β β α Φ (R2) α β = (β α) Φ (2) (1) β β (3) I = {i Z β + iα Φ} Φ E I p, q β Φ 0 I p, q 0 p, q p, q I = {i Z q i p, β + iα / Φ} r, s q < s r < p, β + rα / Φ, β + (r + 1)α Φ, β + sα / Φ, β + (s 1)α Φ β + rα = (β + (r + 1)α) α, β + sα = (β + (s 1)α) + α (1)(2) (α, β + (r + 1)α) 0, (α, β + (s 1)α) 0 (r s + 2)(α, α) 0 r s + 2 > 0, (α, α) > 0 {β + iα q i p} β α (1) C αβ = q p (2) β α- 4 [ ] (1) α σ α Φ β α- σ α (β + pα) = β qα σ α (α) = α C αβ p = q C αβ = q p (2) β = β + pα C αβ = C αβ + 2p = p + q C αβ 3 α- p + q + 1 p + q + 1 = C αβ α β α- β 2α β α β β α β β α α β 3α β 2α β α β α 19

20 3.3 (E, Φ) 3.6. v V α Φ (v, α) 0 v Remark 3.7. ( ) E\ P α α Φ Φ (E, Φ) v 3.8. (1) Φ + = Φ + (v) := {α Φ (v, α) > 0} Φ Φ = Φ + Φ = Φ + Φ Φ +, Φ (2) α Φ + α = β 1 + β 2 (β i Φ + ) α Φ + Π = Π(Π) (3) Φ Π Φ + Π = Π(Φ + ) Π Φ 3.9. S Φ Φ 2 (i) S E (ii) β Φ β = m α α α S m α Z m α 0 m α (1) Π Φ α β Π (α, β) 0 (2) S Φ + α β S (α, β) 0 S [ ] (1) (α, β) > 0 α β, (α β) = β α Φ (α, v) = (β, v) (α β, v) = 0 α β Φ v (α, v) (β, v) v (α, v) > 0, (β, v) > 0 (α β, v) = (α, v) (β, v), (β α, v) = (β, v) (α, v) (α, v), (β, v) α β Φ + β α Φ + α = (α β) + β, β = α + (β α) α, β Π (2) α S C αα = 0 (C α Q) λ = C C α 0 αα, µ = C C α 0 αα λ + µ = α S C αα = 0 0 (λ, λ) = (λ, µ) = C α 0,C α 0 C α ( C α )(α, α ) 0 20

21 C α C α α α (α, α ) 0 (λ, λ) = 0 λ = µ = 0 Φ + = Φ + (v) C α (v, α) = (v, λ) = 0 = (v, µ) = C α (v, α) C α 0 C α 0 α S Φ + (v, α) > 0 α S C α = 0 [ 3.9 ] Π v Π(Φ + (v)) Π β Φ + β Π β = β 1 + β 2 (β i Φ + (v)) (v, β) = (v, β 1 ) + (v, β 2 ) > (v, β i ) (i = 1, 2) (v, β i ) > 0 β = m α α (0 m α Z) α Π β Φ β Φ + (R1) Φ E Φ Π Π E (i) (ii) S Φ (i),(ii) E S dual S v = u S u α S (v, α) > 0 (ii) β Φ (v, β) = m α (v, α) 0 α S v (ii) Φ + (v) = {β Φ β = α S M αα m α 0} S Φ + (v) S α = β 1 +β 2 (β i Φ + ) β 1, β 2 S α = β 1 + β 2 α 0 α β i α 0 S Π(Φ + (v)) dim E S = Π(Φ + (v)) 4 Dynkin 4.1 Dynkin Φ Π = {α 1,, α l } (R3) C ij = 2(α i, α j ) (α i, α i ) Z (i, j)- l C Cartan Cartan (C1) C ii = 2 (C2) i j C ij = 0, 1, 2, 3 (C3) C ij = 0 C ji = 0 ( C ij = 2 C ji = 1 C ij = 3 C ji = 1 ) 21

22 Cartan Dynkin (D1) l α 1,, α l (D2) i j α i α j max( C ij, C ji ) (D3) i j C ij 2 ( C ij 2) α i α j α j α i Dynkin Lie 4.2 = {α 1,, α l } E [ ] := {ε 1,, ε l } (ε i = α i / α i ) 4.1. E Γ ε- (A1) {ε 1,, ε l } (A2) ε i, ε j = 0, 1/2, 1/ 2, 3/2 ε i, ε j (i j) π(1 1/m ij ) (m ij = 2, 3, 4, 6) ε- Γ Dynkin ε- Γ = [ ] Dynkin ε ε- [A l ] [B l ] = [C l ] [D l ] [E 6 ] [E 7 ] [E 8 ] [F 4 ] [G 2 ] 4.3. (1) Γ ε- Γ Γ Γ ε- 22

23 (2) Γ = {ε 1,, ε n } ε- ε i, ε j = 0 (i j) (i, j) n (3) ε- Γ = η 1,, η m } η i, η i+1 0 (1 i m 1), η m, η 1 = 0 (1) n (2) ε = ε i 0 < ε = n + 2 i<j ε i, ε j (A1) ε i, ε j = 0 ε i, ε j 1/2 (A2) ε i, ε j = 0 (i, j) (i < j) n n n n < n (3) (2) ε- ε i, ε j = 0 (i, j) (i < j) (2) (1) ε- ε- ε (1) Γ ε- ε Γ ε 3 (2) ε ε- ε 3 (3) ε- Γ Γ = [G 2 ] ε Γ {η Γ ε, η = 0, ε η} = {η 1,, η k } (3) η i, η j = 0 (i j) ε, η i, η j {η 1,, η k } c i = η i, ε, k ε = ε c i η i η i, ε = 0 (1 i k) (A1) ε 0 1 = ε 2 = ε 2 + k c 2 i ε- η i ε 4c 2 i k 4 c 2 i = 4(1 ε 2 ) < 4 (1) ε- 6 (2),(3) 4.5. ε- Γ [A k ] Γ ε 1 ε 2 ε k 23

24 k ε = ε i Γ = Γ Γ Γ {ε} ε- ε- [A k ] 1 ε- ε 2 = k + 2 ε i, ε j = k (k 1) = 1 1 i<j k ε Γ {ε} (A1) η Γ η, ε i 0 i (1 i k) 2 2 η 3 { 0 η, ε i = η, ε i i (A2) [G 2 ] ε- Γ Γ Γ 2 ε- Γ, Γ Γ Γ Γ 9 [A k ] ε- Γ, Γ [A k ] Γ 4.6. ε- Γ [B l ] (l 2), [F 4 ] Γ 9 24

25 ε 1 ε p η q η 1 ε = ε = p iε i, η = p i 2 p q iη i i(i + 1) = 1 p(p + 1) 2 η = 1 q(q + 1) 2 ε, η = pε p, qη q = pq 2 p 2 q 2 = ε, η 2 < ε 2 η 2 = 2 p(p + 1)q(q + 1) 4 ε = η 2pq < (p + 1)(q + 1) 2 (p 1)(q 1) < 2 { p q = 2 p = q = 2 [B l ] [F 4 ] Γ Γ ε- [A l ] Γ 2 [A k ] 4 1 [A k ] 4.7. ε- [D l ] (l 4), [E l ] (l = 6, 7, 8) Γ η 1 ψ η q 1 ε 1 ε p 1 ξ r 1 ξ 1 25

26 p 1 q 1 r 1 ε = iε i, η = iη i, ξ = iξ i ε, η, ξ ε = ε/ ε, η = η/ η, ξ = ξ/ ξ, c 1 = ε, ψ, c 2 = η, ψ, c 3 = ξ, ψ, ψ = ψ c 1 ε c 2 η c 3 ξ ε, η, ξ, ψ ε = η = ξ = 1 p 1 ε 2 = 1 = ψ 2 = ψ 2 + c c c 2 3 p 2 i 2 i(i + 1) = 1 p(p 1) 2 ε, ψ = (p 1)ε p 1, ψ = 1 (p 1) 2 c 2 1 = c 2 2 = 1 2 ε, ψ 2 ε 2 = 1 ( 1 1 ) 2 p ( 1 1 ) c 2 3 = 1 ( 1 1 ) q 2 r {( ) ( ) ( ) } < 1 2 p q r 1 p + 1 q + 1 r > 1 p q r( 2) 3/r r < 3 r = 2 q < 4 q = 2, < 1 p + 1 q 2 q q = 2 p Γ [D l ] (l = p + 2) q = 3 1/p > 1/6 p < 6 p = 3, 4, 5 [E 6 ], [E 7 ], [E 8 ] (p, q, r) = (3, 3, 2), (4, 3, 2), (5, 3, 2) Dynkin [B l ], [F 4 ], [G 2 ] Dynkin [B l ] 2 B l, C l Dynkin (B 2 = C 2 )[F 4 ], [G 2 ] Dynkin 26

27 5 5.1 Dynkin Cartan Lie g Cartan h Cartan Lie Lie g Cartan h Lie 5.1. k Lie g( ) Weyl Lie Dynkin 5.2. (1) g Lie (2) g (3) g (4) Dynkin Dynkin Cartan Dynkin Dynkin Cartan Killing Cartan Dynkin Dynkin Dynkin 5.3. Dynkin Lie 27

28 5.2 Serre Lie Serre 5.4. Π = {α 1,, α l } h i := α h [e i, f i ] = h i e i g αi, f i g αi Lie g Serre g {h i, e i, f i 1 i l} [h i, h j ] = 0 (5.1) [h i, e j ] = a ij e j, [h i, f j ] = a ij f j (5.2) [e i, f j ] = δ ij h i (5.3) (ad ei ) aij+1 (e j ) = 0, (ad fi ) aij+1 (f j ) = 0 (i j) (5.4) 2 Serre 5.3 Weyl 5.5. (E, Φ) W = W (Φ) := σ α α Φ Φ Weyl 5.6. Weyl (1) W (2) W (Π) = Φ E W Weyl (3) W = σ αi α i Π (4) W E 6 Lie 4 A l, B l, C l, D l 5 E 6, E 7, E 8, F 4, G 2 Lie Lie A l B l C l D l sl l+1 (k) so 2l+1 (k) sp 2l (k) so 2l (k) Caylay Jordan l = 1 A 1 sl 2 Dynkin 1 D 1 so 2 (C) = {X M 2 (R) t X + X = 0} C 2 Lie 1 D 1 Dynkin B 1,C 1 so 3, sp 2 3 sl 2 = so3 = sp2 28

29 2 D 2 so 4 so 4 = sl2 sl 2 2 D 2 = A 1 A 1 B 2, C 2 so 5, sp 4 so 5, sp 4 Dynkin = 3 D 3 so 6 so 6 = sl4 A 3 Dynkin = 6.1 A n 1 sl n A Lie Lie 10 A n 1 Lie sl n = {X M n (C) tr X = 0} Cartan h = {X sl n X } E ij (i, j)- h = diag(h 1,, h n ) trh = 0 h h n = 0 [h, E ij ] = (h i h j )E ij (i j) i j α ij h α ij : h h = diag(h 1,, h n ) h i h j C 10 B,C,D 29

30 E ij C g αij h h g 0 sl n sl n = h E ij C i j h = g 0, g αij = E ij C Φ = {α ij i j} A n 1 Cartan fig. Cartan Killing h = diag(h 1,, h n ), h = diag(h 1,, h n) B(h, h ) = tr(ad h ad h ) = i j (h i h j )(h i h j) ( ) n = 2(n 1) h i h i 2 h i h j i j ( n n ) ( n = 2n h i h i 2 h i = 2n h i ) n h i h i ( tr h = tr h = 0 ) α ij (h) = h i h j α ij h t αij Killing h i h j = α ij (h) = B(t αij, h) = 2n n (t αij ) k h k k=1 t αij = 1 diag(0,, 1,, 1,, 0) 2n (α ij, α ij ) = B(t αij, t αij ) = 1 4n 2 (2n 2) = 1 n 30

31 h αij = 2t αij B(t αij, t αij ) = 2n 1 diag(0,, 1,, 1,, 0) = diag(0,, 1,, 1,, 0) 2n ε i = α i,i+1 Π = {ε i 1 i n 1} Π h i < j α ij = ε i + ε i ε j 1 i < j Φ + = {α ij i < j} Cartan (ε i, ε j ) = B(α i,i+1, α j,j+1 ) = 1 2n 4n 2 [diag(e ii E i+1,i+1 ) diag(e jj E j+1,j+1 )] ([ ] ) = 1 2 i = j 2n 1 i = j ± 1 0 otherwise C ij = 2(ε i, ε j ) (ε i, ε i ) = 2 i = j 1 i = j ± 1 0 otherwise Cartan Dynkin A n B n so 2n C n sp 2n 6.4 D n so 2n 6.5 G E 6, E 7, E 8, F 4 31

32 II Dynkin Dynkin III Dynkin 7 SO(3) IV Dynkin V Quiver Dynkin VI Painlevé Dynkin 32

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ),

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ), 1 1 1.1,,. 1.1 1.2 O(2) R 2 O(2).p, {0} r > 0. O(3) R 3 O(3).p, {0} r > 0.,, O(n) ( SO(n), O(n) ): Sym 0 (R n ) := {X M(n, R) t X = X, tr(x) = 0}. 1.3 O(n) Sym 0 (R n ) : g.x := gxg 1 (g O(n), X Sym 0

More information

1 G K C 1.1. G K V ρ : G GL(V ) (ρ, V ) G V 1.2. G 2 (ρ, V ), (τ, W ) 2 V, W T : V W τ g T = T ρ g ( g G) V ρ g T W τ g V T W 1.3. G (ρ, V ) V W ρ g W

1 G K C 1.1. G K V ρ : G GL(V ) (ρ, V ) G V 1.2. G 2 (ρ, V ), (τ, W ) 2 V, W T : V W τ g T = T ρ g ( g G) V ρ g T W τ g V T W 1.3. G (ρ, V ) V W ρ g W Naoya Enomoto 2002.9. paper 1 2 2 3 3 6 1 1 G K C 1.1. G K V ρ : G GL(V ) (ρ, V ) G V 1.2. G 2 (ρ, V ), (τ, W ) 2 V, W T : V W τ g T = T ρ g ( g G) V ρ g T W τ g V T W 1.3. G (ρ, V ) V W ρ g W W G- G W

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

1 Part I (warming up lecture). (,,...) 1.1 ( ) M = G/K :. M,. : : R-space. R-space..

1 Part I (warming up lecture). (,,...) 1.1 ( ) M = G/K :. M,. : : R-space. R-space.. ( ) ( ) 2012/07/14 1 Part I (warming up lecture). (,,...) 1.1 ( ) M = G/K :. M,. : : R-space. R-space.. 1.2 ( ) ( ): M,. : (Part II). 1 (Part III). : :,, austere,. :, Einstein, Ricci soliton,. 1.3 : (S,

More information

四変数基本対称式の解放

四変数基本対称式の解放 The second-thought of the Galois-style way to solve a quartic equation Oomori, Yasuhiro in Himeji City, Japan Jan.6, 013 Abstract v ρ (v) Step1.5 l 3 1 6. l 3 7. Step - V v - 3 8. Step1.3 - - groupe groupe

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, (

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, ( ( ),.,,., C A (2008, ). 1,,. 1.1. (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,,. 1.2. (M, g) p M, s p : M M p, : (1) p s p, (2) s 2 p = id ( id ), (3) s p ( )., p ( s p (p) = p),,

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

susy.dvi

susy.dvi 1 Chapter 1 Why supper symmetry? 2 Chapter 2 Representaions of the supersymmetry algebra SUSY Q a d 3 xj 0 α J x µjµ = 0 µ SUSY ( {Q A α,q βb } = 2σ µ α β P µδ A B (2.1 {Q A α,q βb } = {Q αa,q βb } = 0

More information

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 { 04 zz + iz z) + 5 = 0 + i z + i = z i z z z 970 0 y zz + i z z) + 5 = 0 z i) z + i) = 9 5 = 4 z i = i) zz i z z) + = a {zz + i z z) + 4} a ) zz + a + ) z z) + 4a = 0 4a a = 5 a = x i) i) : c Darumafactory

More information

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m 2009 10 6 23 7.5 7.5.1 7.2.5 φ s i m j1 x j ξ j s i (1)? φ i φ s i f j x j x ji ξ j s i (1) φ 1 φ 2. φ n m j1 f jx j1 m j1 f jx j2. m j1 f jx jn x 11 x 21 x m1 x 12 x 22 x m2...... m j1 x j1f j m j1 x

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ 1 (1) ( i ) 60 (ii) 75 (iii) 15 () ( i ) (ii) 4 (iii) 7 1 ( () r, AOB = θ 0 < θ < ) OAB A OB P ( AB ) < ( AP ) (4) 0 < θ < sin θ < θ < tan θ 0 x, 0 y (1) sin x = sin y (x, y) () cos x cos y (x, y) 1 c

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

SO(n) [8] SU(2)

SO(n) [8] SU(2) SO(n) [8] 1 2 1.1.............................. 3 1.2.............................. 6 1.3 SU(2)............................. 7 1.4 -...................... 10 1.5 SO(3).............................. 11

More information

K g g g g; (x, y) [x, y] g Lie algebra [, ] bracket (i) [, ] (ii) x g [x, x] = 0 (iii) ( Jacobi identity) [x, [y, z]] + [y, [z, x]] +

K g g g g; (x, y) [x, y] g Lie algebra [, ] bracket (i) [, ] (ii) x g [x, x] = 0 (iii) ( Jacobi identity) [x, [y, z]] + [y, [z, x]] + 2015 X V 1. 19 Sophus Lie [Hu] James Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics Volume 9 1972, Springer [Sa],, 2002, [Hu] 14.3 78 [Sa] 13 167 [Hu]

More information

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 (4/12) 1 1.. 2. F R C H P n F E n := {((x 0,..., x n ), [v 0 : : v n ]) F n+1 P n F n x i v i = 0 }. i=0 E n P n F P n

More information

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f 1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1. R A 1.3 X : (1)X ()X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f 1 (A) f X X f 1 (A) = X f 1 (A) = A a A f f(x) = a x

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

II Lie Lie Lie ( ) 1. Lie Lie Lie

II Lie Lie Lie ( ) 1. Lie Lie Lie II Lie 2010 1 II Lie Lie Lie ( ) 1. Lie Lie 2. 3. 4. Lie i 1 1 2 Lie Lie 4 3 Lie 8 4 9 5 11 6 14 7 16 8 19 9 Lie 23 10 Lie 26 11 Lie Lie 31 12 Lie 35 1 1 C Lie Lie 1.1 Hausdorff M M {(U α, φ α )} α A (1)

More information

直交座標系の回転

直交座標系の回転 b T.Koama x l x, Lx i ij j j xi i i i, x L T L L, L ± x L T xax axx, ( a a ) i, j ij i j ij ji λ λ + λ + + λ i i i x L T T T x ( L) L T xax T ( T L T ) A( L) T ( LAL T ) T ( L AL) λ ii L AL Λ λi i axx

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

−g”U›ß™ö‡Æ…X…y…N…g…‰

−g”U›ß™ö‡Æ…X…y…N…g…‰ 1 / 74 ( ) 2019 3 8 URL: http://www.math.kyoto-u.ac.jp/ ichiro/ 2 / 74 Contents 1 Pearson 2 3 Doob h- 4 (I) 5 (II) 6 (III-1) - 7 (III-2-a) 8 (III-2-b) - 9 (III-3) Pearson 3 / 74 Pearson Definition 1 ρ

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

DVIOUT-fujin

DVIOUT-fujin 2005 Limit Distribution of Quantum Walks and Weyl Equation 2006 3 2 1 2 2 4 2.1...................... 4 2.2......................... 5 2.3..................... 6 3 8 3.1........... 8 3.2..........................

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

2011 8 26 3 I 5 1 7 1.1 Markov................................ 7 2 Gau 13 2.1.................................. 13 2.2............................... 18 2.3............................ 23 3 Gau (Le vy

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m 1 1 1 + 1 4 + + 1 n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m a n < ε 1 1. ε = 10 1 N m, n N a m a n < ε = 10 1 N

More information

7

7 01111() 7.1 (ii) 7. (iii) 7.1 poit defect d hkl d * hkl ε Δd hkl d hkl ~ Δd * hkl * d hkl (7.1) f ( ε ) 1 πσ e ε σ (7.) σ relative strai root ea square d * siθ λ (7.) Δd * cosθ Δθ λ (7.4) ε Δθ ( Δθ ) Δd

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa 1 2 21 2 2 [ ] a 11 a 12 A = a 21 a 22 (1) A = a 11 a 22 a 12 a 21 (2) 3 3 n n A A = n ( 1) i+j a ij M ij i =1 n (3) j=1 M ij A i j (n 1) (n 1) 2-1 3 3 A A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

untitled

untitled - k k k = y. k = ky. y du dx = ε ux ( ) ux ( ) = ax+ b x u() = ; u( ) = AE u() = b= u () = a= ; a= d x du ε x = = = dx dx N = σ da = E ε da = EA ε A x A x x - σ x σ x = Eε x N = EAε x = EA = N = EA k =

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α SO(3) 48 6 SO(3) t 6.1 u, v u = u 1 1 + u 2 2 + u 3 3 = u 1 e 1 + u 2 e 2 + u 3 e 3, v = v 1 1 + v 2 2 + v 3 3 = v 1 e 1 + v 2 e 2 + v 3 e 3 (6.1) i (e i ) e i e j = i j = δ ij (6.2) ( u, v ) = u v = ij

More information

2

2 III ( Dirac ) ( ) ( ) 2001. 9.22 2 1 2 1.1... 3 1.2... 3 1.3 G P... 5 2 5 2.1... 6 2.2... 6 2.3 G P... 7 2.4... 7 3 8 3.1... 8 3.2... 9 3.3... 10 3.4... 11 3.5... 12 4 Dirac 13 4.1 Spin... 13 4.2 Spin

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit 6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civita ɛ 123 =1 0 r p = 2 2 = (6.4) Planck h L p = h ( h

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th 1 n A a 11 a 1n A = a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = ( x ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 11 Th9-1 Ax = λx λe n A = λ a 11 a 12 a 1n a 21 λ a 22 a n1 a n2

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

1 Euclid Euclid Euclid

1 Euclid Euclid Euclid II 2000 1 Euclid 1 1.1..................................... 1 1.2..................................... 8 1.3 Euclid............. 19 1.4 3 Euclid............................ 22 2 28 2.1 Lie Lie..................................

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information