untitled

Size: px
Start display at page:

Download "untitled"

Transcription

1 KEK 2 (cosmological perturbation theory) CMB R. Durrer, The theory of CMB Anisotropies, astro-ph/ ; A. Liddle and D. Lyth, Cosmological Inflation and Large-Scale Structure (Cambridge University Press, 2000). 1 Friedmann ( ) Friedmann 100 ( ) 1 (, 2016) 2 URL: 1

2 1: ( ) (Sachs-Wolfe ) (CMB) CMB Planck ( 2) δt/t : CMB Planck Wilkinson Microwave Anisotropies Probe (WMAP) CMB ( 3) 2

3 Harrison- Zel dovich 3 CMB Planck 3 3: WMAP : (l <30) (30 <l<800) 3 CMB 3

4 Silk (l >800) Silk ( ) ( ) (photon diffusion) 4 1 l 800 l<800 Silk Boltzmann Boltzmann CMB CMBFAST 3 2 Friedmann ( ) Einstein Friedmann ds 2 = e 2 ˆφ ( dη 2 + dx 2), (2.1) T µ (α)ν = diag( ρ α,p α,p α,p α ) (2.2) 4 ( ) 4

5 ˆφ(η) η (conformal time) x (comoving coordinate) dτ = e ˆφdη r = e ˆφx ( ) ρ α P α α η (equation of state parameter) w α = P α ρ α (2.3) 1/3 0 µ T µ (α)ν =0 η ρ α +3 η ˆφ (ρα + P α ) = 0 (2.4) Einstein (00) M 2 Pe 2 ˆφ ( 6 2 η ˆφ +6 η ˆφ η ˆφ) ρ +3P 4Λ = 0, (2.5) 3M 2 P e 2 ˆφ η ˆφ η ˆφ + ρ +Λ = 0, (2.6) Λ ρ P ρ = α ρ α, P = α P α (2.7) (2.4) α Einstein 5

6 ρ P w = P/ρ a a = e ˆφ, η ˆφ = η a a = ah (2.8) H Hubble Einstein ( 6MP 2 a 1 η H +2H 2) = ρ 3P +4Λ=(1 3w)ρ +4Λ, (2.9) 3MP 2 H2 = ρ +Λ, (2.10) η ρ α = 3aH (ρ α + P α )= 3(1+w α ) ahρ α (2.11) Friedmann Hubble Hubble h H 0 = 100h [kms 1 Mpc 1 ] (c = h =1) H 0 = h = Mpc 1. (2.12) h =0.72 Hubble 1/H Mpc Hubble Ω α = ρ α0 3M 2 P H2 0 (2.13) ρ α0 α α (cold dark matter, CDM) c b r c b d w = 1 6

7 Ω Λ =Λ/3MP 2H2 0 Ω r = Ω γ +Ω ν = /h 2 = , (2.14) Ω b = 0.042, (2.15) Ω d = Ω c +Ω b =0.27, (2.16) Ω Λ = 0.73 (2.17) Ω r Ω γ 3 Ω ν ρ γ0 =2(π 2 /30)Tγ 4 ρ ν0 = N ν 2(π 2 /30)(7/8)T 4 ν Ω ν = ρ ν0 7 = N ν Ω γ ρ γ0 8 ( Tν T γ ) 4 =0.68 (2.18) T ν /T γ =(4/11) 1/3 N ν =3( ) Ω γ = Einstein (2.10) Ω d +Ω Λ = 1 (2.19) Ω r 1 1 r c b w r = 1 3, w c =0, w b = 0 (2.20) (2.11) ( ) a0 4 ρ r = ρ r0 =3M 2 P a H2 0 Ω r ) 3 =3M 2 ρ c = ρ c0 ( a0 a ρ b = ρ b0 ( a0 a PH 2 0Ω c ( a0 a ) 3 =3M 2 PH 2 0Ω b ( a0 a ( ) a0 4, (2.21) a ) 3, (2.22) ) 3 (2.23) 7

8 a 0 a 0 =1 a 0 =1 Einstein (2.10) Hubble H 2 = H 2 0 { Ω r ( a0 a ) 4 ( ) } a0 3 +Ωd +ΩΛ a (2.24) a 0 /a < 2 (red shift)z z +1= a 0 a (2.25) (comoving angular size distance) 5 (2.24) H = η a/a 2 dη = d = η 0 η = 1 z dz (2.26) a 0 H 0 0 Ω r (z +1) 4 +Ω d (z +1) 3 +Ω Λ z =0.1 d = 408Mpc, z =1 d = 3271Mpc, z =5 d = 7822Mpc, z dec = 1100 d dec = 13808Mpc ( ). (2.27) z dec (last scattering surface) 4 θ λ 0 /d (multipole)l (comoving wave number)k = π/λ 0 C l 5 proper motion distance angular diameter distance transverse comoving distance 8

9 0 (z =0) (z) A B 4: d dec l d = d dec l π θ = kd dec (2.28) k =0.0002Mpc 1 l 3 k =0.002Mpc 1 l 30 k =0.005Mpc 1 l 70 k =0.015Mpc 1 l 210 k =0.05Mpc 1 l 700 (2.29) p = k/a a 0 =1 k l =3 Hubble (1/H 0 ) 1/k 5000Mpc l 30 1/k 500Mpc l 700 1/k 20Mpc (super cluster of galaxies) 10 30Mpc a 4 a 3 ρ r ρ d ρ r ρ d ρ r = ρ d z eq +1= Ω d Ω r = 3333 (2.30) 9

10 ρ d =0 Einstein a η ρ r =0 a η 2 dτ = adη ( ) a τ 1/2 a τ 2/3 3 φ h µν g µν = e 2φ ḡ µν, ḡ µν =(e h ) µν = η µν + h µν + (3.1) η µν h λ λ =0 φ(η, x) = ˆφ(η)+ϕ(η, x) (3.2) ˆφ ϕ ds 2 = g µν dx µ dx ν = e 2 ˆφ(1 + 2ϕ)(η µν + h µν ) dx µ dx ν = a 2{ (1 + 2ϕ h 00 )dη 2 +2h 0i dηdx i +(δ ij +2ϕδ ij + h ij ) dx i dx j} (3.3) 6 i, j =1, 2, 3 ρ α (η, x) =ρ α (η)+δρ α (η, x), P α (η, x) =P α (η)+δp α (η, x) (3.4) 6 A B i H ij ds 2 = a 2 { (1 + 2A)dη 2 2B i dηdx i +(δ ij +2H ij ) dx i dx j} 10

11 ρ P T µ (α)ν = {ρ α(η, x)+p α (η, x)} u µ αu α ν + P α (η, x)(δ µ ν +Π αµ ν) (3.5) Π α µν (Πα 0ν =0) u µ α 4 g µν u µ α uν α = 1 (3.6) 4 u µ α =(1/a, 0, 0, 0) 4 u µ α uα µ = g µνu ν α (3.6) u 0 α = 1 ( 1 ϕ + 1 ) a 2 h 00, u i α = vi α a, ( u α 0 = a 1+ϕ 1 ) 2 h 00, u α i = a (vi α + h 0i ) (3.7) vα i vα i = δ ij vα j 4 (3.6) 4 T(α)0 0 = (ρ α + δρ α ), T(α)0 i = (ρ α + P α )vα i, T(α)j 0 = (ρ α + P α )(vj α + h 0j ), T(α)j i = (P α + δp α )δ i j + P α Π αi j (3.8) T µ (α)ν g µν v i = δ ij v j δ ij T 0 i = g 0λ T λi g iλ T λ0 = T i 0 v α i = i v α + v Tα i (3.9) 11

12 vi Tα (transverse) Π α ij Π αi i =0 (general coordinate transformation) δ ξ g µν = g µλ ν ξ λ + g νλ µ ξ λ δ ξ ϕ = ξ λ 1 λ ˆφ + 4 λξ λ, (3.10) δ ξ h µν = µ ξ ν + ν ξ µ 1 2 η µν λ ξ λ (3.11) 7 ξ µ = η µν ξ ν h 00 = h, (3.12) h 0i = h T i + i h, (3.13) h ij = h TT ij + (i h T j) + 1 ( 3 δ i j ijh + 1 ) 2 3 δ ij h (3.14) h T i ht i h TT ij 2 = i i ξ µ ξ 0 ξ i = ξi T + i ξ S δ ξ ϕ = ξ 0 1 η ˆφ + 4 ηξ ξ S, (3.15) δ ξ h = 3 2 ηξ ξ S, (3.16) δ ξ h = ξ 0 + η ξ S, (3.17) δ ξ h = 2 2 ξ S, (3.18) δ ξ h T i = η ξ T i, (3.19) δ ξ h T i = 2ξi T, (3.20) δ ξ h TT ij = 0 (3.21) 7 ϕ h µν δ ξ h µν = µ ξ ν + ν ξ µ 1 2 η µν λ ξ λ + ξ λ λ h µν h µλ( ν ξ λ λ ξ ν )+ 1 2 h νλ( µ ξ λ λ ξ µ )+o(h 2 ) 12

13 δ ξ T µ (α)ν = νξ λ T µ (α)λ λ ξ µ T(α)ν λ + ξλ λ T µ (α)ν δ ξ v α = η ξ S, (3.22) δ ξ vi Tα = η ξi T, (3.23) δ ξ (δρ α ) = ξ 0 η ρ α, (3.24) δ ξ (δp α ) = ξ 0 η P α, (3.25) δ ξ Π αi j = 0 (3.26) Bardeen Φ = ϕ h 1 6 h + σ η ˆφ, (3.27) Ψ = ϕ 1 2 h + σ η ˆφ + η σ (3.28) σ = h 1 η h 2. (3.29) 2 δ ξ σ = ξ 0 Bardeen (δ ξ Φ=δ ξ Ψ=0) (longitudinal gauge) (conformal Newtonian gauge) h = h =0 Bardeen Φ=ϕ + h/6 Ψ=ϕ h/2 ds 2 = a 2 [ (1 + 2Ψ) dη 2 + (1 + 2Φ) dx 2] (3.30) Ψ Newton 13

14 Υ i = h T i 1 2 ηh T i, (3.31) h TT ij (3.32) α V α = v α + 1 η h 2, (3.33) 2 D α = δρ α ρ α + ηρ α α σ 3(1 + w α ) η ˆφV ρ α = δρ α ρ α 3(1 + w α ) η ˆφ(σ + V α ), (3.34) D α = δρ α ρ α + ηρ α ρ α σ + 3(1 + w α )Φ = δρ α + 3(1 + w α )(Φ η ˆφσ), ρ α (3.35) Vi α = vi Tα ηh T i, (3.36) Ω α i = vi Tα + h T i, (3.37) Π α ij (3.38) (3.34) (3.35) η ρ α η ρ α = 3(1 + w α ) η ˆφρα D α = D α 3(1 + w α )(Φ + η ˆφV α ) Υ i + Vi α Ω α i =0 D α D α CMB 8 ρ P (2.7) 8 Θ Newton D γ /4= Θ+Φ 14

15 D D V ρd = α ρd = α ρ α D α, (3.39) ρ α D α, (3.40) (1 + w)ρv = (ρ + P )V = α = α (ρ α + P α )V α (1 + w α )ρ α V α, (3.41) P Π ij = α P α Π α ij (3.42) w = P ρ = α P α α ρ α, (3.43) D α D α D α D α V α V α w α w α D α ρ α ρ α D α δρ α (ρ α + P α )V α V ( ) ( ) P P δp = δρ + δs = c 2 sδρ + TδS (3.44) ρ S S ρ (δs =0) δρ δp (sound speed) c 2 s = P/ ρ Γ α = 1 ( ) δpα c 2 δp α P αδρ α = c2 α δρ α (3.45) α P α w α ρ α 15

16 Γ P Γ=δP c 2 sδρ (3.46) δp δρ c 2 s = ηp η ρ = α η P α (3.47) α η ρ α c 2 s α c 2 α 4 ( ) 4.1 Einstein δi = 1 d 4 x gt µν δg µν 2 = 1 d 4 x ḡ { 2 2 T λ λδφ + T } µν δḡ µν { = d 4 x T λ λδφ + 1 } 2 Tµ νδh ν µ = 0 (4.1) T µν T µν T µν g µν = e 2φ ḡ µν δg µν =2e 2φ ḡ µν δφ + e 2φ δḡ µν (4.2) T µν (g) g µν T µν (φ, ḡ) ḡ µν T µν (ϕ, h) η µν 16

17 T µν = e 6φ T µν = e 6 ˆφ(1 6ϕ) T µν, (4.3) T µ ν = e 4φ T µ ν = e 4 ˆφ(1 4ϕ) T µ ν (4.4) h µ ν T µν = η λ(µ T λ ν) (4.5) = T µν h λ (µ ˆT ν)λ (4.6) ˆT µν T µν T λ λ (= ηµν T µν )= T λ λ Einstein T µν = T EH µν + T Λ µν + T M µν = 0 (4.7) T M µν = α T (α) µν δ ξt µν = 0 Einstein (3.8) T Mλ λ = e 4 ˆφ { ρ +3P δρ +3δP +4( ρ +3P )ϕ}, T M 00 = e 4 ˆφ(ρ + δρ +4ρϕ), T M 0i = e 4 ˆφ(ρ ( + P ) v i + 1 ) 2 h 0i, T M ij = e 4 ˆφ {(P + δp +4Pϕ)δ ij + P Π ij } (4.8) δρ δp (2.7) v i (3.42) V 17

18 ( Π ij = i j + 1 ) 2 3 δ ij Π S + (i Π V j) +Π T ij (4.9) Π V i Π T ij Π α ij Einstein h µν T EH µν = M 2 Pe 2φ { 2 µ ν φ 2 µ φ ν φ + η µν ( 2 φ λ φ λ φ ) (µ χ ν) h µν 2h λ (µ ν) λ φ +2h λ (µ ν)φ λ φ 2 (µ h λ ν) λ φ + λ h µν λ φ ( )} 1 +η µν 2 λχ λ +2h λσ λ σ φ + h λσ λ φ σ φ +2χ λ λ φ (4.10) χ µ = λ h λ µ = λ λ = η φ T EHλ λ = M 2 Pe 2φ{ 6 φ 6 λ φ λ φ + λ χ λ +6h λσ λ σ φ +6χ λ λ φ +6h λσ λ φ σ φ } (4.11) φ ˆφ ϕ ϕ h = h = h T i =0 Einstein { T EHλ λ = MP 2 ˆφ e2 6 η 2 ˆφ +6 η ˆφ η ˆφ + 12( 2 η ˆφ + η ˆφ η ˆφ)ϕ +6 ηϕ ϕ +12 η ˆφ η ϕ + ηh h +6 η ˆφ η h +6( η 2 ˆφ } + η ˆφ η ˆφ)h { T EH 00 = MP 2 ˆφ e2 3 η ˆφ η ˆφ 6 η ˆφ η ˆφϕ 6 η ˆφ η ϕ +2 2 ϕ (4.12) 18

19 3 η ˆφ η ˆφh η ˆφ η h + 1 } 3 2 h (4.13) { T EH 0i = MP 2 ˆφ e2 2 η i ϕ 2 η ˆφ i ϕ η i h + η ˆφ i h h T i +( η 2 ˆφ } T η ˆφ η ˆφ)h i (4.14) { [ T EH ij = MP 2 ˆφ e2 2 i j ϕ + δ ij 2 2 η ˆφ + η ˆφ η ˆφ +2 2 η ϕ 2 2 ϕ +2 η ˆφ η ϕ + ( 4 η 2 ˆφ ] 1 +2 η ˆφ η ˆφ) ϕ 3 i j h [ 1 +δ ij 3 2 η h h ˆφ η η h + ( 2 η 2 ˆφ ] + η ˆφ η ˆφ) h + η (i h T j) +2 η ˆφ (i h T j) η htt ij h TT ij η ˆφ η h TT ij } (4.15) ϕ = (3Φ + Ψ)/4 h = 3(Φ Ψ)/2 T Λ µν = Λe 4 ˆφ(1 + 4ϕ)η µν (4.16) e 4 ˆφT λ λ = 0, ( T i i 3 i j ) T 2 ij = 0, ( T η ˆφ i ) T 2 i0 = 0, 4 ˆφ e 4 ˆφ e 4 ˆφ i e T 2 i0 = 0 (4.17) 19

20 M 2 Pe 2 ˆφ { 6 2 ηφ+18 η ˆφ η Φ 4 2 Φ 6 η ˆφ η Ψ + ( 12 2 η ˆφ +12 η ˆφ η ˆφ 2 2 ) Ψ } +(3c 2 s 1)ρ { D + 3(1 + w) η ˆφV } +3wρΓ +(3w 1)ρ(3Φ + Ψ) 4Λ(3Φ + Ψ) = 0 (4.18) (3.46) δp P Γ+c 2 sδρ Φ Ψ M 2 Pe 2 ˆφ( 2 2 )(Φ+Ψ)+2P Π S = 0 (4.19) Poisson M 2 Pe 2 ˆφ2 2 Φ+ρD = 0 (4.20) M 2 Pe 2 ˆφ { 2 η Φ 2 η ˆφΨ } (1 + w)ρv = 0 (4.21) Einstein (2.5) (2.6) Π S =0 Φ Ψ D V

21 4 ˆφ j e T 2 ij = 0, (4.22) e 4 ˆφT 0i = 0 (4.23) Ω i { } MPe 2 2 ˆφ 1 2 ηυ i + η ˆφΥi P ΠV i = 0 (4.24) 1 2 M 2 Pe 2 ˆφ 2 Υ i (1 + w)ρω i =0. (4.25) Einstein (2.5) (2.6) Π V i =0 (4.24) (4.25) Ω i { MPe 2 2 ˆφ ηh TT ij η ˆφ η h TT ij e 4 ˆφT ij =0 + 1 } 2 2 h TT ij + P Π T ij = 0 (4.26) Π T ij =0 4.2 Einstein α Einstein µ T µ (α)ν = 1 ( ) µ gt µ 1 g (α)ν + 2 ( νg µλ ) g λσ T µ (α)σ = 0 (4.27) Einstein 21

22 D α V α Ω α i 1 µ T µ (α)0 ρ α = 0, (4.28) 1 µ T µ (α)i (1 + w α )ρ α = 0 (4.29) 0 η D α +3 ( c 2 α w α ) η ˆφD α +(1 + w α ) 2 V α +3w α η ˆφΓ α = 0 (4.30) i i / 2 η V α + ( 1 3cα) 2 η ˆφV α +Ψ 3c 2 αφ + c2 α D α + w α [Γ α 2 ] 1+w α 1+w α 3 ΠSα = 0 (4.31) i η Ω α i + ( 1 3c 2 α) η ˆφΩ α i + w α 2(1 + w α ) 2 Π Vα i = 0 (4.32) (2.4) η w α = 3(1 + w α ) ( c 2 α w α) η ˆφ (4.33) Einstein 22

23 α D V w c 2 s ρ 1 µ T Mµ 0 =0 (1 + w) 1 ρ 1 µ T Mµ i =0 D α D α = D α +3(1+w α ) ( Φ+ η ˆφV α ) (4.34) V α (4.31) c2 α η V α + η ˆφV α +Ψ+ D α 1+w α + w α [Γ α 2 ] 1+w α 3 ΠSα =0. (4.35) D α (4.30) Einstein (2.5) (2.6) (4.21) η D α 3w α η ˆφD α +(1+w α ) 2 V α +2w α η ˆφΓ α + 3 (1 + w 2MP 2 α )(1+w)ρa 2 (V V α ) = 0 (4.36) ρ w V D α Ψ Φ D D Γ Π S Ψ(η, x) = [d 3 k]ψ(η, k)e ik x (5.1) [d 3 k]= 1 d 3 k (5.2) (2π) 3 k

24 k = k V V (η, x) = ( [d 3 k] 1 ) V (η, k)e ik x (5.3) k V (η, k) V i Ω i Υ i h TT ij V i (η, x) = [d 3 k]v i (η, k)e ik x, (5.4) h TT ij (η, x) = [d 3 k]h TT ij (η, k)eik x (5.5) Λ Π ij CMB Integrated Sachs-Wolfe Π ij (Γ α =0) Λ=Π α ij =Γα =0 k 2 Φ= a2 ρ 2MP 2 α D α α = a2 ρ 2MP 2 α {D α +3(1+w α ) (Ψ+aH V α )}, (5.6) α k Φ= Ψ, (5.7) η D α +3 ( c 2 α w α) ahd α = (1 + w α ) kv α, (5.8) η V α + ( ) 1 3c 2 α ahv α = k ( Ψ 3c 2 α Φ) + c2 α 1+w α kd α (5.9) η Υ i +2aHΥ i =0, (5.10) η Ω α i + ( 1 3c 2 α) ahω α i =0, (5.11) 24

25 2 ηh TT ij +2aH η h TT ij + k 2 h TT ij = 0 (5.12) 6 Planck P d = δp d =0 ρ = ρ r + ρ d δρ = δρ r + δρ d, (6.1) P = P r = 1 3 ρ r, δp = δp r = 1 3 δρ r (6.2) c 2 s = ηp η ρ = ρ d (6.3) 4 ρ r TδS = δp c 2 sδρ = 1 3 δρ r 1 3 = 1 3 ρ d 1+ 3 ρ d 4 ρ r ρ d 4 ( 3 4 (δρ r + δρ d ) ρ r δρ ) d ρ d δρ r ρ r (6.4) 25

26 δs =0 δρ r = 4 δρ d (6.5) ρ r 3 ρ d D r =(4/3)D d V r = V d D r =(4/3)D d CDM CDM (6.5) δρ r = 4 δρ c = 4 ( δρ b = δρ ) (6.6) ρ r 3 ρ c 3 ρ b ρ k k p = k/a a 0 =1 k 26

27 k =0.0002Mpc 1 1/a =1+z = Mpc 1 τ dτ = adη (5.10) Υ i +2HΥ i = 0 (7.1) τ H e 2Hτ H Ω α i (5.11) c2 α 1/3 c 2 α < 1/3 CMB ḧ TT ij +3HḣTT ij + k2 a 2 htt ij = 0 (7.2) k/a ( ) k/a ḣtt ij =0 Hubble H k/a a/k 1/H a/k 1/H 27

28 (super-horizon) (sub-horizon) CMB (1/k) Mpc Hubble 1/H 0 = 4164Mpc a/k > 1/H CMB 7.2 x = kη (0 <x< ) (7.3) ( ) a η (η 2 ) ah = η a/a =1/η (2/η) a k > 1 H = x<1(x<2) (7.4) x 1 (2) 1 (2) 1 2 x x 1 28

29 1/k super horizon > x =2 > x =1 eq > sub horizon > dec 5: 1/k (k = ah) CMB l =2, 3 5 1/k k =0.002Mpc 1 (l 30) k =0.005Mpc 1 (l 70) k = 0.015Mpc 1 (l 210) k = 0.05Mpc 1 (l 700) l π/θ = kd dec CMB (l 30) l 210 ah = η a/a η Υ i +2aHΥ i = η (a 2 Υ i )=0, (7.5) η Ω α i +(1 3c 2 α)ahω α i η (a 1 3c2 α Ω α i ) = 0 (7.6) c α Υ i a 2, Ω α i a 3c2 α 1 (7.7) 29

30 Υ i Ω α i c2 α < 1/3 x (q =1) (q =2) ah = q/x 2 x htt ij +2 q x xh TT ij h TT ij h TT ij = + h TT ij = 0 (7.8) = e ij x 1/2 q J 1/2 q (x) e ij const. 1 a for x 1 (super-horizon) for x>1 (sub-horizon) (7.9) 8 (CDM) x = kη 8.1 CDM ρ r ρ c (8.1) Friedmann 3M 2 PH 2 = ρ ρ r Poisson (5.6) ρ c Ψ 3 { 1 D r +4 (Ψ+ 1 )} 2 x 2 x V r 30 (8.2)

31 (5.7) a η ah = η a/a =1/η a 2 ρ r /2MP 2 =(3/2)(aH)2 =3/2η 2 w r = c 2 r =1/3 CDM w c = c 2 c =0 x D r V r =0, (8.3) x V r =2Ψ+ 1 4 Dr (8.4) x D c + V c =0, (8.5) x V c + 1 x V c = Ψ (8.6) (8.2) (8.3) (8.4) (x 2 +6) x 2 Dr + 12 x xd r (x2 6)D r = 0 (8.7) { ( ) x D r = A cos 2 ( )} { ( ) 3 x x 3 x sin +B sin x ( )} x cos 3 (8.8) x 0 B =0 { ( ) x D r = A cos 2 ( )} 3 x 3 x sin, (8.9) 3 V r = 3 4 xd r = A 3 { x 2 ( ) 6 x 3 4 sin + 2 ( )} x 3 3x 2 x cos, (8.10) ( 1 Ψ = 3D r + 12 ) x 2 x V r (8.11) (x 1) Ψ = Ψ i 1 30 Ψ ix 2 +, (8.12) D r = 6Ψ i 1 3 Ψ ix 2 +, (8.13) V r = 1 2 Ψ ix + (8.14) 31

32 Bardeen Ψ i = A/6 k x 2 Ψ D r D r D r = 2 3 Ψ ix 2 (8.15) D CDM V c Ψ (8.6) D c V c (8.5) D c (x =0) = 3 4 Dr (x =0), V c (x =0) = V r (x = 0) (8.16) Ψ =Ψ i + CDM D c = 9 8 Ψ i 1 4 Ψ ix 2 +, (8.17) V c = 1 2 Ψ ix +. (8.18) D c (x 1) D r V r Bardeen Ψ= 3 2x 2 Dr (8.19) 1/x 2 Ψ 0 CDM D c log x, (8.20) V c 1 x (8.21) D c (Mezaros ) 32

33 8.2 ρ r ρ c Friedmann 3M 2 P H2 = ρ c a η 2 ah =2/η Poisson (5.6) k 2 Ψ=(a 2 /2MP)ρ 2 c D c =(6/η 2 )D c Bardeen CDM CDM w c = c 2 c =0 CDM ( (x ) x 2 V c + 4x + 72 x (x )Ψ = 6D c + 36 x V c, (8.22) x D c + V c =0, (8.23) x V c + 2 x V c = Ψ (8.24) ) ( x V c V c = V 0 x + V 1 x x 2 ) V c = 0 (8.25) (8.26) x 0 V 1 =0 Ψ = Ψ i, (8.27) D c = 5Ψ i 1 6 Ψ ix 2, (8.28) V c = 1 3 Ψ ix, (8.29) Ψ i =3V 0 w r = c 2 r =1/3 x D r V r =0, (8.30) x V r =2Ψ+ 1 4 Dr (8.31) 33

34 2 xv r V r =2 x Ψ (8.32) Bardeen D r ( ) ( ) x x V r = A sin + B cos, (8.33) 3 3 D r = 4A ( ) x cos 4B ( ) x sin 8Ψ i (8.34) A B x 0 V r = V c D r = (4/3)D c B =0 A =Ψ i / 3 D r = 8Ψ i + 4 ( ) x 3 Ψ i cos, (8.35) 3 V r = Ψ ( ) i x sin (8.36) 3 3 (x 0) D r ( 20/3)Ψ i Bardeen Bardeen CMB Bardeen Sachs-Wolfe (11.15) T/T 10 5 Bardeen (x 2) D c D r (x 2) CDM D c x 2 D r 34

35 CDM V c x V r x D r x 0 (x 0) l<200 Ψ D r (η = η eq ) D r = 6Ψ i D r =( 20/3)Ψ i 1 (first acoustic peak) CMB 11 Sachs-Wolfe (11.12) CMB T T (η 0) 1 4 Dr (η dec ) + 2Ψ(η dec )= 1 3 Ψ i cos (c s x dec ) (8.37) (8.27) (8.35) c s = c r =1/ 3 c s x dec = c s kη dec =0,π,2π, k 1peak = π/r s r s = c s η dec (2.28) l 1peak k 1peak d dec = π(η 0 η dec ) c s η dec = π c s ( zdec +1 1 ). (8.38) z dec = 1100 l 174 c s < 1/ 3 l 35

36 9 σ T = (8π/3)α 2 /m 2 e (α = e2 /4π 1/137) Boltzmann w b,c 2 b 1 10 w γ = w ν = c 2 γ = c 2 ν =1/3, w c = w b = c 2 c = c2 b = 0 (9.1) P γ = ρ γ /3 P ν = ρ ν /3 P c = P b =0 Poisson 2MP 2 k 2 { a Ψ=ρ 2 c D c +3 (Ψ+aH V c )} { + ρ ν D ν +4 (Ψ+aH V ν )} k k +ρ γ {D γ +4 (Ψ+aH V γ )} { ( + ρ b D b +3 Ψ+aH V b )} (9.2) k k η D c = kv c, (9.3) η V c + ahv c = kψ, (9.4) 10 ρ b = nm P b = nt b m 1GeV n ( 1/a 3 ) T b ( 1/a) w b = P b /ρ b = T b /m c 2 b = ηp b / η ρ b =4T b /3m z eq z dec T b m w b = c 2 b =0 36

37 η D ν = 4 3 kv ν, (9.5) η V ν = 2kΨ+ 1 4 kdν, (9.6) η D γ = 4 3 kv γ, (9.7) η V γ = 2kΨ+ 1 4 kdγ 1 ( V γ V b), η T (9.8) η D b = kv b, (9.9) η V b + ahv b = kψ+ 1 4 ρ ( γ V γ V b) η T 3 ρ b (9.10) η T = η (z >z Ω b h (1+z eq) 1/2 1+z eq) aσ T n e 10 1 Ω b η (z h (1+z) 3/2 eq >z>z dec ) (9.11) n e ρ b /m(m 1GeV) Ω b 0.04 Hubble h =0.72 z eq = 3333 z dec = 1100 η T η η T 0 V r = V b D c (0) = D b (0) = 3 4 Dγ (0) = 3 4 Dν (0), V c (0) = V b (0) = V γ (0) = V ν (0) (9.12) D b (x) 3 4 Dγ (x) (9.13) (9.7) (9.9) η (D b 3D γ /4) = k(v b V γ ) 37

38 V b = V r ρ = ρ γ + ρ b, P = P γ + P b = 1 3 ρ γ (9.14) w = P ρ = ρ, b ρ γ (9.15) c 2 s = ηp η ρ = ρ b 4 ρ γ (9.16) D = 1 ( ργ D γ + ρ b D b), ρ (9.17) V = 1 { (ργ + P γ ) V γ + ρ b V b} ρ + P (9.18) α = bγ Poisson (5.6) α = c, ν, bγ 2MP 2 k 2 { a Ψ = ρ 2 c D c +3 (Ψ+aH V c )} { + ρ ν D ν +4 k { ( +ρ D + 3(1 + w) Ψ+aH V )} k (Ψ+aH V ν )} k (9.19) (9.2) (5.7) (5.8) (5.9) η D +3 ( c 2 s w ) ahd = (1 + w)kv, (9.20) η V + ( 1 3c 2 s ) ( ) ahv = k 1+3c 2 c 2 s Ψ+ s kd (9.21) 1+w 38

39 6: D γ ( ) CDM D c ( ) Bardeen Φ( ) z (z 10 3 ) Harrison-Zel dovich Φ k 1 D c z eq D γ Φ 7 (9.7) (9.9) η D ρ η D = (1 + w)ρkv +3waHρD ahρ r D γ (9.22) V b V γ η (D b 3D γ /4) 0 D b 3D γ /4 D = 3(1 + w)d γ /4 ρ γ D γ 3c 2 sρd (9.20) (9.8) (9.10) (1 + w)ρ η V 39

40 7: V b ( ) CDM V c ( ) 6 Φ( ) Φ z eq z eq (1 + w)ρ η V =(1+w)ρ { ( 1 3c 2 s ) ahv + ( 1+3c 2 s ) kψ } kρ rd γ (9.23) (9.21) 6 9 CDM D c V c D ν V ν D V (9.3) (9.4) (9.5) (9.6) (9.20) (9.21) Bardeen Φ(= Ψ) Poisson (9.19) Friedman 2 Ω b =0.042 Ω d =0.27 Ω r = Ω γ = Ω Λ =0.73 h =0.72 Harrison-Zel dovich Ψ i = 1 (8.1 ) D γ = 4(1 + w)d/4 V b = V Sachs-Wolfe 40

41 8: Sachs-Wolfe D γ /4+2Ψ 6 (z 10 3 ) cos [(8.37) ] 0.02Mpc 1 CMB 1 D γ /4+2Ψ (9.20) (9.21) (9.16) c s (η dec )= 1 3 ( ) = 1+ 3Ω b a dec 4Ω γ a ( 1+ 3Ω b 1 4Ω γ z dec +1 ) (9.24) 2 c s = (8.38) 11 Hu-Sugiyam, ApJ, 444 (1995) 489 k 3/2 (Θ 0 +Ψ) Fourier k 3/2 41

42 9: Bardeen Φ( ) Sachs-Wolfe D γ /4 + 2Ψ( ) V b ( ) (z 10 3 ) l 1peak π ( zdec +1 1 ) = 220 (9.25) c s (η dec ) 10 (Sachs-Wolfe ) CDM 42

43 CDM η D c,b = kv c,b, (10.1) η V c,b + ahv c,b = kψ (10.2) V c,b 2 η Dc,b + ah η D c,b = k 2 Ψ (10.3) CDM 2 η ( D c D b) + ah η ( D c D b) = 0 (10.4) η D c = η D b CDM CDM η D c (η dec ) > 0 η D b (η dec ) 0 CDM CDM CDM 11 Sachs-Wolfe i f F µν A µν ψ F µν = Re(A µν e iψ ) A µν e iψ 43

44 10: i f ds 2 = a 2 dσ 2 12 dσ 2 = G µν dx µ dx ν =(η µν + H µν ) dx µ dx ν (11.1) dσ 2 (affine parameter) λ n µ = dxµ dλ, G µνn µ n ν =0, dn µ dλ + Γ µ αβ (G)nα n β = 0 (11.2) ψ (x µ + n µ λ) =ψ (x µ ) n µ ψ x µ = 0 (11.3) K ψ x µ = KG µνn ν (11.4) 12 ḡ µν dx µ dx ν G µν (g µν = a 2 G µν ) 44

45 (10) s ψ = ψ dx µ ψ s = x µ ds x µ uµ s (11.5) u µ = dx µ /ds 4 g µν u µ u ν = 1 E f E i = ν f ν i = ψ s f ψ s i = (G µνnµ uν ) f (G µν n µ u ν ) i (11.6) n 0 =1 n i n i =1 4 u µ =(1/a, 0, 0, 0) E f /E i = a i /a f n µ =(1, n)+δn µ dδn µ ( dλ = (α H µ β) + 1 ) 2 µ H αβ n α n β (11.7) d(h µ β nβ ) dλ = dhµ β d λ nβ = dxα dλ αh µ β nβ =( α H µ β )nα n β (11.8) δn µ f i = H µ β nβ f i f i dλ( µ H αβ )n α n β (11.9) T 0 T = T 0 /a + δt T f = a ( i 1+ δt f δt ) i = a ( i 1+ 1 ) δρ γ f (11.10) T i a f T f T i a f 4 ρ γ i ρ γ T 4 (11.9) 0 (11.10) (11.6) E f = a { [ i 1+ ϕ 1 ] f } E i a f 2 h 00 (v i + h 0i ) n i + δn 0 i 45

46 = T [ f 1 T i 1 4 { = T f T i 1 δρ γ ρ γ ϕ h 00 +(v i + h 0i ) n i δn 0 [ 1 4 Dγ + i V b n i +Ψ Φ+Ω b in i ] f i f + dλ ( η Ψ η Φ+ η Υ i n i η h TT ij ni n j) i } ] f i (11.11) V b E f /E i = T f /T i {} 1 Bardeen [] i=η dec f=η 0 Ψ(η 0 ) n i i V b (η 0 ) CMB ( T/T)(η 0 )= (1/4)D γ (η 0 ) 13 Sachs-Wolfe ( ) T T S ( ) T V ( ) T T T (η 0, x 0 )= + +, T T T ( ) T S { 1 = T 4 Dγ + i V b n i +Ψ Φ} (η dec, x dec ) η0 + ( T T ( T T η dec dη ( η Ψ η Φ) (η, x(η)), (11.12) ) V =Ω b i (η dec, x dec ) n i + η0 dη η Υ i (η, x(η)) n i, (11.13) η dec ) T η0 = dη η h TT ij (η, x(η)) n i n j (11.14) η dec x(η) =x 0 +(η η 0 )n l <10 (8.35) (8.36) 13 CMB CMB 46

47 x 1 D γ = ( 20/3)Ψ i V γ =(1/3)xΨ i 0 V b V γ Bardeen Ψ(= Φ) Ψ(η dec )=Ψ i ( T T ) S (η 0, x 0 ) 1 3 Ψ(η dec, x dec) (11.15) Ordinary Sachs-Wolfe (11.12) Integrated Sachs-Wolfe 12 CMB 12.1 k (transfer function)t F =Ψ, D, F (η f,k)=t F F (η i,k) (12.1) CMB Sachs-Wolfe η dec Bardeen Integrated Sachs-Wolfe Bardeen CMB 47

48 Υ i (7.7) Ω b i c 2 s < 1/3 (7.7) F F (η, k)(5.1) 2 F (η, k)f (η, k ) = F (η, k) 2 k 3 (2π) 3 δ 3 (k + k ) (12.2) F P F (η, k) = 1 2π 2 F (η, k) 2 (12.3) 2 F (η, x)f (η, x) = [d 3 k][d 3 k ] f(η, k)f (η, k ) e i(k+k ) x = = 0 d 3 k 1 (2π) 3 k F (η, 3 k) 2 dk k P F (η, k). (12.4) Bardeen Ψ i Ψ h TT ij 14 P s (k) = 1 ( ) ns 1 k 2π Ψ(η i,k) 2 = A 2 s, (12.5) m 14 m (pivot) Planck 48

49 P t (k) = 1 ( ) nt k 2π 2 htt (η i,k) 2 = A t (12.6) m h TT (12.28) r = A t (12.7) A s 12.2 CMB CMB T T (x 0, n,η 0 )= l l=0 m= l a lm (x 0 )Y lm (n) (12.8) a lm a lm =0 C l = a lm 2 a lm a l m = C lδ ll δ mm (12.9) CMB 2 m m= l Y lm (n)y lm(n )= 1 4π (2l +1)P l(n n ) (12.10) n n = cos θ CMB 2 T C(θ) = T (x 0, n,η 0 ) T T (x 0, n,η 0 ) = a lm a l m Y lm(n)yl m (n ) l,l,m,m = 1 (2l +1)C l P l (cos θ) (12.11) 4π l 49

50 CMB TT TT l<50 ( ) CMB (11.12) Ψ=Φ { T 1 T (x 0, n,η 0 )= 4 Dγ + i V b n +2Ψ} i (η dec, x dec ). (12.12) x dec = x 0 (η 0 η dec )n { T 1 T (k, n,η 0) = 4 Dγ iˆk nv +2Ψ} b (k,η dec ) e ik n(η 0 η dec ) { 1 = 4 Dγ +2Ψ+ V b } k η (k,η dec ) e ik nη) η=η0 η dec (12.13) ˆk = k/k =(θ k,ϕ k ) ordinary Sachs-Wolfe (l <30) (11.15) CMB Bardeen (12.13) T T (k, n,η 0) 1 3 Ψ(k,η dec)e ik n(η 0 η dec ) (12.14) C(θ) 1 d 3 k d 3 k T C(θ) = (2π) 6 k 3 k 3 T (k, n,η 0) T T (k, n,η 0 ) = 1 (2π) 6 1 (2π) 3 e i(k+k ) x 0 d 3 k d 3 k ) x 0 1 k 3 k 3 ei(k+k 9 Ψ(k,η dec)ψ(k,η dec ) e ik n(η 0 η dec ) e ik n (η 0 η dec ) d 3 k 1 k 3 9 Ψ(k,η dec) 2 e ik n(η 0 η dec ) e ik n (η 0 η dec ) (12.15) 50

51 2 (12.2) e ik y =4π l l=0 m= l i l j l (ky)y lm (ˆk)Y lm (ŷ) (12.16) ŷ ˆk C(θ) = (4π)2 d 3 k 1 (2π) 3 k 3 3 Ψ(k,η 2 dec) j l (kd dec )j l (kd dec ) i l l l l,l =0 m= l Y lm (ˆk)Y lm(n) l m = l Y l m (ˆk)Y l m (n ) (12.17) d dec = η 0 η dec k d 3 k = k 2 dkdω k dω k = dθ k dϕ k dω k Ylm(ˆk)Y l m (ˆk) =δ ll δ mm (12.18) (12.10) C(θ) = 1 4π l=0(2l +1)P l (cos θ) 2 π dk k 1 9 Ψ(k,η dec) 2 j 2 l (kd dec) (12.19) (12.11) C l l kd dec (2.28) Ordinary Sachs-Wolfe Ψ T Ψ 1 Ψ(η dec ) 2 Ψ i 2 =2π 2 P s Cl osw dk 1 = 4π 0 k 9 P s(k)jl 2 (kd dec ) = 2π 2 A s 1 (md dec ) ns 1 9 Γ(3 n s )Γ ( l ns 2 ( ) ( 2 3 ns Γ 2 2 n s 2 Γ l + 5 ns 2 2 Harrison-Zel dovich (n s =1) l(l +1)C osw l 2π 51 = A s 9 ) ) (12.20) (12.21)

52 P s (k) (12.13) C(θ) = 1 (2π) 6 d 3 k d 3 k { ( ) x 0 D γ ) k 3 k 3 ei(k+k 4 +2Ψ { (D γ ) 4 +2Ψ (k,η dec )+ V b (k,η dec ) k η (k,η dec )+ V b } (k,η dec ) η k } e ik nη e ik n η η=η = η 0 η dec (12.22) 2 (12.2) k C(θ) = (4π) 2 (2π) 3 d 3 k k 3 {( D γ ) 4 +2Ψ {( D γ ) 4 +2Ψ i l l l l,l =0 m= l Y lm (ˆk)Y lm(n) l m = l Y (k,η dec )j l (kη)+ V b (k,η dec ) η j l (kη) k l m (ˆk)Y l m (n ) (k,η dec )j l (kη)+ V b (k,η dec ) η j l (kη)} k η=η 0 η dec (12.23) k d 3 k = k 2 dkdω k dω k = dθ k dϕ k (12.18) (12.10) C l = 2 π {( dk D γ ) } k 4 +2Ψ (k,η dec )j l (kd dec )+V b (k,η dec )j l 2 (kd dec ) (12.24) j l (x) = xj l (x) η i η dec 52 }

53 T γ T b T Ψ ( D γ ) 4 +2Ψ (k,η dec ) = 1 4 T γd γ (k,η i )+2T Ψ Ψ(k,η i ) = ( 3 ) 2 T γ +2T Ψ Ψ i (k), V b (k,η dec ) = T b V b 1 (k,η i )=T b 2 kη iψ i (k) (12.25) (x = kη 0) D γ 6Ψ i Ψ Ψ i V b (= V γ ) kη i Ψ i /2 CMB Ψ dk C l =4π {( 3 ) } k 2 T 1 2Ps γ +2T Ψ j l (kd dec )+T b 2 kη ij l (kd dec) (k) (12.26) (11.14) 1 d 3 k η0 η0 C(θ) = dη dη e ik n(η0 η) e ik n (η 0 η ) (2π) 3 k 3 η dec η dec η h TT ij (η, k) η htt lm (η, k) n i n j n l n m (12.27) 2 h TT ij (η, k)h TT lm (η, k) { = h TT (η, k)h TT (η, k) δ il δ jm + δ im δ jl δ ij δ lm + 1 k 2 (δ ijk l k m + δ lm k i k j δ il k j k m δ im k l k j δ jl k i k m δ jm k l k i ) + 1 k 4 k ik j k l k m } (12.28) C l = 2 dk η0 dη π k η h TT (η, k) j l(k(η 0 η)) 2 (l + 2)! η dec k 2 (η 0 η) 2 (l 2)! (12.29) 53

54 11: TT 3 Ω b Ω c Ω Λ Hubble h n s (optical depth)τ [E. Martinez-Gonzalez, astroph/ ] η h TT = 0 η dec η 0 (l <50) (x = kη 2) h TT 1/a η h TT ahh TT =( 2/η)h TT a η 2 54

55 η0 η dec dη η h TT j l(k(η 0 η)) k 2 (η 0 η) 2 j l(kη 0 )) k 2 η 2 0 η0 η=2/k 2dη h TT (12.30) η h TT 1/η 2 ( 2dη/η)h TT = h TT (η 0 ) h TT (η =2/k) η 0 h TT (η 0 ) η 0 = d dec l<50 C l l<50 2 π dk k htt (η =2/k, k) 2 j2 l (kd dec) k 4 d 4 dec (l + 2)! (l 2)! (12.31) 1 (η =2/k) h TT (η =2/k, k) 2 =2π 2 P t (k) (l + 2)! dk C l l<50 4π (l 2)! 0 k = 2π 2 A t (l + 2)! (md dec ) nt (l 2)! jl 2(kd dec) P k 4 d 4 t (k) dec Γ(6 n t )Γ ( l 2+ nt nt Γ 2 ( 7 2 n t) Γ ( l +4 n t 2 ) )(12.32) n t =0 l(l +1)C l /2π A t 8l(l +1)/15(l 2)(l +3) l =2 TT r TT CMB E B 12 TT TE EE 55

56 12: (r = 0.01) TT TE EE BB( ) [E. Martinez-Gonzalez, astroph/ ] CMB BB BB EE (l <10) (optical depth)τ τ 0.1 τ r B 12( ) 56

2 Planck Planck BRST Planck Λ QG Planck GeV Planck Λ QG Friedmann CMB

2 Planck Planck BRST Planck Λ QG Planck GeV Planck Λ QG Friedmann CMB 量子重力理論と宇宙論 (下巻) くりこみ理論と初期宇宙論 浜田賢二 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 http://research.kek.jp/people/hamada/ 量子重力の世界は霧に包まれた距離感のない幽玄の世界にたとえること ができる 深い霧が晴れて時空が現れる 国宝松林図屏風 (長谷川等伯筆) 平成 20 年 11 月初版/平成 21 年 09 月改定/

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

29 7 5 i 1 1 1.1............................ 1 1.1.1................. 1 1.1.2............................. 3 1.1.3......................... 4 1.2........................... 9 1.2.1................. 9

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

2 1 ds 2 = a 2 (η) ( dη 2 + γ ij dx i dx j ) (1.2) ( dt ) conformal time η η = a(t) a(t) (scale factor) t =const (3) R ijkl = K a 2 (t) (γ ikγ jl γ il

2 1 ds 2 = a 2 (η) ( dη 2 + γ ij dx i dx j ) (1.2) ( dt ) conformal time η η = a(t) a(t) (scale factor) t =const (3) R ijkl = K a 2 (t) (γ ikγ jl γ il 1 1.1 Robertson-Walker [ ds 2 = dt 2 + a 2 dr 2 ] (t) 1 Kr 2 + r2 (dθ 2 + sin 2 θdφ 2 ) sin 2 χ = dt 2 + a 2 (t) dχ 2 + χ 2 (dθ 2 + sin 2 θdφ 2 ) = dt 2 + sinh 2 χ a 2 (t) (1 + K 4 r2 ) [d r 2 + r (dθ

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2 1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2 = 8πG a 3c 2 ρ Kc2 a 2 + Λc2 3 (3), ä a = 4πG Λc2 (ρ

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

arxiv: v1(astro-ph.co)

arxiv: v1(astro-ph.co) arxiv:1311.0281v1(astro-ph.co) R µν 1 2 Rg µν + Λg µν = 8πG c 4 T µν Λ f(r) R f(r) Galileon φ(t) Massive Gravity etc... Action S = d 4 x g (L GG + L m ) L GG = K(φ,X) G 3 (φ,x)φ + G 4 (φ,x)r + G 4X (φ)

More information

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α SO(3) 48 6 SO(3) t 6.1 u, v u = u 1 1 + u 2 2 + u 3 3 = u 1 e 1 + u 2 e 2 + u 3 e 3, v = v 1 1 + v 2 2 + v 3 3 = v 1 e 1 + v 2 e 2 + v 3 e 3 (6.1) i (e i ) e i e j = i j = δ ij (6.2) ( u, v ) = u v = ij

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

1.1 foliation M foliation M 0 t Σ t M M = t R Σ t (12) Σ t t Σ t x i Σ t A(t, x i ) Σ t n µ Σ t+ t B(t + t, x i ) AB () tα tαn µ Σ t+ t C(t + t,

1.1 foliation M foliation M 0 t Σ t M M = t R Σ t (12) Σ t t Σ t x i Σ t A(t, x i ) Σ t n µ Σ t+ t B(t + t, x i ) AB () tα tαn µ Σ t+ t C(t + t, 1 Gourgoulhon BSSN BSSN ϕ = 1 6 ( D i β i αk) (1) γ ij = 2αĀij 2 3 D k β k γ ij (2) K = e 4ϕ ( Di Di α + 2 D i ϕ D i α ) + α ] [4π(E + S) + ĀijĀij + K2 3 (3) Ā ij = 2 3Āij D k β k 2αĀikĀk j + αāijk +e

More information

( ) (ver )

( ) (ver ) ver.3.1 11 9 1 1. p1, 1.1 ψx, t,, E, p. = E, p ψx, t,. p, 1.8 p4, 1. t = t ρx, t = m [ψ ψ ψ ψ] ρx, t = mi [ψ ψ ψ ψ] p4, 1.1 = p6, 1.38 p6, 1.4 = fxδ ϵ x = fxδϵx = 1 π fxδ ϵ x dx = fxδ ϵ x dx = [ 1 fϵ π

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

中央大学セミナー.ppt

中央大学セミナー.ppt String Gas Cosmology References Brandenberger & Vafa, Superstrings in the early universe, Nucl.Phys.B316(1988) 391. Tseytlin & Vafa, Elements of string cosmology, Nucl.Phys.B372 (1992) 443. Brandenberger,

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0 5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â = Tr Âe βĥ Tr e βĥ = dγ e βh (p,q) A(p, q) dγ e βh (p,q) (5.2) e βĥ A(p, q) p q Â(t) = Tr Â(t)e βĥ Tr e βĥ = dγ() e βĥ(p(),q())

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit 6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civita ɛ 123 =1 0 r p = 2 2 = (6.4) Planck h L p = h ( h

More information

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4 [2642 ] Yuji Chinone 1 1-1 ρ t + j = 1 1-1 V S ds ds Eq.1 ρ t + j dv = ρ t dv = t V V V ρdv = Q t Q V jdv = j ds V ds V I Q t + j ds = ; S S [ Q t ] + I = Eq.1 2 2 Kroneher Levi-Civita 1 i = j δ i j =

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

untitled

untitled kajino@nao.ac.jp http://th.nao.ac.jp/~gkajino/? BIG-BANG! STARS SUPERNOVAE? R-PROCESS COSMIC-RAYS R S N=50) R S N=82) R S N=126) ++ + Actinide AGB STARS S-PROCESS 232 Th (14.05Gy) P 238 U (4.47 Gy) SUPERNOVA-γ

More information

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r 2 1 (7a)(7b) λ i( w w ) + [ w + w ] 1 + w w l 2 0 Re(γ) α (7a)(7b) 2 γ 0, ( w) 2 1, w 1 γ (1) l µ, λ j γ l 2 0 Re(γ) α, λ w + w i( w w ) 1 + w w γ γ 1 w 1 r [x2 + y 2 + z 2 ] 1/2 ( w) 2 x2 + y 2 + z 2

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

Einstein ( ) YITP

Einstein ( ) YITP Einstein ( ) 2013 8 21 YITP 0. massivegravity Massive spin 2 field theory Fierz-Pauli (FP ) Kinetic term L (2) EH = 1 2 [ λh µν λ h µν λ h λ h 2 µ h µλ ν h νλ + 2 µ h µλ λ h], (1) Mass term FP L mass =

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

inflation.key

inflation.key 2 2 G M 0 0-5 ϕ / M G 0 L SUGRA = 1 2 er + eg ij Dµ φ i Dµ φ j 1 2 eg2 D (a) D +ieg ij χ j σ µ Dµ χ i + eϵ µνρσ ψ µ σ ν Dρ ψ σ 1 4 ef (ab) R F (a) [ ] + i 2 e λ (a) σ µ Dµ λ (a) + λ (a) σ µ Dµ λ (a) 1

More information

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m A f i x i B e e e e 0 e* e e (2.1) e (b) A e = 0 B = 0 (c) (2.1) (d) e

More information

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b 23 2 2.1 n n r x, y, z ˆx ŷ ẑ 1 a a x ˆx + a y ŷ + a z ẑ 2.1.1 3 a iˆx i. 2.1.2 i1 i j k e x e y e z 3 a b a i b i i 1, 2, 3 x y z ˆx i ˆx j δ ij, 2.1.3 n a b a i b i a i b i a x b x + a y b y + a z b

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

第10章 アイソパラメトリック要素

第10章 アイソパラメトリック要素 June 5, 2019 1 / 26 10.1 ( ) 2 / 26 10.2 8 2 3 4 3 4 6 10.1 4 2 3 4 3 (a) 4 (b) 2 3 (c) 2 4 10.1: 3 / 26 8.3 3 5.1 4 10.4 Gauss 10.1 Ω i 2 3 4 Ξ 3 4 6 Ξ ( ) Ξ 5.1 Gauss ˆx : Ξ Ω i ˆx h u 4 / 26 10.2.1

More information

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a + 1 1 22 1 x 3 (mod ) 2 2.1 ( )., b, m Z b m b (mod m) b m 2.2 (Z/mZ). = {x x (mod m)} Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} + b = + b, b = b Z/mZ 1 1 Z Q R Z/Z 2.3 ( ). m {x 0, x 1,..., x m 1 } modm 2.4

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

Lagrange.dvi

Lagrange.dvi Lagrange 1 2006.2.10 1 Introduction CfA survey 2dF SDSS high-z Euler Lagrange Lagrange CDM Lagrange Lagrange 2 Newton Friedmann Newton Newton Newton [1,2,3,4,5] ρ + r ρu = 0, 1 t r u +u r u = 1 t r ρ rp

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

H.Haken Synergetics 2nd (1978)

H.Haken Synergetics 2nd (1978) 27 3 27 ) Ising Landau Synergetics Fokker-Planck F-P Landau F-P Gizburg-Landau G-L G-L Bénard/ Hopfield H.Haken Synergetics 2nd (1978) (1) Ising m T T C 1: m h Hamiltonian H = J ij S i S j h i S

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h filename=quantum-dim110705a.tex 1 1. 1, [1],[],[]. 1980 []..1 U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h i z (.1) Ĥ ( ) Ĥ = h m x + y + + U(x, y, z; t) (.) z (U(x, y, z; t)) (U(x,

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

C10-075 26 2 12 1 1 4 1.1............................. 4 1.2............................ 5 1.3................................... 5 2 6 2.1............................ 6 2.2......................... 6

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information