Microsoft Word - 信号処理3.doc

Size: px
Start display at page:

Download "Microsoft Word - 信号処理3.doc"

Transcription

1 Junji OHTSUBO 2012

2 FFT FFT

3 SN

4 sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c], b = Im[c] (1.3)

5 r = a 2 + b 2 (1.4a) θ = tan 1 b a (1.4b) 1.1 cosθ=a/r sinθ=b/r r c c = r θ arg(c)=θ (Euler) c = rexp(iθ) sinθ = cosθ = exp(iθ) exp( iθ) 2i exp(iθ) + exp( iθ) 2 = Im c r = Re c r (1.5a) (1.5b) (1.5c) (1.5a) (1.5a) c c* c* = rexp( iθ) = r{cos( θ) + isin( θ)} = a ib (1.6) (1.2) A 0 ψ = Re[A 0 exp{i(kx ωt + φ)}] (1.7) A= A 0 exp{i(kx-ωt+φ)} (1.2) cos

6 I =<ψ 2 >= ω π /ω A 2 2π 0 cos 2 (kx ωt + φ)dt = A 0 (1.8) π /ω 2 2 (1.11) (1.2) A I = AA* 2 = A (1.9) (1.5a) A 0 φ ψ 1 = A 01 cos(kx ωt + φ 1 ) = Re[A 01 exp{i(kx ωt) + iφ 1 }] (1.10a) ψ 2 = A 02 cos(kx ωt + φ 2 ) = Re[A 02 exp{i(kx ωt) + iφ 2 }] (1.10b) ψ =ψ 1 +ψ 2 = Re[A 1 + A 2 ] (1.11) = A 01 exp(iφ 1 ) + A 02 exp(iφ 2 ) cos{kx ωt + arg(a 1 ) arg(a 2 )} ψ 1 = 4cos(kx ωt) ψ 2 = 3cos(kx ωt + π /2) cos ψ =ψ 1 +ψ 2 = Re[4 exp{i(kx ωt)} + 3exp{i(kx ωt) + i π 2 }] = Re[ 4 + i3 exp{i(kx ωt + tan )}] = 5cos(kx ωt + tan ) (1.12) 1.2

7 sin cos 1.2 f(x) x 0 f(x+x 0 )=f(x) f(x) f (x) = a 0 x x 0 {a n cos(n2πνx) + b n sin(n2πνx)} (1.13) n =1 ν=1/x 0 cos sin a n b n a n = b n = x 0 / 2 f (x)cos(n2πνx)dx (n=0,1,2, ) (1.14a) x 0 / 2 x 0 / 2 f (x)sin(n2πνx)dx (n=1,2,3, ) (1.14b) x 0 / 2 cos sin (1.13) ν

8 (1.13) cos sin cos sin (1.13) f(x) f (x) = a 0 x x 0 (a n ib n )exp(i 2πnx ) + 1 (a x n + ib n )exp( i 2πnx )(1.15) 0 n =1 A 0 = a 0 A n = a n ib n A n = a n + ib n f (x) = 1 x 0 x 0 n =1 x 0 (1.16a) (1.16b) (1.16c) A n exp(i 2πnx ) (1.17) n = x 0 n A n f(x) A n A n = x f (x)exp i 2nπx 0 / 2 dx (1.18) x 0 / 2 x 0 (1.17) A -n =A n * f(x) (1.13) (1.17) (1.17) x 0 1/2

9 f(x) 1 0 x 0 /2 x 0 x nx 0 x < (n + 1 f (x) = 2 )x 0 1 (n + 1 (1.19) 2 )x 0 x < (n +1)x 0 (1.17) (1.18) f (x) = 2 1 iπ 2n 1exp{i2π(2n 1) x } (1.20) n = x 0 (1.19) (1.20) 1.4(a) (1.20) (1.13) f (x) = 4 1 π 2n 1 sin{2π(2n 1) x } (1.21) x 0 n =1 n (b) n 1 5 n= (a) (b)

10 (1.13) (1.17) 1/x 0 (1.17 ) a n b n (1.17) A n f(x) 1.5 (1.20) cos sin f(x) {ψ n } f (x) = F n ψ n (x) (1.22) n = F n ψ n (x)ψ * n (x)dx = δ nm (1.23) δ nm (Kronecker) n=m δ nm =1 δ nm =0 f(x) F n

11 F n = f (ξ)ψ * n (ξ)dξ (1.24) sin cos sin cos (1.14) (1.23) exp (1.17) (1.13) sin cos sin cos sin cos (1.13) sin cos f(x) (1.19) (1.21) (1.20)

12

13 δ(x) = 0 (x 0) δ(x)dx =1 (2.1) x=0 x=0 2.1 du(x) dx = 0 (x 0) (2.2a) du(x) dx dx = [ u(x) ] =1 (2.2b) (2.1) ε(ε 0) 1 x ε 2ε δ(x) = 0 x > ε (2.3) (2.1) 2.1

14 f(x) (2.3) f (x)δ(x)dx = 1 ε f (x)dx = f (θ) f (0) (ε 0) (2.4) 2ε ε ε [ ε,ε] f(x) f(θ)={f(ε)+f( ε)}/2 (2.4) x=0 δ(x) a f(x) (2.4) f (x)δ(x a)dx = f (a) (2.5) (2.5) f(x) 2.1 δ f (x)δ( x)dx = f ( x)δ(x)dx = f (0) (2.6) δ(x) = exp( i2πνx)dν (2.7) f(x)

15 {ψ n } f (x) = F n ψ n (x) (2.8) n = F n ψ n (x)ψ * n (x)dx = δ nm (2.9) δ nm (Kronecker) n=m δ nm =1 n m δ nm =0 F n f(x) F n = f (ξ)ψ * n (ξ)dξ (2.10) f(x) f (x) = f (ξ) ψ * n (ξ)ψ n (x)dξ (2.11) n = (2.5) δ(ξ x) = ψ * n (ξ)ψ n (x) (2.12) n = ψ n (x) = 1 2N exp(i nπ N x) (2.13) δ(ξ x) = 1 2N exp{ i nπ (ξ x)} (2.14) N n = N (2.14) δ(ξ x) = exp{ i2πν n (ξ x)}δν n exp{ i2πν(ξ x)}dν (2.15) n = (2.7) Δν n = ν n +1 ν n

16 (2.7) t=0 0 DC 0 1 δ 2 δ δ(x) = N exp( N 2 πx 2 ) (N ) (2.16) 1 x 1 δ(x) = Nrect(Nx) = 2N 0 x > 1 (N ) (2.17) 2N δ(x) = Nsinc(Nx) = N sinπnx πnx (N ) (2.18) rect(x) rectangular sinc(x) sinc sinc(x) = sin(πx) /(πx) 2.2 (2.5)

17 2.2 δ (a) (b) (c)sinc (1.13) x 0 (1.14) (1.18) n/x 0 (1.18) A n ν=n/x 0 (ω=2πν) F(ν) (1.17) f (x) = F(ν)exp(i2πνx)dν (2.19) f(x) f(x) exp( i2πνx) [, ] f (x)exp( i2πνx)dx = dx = F(ν')δ(ν' ν)dν' dν'f(ν')exp{i2π(ν' ν)x} (2.20) = F(ν) (2.19) (2.20) f(x) F(ν) (2.20) f(x) (2.19) F(ν) 2.3(a) [ a/2,a/2] 1 x a /2 f (x) = 0 x > a/2 (2.21)

18 (2.20) F(ν) = a / 2 exp( i2πνx)dx = asinc(aν) (2.22) a / 2 F(ν) 2.3(b) (2.21) ν f(x) F(ν) F(ν) F(ν) = F(ν) exp{iφ(ν)} (2.23) φ(ν) F(ν) 2 f(x) Φ(ν) = F(ν) 2 (2.24) f(x) ν 2.3 (a) (b)

19 FT FT -1 FT[αg(x) + βf (x)] = αg(ν) + βf(ν) (2.25) FT[g(ax)] = 1 a G(ν a ) (2.26) α β a (2.26) a 1/a a FT[g(x a)] = exp( i2πaν)g(ν) (2.27) a a (shift invariant) FT 1 [FT[g(x)]] = g(x) (2.28) FT[FT[g(x)]] = g( x) (2.29) 2 FT[g(x, y)] = FT[g x (x)g y (y)] = FT[g x (x)]ft[g y (y)] (2.30) df (x) exp( i2πνx)dx = i2πνf(ν) (2.31) dx f(x) f (±) 0 FT[ d n dx n f (x)] = (i2πν)n F(ν) (2.32)

20 (FFT: Fast Fourier Transform) FFT (2.20) dx f(x) F(ν) 2π cos sin cos sin 1 FFT 2 (2.20) x ν Δx Δν F(nΔν) = f (lδx)exp( i2πnδν lδx)δx (2.33) l = n Δx Δν 4 n l N Δx=1 (2.33)

21 N 1 nl F n = f l W N (2.34) l =0 Δν = 1 NΔx = 1 N W N nl (2.35) = exp i2π nl = cos 2π nl isin 2π nl (2.36) N N N (2.34) N F 0 = F N F N 1 f l (N-1)/2 N/2 FFT (2.19) (2.34) N 1 N 1 N 1 N 1 nl F l W N = f k W kl nl (k n)l N W N = f k W N l =0 l =0 k =0 k =0 N 1 l =0 N 1 l =0 nl F l W N (2.37) N 1 = f k Nδ kn = Nf n k =0 f n = 1 N 1 nl F N l W N (2.38) l =0 1/N (2.35) 1/N N (2.34) (DFT: Discrete Fourier Transform)

22 (2.34) n 0 N 1 f W N 2 (2.36) cos sin N 2 N=8 F 0 f 4 W 0 8 F 2 f 4 W 8 8 = f 4 W 0 8 F 4 f 4 W 16 8 = f 4 W 0 8 F 6 f 4 W 24 8 = f 4 W 0 8 (2.34) N 2 N N DFT cos sin 1 cos sin cos sin cos sin 1/8 cos sin FFT FFT 2.4(a) (Cooley-Tukey) FFT 2.4(b) N=8 2 2 N=2 3 = (a) A B W s W t N=8 2.4(b) W m m=8 W m m W F 3 F 3 = f 0 + f 1 W 3 + f 2 W 6 + f 3 W f 4 W 4 + f 5 W f 6 W f 7 W = f 0 W 0 + f 1 W 3 + f 2 W 6 + f 3 W 9 + f 4 W 12 + f 5 W 15 + f 6 W 18 + f 7 W 21 (2.39)

23 F 3 (2.34) FFT 2 N 2 n n 2.4 (b) f F 2.4 FFT (a) (b)

24 FFT 2 FFT FFT 2 (2.26) (2.27) (2.28) (2.29) (2.31)

25 3.1 f(x) g(x) f (z) = f (ξ)δ(z ξ)dξ (3.1) (3.1) ( ) (convolution) ξ (4.1) f ξ x (3.1) δ z ξ S (3.1) S g(x) g(x) = S[ f (z)] = f (ξ)s[δ(z ξ)]dξ (3.2) -

26 z z x S z (3.2) S S[δ(z ξ)] = h(x,ξ) (3.3) h(x) h(x) 3.1 (3.3) f(ξ) g(x) = f (ξ)h(x,ξ)dξ (3.4) h(x,ξ) = h(x ξ) (3.5)

27 g(x) = f (ξ)h(x ξ)dξ = f (x) h(x) (3.6) f(x) h(x) (3.6) (3.6) (4.1) f(ξ) ξ x g(ξ-x) f(ξ) ξ x h(x-ξ) (3.6) h h(ξ-x) h(x-ξ) h(ξ-x) 3.2 n=0 n=2 (3.6) g 3.2 f h f(0) n=2

28 3.3 (a) (b) (c) 2 g 0 (2) = h(m) f (0) (3.7) m =0 f(1) f(2) 2 g 1 (2) = h(m 1) f (1) (3.8a) m =0 2 g 2 (2) = h(m 2) f (2) (3.8b) m =0 h(m) m h(m)=0 n=2 g(2) 2 g(2) = h(n m) f (m) (3.9) m = (b)

29 3.3(c) 3.3(a) (3.6) f(x) F(ν) 3.1 h(x) g(x) H(ν) G(ν) (3.6) (3.6) h(x) g(x) f(x) f(x) g(x) G(ν) = { f (ξ)h(x ξ)dξ}exp( i2πνx)dx = f (ξ)h(x ξ)exp{ i2πν(x ξ) i2πνξ}dξdx = [h(x ξ)exp{ i2πν(x ξ)}dx] f (ξ)exp( i2πνξ)dξ (3.10) = H(ν)F(ν)

30 H(ν) G(ν) F(ν)=G(ν)/H(ν) F(ν) f(x) H(ν) ν F(ν) T(ν) =1/ H(ν) 5.2 H(ν) (transfer function) Φ F (ν) = F(ν) 2 Φ G (ν) = G(ν) 2 (3.10) Φ G (ν) = H(ν) 2 Φ F (ν) (3.11) 3 H(ν)F(ν) h(x) f (x)

31 f(x) x f(x) x' f(x') f(x) g(x) 1 R(x) = lim T T T / 2 f (ξ) f * (ξ x)dξ (4.1) T / 2 T ξ (4.1) 6 < > R(x) =< f (ξ) f * (ξ x) > (4.2) (4.1) x 6 f(x) f(x) R(x) = f (ξ) f * (ξ x)dξ = f (ξ + x) f * (ξ)dξ = R( x) (4.3) (4.2) (4.1) x=0 R(0) = f (ξ) 2 dξ (4.3) R(0)

32 4.1(a) R(x) = rect(ξ)rect(ξ x)dξ = 1/ 2 1/ 2 x 1/ 2+x 1/ 2 dξ =1 x x 0 dξ =1+ x x < 0 (4.4) 4.1(b) 4.2(a) (4.1) 4.2(b) 4.1 (a) (b) 4.2 (a) (b) f(x) g(x) R(x) = f (ξ)g * (ξ x)dξ (4.5)

33 x (2.24) Φ(ν)exp(i2πνx)dν = 2 f (x)exp( i2πνx)dx exp(i2πνx)dν = { f (x 1 )exp( i2πνx 1 ) f * (x 2 )exp(i2πνx 2 ) dx 1 dx 2 }exp(i2πνx)dν = f (x 1 ) f * (x 2 )exp{i2πν(x 2 x 1 + x) }dνdx 1 dx 2 = f (x 1 ) f * (x 2 )δ{x 2 (x 1 x)}dx 1 dx 2 = f (x 1 ) f * (x 1 x)dx 1 = R(x) (4.6) (Wiener-Khintchine theorem) x=0 Φ(ν)dν = F(ν) 2 dν = f (x) 2 dx (4.7) (Parseval theorem) f(x) g(x) f (t)g * (t)dt = F(t)G * (t)dt (4.8) f(x) g(x) f(x)=g(x) (4.7)

34 4.3 f(x) 4.3 x X f s (x) f s (x) f s (x) = comb( x ) f (x) (4.9) X comb(x) comb(x) = δ(x n) (4.10) n= AD

35 (4.9) f s (x) F s (ν) = FT[comb( x )] F(ν) (4.11) X comb comb (4.10) comb(x)exp( i2πνx)dx = exp( i2πnν) (4.12) n= comb comb(x) = a n exp( i2πnx) (4.13) n= a n 1/ 2 a n = comb(x)exp( i2πnx)dx =1 (4.14) 1/ 2 (4.10) (4.13) (4.11) F s (ν) = δ(ν n X ) F(ν) = F(ν n ) (4.15) X n= n= (4.11) comb FT[comb( x )] = Xcomb(Xν) = Xδ(Xν n) (4.16) X (4.15) δ(xν n)g(ν)dν = 1 X δ(ν n )g(ν)dν (4.17) X

36 δ 4.4 (4.15) 4.4 F(ν) ν=1/x B 1/2X ν=0 X 1 2B (4.18) X=1/2B 4.4 H(ν) = rect( ν 2B ) (4.19) X=1/2B (4.19) (4.15) F s (ν)h(ν) = F(ν) (4.20)

37 (4.20) f(x) (4.20) f (x) = [comb( x ) f (x)] h(x) = { X δ( n= = f ( n 2B )sinc{2b(x n 2B )} n= x X n) f (x)} {2Bsinc(2Bx)} (4.21) (2.64) 4.5 X=1/2B sinc (Shannon) B X << 1/2B (4.19) B X >>1/2B (2.62)

38 X =1/2B X =1/2B X =1/2B 4 (4.8)

39 f(x) h(x) g(x) = h(x) f (x) = h(ξ x) f (ξ)dξ (5.1) 5.1 (a) (b) h(x) g(x) f(x) (5.1) (deconvolution) 5.1 f(x) h(x)

40 5.1(a) h(x) 5.1(b) g(x) h(x) f(x) (5.1) N g(x) f(x) i g i f i h(x) {h ij } (5.1) N g i = h(i j)x( j) = h ij x j (5.2) j =1 j =1 N (5.2) h h(1-n) h(n-1) g x g x h H (5.2) g = H f (5.3) H 5.1 f(x) H H 0 f H H ij f i = N j =1 g j H ji H (5.4)

41 (5.4) H 0 (Jaccobi) H D 0 D -1 k+1 f (k +1) = f (k ) + D 1 (g H f (1) ) (5.5) (5.5) f (k +1) = f (k ) g = H f (k +1) = H f f (0) g f (0) = g D 5.2 h 11 =h 0 (5.5) f (k +1) = f (k ) + 1 (g H f (1) ) (5.6) h 0 (5.6) 1/h 0 d d/h d 0 h 0 <d<h 0 (5.3) (5.6) f (k+1) i f (k+1) j j=1 i 1 (Gauss-Seidel ) f (k+1) j j=i 1 (5.6) N (k f +1) (k 1 = f ) (k (g h 1 h 1 j f ) j ) (5.7a) 0 j =1

42 i 1 N (k f +1) (k i = f ) i + 1 (k (g h i h 1 j f +1) (k j h 1 j f ) j ) (i = 2,3,,N) (5.7b) 0 j =1 j =i (5.1) (5.6) H(ν) 0 H(ν) 0 H(ν)=0 3.1 H(ν) G(ν) F(ν) F(ν)= G(ν)/H(ν) g(x) G(ν) T i (ν)=1/h(ν) f(x) T i (ν) H(ν) H

43 5.3 g(x) n(x) u(x) g(x) 5.3

44 n(x) g(x) n(x) u(x) = g(x) + n(x) (5.8) u(x) g(x) u(x) t(x) g (x) g (x) = t(x) u(x) (5.9) 2 e = g (x) g(x) 2 dx (5.10) (5.10) E =< G (ν) G(ν) 2 >=< T(ν){G(ν) + N(ν)} G(ν) 2 > (5.11) < > N(ν) < N >=< N * >= 0 E = G 2 + T 2 ( G 2 + < N 2 >) T G 2 T * G 2 (5.12) ν T E = Γ T G 2+ 2 G 2 G 4 Γ Γ (5.11) Γ = G 2 + < N 2 > (5.12) T(ν) = G(ν) 2 G(ν) 2 + < N(ν) 2 > (5.13)

45 T(ν)=1 g(x) G(ν) G(ν) u(x) h(x) u(x) f(x) (5.1) u(x) = g(x) + n(x) = h(x) f (x) + n(x) (5.14) u(x) f(x) t(x) n(x,y) t(x)

46 f (x) = t(x) u(x) (5.15) 2 e = f (x) f (x) 2 dx (5.16) 2 (5.14) U = HF + N (5.17) (5.16) 2 E =< F F 2 >=< T(HF + N) F 2 > (5.18) 2 E = F 2 + T 2 ( H 2 F 2 + < N 2 >) T * F 2 H * T F 2 H (5.19) E = Γ T H* F 2+ 2 F 2 H 2 F 4 (5.20) Γ Γ Γ = H 2 F 2 + < N 2 > (5.21) T T(ν) = F(ν) 2 H * (ν) F(ν) 2 H(ν) 2 + < N(ν) 2 > (5.22) < N(ν) 2 >= 0 T T(ν) = T i (ν) =1/H(ν) N(ν) F(ν) H(ν) T i (ν)=1/h(ν)

47 H(ν) (5.22) T(ν) = H * (ν) H(ν) 2 + < N(ν) 2 > F(ν) 2 (5.23) α =< N(ν) 2 > / F(ν) (a) sinc H 0 T i(ν)=1/h(ν) 5.4(b) 0 5.4(c) (5.23) H 0 H (a) (b) (c) (5.23) 0 5 (5.3) H f (5.4)

48

49 X x (sample) X X <x P X (x) P X (x) (probability distribution) x - + P X ()=1 x x 0 P X (x)=p(x) P (x) x (probability density distribution) p(x) = dp(x) dx (6.1) x x+δx p(x)δx (a) x x+δx (

50 6.1 (a) b ) 6.1(b) p(x)δx x x+δx p(x) x P (x) p(x) =1 (6.2) x 6.1 X x x x(t) x x x(t) x(t)

51 x(t) [0,T] 1 x = lim T T T x(t)dt (6.3) [0,T] N {x k (t)}(k=1,2,,n) t=t 0 ensemble average 1 x 0 = lim N N N x k (t 0 ) (6.4) k =1 x = x 0 < x >= x x x 6.2

52 x 1 σ 2 = lim N N N (x k x ) 2 (6.5) k =1 σ 2 =< (x k x ) 2 > (6.6) x Δx x k p(x k ) x k x k p(x k )Δx x x = xp(x)dx (6.7) x σ 2 = (x x ) 2 p(x)dx (6.8) σ x σ 2 2 n x n m n =< x n >= x n p(x)dx (6.9) 1 2 m 1 = x (6.10a) m 2 = σ m 1 (6.10b)

53 X<x Y<y 2 P X,Y (x,y) P X,Y (x,y) x y p X,Y (x,y) x y p X,Y (x,y) = p X (x)p Y (y) (6.11) 2 y x p X Y (x y) = p X,Y (x, y) p Y (y) y x 2 x (6.12) x = xp X,Y (x,y)dxdy = xp X (x)dx (6.13) x σ 2 x = (x x ) 2 p X,Y (x,y)dxdy = (x x ) 2 p X (x)dx (6.14) y x y R xy C xy (covariance) R xy =< xy >= xyp X,Y (x, y)dxdy (6.15)

54 C xy =< (x x )(y y ) >= (x x )(y y ) p X,Y (x, y)dxdy (6.16) 6.3 (a) (b) (Normal distribution) (Gaussian distribution) x p(x) = 1 2πσ exp (x x ) 2 2 2σ 2 (6.17) σ 2 ±σ 68.5% ±3σ (a)

55 (b) 6.3(a) p(x, y) = 2πσ 1 σ 2 1 r exp 1 (x x ) 2 2 2(1 r 2 2 ) σ 1 2r(x x )(y y ) (y y )2 + 2 σ 1 σ 2 σ 2 (6.18) r x y r =< (x x )(y y ) > r=0 2 p(x, y) = p(x) p(y) x n n < x n >= 1 x n k = x n (6.19) k =1 < x n > x (n ) <x n > n x n σ 2 n =< (x n x ) 2 >=< 1 (x n k x ) 2 > (6.20) k =1 x < (x i x )(x j x ) >= 0 (6.19) (6.20)

56 σ 2 n =< (x n x ) 2 >=< 1 n = 1 n < 1 n n k =1 n k =1 (x k x ) n x k x n i j 2 >=< 1 n (x n k x ) k =1 (x i x )(x j x ) >= 1 n < 1 n 2 > n k =1 (x k x ) 2 >= σ2 n (6.21) n 1 1/n (central limit theorem) (large number theorem) x = x 1 + x x n (6.22) x i n x x SN

57 R Δν 2 < v 2 >= 4k B TRΔν (6.23) k B 2 < i 2 i 2 >= 2eI Δν (6.24) e I 1/f Signal-to-Noise ratio: SN SNR SN P S P N SNR =10log 10 P S P N (6.25) [db] SNR 0dB 0dB

58 1 6 p(x) = σ 2π exp x 2 2σ 2 x 2 p(x)dx σ 1 p(x) = σ 2π exp x 2 2σ 2 x σ 0 e ax 2 dx e ax 2 dx = π 2 2 a 0 1 (1) a 0 x 2 e ax 2 dx (2) a = 1 2σ 2 0 x 2 e x 2 2σ 2 dx x 2 p(x)dx σ

59 SN SN 7.1 RC 7.1(a) 7.1(b) H(ω) 7.1 RC (a)rc (b)

60 H(ω) = R R iωrc (7.1) h(t) = 1 R 0 C exp( t RC ) (7.2) V in RC 3dB RC 0 i s i i N N S = s i = Ns (7.3) i=1 N s s 1 s N i N i=1

61 n i N 0 σ n 2 = 1 n N σ 2 N =< n i i=1 2 k =1 (x k x ) 2 >= Nσ 2 (7.4) σ 2 N N SN = S σ N = N s σ N SN N (7.5) N RC RC h(x) t x f(x) g(x) g(x) = h(x) f (x) (7.6) 7.6

62 7.6 f(x) AD f(i) i w(i) i g(i) = 1 W m w(i + j) f ( j) 7.7 j = m m W = w( j) 7.8 j = m j (7.7) g N g(i) f(j) N+2m 7.2 w(j) w( j) =1 j [ m, +m] M=2m+1 i g(i) = 1 M m f (i + j) 7.9 j = m 1/N SN 1/ N M

63 i 2m+1 2 g( j) = a( j i) 2 + b( j i) + c j = m + i,,m + i (7.10) a b c 2 m +1 e = {g(x) f (x)} 2 (7.11) j = m a b c w(j) (7.7)

64 7 (m=3) w(j) w(±3) = 2 w(±2) = 3 w(±1) = 6 w(0) = 7 (7.8) W W=21 1 f(i) s(i) n(i) f (i) = s(i) + n(i) (7.12) 0 σ n 2 f (i) 2 σ f 2 (i) =< { f (i) f (i)} 2 > (7.13) s (i) s (i) = σ 2 2 f σ n 2 { f (i) f (i)} + f (i) (7.14) σ f f (i) =< f (i) > (7.15) (7.14) (7.14) s (i) = f (i) σ f 2 ~ σ n 2 s (i) = f (i) (7.6) f(x) h(x) g(x)

65 G(ν) = H(ν)F(ν) (7.16) H(ν) (7.7) H(ν) = sinc(x) = sinπx πx (7.17) (7.17) 0 FFT (7.10) i 2m+1 g'( j) = 2a( j i) + b (7.18) i

66 g'(i) = b m=3 2 w(±3) = 3 w(±2) = 2 w(±1) = 1 w(0) = (7.12) s(x) s(x) = Acos(ω 0 t +θ) (7.19) R n (x) R(x) = A2 2 cosω x + R 0 n (x) (7.20) (a) n(x) 7.4(b) s(x) R(x) 7.4(c) x=0 0

67 R n (x) R(x) x R(x) 7.4 (a) (b) (c) ν 0 =ω 0 /2π (7.20) Φ(ν) = A2 4 δ(ν ν 0 ) + C (7.21) (7.21) C

68 (7.6) (7.6) H(ν) G(ν) = H(ν)F(ν) f(x) F(ν) G(ν) H(ν) G(ν) f(x) h(x) g(x) g(ξ) = f (ξ')h(ξ ξ')dξ'= f (ξ ξ')h(ξ')dξ' (7.21) R fg (x) = f (ξ)g(ξ + x)dξ = f (ξ x)g(ξ)dξ (7.22) R fg (7.21) ξ

69 R fg (x) = f (ξ x) f (ξ ξ')h(ξ')dξdξ' = f (ξ) f (ξ + x ξ')h(ξ')dξdξ' = R ff (x ξ')g(ξ')dξ' (7.23) R ff Φ fg (ν) = H(ν)Φ ff (ν) (7.24) Φ ff Φ fg (ν) = H(ν) H(ν) s(x) (matched filter) f(x) n(x) f (x) = s(x x 0 ) + n(x) (7.25) x 0 s(x) R fs (x) = f (ξ)s( ξ x)dξ = R ss (x x 0 ) (7.26) x=x 0 s(x)

70 7 7.1 RC (7.1) (7.2)

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n 1, R f : R R,.,, b R < b, f(x) [, b] f(x)dx,, [, b] f(x) x ( ) ( 1 ). y y f(x) f(x)dx b x 1: f(x)dx, [, b] f(x) x ( ).,,,,,., f(x)dx,,,, f(x)dx. 1.1 Riemnn,, [, b] f(x) x., x 0 < x 1 < x 2 < < x n 1

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

1   yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α 1 http://sasuke.hep.osaka-cu.ac.jp/ yousuke.itoh/lecture-notes.html 1.1. 1. [, π) f(x) = x π 2. [, π) f(x) = x 2π 3. [, π) f(x) = x 2π 1.2. Euler dx = 2π, cos mxdx =, sin mxdx =, cos nx cos mxdx = πδ mn,

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

数値計算:フーリエ変換

数値計算:フーリエ変換 ( ) 1 / 72 1 8 2 3 4 ( ) 2 / 72 ( ) 3 / 72 ( ) 4 / 72 ( ) 5 / 72 sample.m Fs = 1000; T = 1/Fs; L = 1000; t = (0:L-1)*T; % Sampling frequency % Sample time % Length of signal % Time vector y=1+0.7*sin(2*pi*50*t)+sin(2*pi*120*t)+2*randn(size(t));

More information

[1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin 4πt = a

[1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin 4πt = a 13/7/1 II ( / A: ) (1) 1 [] (, ) ( ) ( ) ( ) etc. etc. 1. 1 [1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t ) 1 1.1 [] f(x) f(x + T ) = f(x) (1.1), f(x), T f(x) x T 1 ) f(x) = sin x, T = 2 sin (x + 2) = sin x, sin x 2 [] n f(x + nt ) = f(x) (1.2) T [] 2 f(x) g(x) T, h 1 (x) = af(x)+ bg(x) 2 h 2 (x) = f(x)g(x)

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1. Section Title Pages Id 1 3 7239 2 4 7239 3 10 7239 4 8 7244 5 13 7276 6 14 7338 7 8 7338 8 7 7445 9 11 7580 10 10 7590 11 8 7580 12 6 7395 13 z 11 7746 14 13 7753 15 7 7859 16 8 7942 17 8 Id URL http://km.int.oyo.co.jp/showdocumentdetailspage.jsp?documentid=

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h 009 IA I, 3, 4, 5, 6, 7 7 7 4 5 h fx) x x h 4 5 4 5 1 3 1.1........................... 3 1........................... 4 1.3..................................... 6 1.4.............................. 8 1.4.1..............................

More information

QMI_09.dvi

QMI_09.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 3.1.2 σ τ 2 2 ux, t) = ux, t) 3.1) 2 x2 ux, t) σ τ 2 u/ 2 m p E E = p2 3.2) E ν ω E = hν = hω. 3.3) k p k = p h. 3.4) 26 3 hω = E = p2 = h2 k 2 ψkx ωt) ψ 3.5) h

More information

QMI_10.dvi

QMI_10.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 σ τ x u u x t ux, t) u 3.1 t x P ux, t) Q θ P Q Δx x + Δx Q P ux + Δx, t) Q θ P u+δu x u x σ τ P x) Q x+δx) P Q x 3.1: θ P θ Q P Q equation of motion P τ Q τ σδx

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

body.dvi

body.dvi ..1 f(x) n = 1 b n = 1 f f(x) cos nx dx, n =, 1,,... f(x) sin nx dx, n =1,, 3,... f(x) = + ( n cos nx + b n sin nx) n=1 1 1 5 1.1........................... 5 1.......................... 14 1.3...........................

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 通信方式第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/072662 このサンプルページの内容は, 第 2 版発行当時のものです. i 2 2 2 2012 5 ii,.,,,,,,.,.,,,,,.,,.,,..,,,,.,,.,.,,.,,.. 1990 5 iii 1 1

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m 2009 10 6 23 7.5 7.5.1 7.2.5 φ s i m j1 x j ξ j s i (1)? φ i φ s i f j x j x ji ξ j s i (1) φ 1 φ 2. φ n m j1 f jx j1 m j1 f jx j2. m j1 f jx jn x 11 x 21 x m1 x 12 x 22 x m2...... m j1 x j1f j m j1 x

More information

I

I I io@hiroshima-u.ac.jp 27 6 A A. /a δx = lim a + a exp π x2 a 2 = lim a + a = lim a + a exp a 2 π 2 x 2 + a 2 2 x a x = lim a + a Sic a x = lim a + a Rect a Gaussia Loretzia Bilateral expoetial Normalized

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

kou05.dvi

kou05.dvi 2 C () 25 1 3 1.1........................................ 3 1.2..................................... 4 1.3..................................... 7 1.3.1................................ 7 1.3.2.................................

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

画像工学特論

画像工学特論 .? (x i, y i )? (x(t), y(t))? (x(t)) (X(ω)) Wiener-Khintchine 35/97 . : x(t) = X(ω)e jωt dω () π X(ω) = x(t)e jωt dt () X(ω) S(ω) = lim (3) ω S(ω)dω X(ω) : F of x : [X] [ = ] [x t] Power spectral density

More information

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a, [ ] 8 IC. y d y dx = ( dy dx ( p = dy p y dx ( ( ( 8 ( s8. 3 A A = ( A ( A (3 A P A P AP.3 π y(x = { ( 8 ( s8 x ( π < x x ( < x π y(x π π O π x ( 8 ( s83.4 f (x, y, z grad(f ( ( ( f f f grad(f = i + j

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta 009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n

More information

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63> 信号処理の基礎 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/081051 このサンプルページの内容は, 初版 1 刷発行時のものです. i AI ii z / 2 3 4 5 6 7 7 z 8 8 iii 2013 3 iv 1 1 1.1... 1 1.2... 2 2 4 2.1...

More information

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,, 6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) ( + + 3 + 4 +... π 6, ( ) 3 + 5 7 +... π 4, ( ). ( 3 + ( 5) + 7 + ) ( 9 ( ( + 3) 5 + ) ( 7 + 9 + + 3 ) +... log( + ), ) +... π. ) ( 3 + 5 e x dx π.......................................................................

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

(interferometer) 1 N *3 2 ω λ k = ω/c = 2π/λ ( ) r E = A 1 e iφ1(r) e iωt + A 2 e iφ2(r) e iωt (1) φ 1 (r), φ 2 (r) r λ 2π 2 I = E 2 = A A 2 2 +

(interferometer) 1 N *3 2 ω λ k = ω/c = 2π/λ ( ) r E = A 1 e iφ1(r) e iωt + A 2 e iφ2(r) e iωt (1) φ 1 (r), φ 2 (r) r λ 2π 2 I = E 2 = A A 2 2 + 7 1 (Young) *1 *2 (interference) *1 (1802 1804) *2 2 (2005) (1993) 1 (interferometer) 1 N *3 2 ω λ k = ω/c = 2π/λ ( ) r E = A 1 e iφ1(r) e iωt + A 2 e iφ2(r) e iωt (1) φ 1 (r), φ 2 (r) r λ 2π 2 I = E 2

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

214 March 31, 214, Rev.2.1 4........................ 4........................ 5............................. 7............................... 7 1 8 1.1............................... 8 1.2.......................

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

untitled

untitled - k k k = y. k = ky. y du dx = ε ux ( ) ux ( ) = ax+ b x u() = ; u( ) = AE u() = b= u () = a= ; a= d x du ε x = = = dx dx N = σ da = E ε da = EA ε A x A x x - σ x σ x = Eε x N = EAε x = EA = N = EA k =

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information