Green

Size: px
Start display at page:

Download "Green"

Transcription

1 28 6/-3 2 ax, bx R, L = d2 ax 2 dx 2 + bx d dx 2 L X = {Xt, t }. σ y = inf{t > ; Xt = y} t Xt L y = sup{t > ; Xt = y} 2. Gauss Gamma 3. tree 4. t Black-Scholes Madan-Roynette-Yor [6] σ y E x [exp λσ y ], x = X, L Green L y X scale s s = speed pt, x, y P x L y dt = pt, x, ydt 2sy Bessel * 27 *2 i

2 Green Gamma GIG tree GIG, Gamma Black-Scholes formula A ii

3 . S R R + =, S a : S R +, b : S R 2 L = d2 ax 2 dx 2 + bx d dx X = {Xt, t } W, P Wiener dxt = axtdwt + bxtdt, X = x, X = {Xt, t } W x 2 X Wiener P P x X Xwt = wt, w W x, P x E x f E x [fxt] fx lim = Lfx. t t {P x } x S X S = R ± S = R +.2. * W = {w : [, R; w = } *2 W x = {w : [, S; w = x}

4 c S s x, m x x s 2bz x = exp az dz, m x = 2 x ax exp c L = d2 ax 2 dx 2 + bx d dx = m x d d dx s x dx c 2bz az dz, m xdx speed s x sx scale.2 d d dm ds mdx sx m density s S = R + c s ξdξ c ξ m ηdη =, s ξdξ ξ c c m ηdη =, L L 2 S, m xdx Luxvxm xdx = uxlvxm xdx, S Ls = S u, v C S,. X y σ y σ y = inf{t > ; Xt = y} α, β S, α < x < β, P x σ β < σ α = sx sα sβ sα. σ = σ α σ β Ls = {sxt} {sxt σ} E x [sxt σ] = sx t p = P x σ β < σ α sx = E x [sxσ] = sα p + sβp.2 i X = {Xt} speed pt, x, y P x Xt dy = pt, x, ym ydy, t >, x, y S. ii pt, x, y u t = Lu u, x = φx ut, x = E x [φxt] = φypt, x, ym ydy S 2

5 φ {T t } t T t φx = E x [φxt] {T t } pt, x, y. Brown Brown {Bt, t } Brown k > B k t = Bt + kt B k = {B k t} Brown B k d 2 L k = 2 dx 2 + k d dx = 2e 2kx d d dx e 2kx dx R speed 2e 2kx dx scale e 2kx scale 2k e 2kx B = X x t = x expbt + kt {X x t} dx x t = X x tdbt k X x tdt L = d2 x2 2 dx k x d dx = 2x 2k d dx x 2k d dx, speed 2x 2k dx scale x 2k+ scale 2k x 2k.2 Bessel δ {Bt, t } B Brown {Rt} drt = dbt + δ 2Rt dt {Rt} L = 2 dx 2 + δ d 2x dx = d 2 2x δ d d dx x δ+ dx {Rt} δ Bessel δ {Rt} δ Brown δ 2 δ > 2 scale sx x δ+2 sx <, lim x sx =.2 Green Green Green Bessel L S 2 X = {Xt} X speed m xdx pt, x, y α >.2 Green 3

6 G α φx = e αt E x [φxt]dt = e αt dt φypt, x, ym ydy S G α L Green Gx, y; α Gx, y; α = e αt pt, x, ydt L Green T t = exptl G α φ = e αt T t φdt = e α Lt φdt = α L φ.3 G α φ α Lu = φ Green Lu = αu.4 α > Lu = αu 2 u x; α u 2 x; α Lu = αu e, e 2 c S e c =, e 2 c =, de ds c s c de 2 c =, ds de c =, dx u, u 2 [], page 74,. hα, α >, x Wronskian hα = u s x x; αu 2 x; α u x; αu 2x; α..5 L speed Green Gx, y; α hαu x; αu 2 y; α, x y, Gx, y; α = hαu y; αu 2 x; α, x > y, φ C S gx = Gx, y; αφym ydy S g α Lg = φ g.3 Brown B k = {B k t = Bt + kt} P x Bt + kt dy = 2πt e y x kt2 /2t dy B k Lebesgue pt, x, y = e ky x y x2 exp k2 t. 2πt 2t 2 4

7 speed 2e 2ky dy y x2 2t pt, x, y = 2 2πt e ky+x exp k2 t 2 speed Green Gx, y; α = e αt pt, x, ydt 2 k 2 + 2α e k+ k2 +2αx e k+ k 2 +2αy, x y, α >, d 2 L = 2 dx + k d 2 dx Lu = αu u, u 2 u x; α = e k+ k 2 +2αx, u 2 x; α = e k+ k 2 +2αy, Wronskian Green.4 Bessel δ > 2 δ Bessel L = d 2 2 dx 2 + δ d 2x dx = d d 2x δ dx x δ. dx Green ν = δ 2/2 ν index Lu = 2 u x ν x u x = αux Bessel I ν, K ν ν z z/2 2n I ν z = 2 n!γν + n + = 2πi K ν z = π 2 n= I ν z I ν z sin νπ = w z + z w z + ν2 wz = z 2 α > +πi πi. e z cosht coshνtdt. e z cosht νt dt, u x; α = x ν I ν 2αx, u 2 x; α = x ν K ν 2αx Lu = αu I νzk ν z I ν zk νz = z s x u x; αu 2x; α u x; αu 2 x; α = speed 2x δ dx = 2x 2ν+ dx Green Gx, y; α x y Gx, y; α = xy ν I ν 2αxK ν 2αy.2 Green 5

8 Bessel I ν xk ν x = 2 Gx, y; α = xy ν 2 e t/2 x2 +y 2 /2t I ν xy t e αt x2 +y 2 /2t xy dt I ν t t dt, < x y,. t δ Bessel speed p δ t, x, y p δ t, x, y = 2 2txy ν e x +y 2 /2t xy I ν t Lebesgue p δ t, x, y p δ t, x, y = y ν+ 2 t x ν e x +y 2 /2t xy I ν t.3 X = {Xt} S 2 L = d2 ax 2 dx 2 + bx d dx = d d m x dx s x dx c S σ c σ c = inf{t ; Xt = c}. { } = σ c = σ c Laplace L Green Lu = αu.6 c S α > E x [e ασ c ], x c, Ec [e ασ x ], x c, v x; α = Ec [e ασ x ] v 2 x; α =, x c, E x [e ασ c ], x c, S v, v 2 v i c = Lu = αu f x c fx = lim x fx = G α fc S X Markov G α fx [ ] [ ] G α fx = E x e αt fxtdt = E x e αt fxtdt [ ] [ = E x e ασc e αt fxσ c + tdt = E x [e ]E ασc c σ c ] e αt fxtdt. x c v x; α Lu = αu v c; α = x c S g x c gx = lim x gx = S = R g = S = R + G α gc v 2 6

9 .5 Brown {Bt} Brown k > B k = {B k t Bt + kt} c σ c c > x E x [e ασ c ] = e k+ k 2 +2αx c = P x σ c dt = c x 2πt 3 e c x kt2 /2t dt = e αt c x 2πt 3 e c x kt2 /2t dt c xec xk e c x2 /2t k 2 t/2 dt 2πt 3 Gauss x > c E x [e ασc ] = e k+ k 2 +2αx c α P x σ c < = P x inf B k t c = e 2kx c t α > 2 v + kv = αv, v c; α =,.6 Bessel δ > 2 X = {Xt} δ Bessel L u x; α = x ν I ν 2αx, u 2 x; α = x ν K ν 2αx, Lu = αu x c E x [e ασc ] = u ν x; α c u c; α = I ν 2αx x I ν 2αc, x c E x [e ασ c ] = u ν 2x; α c u 2 c; α = K ν 2αx x K ν 2αc. K ν z = 2 ν Γνx ν + o, x, α x c P x σ c < = P x inf Xt c = t 2ν c. x B 3 ξ R 3 3 Brown ξ c P inf B 3 t c = c t ξ..4 Brown δ Bessel δ > 2 S =, X = {Xt} σ = lim t Xt =.4 7

10 L = d2 ax 2 dx 2 + bx d dx = m x X dxt = axtdbt + bxtdt a < x < b P x σ a < σ b = sb sx sb sa d d dx s x dx s+ =, s < a b s = X y, L y L y = sup{t ; Xt = y}. { } = L y =.7 Pitman-Yor scale pt, x, y X speed m ydy P x L y dt = pt, x, y dt, t >. sy Pitman-Yor [9] Revuz-Yor [] - - [4].8 x, y, u y x = P x σ y < = P x L y >, x y u y x = sx/sy, x > y. x y u y x = x > y M > x M P x σ y < σ M = sm sx sm sy M s = P x σ y < = sx/sy.3 u y x x.9 P x L y > t = E x [u y Xt], t >. x X t y F t = σ{xs, s t} Xt y P x L y > t F t = u y Xt.9 E x [u y Xt] u y 8

11 . y > t {Λ y t } Xt y = X y + Xt y + = X y + + Xt y = X y + sgnxs ydxs + Λ y t,, dλ y t {Λ y t } X y {Xs>y} dxs + 2 Λy t, {Xs y} dxs + 2 Λy t, {t; Xt = y}. t > ϕ ϕxsaxsds = ϕzλ z t dz. R +.2 R + f fxt = fx + f XsdXs + Λ z t f dz 2 R + f f f f 3 f C 2 f dy = f ydy. u y Xt u y.3 y > u yx = sy s x y, x, u yx = s y sy δ yx + s x sy y, x..7 u y Xt = u y X + u y Xt s y2sy Λ y t u yxs axsdbs + s y 2 sy Λy t 4 E x [u y Xt] = u y x + s y 2sy E x[λ y t ] φ C R +. [ ] [ ] E x φxsaxsds = E x φyλ y t dy = φye x [Λ y t ]dy R + R + *3 f f *4 Pitman-Yor [9], p.327, Revuz-Yor [], p.32, 4.6 Exercise.4 9

12 E x [ ] φxsaxsds = ds φyayps, x, ym ydy R + = φyaym ydy R + ps, x, yds E x [Λ y t ] = aym y.9 ps, x, yds P x L y > t = E x [u y Xt] = u y x + s y 2sy E x[λ y t ] = u y x + s y 2sy aym y ps, x, yds s ym y = 2/ay t.7 Brown B = {Bt} Brown k > L c = sup{t > ; Bt + kt = c} c > x P x L c dt = k e kc x exp c x 2 2πt 2 t + k 2 t dt L c P x Gauss GIGc x 2, k 2 ; /2 c = x P x L c dt = k 2πt e k2 t/2 dt 2k 2 L c /2 Gamma Brown Xt = expbt + kt.7 B = x c σ x c L x c Brown Markov σ x c L c c L x c 2.3 c < x P x L c dt = e kc x c x = e 2kx c..5 P x L c < = P x σ c < = P x inf B k t c = e 2kx c. t.8 Bessel δ > 2 L y δ Bessel y > ν = δ 2/2 ν y P x L y dt = e x2 +y 2 /2t xy I ν. 2δ 2t x t Bessel. α >

13 E x [e αl y ] = σ y ν E x [e ασ y y I ν 2αx ] = x I ν 2αy e αt P x L y dt = ν y I ν 2αxK ν 2αy δ 2 x Bessel Markov E x [e αl y ] = E x [e ασ y ]E y [e αl y ].4

14

15 2 Gamma GIG µ > Ω, F, P γ µ P γ µ dy = Γµ yµ e y dy, y >, γ µ µ Gamma 2.2 ν R, a, b > Ω, F, P I ν ν/2 P I ν b dx = x ν a 2K ν ab exp a 2 x + bx dx, x >, I ν Gauss GIG GIGa, b; ν K ν Bessel 2. B k = {Bt + kt} x k > Brown σ c B k c σ c GIGc x 2, k 2 ; /2 2. ν = /2 Gauss GIGa, b; /2 Gauss N Gauss Nm, σ 2 k N µ log E[expµN] = mµ + σ 2 µ 2 /2 k I λ log E[expλI /2 ] K /2 z = K /2 z = π/2z /2 e z k I λ = ab ab 2λ m < a = /σ 2, b = m 2 /σ 2 k N k I λ = λ 2. X GIGa, b; ν X GIGb, a; ν I ν E[I ν α ] = α/2 a K ν+α ab b K ν ab GIG I ν Iν b,c Iν c,b Iν ] ] E [ exp α log a Iν Iν b,c [ = E exp α log c Iν c,b Iν b,a α > b,a 3

16 2.2 I ν Iν b,c Iν c,b Iν b,a a Iν Iν law b,c = c Iν c,b Iν b,a. Gamma GIG 2.3 µ > I µ γ µ I µ + 2b γ µ I µ Brown GIGc x 2, k 2 ; /2 k = /2 Brown 2.3 GIG Letac-Seshadri [5] 2.4 i X, Y a > Y law = 2a γ µ X law = X + Y X GIGa, a; µ law ii X, Y, Y 2 a, b > Y = 2a law γ µ Y 2 = 2b γ µ X law = Y + Y 2 + X X GIGa, b; µ X GIG X X + Y Y + X + Y {y n } n= [y,..., y n ], n =, 2,..., [y ] = y, [y,..., y n ] = y + [y,..., y n ]. 2.5 d X, Y, Y 2,..., r, m N law Y md+r = Y r i Z n [Y,..., Y n ] n ii {X m } m= = [Y md+, Y md+2,..., Y m+d, ], m =,, 2,..., 2. X m+ X m i Z X X m m Z iii X law = [Y, Y 2,..., Y d, X ] X 2.5 appendix 2.4 i 2.5 d =, Y i Y +/X law = Z law = 2a law γ µ X = = Y + X X Z GIGa, a; µ X GIGa, a; µ law ii 2.5 d = 2 a, b > Y 2i+ = 2a law γ µ Y 2i = 2b γ µ law X = [Y, Y 2, X ] X Z 4 2 Gamma GIG

17 X GIGa, b; µ X law = [Y, Y 2, X ] X GIGa, b; µ 2.6 i {Y i } i= 2a γ µ IID [Y, Y 2,..., Y n ] n GIGa, a; µ ii {Y i } i= a, b > Y 2i+ law = 2a γ µ Y 2i law = 2b γ µ [Y, Y 2,..., Y n ] n GIGb, a; µ Gamma GIG 2.7 γ µ µ Gamma I µ, I µ γ µ GIGa, b; µ, GIGa, b; µ law, =, 2 I µ + 2b γ µ I µ I µ + 2b γ µ I µ a γ µ. 2.3 Gamma GIG 2.8 X, Y Y X + Y X law a, b, µ > X = I µ, Y law = 2b γ µ. X + Y 2.7 M = {k, k 2, 2 k ; }, k 2 ψ 2 k, k 2 = k k 2, k 2 : M, 2, ψ 2 2 k, k 2 = k, k 2 k : M, 2 ψ 2 ψ 2 2 x, y = x, y + x y + x. 2.2 µ >, a, b > K, K 2 M- P K dk, K 2 dk 2 = C k k 2 µ exp 2 ak + bk 2 dk dk I ±µ, I µ b,a γ µ ψ 2 K, K 2 law = 2 a γ µ, I µ, ψ 2 2 K, K 2 law = I µ b,a, 2 b γ law µ =, 2 I µ b γ µ

18 Laplace ψ 2 ψ 2 2, 2 I µ b γ µ = I µ 2b γ µ + I µ, 2b γ µ + I µ. 2.9 ψ 2 ψ 2 2, 2 I µ b γ µ law = 2a γ µ, I µ. 2.8 U = X + Y, V = X X + Y α, θ >, σ >, A = exp σx θ, B = exp σu X θu V U = Y X 2. E[Y α e σy ]E[A/X α ] = E[V α e θv ]E[B/U α ]. U + V = X V α e θv B U α = V U α e θu+v σ/u = α Y e θ/x σx+y = Y α e σy A X X α. X Y U V log E[Y α e σy ] + log E[X α e σx θ/x ] = log E[V α e θv ] + log E[U α e θu σ/u ]. θ E[X α e σx θ/x ] E[X α e σx θ/x ] = E[V α+ e θv ] E[V α e θv ] σ + E[X α e σx θ/x ]E[X α+ e σx θ/x ] E[X α e σx θ/x ] 2 + E[U α+ e θu σ/u ] E[U α e θu σ/u ] = + E[U α+ e θu σ/u ]E[U α e θu σ/u ] E[U α e θu σ/u ] 2 α = E[X 2 A]E[A] E[X A] 2 = E[B]E[U 2 B] E[U B] α =,, 2 E[e σy ]E[A] = E[e θv ]E[B], E[Y e σy ]E[X A] = E[V e θv ]E[U B], E[Y 2 e σy ]E[X 2 A] = E[V 2 e θv ]E[U 2 B]. 6 2 Gamma GIG

19 E[Y 2 e σy ]E[e σy ] E[Y e σy ] 2 = E[V 2 e θv ]E[U 2 B] E[X 2 A] = E[V 2 e θv ]E[e θv ] E[V e θv ] E[e θv ]E[B] E[A] E[X A] E[V e θv ]E[U B] σ θ Y E[Y e σy ] 2 E[Y 2 e σy ]E[e σy ] φσ = E[e σy ] φσφ σ = + p φ σ 2 p > log φ σ = + plog φσ log φ σ Y φσ +p φ σ = mφσ +p, m = E[Y ], φσ = E[e σy ] = + pmσ /p Gamma Laplace β > E[e βσγ µ ] = Γµ xµ e +βσx dx = + βσ µ. /p = µ Y law = 2b γ µ b > V a > V law = 2a γ µ U, V γ µ, γ µ 2 X = U + V law = U + 2a γ µ = 2a γ µ + 2b γ µ +X 2.4 ii X GIGa, b; µ 2.3 tree GIG, Gamma tree ψ, ψ 2 2 {, 2} tree, 2 k, k 2 2 leaf 2 k 2 root k k /k 2 ψ M ψ Gamma GIG tree V = {, 2, 3}, E = {, 2, 2, 3} 2 3 tree 2 i, j E 2.3 tree GIG, Gamma 7

20 α 2 = α 2 = α, α 23 = α 32 = β. k α M α,β = {k = k, k 2, k 3, 3 ; Kk = α k 2 β }. β k 3 k = k, k 2, k 3 k tree root root 2 3 leaf 3 k3 = k 3 leaf 2 k 2 = k 2 β 2 /k 3 k = k α 2 / k 2 leaf ψ 3 k, k 2, k 3 = k, k 2, k 3 : M, 3, diffeomorphism ψ 3 2 root 2 3 leaf, 3 k = k, k 3 = k 3 leaf 2 root k 2 = k 2 α 2 /k β 2 /k 3 2 ψ 3 2 k, k 2, k 3 = k, k 2, k 3 : M, 3, diffeomorphism ψ 3 2 M α,β - K, K 2, K 3 µ >, a, 3 P K dk, K 2 dk 2, K 3 dk 3 = C detkk µ e a,k /2 dk dk 2 dk Wishart 2. i ψ 3 K, K 2, K 3 law = ii ψ 3 2 K, K 2, K 3 law = 2 a γ µ, I µ α 2 a,a 2, I µ β 2 a 2,a 3. I µ α 2 a 2,a, 2 a 2 γ µ, I µ β 2 a 2,a 3. i detkk = k k 2 k 3 α 2 k 3 β 2 k k k2 k3 = k α2 k2 k 3 = k k2 β2 k 3 α 2 k 3 = det Kk. k2 k 3 a, k = a k + a 2 k 2 + a 3 k 3 = a k α2 k2 + = a k + a 2 k2 + a α 2 p, 3 k2 + a3 k3 + a 2 β 2 k3 a 2 k2 β2 α 2 + a + k 3 k2 β a 2 3 k 3 + a 2 k Gamma GIG

21 E[e p,ψk,k2,k3 ] = e p,ψk,k2,k3 C det Kk µ e a,k /2 dk M α,β = e p,e k C k k2 k3 µ exp, 2 a k α 2 a2 k2 + a k2 2 β 2 a3 k3 + a 2 d k k3 ψ ψ2 x, y, z = u, v, w xyz = uvw 2.2 V = {, 2,..., n} E tree i, j E α ij = α ji k = k, k 2,..., k n, n n Kk = k ij k i, i = j, k ij = α ij, i j, i, j E,, i j, i, j E, M M = {k, n ; Kk } µ >, a, n, P K dk = C det Kk µ e a,k /2 dk M- K r V root ψ r : M, n k = k, k 2,..., k n M i V leaf k i = k i leaf j j pj kj = k j i pj α ij 2 k i k j root k l ψ r n k = k,..., k n 2.2 r V ψ r n K i V \ {r} r i j i GIGa j α 2 ij, a i; µ r 2 a r γ µ tree leaf 2.3 tree GIG, Gamma 9

22

23 3 3. Black-Scholes formula M = {M t } Ω, F, {F t }, P lim M t = t Brown {e σb t σ 2 t/2 } L b = sup{s; M s = b} { } = L b = Brown Madan- Roynette-Yor [6] b > E[M t b + ], E[b M t + ] L b European option Black-Scholes 3. M = sup t M t M < x P M x F = P < L x < F = M x P M < x = P L x = = M x. 3. x M P M < x = x > P M < x = P L x = = M x. + σ x = inf{t > ; M t = x} {M t σx } E[M σx F ] = M E[M σx F ] = xp σ x < F = xp M x F 2

24 3.2 b > F t - F t E[F t b M t + ] = be[f t {Lb t}] E[b M t + ] = bp L b t P L b t F t = b b M t +. L b t t b P L b t F t = P sup u t M u < b F t K European put option t = Black-Scholes 3. {B t } B = Brown σ >, S >, K > E[ K S expσb t σ 2 t/2 ] = KP Lσ + K t. L σ K = sup{u; S expσb u σ 2 u/2 = K}. E[ K S expσb t σ 2 t/2 sup {u; + ] = KP B u 2 } u = log KS σ 2 t. Black-Scholes σ, t call option E[M t b + ] lim t M t = M, M t > t >. P M t Q Q = M t P. Ft Ft 3.3 {M t } Q F s F s - t > s [ ] [ ] [ E Q F s = E P [F s ] = E P F s M s = E Q F s ]. M t M s M s E Q [M t F s ] = M s, a.s. 3.4 QM t, t =. c > σ c = inf{t; M t = c} Qσ c < n = cp σ c < n, n >, n 3. Qσ c < = cp σ c < = cp sup M t c = c > Qτ c < = {M t } Q t 22 3

25 Q lim M t = < Qsup M t < >, t t c > Qsup M t < c > Qτ c < =, c >, call option 3.5 E P [M t b + ] = QL b t. Q E P [M t b + ] = E P [ b M t + M t ] = E Q [ b M t {b/m t } Q- t Q ]. European call option 3.2 σ, r >, S >, K {B t } B = Brown T > e rt E P [ S e σb T +r σ 2 /2T K + ] = EP [ S e σb T σ 2 T/2 Ke rt + ] [2] P {B t } t < T E P [ S e σb t σ 2 t/2 Ke rt + ] = S E P [ S e σb t σ 2 t/2 Ke rt /S + ] t t T {M t = expσb t σ 2 t/2} Q Q = M t P. Ft Ft 3.5 Cameron-Martin {B σ t B t σt} Q Brown E P [ S e σbt σ2t/2 Ke rt { + ] = S Q sup u; e σbσ u +σ2u/2 = K } e rt t S = S P sup {s; B s + 2 } s = log e KS rt σ 2 t Gauss t T E P [ S e σb t σ 2 t/2 Ke rt + ] = σ 2 T S Ke rt/2 2 2πu exp 2 u 4 + logke rt /S 2 du. u Black-Scholes Φ 3. Black-Scholes formula 23

26 e rt E P [ S e σb T +r σ 2 /2T K + ] = S Φd Ke rt Φd 2. d, d 2 { S log + d = σ T d 2 = σ T { log K S K + r + σ2 2 r σ2 2 } T, } T = d σ T Madan-Roynette-Yor {M t } lim t M t = i t M t φ t x φ t x t, x ii d M t = u 2 t dt u t E[u 2 t M t = x] t, x. M non-random P < L b t = 2b E[u2 s M s = b]φ s bds. 3.2 P L b = = P sup M s < b = b M + {Λ b t} M b b M t + = b M + {Ms<b}dM s + 2 Λb t E[b M t + ] = b M E[Λb t]. 3.2 E[b M t + ] = bp L b t b M + = bp L b = P < L b t = 2b E[Λb t] ϕ ϕm s d M s = ϕbλ b t db Fubini [ ] E ϕm s u 2 s = ϕbe[λ b t] db E[ϕM s u 2 s]ds = E[ϕM s E[u 2 s M s ]]ds = ϕbdb 24 3 E[u 2 s M s = b]φ s bds

27 P < L b t = 2b E[Λb t] = 2b E[u 2 s M s = b] φ s b ds. 3.3 σ {B t } Brown M t = M expσb t σ 2 t/2 dm t = σm t db t, d M t = σ 2 M 2 t dt, P M t db = φ t b db, φ t b = σb 2πt exp P L b dt = σ 2 2πt exp σ logb/m + σt/2 2 dt 2t L b Gauss σ logb/m + σt/2 2 2t,

28

29 A 2.5 {y n } n= [y,..., y n ] [y ] = y, [y,..., y n ] = y + [y 2,..., y n ], n = 2, 3 [y, y 2 ] = y + = y y 2 +, [y, y 2, y 3 ] = y +. y 2 y 2 y 2 + /y 3 {p n }, {q n } p = y, p 2 = y y 2 +, p n = y n p n + p n 2, n = 3, 4,... q =, q 2 = y 2, q n = y n q n + q n 2, n = 3, 4,... A. [y,..., y n ] = p n q n, n =, 2,..., ; p n q n+ q n p n+ = n, A. p n q n p n+ q n+ = n q n q n+, n =, 2,..., ; A.2 [y,..., y n, k] = kp n + p n kq n + q n, n = 2, 3,... A.3 A.3 n = 2 [y, y 2, k] = y + n = 2 A.3 n y 2 + /k = y ky k = ky y y ky 2 + ky 2 + [y,..., y n, y n+, k] = [y,..., y n, y n+ + /k] = y n+ + /kp n + p n y n+ + /kq n + q n = ky n+p n + p n + p n ky n+ q n + q n + q n = kp n+ + p n kq n+ + q n {p n }, {q n } n + A.3 A.3 n k = y n 27

30 [y,..., y n, y n ] = y np n + p n 2 y n q n + q n 2 = p n q n A. A.2 n = p q 2 q p 2 = y y 2 y y 2 + = n {p n }, {q n } p n q n+ q n p n+ = p n y n+ q n + q n q n y n+ p n + p n = p n q n q n p n A i {P n }, {Q n } P = Y, P 2 = Y Y 2 +, P n = Y n P n + P n 2, n = 3, 4,... Q =, Q 2 = Y 2, Q n = Y n Q n + Q n 2, n = 3, 4,... Z n [Y,..., Y n ] = P n /Q n Claim n {Z 2n } {Z n } Z 2n+ < Z 2n A., A.2 P 2n+ P 2n = Y 2n+P 2n + P 2n P 2n Q 2n+ Q 2n Y 2n+ Q 2n + Q 2n Q 2n = Y 2n+P 2n Q 2n Q 2n P 2n Y 2n+ 2n = >. Y 2n+ Q 2n + Q 2n Q 2n Y 2n+ Q 2n + Q 2n Q 2n P 2n P 2n+2 = P 2n Y 2n+2P 2n+ + P 2n = Y 2n+2P 2n Q 2n+ Q 2n P 2n+ Q 2n Q 2n+2 Q 2n Y 2n+2 Q 2n+ + Q 2n Q 2n Y 2n+2 Q 2n+ + Q 2n = Y 2n+2 2n Q 2n Y 2n+2 Q 2n+ + Q 2n >. P 2n Q 2n P 2n+ Q 2n+ = P 2nQ 2n+ Q 2n P 2n+ Q 2n Q 2n+ = 2n Q 2n Q 2n+ >. A.4 A.4 Q n Q n+, a.s. Z n Q 2k Q 2 = Y 2 Q 2n+ = + n Q 2k+ Q 2k = + k= n Y 2k+ Q 2k + k= n Y 2k+ Y 2, a.s. i ii {X m } = [Y m d+, Y m d+2,..., Y md X m }{{}, Y m 2d+,..., Y m d }{{},..., Y,..., Y }{{ d }, ] X law = [Y,..., Y d, Y d+,..., Y 2d,..., Y m d+,..., Y md, ] X A.3 law = X P md + P md X X Q. md + Q md k= 28 A 2.5

31 a b < c d a b < a + c b + d < c d {P 2n+ /Q 2n+ } {P 2n /Q 2n } md P md /Q md < X P md/x Q md Z md = P md < P md + X Q md Q md + X md P md Q md Z md < P md + X P md Q md + X Q < Z md md < X P md X Q = Z md. md i Z md, Z md Z X m Z iii X law = [Y,..., Y d, X ] [Y,..., Y d, ] law =. X X X law law X = X m X m = X ii X m Z law X = Z Z law = X 2. m Z law = [Y,..., Y d, Z] X law = [Y,..., Y d, X ] 29

32

33 [] I, II,, [2] K. Itô and H.P. McKean, Jr., Diffusion Processes and their Sample Paths, Springer, 974. [3],,,, Seminar on Probability 3, 96. [4] I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus, 2nd. Ed., Springer, 99. [5] G. Letac and V. Seshadri, A characterization of the generalized inverse Gaussian distribution by continuous fractions, Z. Wahr., , [6] D.Madan, B.Roynette and M.Yor, From Black-Scholes formula, to local times and last passage times for certain submartingales, preprint. [7] [8] H.P. McKean, Jr., Elementary solutions for certain parabolic partial differential equations, Trans. AMS, , [9] J.W. Pitman and M. Yor, Bessel processes and infinitely divisible laws, in Stochastic Integrals, ed. by D.Williams, Lecture Notes in Math., 85, , Springer, 98. [] D. Revuz and M. Yor, Continuous Martingales and Brownian motion, 3rd ed., Springer, 999. [] L.C.G. Rogers and D. Williams, Diffusion, Markov Processes and Martingales, Vol.2: Itô calculus, Wiley and Sons, 987. [2] 27. [3] V. Seshadri, The Inverse Gaussian Distributions, Oxford Univ. Press, 993. [4] - Riesz path Seminar on Probability, 3,

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

( ) Loewner SLE 13 February

( ) Loewner SLE 13 February ( ) Loewner SLE 3 February 00 G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005)., Summer School 009 (009 8 7-9 ) . d- (BES d ) d B t = (Bt, B t,, Bd t ) (d

More information

II Brown Brown

II Brown Brown II 16 12 5 1 Brown 3 1.1..................................... 3 1.2 Brown............................... 5 1.3................................... 8 1.4 Markov.................................... 1 1.5

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

Grushin 2MA16039T

Grushin 2MA16039T Grushin 2MA1639T 3 2 2 R d Borel α i k (x, bi (x, 1 i d, 1 k N d N α R d b α = α(x := (αk(x i 1 i d, 1 k N b = b(x := (b i (x 1 i d X = (X t t x R d dx t = α(x t db t + b(x t dt ( 3 u t = Au + V u, u(,

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

mf.dvi

mf.dvi 21 9 29 1 2 3....................................... 3 :......................... 3....................................... 4................................ 4..................................... 5................................

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W 003 7 14 Black-Scholes [1] Nelson [] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-Wu Nelson e-mail: takatoshi-tasaki@nifty.com kabutaro@mocha.freemail.ne.jp

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a φ + 5 2 φ : φ [ ] a [ ] a : b a b b(a + b) b a 2 a 2 b(a + b). b 2 ( a b ) 2 a b + a/b X 2 X 0 a/b > 0 2 a b + 5 2 φ φ : 2 5 5 [ ] [ ] x x x : x : x x : x x : x x 2 x 2 x 0 x ± 5 2 x x φ : φ 2 : φ ( )

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

Black-Scholes 1 ( )

Black-Scholes 1 ( ) Black-Scholes Takaoka[T] Black- Scholes B S α B t = e rt S α t = S e αrt exp σw t + Ct } 2 σ2 t λdσ λ Λ 2 :=,, B, σ 2 λdσ < } W t } Ω, F, P; F t T > t [, T ], α R, r C, S F - S α dst α = αr+cφtst α dt+φtst

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1. Section Title Pages Id 1 3 7239 2 4 7239 3 10 7239 4 8 7244 5 13 7276 6 14 7338 7 8 7338 8 7 7445 9 11 7580 10 10 7590 11 8 7580 12 6 7395 13 z 11 7746 14 13 7753 15 7 7859 16 8 7942 17 8 Id URL http://km.int.oyo.co.jp/showdocumentdetailspage.jsp?documentid=

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y 5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =

More information

( ) (Appendix) *

( ) (Appendix) * 2006 10 1 Frisch Slutzky 1930 = 1990 3 4 1 2 3 ( ) 4 1 ( ) (Appendix) *1 1 2 2 5 2.1........................................ 5 2.2.......................................... 7 2.3..........................................

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

untitled

untitled II(c) 1 October. 21, 2009 1 CS53 yamamoto@cs.kobe-u.ac.jp 3 1 7 1.1 : : : : : : : : : : : : : : : : : : : : : : 7 1.2 : : : : : : : : : : : : : : : : 8 1.2.1 : : : : : : : : : : : : : : : : : : : 8 1.2.2

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information