1.1 foliation M foliation M 0 t Σ t M M = t R Σ t (12) Σ t t Σ t x i Σ t A(t, x i ) Σ t n µ Σ t+ t B(t + t, x i ) AB () tα tαn µ Σ t+ t C(t + t,

Size: px
Start display at page:

Download "1.1 foliation M foliation M 0 t Σ t M M = t R Σ t (12) Σ t t Σ t x i Σ t A(t, x i ) Σ t n µ Σ t+ t B(t + t, x i ) AB () tα tαn µ Σ t+ t C(t + t,"

Transcription

1 1 Gourgoulhon BSSN BSSN ϕ = 1 6 ( D i β i αk) (1) γ ij = 2αĀij 2 3 D k β k γ ij (2) K = e 4ϕ ( Di Di α + 2 D i ϕ D i α ) + α ] [4π(E + S) + ĀijĀij + K2 3 (3) Ā ij = 2 3Āij D k β k 2αĀikĀk j + αāijk +e 4ϕ [ 2α D i Dj ϕ + 4α D i ϕ D j ϕ + 4 D (i α D j) ϕ D i Dj α + α( R ij 8πS ij ) ] TF (4) constraint equations Λi = γ jk ˆDj ˆDk β i Γi Dj β j γik Dk Dj β j 2Ājk (δ i j k α 6αδ i j k ϕ α Γ i jk) 4 3 α γij j K 16πα γ ij S j (5) 2 3 K2 ĀijĀij + e 4ϕ ( R 8 D i ϕ D i ϕ 8 D 2 ϕ) 16πE = 0 (6) D j A ij + 6Āij D j ϕ 2 3 D i K 8πS i = 0 (7) det( γ ij ) = ˆγ (8) γ ij Ā ij = 0 (9) Λ i + ˆD j γ ij = 0 (10) Ricci R ij = 1 2 γkl ˆDk ˆDl γ ij + γ k(i ˆDj) Λk + Γ k Γ (ij)k + γ kl (2 Γ m k(i Γ j)ml + Γ m ik Γ mjl ) (11) γ ij ϕ D i ˆγ ˆD i K Āij R ij Γ i E t L β γ ij () Ricci T µν n µ n ν L β β Lie TF γ ij trace 0 Einstein Einstein 1

2 1.1 foliation M foliation M 0 t Σ t M M = t R Σ t (12) Σ t t Σ t x i Σ t A(t, x i ) Σ t n µ Σ t+ t B(t + t, x i ) AB () tα tαn µ Σ t+ t C(t + t, x i ) AC t( / t) BC (x i x i )( / x i ) = tβ i ( / x i ) tt / t t = tαn + tβi t x i (13) g tt = t t = α2 n n + 2αβ i n x i + βi β j x i x j (14) n n = 1 n ( / x i ) = 0 ( / x i ) ( / x j ) Σ t γ ij tx i g tt = α 2 + β i β j γ ij (15) x i x j g ti = t x i = αn g µν = g ij = x i + βj x j x i = βj γ ji (16) x i x j = γ ij (17) ( ) α 2 + β i β j γ ij γ ij β j γ ji β i γ ij (18) ds 2 = α 2 dt 2 + γ ij (dx i + β i dt)(dx j + β j dt) (19) g µν = ( 1 α 2 β j α 2 β i α 2 γ ij βj β i α 2 ) (20) γ ij γ ij n µ Σ t v µ n µ v µ = 0 n µ 0 n µ = (a, 0, 0, 0) n µ = ( a/α 2, aβ i /α 2 ) n µ n µ = 1 a 2 /α 2 = 1 a = ±α n µ 0 t a = α ( ) 1 n µ = α, βi α (21) n µ = ( α, 0) (22) 2

3 γ µ ν = δ µ ν + n µ n ν γ µ νγ ν ρ = (δ µ ν + n µ n ν )(δ ν ρ + n ν n ρ ) (23) = δ µ ρ + n µ n ρ + n µ n ρ + n µ n ν n ν n ρ (24) = δ µ ρ + n µ n ρ = γ µ ρ (25) γ µ νn ν = δ µ νn ν + n µ n ν n ν (26) = n µ n µ = 0 (27) γ µ νn µ = δ µ νn µ + n µ n ν n µ (28) = n ν n ν = 0 (29) n 0 µ = µ 1 µ p ν = ν 1 ν q i = i 1 i p j = j 1 j q T i j T µ ν = T i jγ µ iγ j ν γ µ i = γ µ 1 i1 γ µ p ip γ j ν T γ ij γ µν γ µν = g µν + n µ n ν (30) * 1 Σ t ( ) γ ij (intrinsic curvature) (extrinsic curvature) K (u, v) K(u, v) = u v n (31) Σ t u v n = u µ v ν ν n µ (32) = v ν ν (u µ n µ ) n µ v ν ν u µ (33) = n µ u ν ν v µ + n µ u ν ν v µ n µ v ν ν u µ (34) µ = 0 0 ( ) u µ n µ *1 u v ι : Σ M ι : T p (Σ) T p (M) γu = ι ū ū v γ g ι g ι : T p (M) T p (Σ)γ(u, v) = g(γu, γv) = g(ι ū, ι v) = ι g(ū, v) = γ(ū, v) γ(u, v) = γ(ū, v) γ 3

4 0 n µ = α µ t n µ u ν ν v µ n µ v ν ν u µ µ tu ν ν v µ µ tv ν ν u µ (35) = u ν ( ν ( µ tv µ ) v µ ν µ t) v ν ( ν ( µ tu µ ) u µ ν µ t) (36) = u ν v µ ( ν µ t µ ν t) (37) = 0 (38) µ t u(v) µ Γ i jk u v n = n µ u ν ν v µ (39) = u ν ν (n µ v µ ) + u ν v µ ν n µ (40) = u ν v µ ν n µ (41) v µ n µ K K u γ µ νu ν = (u + (n u)n) µ µ = 0 0 K K(u, v) = K(u + (n u)n, v + (n v)n) (42) = (u µ + n ν u ν n µ )(v σ + n ρ v ρ n σ ) σ n µ (43) = u µ v σ σ n µ n ν u ν n µ v σ σ n µ u µ n ρ v ρ n σ σ n µ n ν u ν n µ n ρ v ρ n σ σ n µ (44) µ n µ ν n µ = ν (n µ n µ ) n µ ν n µ = n µ ν n µ = 0 K(u, v) = u µ v σ σ n µ u µ v ρ n ρ n σ σ n µ (45) K µν = ν n µ n ν n σ σ n µ µ n ν = K νµ n µ n σ σ n ν (46) γ µ σγ ν ρk µν = γ µ σγ ν ρ ν n µ (47) K µν = γ i µγ j ν K ij (48) γ µ σγ ν ρk µν = γ µ σγ ν ργ i µγ j ν K ij = γ i σγ j ρ K ij = K σρ (49) K µν = γ σ µγ ρ ν ρ n σ (50) n µ = α µ t n σ σ n µ = n σ σ ( α µ t) (51) = n σ σ α µ t αn σ σ µ t = n σ σ α µ t αn σ µ σ t (52) = 1 α nσ σ αn µ αn σ µ ( 1 ) α n σ (53) = 1 α nσ σ αn µ + n σ µ n σ 1 α nσ µ αn σ (54) = α 1 ( µ α + n µ n σ σ α) (55) = α 1 (δ σ µ + n σ n µ ) σ α (56) = α 1 γ σ µ σ α (57) 4

5 torsion-free γ σ µ σ γ µν D µ T n D µ T α 1α 2 α p β1β 2 β q = γ α 1 µ1 γ α p µp γ ν 1 β1 γ ν q βq γ σ ρ σ T µ 1 µ p ν1 ν q (58) D µ n D µ Leibnitz γ µν 0 µ Leibnitz D ϵ (T α βs γ ϵ) = γ α µγ ν βγ γ ργ λ δγ σ ϵ σ (T µ νs ρ λ) (59) = γ α µγ ν βγ σ ϵ( σ T µ ν)γ γ ργ λ δs ρ λ +γ α µγ ν βt µ νγ γ ργ λ δγ σ ϵ σ S ρ λ (60) = (D ϵ T α β)s γ δ + T α β(d ϵ S γ δ) (61) µ Leibnitz D σ T µ µ = D σ (T µ µ) D σ T µ µ = γ µ αγ β βγ γ σ γ T α β (62) = γ β αγ γ σ γ T α β (63) = γ γ σ γ (γ β αt α β) γ γ σt α β(n β γ n α + n α γ n β ) (64) = γ γ σ γ (T µ µ) = D σ (T µ µ) (65) γ γ β α = n β γ n α + n α γ n β u µ n f u µ D µ f = u µ γ ν µ ν f = u ν ν f (66) ν 0 f D µ D ν f = γ λ µγ ρ ν λ (γ σ ρ σ f) (67) = γ λ µγ ρ ν( λ γ σ ρ σ f + γ σ ρ λ σ f) (68) = γ λ µγ ρ ν(n σ λ n ρ + n ρ λ n σ ) σ f + γ λ µγ ρ ν λ σ f (69) = γ λ µγ ρ ν λ n ρ n σ σ f + γ λ µγ ρ ν λ σ f (70) γ σ ρ = δ σ ρ + n σ n ρ γ n γ λ µγ ρ ν λ n ρ = K µν σ 0 µ ν f µ ν D µ D ν f D ν D µ f = γ λ µγ ρ ν λ (γ σ ρ σ f) γ λ νγ ρ µ λ (γ σ ρ σ f) = 0 0 5

6 0 γ µ αγ ν βγ ρ σ ρ γ µν = γ µ αγ ν βγ ρ σ(n µ ρ n ν + n ν ρ n µ ) (71) = γ ρ σ(γ µ αn µ γ ν β ρ n ν + γ µ αγ ν βn ν ρ n µ ) = 0 (72) σ g µν = 0 γ n (58) α 1 γ σ µ σ α = α 1 D µ α (73) n σ σ n µ = α 1 D µ α (74) K µν = ν n µ α 1 (D µ α)n ν (75) 1.2 Einstein Lie αn Lie * 2 L αn γ µ ν = αn σ σ γ µ ν γ σ ν σ (αn µ ) + γ µ σ ν (αn σ ) (79) = αn σ σ (n µ n ν ) γ σ νn µ σ α αγ σ ν σ n µ + γ µ σn σ ν α + αγ µ σ ν n σ (80) = αn σ σ (n µ n ν ) + γ σ ν(αk µ σ + n σ D µ α n µ σ α) γ µ σ(αk σ ν + n ν D σ α n σ ν α) (81) = n ν D µ α + n µ D ν α + αk µ ν n µ D ν α αk µ ν n ν D µ α = 0 (82) (75) (74) (58) γ n αn Lie (p, q) T µ ν ( µ ν ) γ µ σγ ρ νt σ ρ = T µ ν (83) L αn (γ µ σγ ρ νt σ ρ) = L αn (T µ ν) (84) L αn (γ µ σγ ρ νt σ ρ) = i γ µ 1 σ1 L αn γ µ i σi γ µ p σp γ ρ νt σ ρ + j γ µ σγ ρ1 ν 1 L αn γ ρj ν j γ ρq ν q T σ ρ +γ µ σγ ν ρl αn T µ ν (85) = γ µ σγ ν ρl αn T µ ν (86) γ µ σγ ν ρl αn T µ ν = L αn T µ ν (87) *2 tortion free L αn γ µ ν = αn σ σ γ µ ν γ σ ν σ (αn µ ) + γ µ σ ν (αn σ ) (76) = αn σ σ γ µ ν αn σ Γ µ σλγ λ ν + αn σ Γ λ σνγ µ λ γ σ ν σ (αn µ ) + γ σ νγ µ σλαn λ + γ µ σ ν (αn σ ) γ µ σγ σ νλαn λ (77) = αn σ σ γ µ ν γ σ ν σ (αn µ ) + γ µ σ ν (αn σ ) (78) 6

7 T αn Lie Lie := L αn = L t L β (88) L t (1, 1) T µ ν t δ µ L t T µ ν = δ σ 0 σ T µ ν T σ ν σ δ µ 0 + T µ σ ν δ σ 0 = t T µ ν (89) = t L β (90) γ µν γ µν = αn σ σ γ µν + γ σν µ (αn σ ) + γ µσ ν (αn σ ) (91) = αn σ σ (n µ n ν ) γ σν (αk σ µ + n µ D σ α n σ µ α) γ µσ (αk σ ν + n ν D σ α n σ ν α) (92) = n µ D ν α + n ν D µ α αk νµ n µ D ν α αk µν n ν D µ α = 2αK µν (93) Lie µ g σρ = 0 γ ij = 2αK ij (94) Einstein Einstein R µν 1 2 Rgµν = 8πT µν (95) ( R µν = 8π T µν 1 ) 2 T g µν (96) T = g µν T µν E := T µν n µ n ν S µν := T σρ γ σ µγ ρ ν S := γ ij S ij = g µν S µν *3 T = g µν T µν = γ µν T µν n µ n ν T µν = γ ρσ γ µ ργ ν σt µν E = γ ρσ S ρσ E = S E Einstein γ i σ γ j ρ *4 [ R.H.S. = 8π S ij 1 ] 2 (S E)γ ij (99) ()Gauss L.H.S. = γ i σ γ j ρ R σρ (100) *3 γ µν γ µν γ µν = g µν + n µ n ν (97) S µν T n g µν S µν = γ µν S µν ( ) γ µν 0 0 = 0 γ ij (98) γ µν S µν = γ ij S ij = S *4 δ i σ δ j ρ 7

8 D µ Riemann Q µ νσρ n v D σ D ρ v µ D ρ D σ v µ = Q µ νσρv ν (101) v σ ρ n v γ µ νv ν n D µ ( ν σ ρ ) n σ ρ D σ γ α σ ν v D σ D ρ γ µ νv ν D ρ D σ γ µ νv ν = Q µ νσρv ν (102) γ µ ν = δ µ ν + n µ n ν γ σ νn σ = 0 v µ n µ = 0 (50) D σ D ρ γ µ νv ν = γ α σγ β ργ µ γ α (γ δ βγ γ ν δ (γ ν σv σ ) (103) = γ α σγ β ργ µ γ(n δ α n β γ γ ν δ (γ ν σv σ ) + n ν α n γ γ δ β δ (γ ν σv σ ) + γ δ βγ γ ν α δ (γ ν σv σ )) (104) = γ α σγ β ργ µ γ(n δ α n β γ γ ν δ (γ ν σv σ ) γ ν σv σ α n γ γ δ β δ n ν + γ δ βγ γ ν α δ (γ ν σv σ )) (105) = K σρ γ µ νn δ δ (γ ν σv σ ) K µ σk ρν v ν + γ α σγ δ ργ µ ν α δ (γ ν σv σ ) (106) (58) γ µ ν = δ µ ν + n µ n ν γ σ νn σ = 0 n µ v µ = 0 (50) K Riemann µ ν (γ ρ σv σ ) ν µ (γ ρ σv σ ) = R ρ σµνγ σ λv λ (K σν K µ ρ K ρν K µ σ)γ ν λv λ + γ τ σγ φ ργ µ λr λ ντφγ ν θv θ = Q µ νσρv ν (107) K σν n γ τ σγ φ ργ µ λγ θ νr λ θτφv ν = Q µ νσρv ν + K ρν K µ σv ν K σν K µ ρv ν (108) v γ τ σγ φ ργ µ λγ θ νr λ θτφ = Q µ νσρ + K ρν K µ σ K σν K µ ρ (109) Gauss µ σ γ τ λγ φ ργ θ νr λ θτφ = (δ τ λ + n τ n λ )γ φ ργ θ νr λ θτφ (110) = γ φ ργ θ νr θφ + n τ n λ γ φ ργ θ νr λθτφ (111) = γ φ ργ θ νr θφ + n τ n λ γ φ ργ θ νr θλφτ (112) = γ φ ργ θ νr θφ + n τ n λ γ φ ργ θν R θ λφτ (113) Riemann Ricci γ σ µγ ρ νr σρ + γ µσ n ρ γ λ νn τ R σ ρλτ = Q µν + KK µν K µσ K σ ν (114) Q µν = Q σ µσν Gauss Riemann R γ µσ n ρ γ λ νn τ R σ ρλτ = γ µσ n τ γ λ ν( λ τ n σ τ λ n σ ) (115) 8

9 γ µσ n τ γ λ ν( λ τ n σ τ λ n σ ) = γ µσ n τ γ λ ν[ λ (K σ τ + n τ n ρ ρ n σ ) + τ (K σ λ + n λ n ρ ρ n σ )] (116) = γ µσ n τ γ λ ν[ λ (K σ τ + n τ α 1 D σ α) + τ (K σ λ + n λ α 1 D σ α)] (117) = γ µσ γ λ ν[k σ τ λ n τ + λ (α 1 D σ α) + n τ τ K σ λ +α 1 D λ αα 1 D σ α + n τ n λ τ (α 1 D σ α)] (118) = γ µσ γ λ νk σ τ ( K τ λ n λ α 1 D τ α) + D ν D µ (ln α) +γ µσ γ λ νn τ τ K σ λ + D ν ln αd µ ln α (119) = K µτ K τ ν + D ν D µ (ln α) +γ σ µγ λ νn τ τ K σλ + D ν ln αd µ ln α (120) (75) K µ σn σ = 0 n σ ν n σ = 0 (75) γ n µ g νρ = 0 γ µσ n ρ γ λ νn τ R σ ρλτ = K µσ K σ ν + α 1 D ν D µ α + γ σ µγ ρ νn λ λ K σρ (121) K µν = αn σ σ K µν + K σν µ (αn σ ) + K µσ ν (αn σ ) (122) γ µ λγ ν ρ (87) K µν γ µν K λρ = αγ µ λγ ν ρn σ σ K µν + γ µ λk σρ (n σ µ α + α µ n σ ) + γ ν ρk λσ (n σ ν α + α ν n σ ) (123) = αγ µ λγ ν ρn σ σ K µν + γ µ λk σρ α( K σ µ n µ n τ τ n σ ) + γ ν ρk λσ α( K σ ν n ν n τ τ n σ ) (124) = αγ µ λγ ν ρn σ σ K µν 2αK ρσ K σ λ (125) Riemann γ µσ n ρ γ λ νn τ R σ ρλτ = α 1 K µν + α 1 D µ D ν α + K µσ K σ ν (126) Gauss γ σ µγ ρ νr σρ = α 1 K µν α 1 D µ D ν α + Q µν + KK µν 2K µσ K σ ν (127) µ = i ν = j Einstein K ij = D i D j α + α(q ij + KK ij 2K ik K k j + 4π[(S E)γ ij 2S ij ]) (128) K iµ K µ j = K ik K k j Hamiltonian constraint Einstein R µν n µ n ν R = 8πT µν n µ n ν (129) Gauss γ trace γ µν γ σ µγ ρ νr σρ = (g µν + n µ n ν )R µν = R + R µν n µ n ν (130) γ µν γ µσ n ρ γ λ νn τ R σ ρλτ = n ρ n τ γ λ σr σ ρλτ (131) = n ρ n τ R ρτ + n ρ n τ n λ n σ R σ ρλτ (132) = R µν n µ n ν (133) 9

10 Riemann R + 2R µν n µ n ν = Q + K 2 K ij K ij (134) Hamiltonian constraint 2 Hamiltonian constraint Q + K 2 K ij K ij 16πE = 0 (135) momentum constraint n µ γ µν = 0 R σρ n σ γ ρ µ = 8πS µ (136) S µ = T σν n σ γ ν µ Codazzi Riemann ( µ ν ν µ )n σ = R σ ρµνn ρ (137) γ σ µγ ρ νγ λ τ R τ θσρn θ = γ σ µγ ρ νγ λ τ ( σ ρ n τ ρ σ n τ ) (138) γ σ µγ ρ νγ λ τ σ ρ n τ = γ σ µγ ρ νγ λ τ σ ( K τ ρ n ρ n α α n τ ) (139) = D µ K λ ν γ σ µγ ρ νγ λ τ ( σ n ρ n α α n τ + n ρ σ n α α n τ + n ρ n α σ α n τ ) (140) = D µ K λ ν + γ σ µγ ρ νγ λ τ (K ρσ n α α n τ + n σ n β β n ρ n α α n τ ) (141) = D µ K λ ν + K µν (n σ σ )n λ (142) µ ν γ σ µγ ρ νγ λ τ R τ θσρn θ = D µ K λ ν + D ν K λ µ (143) Codazzi λ µ Riemann γ σ µγ ρ νγ µ τ R τ θσρn θ = R θρ γ ρ νn θ + γ ρ νn θ n σ n τ R τ θσρ = R θρ γ ρ νn θ (144) γ ρ µn σ R σρ = D µ K D σ K σ µ (145) Codazzi momentum constraint D i K D j K j i + 8πS i = 0 (146) K σ µn σ = 0 K 0 µ = 0 Einstein R µν 1 2 Rg µν = 8πT µν (147) 10 g µν Bianchi ( ) γ ij K ij 12 Hamiltonian momentum constraint 4 ( ) 4 * *

11 1.3 Einstein Einstein γ ij = e 4ϕ γ ij (148) γ ˆγ det( γ ij ) = ˆγ (149) γ ij conformally related metric ϕ ( exponent) ˆγ ij conformally related metric γ ij γ ij γ ij = e 4ϕ γ ij (150) conformally related metric D i γ ij D i Christoffel Γ i jk Γ i jk C i jk = Γ i jk Γ i jk D i *6 D i v j = D i v j + C j ikv k (151) C i jk D i D i C i jk = C i kj D i γ ij 0 0 = D i γ jk = D i γ jk C l ijγ lk C l ikγ jl (152) ijk jki kij C i jk = 1 2 γil ( D j γ lk + D k γ jl D l γ jk ) (153) γ ik γ kj = δ i j D i γ ij (148) 0 = D i γ jk = D i (e 4ϕ γ jk ) = 4e 4ϕ γ jk Di ϕ + e 4ϕ Di γ jk (154) D i γ jk = 4γ jk Di ϕ (155) C C i jk = 2(δ i D j k ϕ + δ i D k j ϕ D i ϕ γ jk ) (156) γ il γ jk = γ il γ jk D i = γ ij Dj D j γ ij Ricci (102) Riemann D µ D i Riemann 3 R i jkl Q µ νρσ 3 R i jkl *6 n D µ 11

12 (102) n n µ Q µ νσρ = 0 Q 0 νσρ = 0 Ricci Q ij = Q σ iσj = Q k ikj (157) Q i jkl Q i jkl = dx i, D ek D el e j D el D ek e j (158) e j n D µ D D ei e j G µ ij *7 D ei e j = G µ ije µ (159) *8 e 0 µ 0 G 0 ij = dx 0, D ei e j n, D ei e j = 0 (160) µ = 0 0 n n D n D ei e j = G k ije k (161) dx i, D ek D el e j = dx i, D ek (G m lje m ) (162) = dx i, D ek (G m lj)e m + G m ljd ek e m (163) = dx i, k (G m lj)e m + G m ljg n kme n (164) = k (G i lj) + G m ljg i km (165) e k n D ek k Riemann Q i jkl = k G i lj l G i kj + G m ljg i km G m kjg i lm (166) γ µν D µ 0 * 9 0 = D i γ jk = i γ jk G l ijγ lk G l ikγ jl (167) γ µν γ ij ijk jki kij i γ jk + j γ ki k γ ij 2G l ijγ lk = 0 (168) *7 Γ µ νρ eν e ρ = Γ µ νρe µ *8 D n D n G 0 0 G 0 D e 0 Q e 0 *9 n v u e i (i = 1, 2, 3) D u v = D u (v j e j ) = (D u v j )e j + u i v j D ei (e j ) v j u n D uv = u i ( i v j )e j + u i v j G k ije k D i v j = i v j + G j ikv k Leibnitz n D i ω j = i ω j G k ijω k γ µν 12

13 G i jk = 1 2 γil ( j γ lk + k γ lj l γ jk ) (169) G i jk = Γ i jk D i Riemann 3 R i jkl = k Γi lj l Γi kj + Γ m lj Γ i km Γ m kj Γ i lm (170) Q i jkl = 3 R i jkl Q ij = 3 R ij Ricci conformally related metric Ricci D i Ricci Riemann v 3 R ij v j = D j Di v j D i Dj v j (171) D i D i 3 R ij v j = D j ( D i v j ) + C j D jk i v k C k D ji k v j D i ( D j v j ) (172) = D j ( D i v j + C j ikv k ) + C j D jk i v k + C j jkc k ilv l C k D ji k v j C k jic j klv l D i ( D j v j + C j jkv k ) (173) = D j Di v j + ( D j C j ik)v k + C j D ik j v k + C j D jk i v k + C j jkc k ilv l C k D ji k v j C k jic j klv l D i Dj v j ( D i C j jk)v k C j D jk i v k (174) = D j Di v j D i Dj v j + ( D j C j ik)v k C k jic j klv l + C j jkc k ilv l ( D i C j jk)v j (175) D i Ricci R ij 3 R ij = R ij + D l C l ij C k lic l kj + C l lkc k ij D i C k kj (176) C k ki = 2(3 D i ϕ + D i ϕ D i ϕ) = 6 D i ϕ (177) D l C l ij = 2 D i Dj ϕ + 2 D j Di ϕ 2 γ ij Dl Dl ϕ (178) C k lic l kj = 4(3 D i ϕ D j ϕ + D i ϕ D j ϕ D i ϕ D j ϕ D i ϕ D j ϕ + D i ϕ D j ϕ γ ij Dl ϕ D l ϕ D i ϕ D j ϕ γ ij Dk ϕ D k ϕ + D i ϕ D j ϕ) (179) = 20 D i ϕ D j ϕ 8 γ ij Dk ϕ D k ϕ (180) C l lkc k ij = 12 D i ϕ D j ϕ + 12 D j ϕ D i ϕ 12 γ ij Dk ϕ D k ϕ (181) D i C k kj = 6 D i Dj ϕ (182) 3 R ij = R ij 2 D i Dj ϕ 2 D k Dk ϕ γ ij + 4 D i ϕ D j ϕ 4 D k ϕ D k ϕ γ ij (183) trace 3 R(= γ ij 3 R ij ) = e 4ϕ ( R 8( D k Dk ϕ + D k ϕ D k ϕ)) (184) R = γ ij Rij (134) Q Q = γ µν Q µν = γ ij Q ij = γ ij 3 R ij = 3 R (185) 13

14 Hamiltonian constraint Q R trace trace traceless : A ij = K ij 1 3 Kγ ij (186) γ ij trace 0 traceless Ā ij = e 4ϕ A ij (187) γ trace 0 γ ij Ā ij = 0 (e 4ϕ γ ij ) = 2αA ij 2 3 Kγ ij (188) (e 4ϕ γ ij ) = 4e 4ϕ γ ij ϕ + e 4ϕ γ ij (189) γ ij γ ij γ ij = ln det( γ ij ) = ln ˆγ = L β ln ˆγ = L β ln det( γ ij ) (190) tˆγ = 0 L β ln det( γ ij ) = γ ij L β γ ij = γ ij (β k Dk γ ij + γ ik Dj β k + γ kj Di β k ) = 2 D i β i (191) * 10 : ϕ = 1 6 ( D i β i αk) (195) γ ij = e 4ϕ γ ij Āij traceless conformally related metric γ ij = 4 γ ij ϕ 2αĀij 2 3 K γ ij (196) γ ij = 2αĀij 2 3 D k β k γ ij (197) Āij := γ ik γ jl Ā kl 2αĀij 2 3 D k β k γ ij = γ ik γ jl γ ij (198) = γ ik ( ( γ jl γ ij ) γ ij γ jl ) (199) = γ ik (δ l i) δ k j γ jl (200) = γ kl (201) *10 β 0 L β γ ij = β k k γ ij + γ ik j β k + γ kj i β k (192) n D ( Lie ) β k D k γ ij + γ ik D j β k + γ kj D i β k (193) D (151) D β k Dk γ ij + γ ik Dj β k + γ kj Di β k (194) 14

15 γ ij = 2αĀij D k β k γ ij (202) trace K = (K ij γ ij ) = K ij γ ij + γ ij K ij = 2αK ij K ij + γ ij K ij (203) * 11 γ ij trace L.H.S. = γ ij K ij = K 2αK ij K ij (207) R.H.S. = D i D i α + α(q + K 2 2K ij K ij + 4π(3(S E) 2S)) (208) K = D i D i α + α(q + K 2 + 4π(S 3E)) (209) Hamiltonian constraint Q + K 2 = K ij K ij + 16πE K = D i D i α + α(4π(s + E) + K ij K ij ) (210) D i D i α = D i Di α = D i (γ ij Dj α) = D i (γ ij Dj α) + C i ijγ jk Dk α (211) = D i (e 4ϕ γ ij Dj α) + 6e 4ϕ γ jk Dj ϕ D k α (212) = 4e 4ϕ Di ϕ γ ij Dj α + e 4ϕ Di Di α + 6e 4ϕ γ jk Dj ϕ D k α = e 4ϕ Di Di α + 2e 4ϕ γ jk Dj ϕ D k α traceless ( K ij K ij = A ij + 1 ) 3 Kγ ij (A ij + 13 ) Kγij = A ij A ij K2 = ĀijĀij K2 (214) (213) K Āij = e 4ϕ A ij ] K = e 4ϕ ( D Di i α + 2 D i ϕ D i α) + α [4π(E + S) + ĀijĀij + K2 3 (215) traceless K ij = A ij Kγ ij K γ ij (216) = A ij Kγ ij 2 3 αkk ij (217) K = (K ij γ ij ) = K ij γ ij + γ ij K ij (218) *11 γ ik γ jl γ ij = γ ik (γ jl γ ij ) γ ik γ ij γ jl = γ kl (204) γ ik γ jl K ij = K kl (205) γ ij = 2αK ij (206) 15

16 A ij = K ij 1 3 γ ij K αkk ij (219) K Einstein A ij = D i D j α + α(q ij + KK ij 2K ik K k j + 4π((S E)γ ij 2S ij )) 1 3 γ ij( D i D i α + α(q + K 2 + 4π(S 3E))) αkk ij (220) ( = D i D j α 1 ) ( 3 γ ijd k D k α + α Q ij 1 ) ( 5 3 γ ijq + α 3 KK ij 2K ik K k j 1 ) 3 γ ijk 2 ( 8πα S ij 1 ) 3 γ ijs (221) traceless ( A ij + 1 ) 3 Kγ ij KK ij 2K ik K k j 1 3 γ ijk 2 = 5 3 K ( A ik Kγ ik ) ( A k j + 1 ) 3 Kδk j 1 3 γ ijk 2 (222) = 5 3 KA ij K2 γ ij 2 (A ik A kj + 13 A ijk + 13 KA ij + 19 ) K2 γ ij 1 3 K2 γ ij (223) = 1 3 KA ij 2A ik A k j (224) A ij = 1 3 αka ij 2αA ik A k j + ( D i D j α + αq ij 8παS ij ) TF (225) TF traceless (trace free) T ij TF T ij 1 3 T γ ij conformally related metric A ij = (e 4ϕ Ā ij ) = e 4ϕ Ā ij + 4e 4ϕ Ā ij ϕ = e 4ϕ Ā ij e4ϕ Ā ij ( D i β i αk) (226) D i D j α = D i Dj α = D i Dj α (227) = D i Dj α C k ij D k α (228) = D i Dj α 2( D j ϕ D i α + D i ϕ D j α γ ij Dk ϕ D k α) (229) ( D i D j α 1 ) 3 γ ijd k D k α = D i Dj α + 2( D j ϕ D i α + D i ϕ D j α γ Dk ij ϕ D k α) γ ij( D Di i α + 2 γ jk Dj ϕ D k α) (230) = ( D i Dj α) TF + 2( D j ϕ D i α) TF + 2( D i ϕ D j α) TF (231) = ( D i Dj α 4 D (j ϕ D i) α) TF (232) TF γ ij trace 0 Ricci Q ij (183) Q ij 1 3 Qγ ij = R ij 2 D i Dj ϕ 2 γ ij Dk Dk ϕ + 4 D i ϕ D j ϕ 4 γ ij Dk Dk ϕ 1 3 γ ij( R 8( D Dk k ϕ + D k ϕ D k ϕ)) = (233) R TF ij 2( D i Dj ϕ) TF + 4( D i ϕ D j ϕ) TF (234) 16

17 S ij 1 3 Sγ ij = S ij 1 3 S klγ kl γ ij = S ij 1 3 S kl γ kl γ ij = S TF ij (235) A ik A k j = γ kl A ik A lj = e 4ϕ γ kl e 4ϕ Ā ik e 4ϕ Ā lj = e 4ϕ Ā ik Ā k j (236) Ā ij = 2 3 D k β k Ā ij + αkāij 2αĀikA k j +e 4ϕ ( D i Dj α + 4 D (i α D j) ϕ + α( R ij 2 D i Dj ϕ + 4 D i ϕ D j ϕ 8πS ij )) TF (237) Ricci constraints Hamiltonian constraint momentum constraint 2 3 K2 ĀijĀij 16πE + e 4ϕ ( R 8 D k Dk ϕ 8 D k ϕ D k ϕ) = 0 (238) D i K = D i K = D i K (239) D j K j i = D j K j i = D j (A j i + 1 ) 3 Kδj i = D j A j i D i K (240) D j A j i = D j Ā j i + C j jlāl i C l jiāj l (241) = D j Ā j i + 6Āl D i l ϕ 2Āj lδ l D j i ϕ 2Āj D i j ϕ + 2Āij D j ϕ (242) = D j Ā j i + 6Āj D i j ϕ (243) 2 3 D i K γ ik Dj Ā jk 6 γ ik Ā jk Dj ϕ + 8πS i = 0 (244) 1.4 BSSN BSSN Ricci Q ij = 3 R ij R ij R ij Ricci ˆR ij (= 0) Christoffel ˆΓ i jk Γ i jk = Γ i jk ˆΓ i jk 0 = D k γ ij = ˆD k γ ij Γ l ki γ lj Γ l kj γ li (245) ijk jki Γ i jk = 1 2 γil ( ˆD j γ lk + ˆD k γ jl ˆD l γ jk ) (246) D i Ricci Christroffel Γ i jk R ij = k Γk ij i Γk kj + Γ l lk Γ k ij Γ k li Γ l kj (247) 17

18 R ij = k (ˆΓ k ij + Γ k ij) i (ˆΓ k kj + Γ k kj) +(ˆΓ l lk + Γ l lk)(ˆγ k ij + Γ k ij) (ˆΓ k li + Γ k li)(ˆγ l kj + Γ l kj) (248) = k ˆΓk ij iˆγk kj + ˆΓ l ˆΓ lk k ij ˆΓ k liˆγ l kj + k Γ k ij + ˆΓ l lk Γ k ij ˆΓ k li Γ l kj i Γ k kj + ˆΓ k ij Γ l lk ˆΓ l kj Γ k li + Γ l lk Γ k ij Γ k li Γ l kj (249) = ˆR ij + k Γ k ij + ˆΓ l lk Γ k ij ˆΓ k li Γ l kj ˆΓ l ki Γ k lj i Γ k kj ˆΓ l kj Γ k li + ˆΓ k ij Γ l lk + ˆΓ l ki Γ k lj + Γ l lk Γ k ij Γ k li Γ l kj (250) 0 ˆD i R ij = ˆD l Γ l ij ˆD i Γ k kj Γ k li Γ l kj + Γ l lk Γ k ij (251) Γ ijk = γ il Γ l jk Γ ijk = Γ ikj (252) ˆD i γ jk = Γ jki + Γ kji (253) ˆD k Γ k ij = 1 2 ˆD k ( γ kl ( ˆD i γ jl + ˆD j γ il ˆD l γ ij )) (254) = ˆD k γ kl Γ lij γkl ( ˆD k ˆDi γ jl + ˆD k ˆDj γ il ˆD k ˆDl γ ij ) (255) 0 = ˆD k (δ i j) = ˆD k ( γ il γ lj ) = γ il ˆDk γ il + γ il ˆDk γ il ˆD k γ ij = γ il γ jm ˆDk γ lm (256) = γ il γ jm ( Γ lmk + Γ mlk ) (257) = γ jm Γ i mk γ il Γ j lk (258) * 12 ˆD k Γ k ij = 1 2 γkl ( ˆD k ˆDi γ jl + ˆD k ˆDj γ il ˆD k ˆDl γ ij ) γ kl Γ m kl Γ mij Γ l ij Γ k kl (259) ˆD j Γ k ki = 1 2 ˆD i γ kl ˆDj γ kl γkl ˆDj ˆDi γ kl (260) = 1 2 ( γkm Γ l mi + γ lm Γ k mi)( Γ klj + Γ lkj ) γkl ˆDj ˆDi γ kl (261) = 1 2 γkl ˆDj ˆDi γ kl Γ k lj Γ l ki γ kl Γ m lj Γ mki (262) R ij = 1 2 γkl ( ˆD k ˆDi γ jl + ˆD k ˆDj γ il ˆD k ˆDl γ ij ˆD i ˆDj γ kl ) + γ kl ( Γ m lj Γ mki Γ m kl Γ mij ) (263) *12 ˆDk γ kl = γ lm Γ k mk γ km Γ l mk 18

19 Laplace Laplace BSSN Γ k := γ ij Γ k ij 0 = ˆD i (δ j k) = ˆD i ( γ jl γ lk ) = ( ˆD i γ jl ) γ lk + γ jl ˆDi γ lk Γ k := γ ij Γ k ij (264) = 1 2 γij γ kl ( ˆD i γ lj + ˆD j γ il ˆD l γ ij ) (265) = 1 2 γij γ lj ˆDi γ kl 1 2 γij γ li ˆDj γ kl γ kl ˆDl ln γ (266) = ˆD l γ kl γ kl ˆDl ln γ (267) 1 2 γkl ˆDk ˆDi γ jl = 1 2 ˆD k ( γ kl ˆDi γ jl ) 1 2 ˆD k γ lk ˆDi γ jl (268) = 1 2 ˆD k ( γ jl ˆDiˆγ kl ) Γk ˆDi γ jl γkl ( ˆD k ln γ) ˆD i γ jl (269) = 1 2 ˆD k γ jl ˆDi γ kl 1 2 γ jl ˆD i ˆDk γ kl Γk ˆDi γ jl γkl ( ˆD k ln γ) ˆD i γ jl (270) = 1 2 ( Γ jlk + Γ ljk )( γ km Γ l im + γ lm Γ k im) γ jl ˆD i ( Γ l + γ lm ˆDm ln γ) Γk ˆDi γ jl γkl ( ˆD k ln γ) ˆD i γ jl (271) = γ km Γ l mi Γ jlk γkm Γ l mi Γ lkj Γl mi Γ m lj 1 2 γ lj ˆD i Γ l ˆD i ˆDj ln γ Γl Γ jil Γl Γ lij (272) ˆD i i j 1 2 γkl ˆDi ˆDj γ kl = 1 2 ˆD i ( γ kl ˆDj γ kl ) ˆD i γ kl ˆDj γ kl (273) = ˆD i ˆDj ln γ 1 2 ( γkm Γ l im + γ lm Γ k im)( Γ klj + Γ lkj ) (274) = ˆD i ˆDj ln γ Γ l mi Γ m li γ km Γ l mi Γ lkj (275) 1 2 γkl ˆDk ˆDi γ jl γkl ˆDk ˆDj γ il 1 2 γkl ˆDi ˆDj γ kl = γ km Γ l m(i Γ j)lk + γ l(i ˆDi) Γ l + ˆD i ˆDj ln γ + Γ l Γ (ij)l + γ km Γ l km Γ lij (276) Λ k constraint Λ k Γ k = 0 Ricci R ij = 1 2 γkl ˆDk ˆDl γ ij + γ k(i ˆDj) Λk + Γ k Γ (ij)k + γ kl (2 Γ m k(i Γ j)ml + Γ m ik Γ mjl ) (277) Āij Λ k 19

20 γ = ˆγ Λ k = ˆD l γ kl γ kl ˆDl ln γ (278) = ˆD l γ kl γ kl ˆDl ln ˆγ (279) ( = ˆD l γ kl 1 2 γklˆγ ij ˆDlˆγ ij ) (280) = ˆD l γ kl (281) (202) ˆD j divergence γ ij = t γ ij β k ˆDk γ ij + γ kj ˆDk β i + γ ik ˆDk β j (282) ˆD j t γ ij = t ˆDj γ ij = t Λi = ( ˆD j β k ) ˆD k γ ij + β k ˆDk ˆDj γ ij ( ˆD j γ kj ) ˆD k β i γ kj ˆDj ˆDk β i ( ˆD j γ ik ) ˆD k β j (283) γ ik ˆDk ˆDj β j + 2( ˆD j α)āij + 2α ˆD j Ā ij ( ˆD j ˆDk β k ) γ ij ˆD k β k ˆDj γ ij (284) = 2Āij ˆDj α + 2α ˆD j Ā ij + Λ k ˆDk β i β k ˆDk Λi γ kj ˆDj ˆDk β i 1 3 γik ˆDk ˆDj β j 2 3 ˆD k β k Λi (285) Λ i t = 2α ˆD j Ā ij 2Āij ˆDj α + β k ˆDk Λi Λ k ˆDk β i Λ i ˆDk β k + γ jk ˆDj ˆDk β i γij ˆDj ˆDk β k (286) β k ˆDk Λi Λ k ˆDk β i = L Λi β det( γ ij ) = ˆγ ˆD k β k = k β k + ˆΓ k kjβ j = k β k j ln ˆγβ j = k β k j ln det( γ kl )β j = k β k + Γ k kjβ j = D k β k ˆD j D j j D j Ā ij = ˆD j Ā ij + Γ i jkākj + ( Γ j jk ˆΓ j jk)āik = ˆD j Ā ij + Γ i jkākj (287) momentum constraint D j Ā ij = 2 3 γki Dk K 6Āji Dj ϕ + 8π γ ik S k (288) Λi = γ jk ˆDj ˆDk β i Γi Dj β j γik Dk Dj β j 2Ājk (δ i j k α 6αδ i j k ϕ α Γ i jk) 4 3 α γij j K 16πα γ ij S j (289) BSSN γ ij K ij = 12 Hamiltonian 1 momentum 3 constraint 8 γ ij K ij 8 constraint 4 Conformal transvers-traceless method 20

21 traceless extrinsic curvature A ij à ij = e 10ϕ A ij = e 6ϕ Ā ij (290) Ãij γ ij transverse longitudinal à ij = ( LX) ij + Ãij TT (291) Ãij TT transverse traceless γ ij à ij TT = 0 (292) transverse D j à ij TT = 0 (293) LX longitudinal Killing L X ( LX) ij := D i X j + D j X i 2 3 D k X k γ ij (294) γ ij ( LX) ij = 0 Ãij divergence D j à ij = D j ( LX) ij = D j Dj X i + D j Di X j 2 3 D i Dk X k (295) = D j Dj X i + D i Dj X j + R i jx j 2 3 D i Dk X k (296) = D j Dj X i D i Dj X j + R i jx j (297) D i Dj X k D j Di X k = R k lijx l D j Di X j D i Dj X j = R i jx j Laplacian L X i Hamiltonian constraint à e ϕ Dk Dk ϕ + e ϕ Dk ϕ D k ϕ 1 8 Re ϕ + ÃijÃij e 7ϕ 1 12 K2 e 5ϕ + 2πEe 5ϕ = 0 (298) momentum constraint D j à jk 2 3 e6ϕ Di K γ ik Dj à jk + 8πe 6ϕ S i = 0 (299) L X i 2 3 e6ϕ Di K = 8πe 6ϕ γ ik S k (300) ϕ X i γ ij Ãij TT K constraints ϕ X i constraint conformal transverse-traceless method * 13 Conformal thin-sandwich method *13 ( ) γ ij (6) K ij (6) 12 ϕ(1) γ ij (5) K(1) à ij TT (2) Xi (3) 12 ϕ X i Hamiltonian constraint momentum constraint 8 γ ij (5) K(1) Ãij TT (2) α βi 4 β i 3 γ ij = 2αĀij 2 3 D k β k γ ij γ ij α 1 K = D i D i α + α( 3 R + K 2 + 4π(S 3E)) K (α) (β i ) γ ij 2 Āij 2 4 γ ij K 8 21

22 Conformal transverse-traceless method γ K γ t γ γ ij = 2αĀij D k β k γ ij (301) L β γ ij = β k Dk γ ij γ ik Dk β j γ kj Dk β i = γ ik Dk β j γ kj Dk β i = ( Lβ) ij 2 3 γij Dk β k (302) Ā ij = 1 ( t γ ij + ( Lβ) ij) (303) 2α Āij = e 6ϕ à ij conformal lapse ᾱ := e 6ϕ α momentum constraint à ij = 1 ( t γ ij + ( Lβ) ij) (304) 2ᾱ 2 3 e6ϕ Di K γ ik Dj à jk + 8πe 6ϕ S i = 0 (305) ( ) ( ) e6ϕ Di K γ ik Dj α t γ ij + γ ik Dj 1 α ( Lβ) ij + 16πe 6ϕ S i = 0 (306) D j ( 1 α ( Lβ) ij ) + D j ( 1 α t γ ij ) 4 3 e6ϕ Di K 16πe 6ϕ γ ij S j = 0 (307) t γ ij K S j ϕ shift vector β ϕ Hamiltonian constraint conformal transverse-traceless method γ ij t γ ij K α E S i ϕ β i constraint conformal thin-sandwich method (conformal) lapse t K α D Di i α + 2 D i ϕ D i α = e ϕ ( D Di i (αe ϕ ) α D Di i e ϕ ) (308) K K = e 5ϕ ( D i Di (αe ϕ ) α D i Di e ϕ ) + α ] [4π(E + S) + ĀijĀij + K2 3 (309) αe ϕ = αe 7ϕ Hamiltonian constraint ( 1 D Di i ( αe 7ϕ ) ( αe 7ϕ ) 8 R K2 e 4ϕ + 8ÃijÃij 7 ) e 8ϕ + 2π(E + 2S)e 4ϕ +( t K β i Di K)e 5ϕ = 0 (310) γ ij t γ ij K t K E S S i ϕ α β extended conformal thin-sandwich method 1.6 BSSN Lapse shift Lapse shift (geodesic slicing maximal slicing harmonic slicing 1 + log slicing) (normal coordinates minimal distortion Gamma freezing Gamma driver) 22

23 geodesic slicing α α = 1 (311) geodesic slicing α = 1 β i = 0 t K = 4π(E + S) + K ij K ij 0 (312) K K = γ µν µ n ν = g µν µ n ν n µ n ν µ n ν = g µν µ n ν = µ n µ (313) K n * 14 β = 0 n t maximal slicing maximal slicing K = 0 (323) Lapse K = 0 K D i D i α = α [ 4π(E + S) + K ij K ij] (324) *14 u µ divergence affine parameter timelike unit vector u µ affine parameter affine parameter u µ normal vector affine parameter affine parameter deviation vector ξ µ deviation vector L u ξ = 0 u unit vector t + t ξ t ξ tu Lie u µ µ ξ ν = ξ µ µ u ν t + t u ξ u ξ(t + t) = u ξ(t) + t t (u ξ) (314) = u ξ(t) + tu µ µ (u ξ) (315) = u ξ(t) + tu νu µ µξ ν (316) = u ξ(t) + tu ν ξ µ µ u ν (317) = u ξ(t) (318) unit vector u µ ν u µ = 0 u ξ = 0 ξ u leaf foliation lapse shift lapse 1 shift 0 ( t) γ(t)d 3 x t + t ( ) γ(t) γ(t + t)d 3 t x = + 2γ tγ d 3 x (319) lapse 1 shift 0 tγ ij = 2K ij trace γ ij t γ ij = 1 γ tγ = 2K (320) ( ) γ(t + t)d 3 x = γ(t) K t d 3 x (321) ( ) = γ(t) + µu µ t d 3 x (322) timelike unit vector divergence K 23

24 K = 0 µ n µ = 0 (325) harmonic slicing harmonic slicing µ µ t = 0 (326) µ µ t = 1 g µ ( gg µν ν t ) (327) = 1 ( µ gg µν δ 0 ) ν g (328) = 1 g µ ( gg µ0 ) (329) µ ( gg µ0 ) = 0 (330) g = α γ * 15 ( γ t α t ( γ α ) + ( ) γ γ α x i α βi = α 2 γ = α 2 γ = α 2 ) + ( ) γ x i α βi = 0 (331) γ α γ βi α2 x i + α α βi x i α γ γ t t 1 γ α t ( α t ( α t α βi x i α γ γ t β i x i + βi γ α + α γ β i γ x i x i (332) ) + α βi x i + α ) γ x i ( γβ i ) (333) (334) α t [ α 1 βi x i α ] γ γ D i β i = 0 (335) t γ ij = 2αK ij (336) trace γ ij γ ij = γ ij t γ ij γ ij L β γ ij (337) = t ln γ γ ij (β k D k γ ij + γ ik D j β k + γ kj D i β k (338) = 2 t ln γ 2D k β k (339) = 2αK (340) α = α 2 K (341) *15 g 00 γ gg 00 g 00 = α 2 g = α 2 γ 24

25 harmonic slicing α β = 0 harmonic condition C(x i ) t ( ) γ = 0 (342) α α = C(x i ) γ (343) γ α 1 + log slicing harmonic slicing α = Kα 2 f(α) f(α) = 2/α 1 + log slicing α α = 2αK (344) t α L β α = t ln γ 2D i β i (345) β = 0 t α = t ln γ (346) α = 1 + log γ (347) harmonic slicing γ γ normal coordinates β i = 0 (348) normal coordinates coordinate shear minimal distortion Q ij γ ij traceless * 16 Q ij := γ ij t 1 3 γkl γ kl t γ ij (350) traceless 5 shift 3 (A ij )transverse longitudinal X i D j (LX) ij = D j Q ij (351) *16 γ γ t γ(t + t) γ(t) = t 2 1 γ tγ = t 2 γij t γ ij (349) tγ ij γ ij trace tγ ij traceless 25

26 (LX) ij = D i X j + D j X i 2 3 D kx k γ ij (352) X i Q TT ij = Q ij (LX) ij (353) transverse Q TT ij γ ij minimal distortion X = 0 D j Q ij = 0 Q ij = 2αK ij + L β γ ij 1 3 γ ij( 2αK + 2D k β k ) = 2αA ij + (Lβ) ij (354) minimal distortion 2αD j A ij 2A ij D j α + D j (Lβ) ij = 0 (355) momentum constraint D i K D j (A j i δj ik ) + 8πS i = 0 (356) D j A ji 2 3 Di K 8πS i = 0 (357) 4 3 αdi K 2A ij D j α 16παS i + D j (Lβ) ij = 0 (358) Laplacian D j (Lβ) ij = D j D j β i Di D j β j + R i jβ j (359) D j D j β i Di D j β j + R i jβ j = 16παS i αdi K + 2A ij D j α (360) minimal distortion β coordinate shear Gamma freezing conformally related metric γ ij = e 4ϕ γ ij (361) det( γ ij ) = ˆγ det( γ ij ) = e 12ϕ det(γ ij ) (362) ln det(γ ij ) = 12ϕ + ln ˆγ (363) γ ij t γ ij = t ln det(γ ij ) = 12 t ϕ + t ln ˆγ = 12 t ϕ (364) conformally related metric Q ij = t γ ij 4γ ij t ϕ = t (e 4ϕ γ ij ) ( t e 4ϕ ) γ ij = e 4ϕ t γ ij (365) 26

27 D j Q ij = 0 ˆD j ( t γ ij ) = 0 (366) Gamma freezing minimal distortion 0 = ˆD j ( t γ ij ) = t ( ˆD j γ ij ) = t Λi (367) Λ i constraint t Γ k = 0 (368) Delta Gamma Gamma freezing β (289) D j ˆD j * 17 Λi t = 0 Gamma driver k t β i = k t Γ i (369) β Gamma driver t 2 β i = k t Γ i (η t ln k) t β i (370) Gamma driver t β i = kb i (371) t B i = t Γ i ηb i (372) k = 3/4 puncture gauge 1 + log slicing Gamma driver puncture gauge *17 Dj β j = ˆD j β j 27

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α SO(3) 48 6 SO(3) t 6.1 u, v u = u 1 1 + u 2 2 + u 3 3 = u 1 e 1 + u 2 e 2 + u 3 e 3, v = v 1 1 + v 2 2 + v 3 3 = v 1 e 1 + v 2 e 2 + v 3 e 3 (6.1) i (e i ) e i e j = i j = δ ij (6.2) ( u, v ) = u v = ij

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 12 12.1? finite deformation infinitesimal deformation large deformation 1 [129] B Bernoulli-Euler [26] 1975 Northwestern Nemat-Nasser Continuum Mechanics 1980 [73] 2 1 2 What is the physical meaning? 583

More information

Report98.dvi

Report98.dvi 1 4 1.1.......................... 4 1.1.1.......................... 7 1.1..................... 14 1.1.................. 1 1.1.4........................... 8 1.1.5........................... 6 1.1.6 n...........................

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

untitled

untitled 20 11 1 KEK 2 (cosmological perturbation theory) CMB R. Durrer, The theory of CMB Anisotropies, astro-ph/0109522; A. Liddle and D. Lyth, Cosmological Inflation and Large-Scale Structure (Cambridge University

More information

( ) (ver )

( ) (ver ) ver.3.1 11 9 1 1. p1, 1.1 ψx, t,, E, p. = E, p ψx, t,. p, 1.8 p4, 1. t = t ρx, t = m [ψ ψ ψ ψ] ρx, t = mi [ψ ψ ψ ψ] p4, 1.1 = p6, 1.38 p6, 1.4 = fxδ ϵ x = fxδϵx = 1 π fxδ ϵ x dx = fxδ ϵ x dx = [ 1 fϵ π

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

2002 11 21 1 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2002 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture nabe@sml.k.u-tokyo.ac.jp 2 1. 10/10 2. 10/17 3. 10/24 4. 10/31 5. 11/ 7 6. 11/14

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

arxiv: v1(astro-ph.co)

arxiv: v1(astro-ph.co) arxiv:1311.0281v1(astro-ph.co) R µν 1 2 Rg µν + Λg µν = 8πG c 4 T µν Λ f(r) R f(r) Galileon φ(t) Massive Gravity etc... Action S = d 4 x g (L GG + L m ) L GG = K(φ,X) G 3 (φ,x)φ + G 4 (φ,x)r + G 4X (φ)

More information

~nabe/lecture/index.html 2

~nabe/lecture/index.html 2 2001 12 13 1 http://www.sml.k.u-tokyo.ac.jp/ ~nabe/lecture/index.html nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/11 3. 10/18 1 4. 10/25 2 5. 11/ 1 6. 11/ 8 7. 11/15 8. 11/22 9. 11/29 10. 12/ 6 1 11. 12/13

More information

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1 1 1.1......... 1............. 1.3... 1.4......... 1.5.............. 1.6................ Bownian Motion.1.......... Einstein.............. 3.3 Einstein........ 3.4..... 3.5 Langevin Eq.... 3.6................

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4 [2642 ] Yuji Chinone 1 1-1 ρ t + j = 1 1-1 V S ds ds Eq.1 ρ t + j dv = ρ t dv = t V V V ρdv = Q t Q V jdv = j ds V ds V I Q t + j ds = ; S S [ Q t ] + I = Eq.1 2 2 Kroneher Levi-Civita 1 i = j δ i j =

More information

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo [1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin + 8 5 Clifford Spin 10 A 12 B 17 1 Clifford Spin D Euclid Clifford Γ µ, µ = 1,, D {Γ µ, Γ ν

More information

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b 23 2 2.1 n n r x, y, z ˆx ŷ ẑ 1 a a x ˆx + a y ŷ + a z ẑ 2.1.1 3 a iˆx i. 2.1.2 i1 i j k e x e y e z 3 a b a i b i i 1, 2, 3 x y z ˆx i ˆx j δ ij, 2.1.3 n a b a i b i a i b i a x b x + a y b y + a z b

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

量子力学3-2013

量子力学3-2013 ( 3 ) 5 8 5 03 Email: hatsugai.yasuhiro.ge@u.tsukuba.ac.jp 3 5.............................. 5........................ 5........................ 6.............................. 8.......................

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

Einstein ( ) YITP

Einstein ( ) YITP Einstein ( ) 2013 8 21 YITP 0. massivegravity Massive spin 2 field theory Fierz-Pauli (FP ) Kinetic term L (2) EH = 1 2 [ λh µν λ h µν λ h λ h 2 µ h µλ ν h νλ + 2 µ h µλ λ h], (1) Mass term FP L mass =

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit 6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civita ɛ 123 =1 0 r p = 2 2 = (6.4) Planck h L p = h ( h

More information

第10章 アイソパラメトリック要素

第10章 アイソパラメトリック要素 June 5, 2019 1 / 26 10.1 ( ) 2 / 26 10.2 8 2 3 4 3 4 6 10.1 4 2 3 4 3 (a) 4 (b) 2 3 (c) 2 4 10.1: 3 / 26 8.3 3 5.1 4 10.4 Gauss 10.1 Ω i 2 3 4 Ξ 3 4 6 Ξ ( ) Ξ 5.1 Gauss ˆx : Ξ Ω i ˆx h u 4 / 26 10.2.1

More information

OHP.dvi

OHP.dvi 7 2010 11 22 1 7 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2010 nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/18 3. 10/25 2, 3 4. 11/ 1 5. 11/ 8 6. 11/15 7. 11/22 8. 11/29 9. 12/ 6 skyline 10. 12/13

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

25 7 31 i 1 1 1.1......................... 1 1.1.1 Newton..................... 1 1.1.2 Galilei................. 1 1.1.3...................... 3 1.2.......................... 3 1.3..........................

More information

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 (4/12) 1 1.. 2. F R C H P n F E n := {((x 0,..., x n ), [v 0 : : v n ]) F n+1 P n F n x i v i = 0 }. i=0 E n P n F P n

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

OHP.dvi

OHP.dvi t 0, X X t x t 0 t u u = x X (1) t t 0 u X x O 1 1 t 0 =0 X X +dx t x(x,t) x(x +dx,t). dx dx = x(x +dx,t) x(x,t) (2) dx, dx = F dx (3). F (deformation gradient tensor) t F t 0 dx dx X x O 2 2 F. (det F

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

GR_LN2001.dvi

GR_LN2001.dvi 2001 -2-1 4 1.1 Riemann....................... 4 1.2 Lie................................. 6 1.3.................................. 9 1.4 Killing...................... 10 1.5 Weyl................................

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

弾性定数の対称性について

弾性定数の対称性について () by T. oyama () ij C ij = () () C, C, C () ij ji ij ijlk ij ij () C C C C C C * C C C C C * * C C C C = * * * C C C * * * * C C * * * * * C () * P (,, ) P (,, ) lij = () P (,, ) P(,, ) (,, ) P (, 00,

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

III,..

III,.. III,.. 7.1, :. j I (= ) : [Ω, Ω + dω] dw dω = sin θ dθ dφ dw j I [1/s] [1/s m 2 ] = dσ [m2 ]. dσ dω [m2 ] :., σ tot = dσ = dω dσ dω [m2 ] :. 2.4 章では非定常状態の摂動論を用いて 入射平面波 eik x 摂動 ON 入射平面波 + 散乱平面波 X k0 0

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

2017 II 1 Schwinger Yang-Mills 5. Higgs 1 2017 II 1 Schwinger 2 3 4. Yang-Mills 5. Higgs 1 1 Schwinger Schwinger φ 4 L J 1 2 µφ(x) µ φ(x) 1 2 m2 φ 2 (x) λφ 4 (x) + φ(x)j(x) (1.1) J(x) Schwinger source term) c J(x) x S φ d 4 xl J (1.2) φ(x) m 2

More information

3 exotica

3 exotica ( / ) 2013 2 23 embedding tensors (non)geometric fluxes exotic branes + D U-duality G 0 R-symmetry H dim(g 0 /H) T-duality 11 1 1 0 1 IIA R + 1 1 1 IIB SL(2, R) SO(2) 2 1 9 GL(2, R) SO(2) 3 SO(1, 1) 8

More information

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like () 10 9 30 1 Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ)

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i i j ij i j ii,, i j ij ij ij (, P P P P θ N θ P P cosθ N F N P cosθ F Psinθ P P F P P θ N P cos θ cos θ cosθ F P sinθ cosθ sinθ cosθ sinθ 5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

2 Planck Planck BRST Planck Λ QG Planck GeV Planck Λ QG Friedmann CMB

2 Planck Planck BRST Planck Λ QG Planck GeV Planck Λ QG Friedmann CMB 量子重力理論と宇宙論 (下巻) くりこみ理論と初期宇宙論 浜田賢二 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 http://research.kek.jp/people/hamada/ 量子重力の世界は霧に包まれた距離感のない幽玄の世界にたとえること ができる 深い霧が晴れて時空が現れる 国宝松林図屏風 (長谷川等伯筆) 平成 20 年 11 月初版/平成 21 年 09 月改定/

More information

29 7 5 i 1 1 1.1............................ 1 1.1.1................. 1 1.1.2............................. 3 1.1.3......................... 4 1.2........................... 9 1.2.1................. 9

More information

第3章

第3章 5 5.. Maxwell Maxwell-Ampere E H D P J D roth = J+ = J+ E+ P ( ε P = σe+ εe + (5. ( NL P= ε χe+ P NL, J = σe (5. Faraday rot = µ H E (5. (5. (5. ( E ( roth rot rot = µ NL µσ E µε µ P E (5.4 = ( = grad

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

Ï¢À±ÃæÀŁ»ÒÀ±¤ª¤è¤Ó¥Ö¥é¥Ã¥¯¥Û¡¼¥ë¡ÝÃæÀŁ»ÒÀ±Ï¢À±¤Î¹çÂÎ ¡Á ½àÊ¿¹Õ²ò¤Î¸¦µæ¤Î¸½¾õ¤Èº£¸å¤ÎŸ˾ ¡Á

Ï¢À±ÃæÀŁ»ÒÀ±¤ª¤è¤Ó¥Ö¥é¥Ã¥¯¥Û¡¼¥ë¡ÝÃæÀŁ»ÒÀ±Ï¢À±¤Î¹çÂÎ   ¡Á ½àÊ¿¹Õ²ò¤Î¸¦µæ¤Î¸½¾õ¤Èº£¸å¤ÎŸ˾ ¡Á 2009 10 15 (UWM) 2009 10 15 2 / 35 1 2 Corotation Irrotation 3 4 (UWM) 2009 10 15 3 / 35 10 100/yr (D = 300 Mpc) 1 40/yr (D = 300 Mpc) GWs 1 700/yr (D = 300 Mpc) X BH NS LIGO (UWM) 2009 10 15 4 / 35 (UWM)

More information

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0 1 2003 4 24 ( ) 1 1.1 q i (i 1,,N) N [ ] t t 0 q i (t 0 )q 0 i t 1 q i (t 1 )q 1 i t 0 t t 1 t t 0 q 0 i t 1 q 1 i S[q(t)] t1 t 0 L(q(t), q(t),t)dt (1) S[q(t)] L(q(t), q(t),t) q 1.,q N q 1,, q N t C :

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0 5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â = Tr Âe βĥ Tr e βĥ = dγ e βh (p,q) A(p, q) dγ e βh (p,q) (5.2) e βĥ A(p, q) p q Â(t) = Tr Â(t)e βĥ Tr e βĥ = dγ() e βĥ(p(),q())

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information