st.dvi

Size: px
Start display at page:

Download "st.dvi"

Transcription

1 9

2

3 F t

4 χ

5 5. x,..., x 00 0 x< x< x< x< x< x< x< x< x< x : x, x,..., x

6 : ( ) ( ) x x + x + + x x G x x x ( ) x H x x x x x x x l+, l + m x l + x l+, l (max{x i} + mi{x i }) 40km 50km v d v d d 40 + d 50 ( )

7 . 7.: v ( 40 + ) 50 v : x, x,..., x ( x x + x x + + x x S {(x x) +(x x) + +(x x) } S S () z i xi x S, z, z,..., z 0 T i 0z i S (x i x)+50 50,

8 % % 99.73%.3: () () () () (0 50) + (00 50) (0 50) (00 50)

9 (0 ) + (00 ) ( + 99) (0 ) (00 )

10

11 (statistical iferece). ( f) μ, σ X, X,...,X.: (populatio) (sample) (parameter) μ σ N(μ, σ )

12 () f(x) μ, σ f(x) X, X,..., X (sample mea) X X + X + + X (sample variace) S (X X) +(X X) + +(X X) (ubiased sample variace) U (X X) +(X X) + +(X X) (statistic).. f μ σ X μ σ / E[X] E[X ]+E[X ]+ + E[X ] μ μ ( X + X + + X ) V [X] V V (X + X + + X ) {V (X )+V (X )+ + V (X )} σ σ... f μ σ U σ E[U ] E[(X X) ]+E[(X X) ]+ + E[(X X) ] E[(X X) ]E[(X μ X + μ) ] E[(X μ) ] E[(X μ)(x + μ)] + E[(X μ) ] σ E[(X μ) (X μ)+(x μ)+ +(X μ) ]+ σ σ E[(X μ) ]+ σ σ σ + σ

13 . 3 σ σ σ E[U ] E[(X X) ] σ σ X, U (estimator) S U U U. (X,X,...,X ) - { } (.) p(x) (π) / det(v ) exp (x m, V (x m)) m (m,m,...,m ) V (V ij ) m i E[X i ], V ij Cov(X i,x j )E[(X i m i )(X j m j )]. (X,X,...,X ) ϕ(ξ,ξ,ξ ) ϕ(ξ,ξ,...,ξ )E[exp{ iξ j X j }], (ξ,ξ,...,ξ ) R. (.) (.) ϕ(ξ,ξ,...,ξ ) exp{i ξ j m j + V jk ξ j ξ k }, j,k (.) V V X, X,..., X X j (X,X,...,X ) - (X,X,...,X ) -

14 4 X, X,..., X (X,X ) 0 ϕ(ξ,ξ ) exp{i ξ j m i + V jj ξj } exp{iξ m + V ξ } exp{iξ m + V ξ } ϕ X (ξ )ϕ X (ξ ).. X N(μ, σ ) Z X μ σ N(0, ) X, X N(μ,σ ), N(μ,σ ) X + X, N(μ + μ,σ + σ ) X, X,..., X N(μ, σ ), X X + + X E[exp{iξ(X μ)/σ}] E[exp{ iξμ/σ} exp{i(ξ/σ)x}] N(μ, σ /). exp{ iξμ/σ} exp{i(ξ/σ)μ + (ξ/σ) σ } exp{ ξ }. Z N(0, ) X + X E[exp{iξ(X + X )}] E[exp{iξX }]E[exp{iξX }] exp{iξμ + σ ξ } exp{iξμ + σ ξ } exp{iξ(μ + μ )+ σ + σ ξ }. X + X N(μ + μ,σ + σ ) X. N(μ, σ /).. α>0 (.3) Γ(α) 0 x α e x dx

15 . 5 α, β>0 (.4) B(α, β) 0 x α ( x) β dx Γ(α+) αγ(α) Γ(+)! (.4) x si θ dx si θ cos θ π/ π/ B(α, β) si (α ) θ ( si θ) β si θ cos θdθ si α θ cos β θdθ 0 0 B(, )π.3. (.5) f α,β (x) Γ(α)β α xα e x/β, x 0 0, x < 0 Ga(α, β) [0, ] (.6) B(α, β) xα ( x) β Be(α, β) (.4) 0 f α,β (x) dx Γ(α)β α Γ(α) 0 Γ(α) 0 Γ(α) 0 0 x α e x/β dx (x/β) α e x/β dx x y α y dy e y y α e y dy (y x/β, dy dx/β).4. (.7) f α,β f α,β f α +α,β.

16 6 x 0 f α,β f α,β(x) x y,y 0 x 0 f g(x) f(x y)g(y) dy Γ(α )β (x α y)α e (x y)/β Γ(α )Γ(α )β α +α (x y) α y α e x/β dy Γ(α )β α yα e y/β dy Γ(α )Γ(α )β α +α e x/β (x tx) α (tx) α xdt 0 Γ(α )Γ(α )β α +α e x/β x α +α ( t) α t α dt 0 B(α,α ) Γ(α )Γ(α ) β α +α x α +α e x/β B(α,α )Γ(α + α ) f α +α Γ(α )Γ(α ),β(x). x<0 f α,β f α,β(x) 0 f α,β f α,β(x) dx B(α,α )Γ(α + α ) Γ(α )Γ(α ) B(α,α )Γ(α + α ). Γ(α )Γ(α ) (y tx, dy xdt) f α +α,β(x) dx f α,β f α,β(x)dx dx f α,β(y) dy f α,β(x y)f α,β(y) dy f α,β(x y) dx. B(α,α )Γ(α + α ) Γ(α )Γ(α ) (.8) B(α, β) Γ(α)Γ(β) Γ(α + β)

17 . 7 α β ( B ), Γ( ) Γ(). B(, )π Γ( ) π X, Y f, g f g X + Y E[F (X + Y )] F (x + y)f(x)g(y) dx dy u x + y, v y x x (x, y) (u, v) u v y y u v 0 dx dy (x, y) (u, v) du dv du dv F (u)f(u v)g(v) du dv F (u) f g(u) du.5. Ga(/, ) χ ( χ ().6. X N(0, ) X χ () E[F (X )] F (x ) e x / dx π F (x ) e x / dx π F (y) e y/ dy π y F (y) y (/) e y/ dy π F (y) e y/ dy Γ(/) /y(/) (y x,dyxdx dx ydy)

18 8 0 F (y)f /, (y) dy..7. X, X,..., X N(0, ), X + X + + X χ (). χ () N(0, ) + N(0, ) + + N(0, ) }{{} X j f /, X + X + + X f /, f /, f /, f /,..8. X, X,..., X N(μ, σ ), Y (X σ j μ) χ (). X j f /, σ (X j μ).7 ( Xj μ ), X j μ σ σ N(0, ).9. X, X,..., X N(μ, σ ), Y (X μ) σ / χ ().. X N(μ, σ /).6.0. X, X,..., X N(μ, σ ), Y (X σ j X) U χ ( ). σ Y X μ 0,σ Y j l jk X k k Y, Y,..., Y (l jk ) Y, Y,..., Y. X + X + + X Y + Y + + Y.

19 . 9. Y X (X + X + + X ) 3. Y, Y,..., Y N(0, ),. Y (X j X) Xj X Y j Y Y + Y + + Y χ ( ) Y Y X Y X (X,X,...,X ) (Y,Y,...,Y ) X + X + + X Y (X + X + + X ) (l jk )... (l jk ) (X,X,...,X ) p(x,x,...,x ) (Y,Y,...,Y ) q(y,y,...,y ) p(x,x,...,x )q(y,y,...,y ) (y,y,...,y ) (x,x,...,x ). }{{} p(x,x,...,x ) π e (x +x + +x )/ q(y,y,...,y ) π e (x +x + +x )/ π e (y +y + +y )/ Y, Y,..., Y N(0, ) π e y j /.

20 0 N(μ, σ ) Z j X j μ σ N(0, ) Z (Z + Z + + Z ) X μ σ X j X X j μ + μ X Z j Z σ σ σ Y (X σ j X) (Z j Z). F t.. m, ( m ) m ( G m, (z) B( m, ) z m m ) m+ z +, z > 0 (.9) 0, z 0 (m, ) F F (m, ) 0 F.. X, Y m, χ (.0) Z X/m Y/ (m, ) F

21 ..3. X Y, X p(x), Y q(y), Y>0 Z ax by (.) r(z) 0 ( byz ) p q(y) by a a dy. [ ( ax )] E[f(Z)] E f by ( ax ) f p(x)q(y)dxdy 0 by z ax by,u y y u, x b a yz b a uz x x b (x, y) (z, u) z u u b z a a bu y y a z u 0 dx dy (x, y) (z, u) dz du bu dz du a ( buz ) f(z)p q(u) bu du dz 0 a a ( buz ) f(z)dz p q(u) bu 0 a a du. }{{} r(z) Z G m, (z) Z X/m Y/ X my X p(x) m Γ( m e x/ )xm Y q(y) Γ( )y e ( m ) p 0 yz q(y) my dy ( m ) m m Γ( m )Γ( ) yz e m yz y e y m ydy y

22 G m, (z) m + m Γ( m )Γ( ) ( m u ( + m z)y ) m du ( + m z)dy u y dy 0 m+ m+ m+ Γ( ) ( m Γ( m )Γ( ) B( m, ) ( m z m y m + e (+ m z)y dy y 0 }{{} y ( + m z) u dy y du u (+ m ) m+ z u m+ e u du u ( m + ) (+ m z ) m+ Γ ) m ( z m + m ) m+ z ) m z m ( + m ) m+ z. F F (m, ) χ (m)/m χ ()/.4. X, X,..., X m, Y, Y,..., Y : Z {(X m X) + +(X m X) } {(Y Y ) + +(Y Y ) } U X UY ( ) (m, ) F σ (Xi X) (m )U X χ (m ) (.0) σ σ (Yj Y ) ( )U Y χ ( ) (.0) σ σ UY UX χ (m )/(m ) χ ( )/( ) F (m, ).5. X, X,..., X : i.i.d., N(μ, σ ) Y (X μ) U F (, ).

23 . 3 ( )U (X μ) χ () (.9) σ σ σ (Xi X) χ ( ) (.0) (X μ) U χ () F (, ). χ ( )/( ).6. t (.) f(x) ) B( (+ x +, ) t().7. X N(0, ), Y χ (), X Y X Y t t() N(0, ) χ ()/ [ ( X )] ( x ) E F F y e x Y 0 π Γ( )y e y dy dx t x y,u y x t u, y u x x (x, y) (t, u) t u u t u u y y t u 0 F (t) e t u 0 π Γ( )(u) e u udu dt { } + πγ( ) F (t) e t + u u du dt 0 }{{}

24 4 v ( + t )u dv ( + t )du ( e v v ) 0 ( + t ) ( + t )dv ( ) t + e v v + dv ( + + Γ( + ) πγ( B(, ) ) + t ( F (t) + t ( F (t) 0 ) + ( + Γ + t ) + dt ) + dt ).8. X, X,..., X : i.i.d., N(μ, σ ) U (X μ) U t( ). U (X μ) N(0, ), σ (.) ( )U χ ( ), σ (.0) (X μ) U (X μ) σ ( )U σ (X μ) t( ). U N(0, ) t( ). χ ( )/( ).9. Z t() Z F (,). X N(0, ), Y χ (), X Y Z X, Z X Y Y/ χ () χ ()/ F (,). t F

25 . 5 F F.0. X B(N,p) 0 r N (r + ), (N r), x 0 p (q p) q (.3) P (X 0)+P (X )+ + P (X r) x 0 F (, )(x) dx (N r), (r + ), x q p (.4) P (X r +)+P (X r +)+ + P (X N) x F (, )(x) dx (.5) P (X 0)+P (X )+ + P (X r) N! r!(n r )! p y r ( y) N r dy. p [ y r ( y) N r dy N r yr ( y) N r ] N r pr ( p) N r + r N r p + r N r p p y r ( y) N r dy y r ( y) N r dy. N! r!(n r )! N! r!(n r )! p y r ( y) N r dy N! r!(n r)! N r pr q N r N! + (r )!(N r)! N! y r ( y) N r dy r!(n r )! p k ( ) N p r i q N r+i N! + r i (r k )!(N r + k)! i p p y r ( y) N r dy. y r k ( y) N r+k dy

26 6 k r, r i j (.6) N! r!(n r )! p y r ( y) N r dy r ( N j r ( N j r ( N j j0 ) p j q N j + N! (N )! ) p j q N j +( p) N ) p j q N j p ( y) N r+k dy (r + ), (N r) r, N r N! r!(n r )! Γ(N +) Γ(r + )Γ(N r) + Γ( ) Γ( )Γ( ) B( F y y x x+ x +, dy ( x + ) dx, ). y p p x, x + p x + p x p x( p) p x p p ( ) y r ( y) N r x ( dy x 0 x + x + / / x ( x + ) dx ( + )/ (.6) / / B(, ) x 0 x 0 x ( x + ) dx ( + )/ F (, ) (.3) ) ( x + ) dx

27 . 7 (.4) p, q Y B(N,q) P (X r +)+P (X r +)+ + P (X N) P (Y 0)+P (Y )+ + P (Y N r ) (.3)

28

29 9 3. f(x; θ) f(x, θ) θ θ X, X,..., X X, X,..., X ˆθ g (X,X,...,X ) θ ˆθ ˆθ ˆ E[ˆθ ]θ ˆθ V (ˆθ )E[(ˆθ θ) ] (mea square error) F {f(x; θ)} θ θ (likelihood fuctio) l(θ) log f(x; θ). l(θ) x l(θ; x) l l(θ) f(x, θ) f(x; θ), l(θ) f(x, θ) f(x; θ) ( ) f(x, θ). f(x; θ) θ l E f(x, θ) ( x f(x, θ) X

30 {f(x; θ)} (.) I(θ) E[ l(θ) ] f(x, θ) f(x; θ) dx θ (Fisher s iformatio) (.) (.3) E[ l(θ)] d dθ d dθ E[ l(θ)] 0, E[ l(θ)] I(θ) f(x, θ) f(x; θ) dx f(x; θ) f(x, θ) dx f(x, θ) dx 0, [ ( f(x, θ) E[ l(θ)] E f(x; θ) d dθ f(x, θ) f(x; θ) )] f(x, θ) f(x; θ) f(x; θ) dx E[ l(θ) ] f(x, θ) dx E[ l(θ) ] I(θ). f(x, θ) dx I(θ) - X, X,...,X f (x,x,...,x ; θ) f(x j ; θ) l l (θ; x,x,...,x ) log f (x,x,...,x ; θ) l(θ; x j ).

31 . 3 θ l (θ; x,x,...,x ) f (x,x,...,x ; θ) f (x,x,...,x ; θ) l(θ; x j ). S S l (θ; X,X,...,X ) E[S ]E[ l (θ; X,X,...,X )] f (x,x,...,x ; θ)dx dx R d dθ 0. R f (x,x,...,x ; θ)dx dx θ E[ˆθ ] g(x,x,...,x )f (x,x,...,x ; θ) dx dx. R θ g(x,x,...,x ) f (x,x,...,x ; θ) dx dx R E[g(X,X,...,X ) l (θ X,X,...,X )] E[ˆθ S ]. f(x x,...,x ; θ) I (θ) E[ l (θ) ]V(S )V( l(θ; X j )) V ( l(θ; X j )) I(θ).. (Cramer-Rao) ˆθ Cramer-Rao (.4) θ V (ˆθ ) I (θ) I(θ). (.5) l (θ) I (θ)(g(x,x,...,x ) θ) (efficiet equatio)

32 3 3 E[S ]0 Schwarz Cov(S, ˆθ )E[S ˆθ ] E[S ]θ E[S ˆθ ]. Cov(S, ˆθ ) V (S )V (ˆθ )I (θ)v (ˆθ ). (.4) Schwartz S, ˆθ S aˆθ + b Cramer-Rao b I (θ) 0a + bθ a bθ. S b(ˆθ θ). Cov(S, ˆθ )bv (ˆθ ) b I (θ)..3. (.4) /I (θ) Cramer-Rao I (θ)v (ˆθ ) ˆθ (efficiecy) 00 %.4. ˆθ 00% ˆθ (.5) l (θ; x,...,x ) I (θ) dθ g(x,...,x ) θi (θ) dθ + c(x). (.6) f (x,...,x ; θ) exp{a(θ)g(x,...,x )+b(θ)+c(x,...,x )}. a(θ) I (θ) dθ, b(θ) θi (θ) dθ c(x,...,x ) θ

33 f (.7) f (x,...,x ; θ) h(g(x,...,x ),θ) k(x,...,x ) ˆθ g(x,...,x ) (sufficiet statistics) k(x,...,x ) θ θ.. N(μ, σ ) σ f(x; μ) πσ e (x μ) /σ l(μ) log(πσ ) (x μ) σ l(μ) (x μ)/σ. [ ] (X μ) I (μ) E[ l(μ) ]E σ. (X,X,...,X ) { } (x j μ) f (x,...,x ; μ) πσ exp σ μ σ 4 S l (μ; X,...,X ) X j μ σ I(μ)(X μ). X μ X, U. :. :

34 : 4. : ε>0 P ( ˆθ >ε) 0 as. 5. :.. p p r X, X,..., X p i.i.d. P (X j )p, P (X j 0) p X + X + + X r L(p) ( ) L(p) P (X + X + + X r) p r ( p) r. r L(p) p p X, X,..., X L(p) log L(p) ( ) log L(p) log + r log p +( r) log( p) r p d dp log L(p) r p r p r( p) ( r)p p( p) r p p( p). 0 p r log L(p) p r ˆp r (X + X + + X ).3. N(μ, σ ) f (x,...,x ; μ) { πσ exp } (x j μ) σ

35 . 35 μ, σ μ l (μ, σ ) log π log σ (x j μ) σ. μ, σ 0 ν l (θ, σ ) x j μ σ 0, σ l (θ, σ ) σ + (x i μ) (σ ) 0 μ x + + x x, σ (x j μ) (x j x). (μ, σ ) X X + + X, S (X X) + +(X X). S. θ [L, U] α L, U P (L θ U) a. L U α [L, U] σ

36 36 3 α Z α π e x / dx α Z α Z α 00α% α L X σz α/ U X + σz α/ 3.: Z α [L, U] α X N(μ, σ /) (X μ) N(0, ) ( σ ) (X μ) P Z α/ Z α/ α σ ( P X σz α/ μ X + σz ) α/ α. Z Z (.576) X.03 95% [.007,.399]. X ± σz ± 5.03 ± ± 0.96 X,X,...,X N(μ, σ ).

37 . 37 σ U {(X X) + (X X) + +(X X) } σ (X j X) χ ( ) χ 00α% χ α ( ) ( P χ α/ ( ) σ ( ( )U P χ α/ ( ) σ α/ 0 χ α/ χ α/ 3.: ) (X j X) χ α/ ( ) α ( )U χ α/ ( ) ) α. α/ ( [ α) ] ( )U χ α/ ( ), ( )U χ α/ ( ) X,X,...,X N(μ, σ ) X (X + + X ) U {(X X) + +(X X) } (X μ) N(0, ) σ ( )U χ ( ) σ (X μ) U (X μ) σ ( )U σ N(0, ) t( ) χ ( )/( ) (X μ) t( ) U

38 38 3 α/ α/ t 00α% t α ( ) t α/ ( ) t α/ ( ) [ ] (X μ) P t α/ ( ) t α/ ( ) α U 3.3: μ P [ X U t α/ ( ) μ X + U ] t α/ ( ) α [ α X U t α/ ( ), X + U ] t α/ ( ) 3. X,...,X m N(μ,σ ) Y,...,Y N(μ,σ ) X Y () X m (X + + X m ) Y (Y + + Y ) X N(μ, σ m ) Y N(μ, σ )

39 3. 39 [ P μ μ [ P X Y X Y N(μ μ, σ m + σ ) Z X Y (μ μ ) N(0, ) σ + σ m Z α/ X Y (μ μ ) σ m + σ Z α/ σ m + σ Z α/ μ μ X Y + ] α ] σ m + σ Z α/ α α [ ] σ X Y m + σ σ Z α/, X Y + m + σ Z α/ () ( X Y N(μ μ, m ) + σ ) σ ( σ σ) U (Xi X) + (Y j Y ) m + (m )U X +( )U Y m + (m + )U σ (m )U X σ U X Y + ( )U Y σ χ (m ) + χ ( ) χ (m + ) Z X Y (μ μ ) ( m + )σ N(0, ) T Z (m+ )U σ m+ X Y (μ μ ) t(m + ) U ( m + )

40 40 3 [ α X Y U m + t α/(m + ), X Y + U m + ] t α/(m + ) (3) Welch T X Y (μ μ ) U X m + U Y T φ t φ ( m U X + U Y ) φ ( U m X ) m + ( U Y ) α [ U X Y X m + U Y U t α/(φ), X Y + X m + U ] Y t α/(φ) X,...,X m N(μ,σ ) Y,...,Y N(μ,σ ) X m (X + + X m ) Y (Y + + Y ) U X m {(X X) + +(X m X) } U Y {(Y Y ) + +(Y m Y ) } (m )U X σ χ (m ) ( )U Y σ U X /σ U Y /σ χ ( ) χ (m )/(m ) χ ( )/( ) F (m, )

41 3. 4 α P [F α/ (m, ) U X U Y σ σ F α/ (m, )] α P [ U Y F UX α/ (m, ) σ σ U Y F UX α/ (m, )]. σ /σ [ ( α) U Y F UX α/ (m, ), U ] Y F UX α/ (m, ) F F (m, ) F (, m) F α (m, ) F α (, m) F α (m, )

42

43 p p 6 H 0 : p 6 H : p 6 p 6 X 80 X Bi(80, 6 ) E[X] 30, V(X) 80 p ( p) X 30 c H 0 X 30 >c H 0 c α P ( X 30 >c)α α 0.005, 0.0 W {x; x 30 >c} c X N(30, 5 ) Z N(0, ) ( X 30 P ( X 30 >c)p 5 > c ) ( P Z > c ) α. 5 5 α 0.05 P ( Z >, 96) 0.05 c.96 c P ( X 30 > 9.8) X< or X>

44 : 39.. : H 0 : H 0 H. ( ). 3. (α 0.05, 0.0) H 0 : θ θ 0 H : θ θ θ θ 0 P ( ˆθ θ 0 >c)α c 0 H 0 : θ θ 0 H : θ>θ 0 H 0 : θ θ 0 H : θ<θ 0 θ θ 0 P (ˆθ θ 0 >c)α c θ θ 0 P (ˆθ θ 0 <c)α c {x; x θ 0 >c}, {x; x θ 0 >c}, {x; x θ 0 <c}

45 . 45 H 0 H 0 ( α) ( ). X, X,..., X : [A] σ H 0 : μ μ 0 H : μ μ 0 (X μ0 ) Z σ : W {z; z >Z α/ }. N(0, ). Z W Z W H 0 : μ μ 0 H : μ>μ 0 H 0 : μ μ 0 H : μ<μ 0 W {z; z>z α} W {z; z<z α}. [B] σ U (X j X) T (X μ0 ) t( ), U

46 46 4 W {t; t >t α/ ( )}.. A A 5% 68, 580, 66, 743, 75, 576, 653, 805, 98, 783 H 0 : μ 700 H : μ>700 X 77.9, U 0.659, t 0.05 (9).833 0( ) T W {t; t>t 0.05 (9)} {t >.833} X, X,..., X : H 0 : σ σ 0 H : σ σ 0 ( )U Y χ ( ) σ 0 W {y; y<χ α/ ( ), y > χ α/ ( )} Y W Y W X, X,..., X m N(μ,σ ), Y, Y,..., Y N(μ,σ ). H 0 : μ μ H : μ μ [A] σ, σ Z X Y σ m + σ N(0, )

47 . 47 [B] σ σ W {z; z >Z α/ } m U m + { (X j X) + T X Y U [C] σ, σ [A] σ, σ m + t(m + ) W {t; t >t α/ (m + )} U X m U Y (Y j Y ) } m (X j X) (Y j Y ) T X Y U X m + U Y T φ t φ ( m U X + U Y ) φ ( m U X ) m + ( U Y ). Welch s test X, X,..., X m N(μ,σ ), Y, Y,..., Y N(μ,σ ). H 0 : σ σ H : σ σ H 0 F U X U Y W {f; f< F (m, ) F α/ (,m ), f > F α/(m, )}

48 χ χ?? [A] A A A k k k k H 0 : H : P (A i ) i i P(A i ) i X k ( i i ) i i W {x; x>χ α (k )} χ k χ [B] F θ : θ (θ,θ,...,θ t ) θ ˆθ A i P (A i ) i i (θ) θ ˆp i i (ˆθ) H 0 : H : F θ F θ X k ( i ˆp i ) i ˆp i W {x; x>χ α(k t )} k t χ μ, σ A i A i {a i <Z a i+ }

49 3. χ 49 A B A r B c A B B A B B B c A p p p c p A p p p c p..... A r p r p r p rc p r p p p c c : p i p ij r : p j p ij i r c : i p ij p ij P (A i B j ), p i P (A i ), p j P (B j ) A, B H 0 : p ij p i p j i,...,r; j,...,c H : B A B B B c A c A c..... A r r r rc r c : i : j : c r i r ij ij c i ij ˆp ij ij, ˆp i i, ˆp j j

50 50 4 X r i c ( ij i j ) i j χ ((r c)(c )) rc c, r

51 5 5. (x,y ), (x,y ),...,(x,y ) x Y : Y j a + bx i + ε i. 5.: y ax + b x i Y ε i error ε i N(0,σ ) y ax + b a, b a, b Y j N(ax j + b, σ ). i.e., (Y,Y,...,Y L(a, b) πσ exp { (y } j a bx j ) σ l(a, b) log L(a, b) log πσ (y j a bx j ) σ.

52 5 5 j (y j a bx j ) S x S y S xy (x j x), (y j y), (x j x)(y j y). (y j a bx j ) (y j y bx j + bx + y bx a) (y j y bx j + bx) + (y j y bx j + bx)(y bx a) + (y bx a) {(y j y) b(y j y)(bx j bx)+(bx j bx) } + (y bx a) Sy bs xy + b Sx + (y bx a) ( Sx b b S ) xy + S Sx y + (y bx a) ( Sx b S ) xy S xy + S Sx Sx y + (y bx a). b S xy, a y bx Sx a, b (.) ˆb S xy S x, â Y ˆbx S xy (x j x)(y j Y ).

53 . 53 â, ˆb.. (â, ˆb) E[â] a, E[ˆb] b, (+ x V (â) σ V (ˆb) σ Sx Cov(â, ˆb) σ x Sx S x ), Y j a + bx j + ε j Y a + bx + ε j ˆb (x j x)(y j Y ) S x j (x j x)(a + bx j + ε j a bx ε) S x j b(x j x)(x j x) b + S x j (x j x)ε j S x + j (x j x)ε j S x â Y ˆbx ( j a + bx + ε b + (x ) j x)ε j x Sx a + { x(x } j x) ε S j j x a + { x(x } j x) ε Sx j. j j (x j x)ε S x â, ˆb ε j E[ˆb] b, V (ˆb) (xj x) σ S 4 x S xσ S 4 x σ S x E[â] a,

54 54 5 V (â) { x(x } j x) σ j S x { x(x j x) j S x { } + x Sx σ S 4 x ) (+ σ x, Sx Cov(â, ˆb) { (x Sx j x) x(x j x) S j x x(x j x) Sx Sx xsx Sx Sx σ x Sx j } + x (x j x) σ Sx 4 } (.) (.3) â a V (â) ˆb b V (ˆb) (â a) σ +x /Sx (ˆb b) σ/s x N(0, ) N(0, ) () σ σ σ (.4) e j Y j ˆbx j â a + bx j + ε j ˆbx j â a â +(b ˆb)x j + ε j σ ˆσ (.5).. (e,e,...,e ) (â, ˆb) (.5) ˆσ (â, ˆb) ˆσ /σ χ j e j

55 . 55 ε j 0 Cov(e j, â) Cov(ε j (â a) (ˆb b)x j ), â) Cov(ε j, â) Cov(â a, â) x j Cov(ˆb b, â) Cov(ε j, â) Cov(â, â) x j Cov(ˆb, â) ( σ x(x ) ) j x) (+ σ x σ x + x j σ 0. â, ˆb (.) a + bx j S x ( x(x j x) x Sx Sx S x + x jx S x ) S x Cov(e j, ˆb) Cov(ε j (â a) (ˆb b)x j ), ˆb) Cov(ε j, ˆb) Cov(â a, ˆb) x j Cov(ˆb b,ˆb) Cov(ε j, ˆb) Cov(â, ˆb) x j Cov(ˆb,ˆb) (x j x)σ S x + xσ S x σ (x Sx j x + x x j ) 0. x j σ S x â + x jˆb Y ˆbx + xjˆb Y + S xy S x (x j x). (.6) â a +(ˆb b)x j Y + S xy S x Y a bx + S xy S x (x j x) a bx j (x j x) b(x j x) Y a bx + S xy bsx (x Sx j x) Y S xy Y j a + bx j + ε j Y, Y,..., Y Y j Y j E[Y ] E[Y j ] (a + bx j )a + bx, j j

56 56 5 V (Y ) j V ( Y j ) V (Y j ) σ. j S xy S xy (x j x)(y j Y ) (x j x)y j E[S xy ] (x j x)e[y j ] (x j x)(a + bx j ) (x j x)bx j b (x j x)(x j x) bsx, V (S xy ) V ((x j x)y j ) (x j x) V (Y j ) (x j x) σ j σ Sx, Cov(Y,S xy ) (x j x)v (Y j ) (x j x)σ 0. j 0 j j j (Y a bx) σ N(0, ), (SxY bs x ) σs x N(0, ) (.7) (Y a bx) σ + (S xy bs x ) σ S x χ () σ ε j Y j (a + bx j ) (.4) e j a â +(b ˆb)x j + ε j ε j Y j (a + bx j ) }{{} (.6) â a +(ˆb b)x }{{} j + e j }{{} â a +(ˆb b)x j Y a bx + S xy bsx (x Sx j x)

57 . 57 (â a +(ˆb b)x j ) j j j { Y a bx + S } xy bsx (x j x) { S x (Y a bx) +(Y a bx) S xy bs x S x (Y a bx) + (S xy bs x) S 4 x S x (Y a bx) + (S xy bsx ). S x (x j x)+ (S } xy bsx) (x Sx 4 j x) σ (.7) e j (â a +(ˆb b)x j )(â a)ê +(ˆb b) e j x j (ˆb b) e j x j. e j x j (Y j ˆbx j â)x j (Y j Y )x j ˆb (Y j Y ˆbx j + ˆbX + Y ˆbx â)x j (x j x)x j (Y j Y )(x j x) ˆb 0. e j (â a +(ˆb ˆb)x j )0. ε j e j +(â a +(ˆb b )x j ) (x j X)(x j x) S xy S xy S x S x ε j j j e j + j (â a +(ˆb b)x j )

58 ( )/σ χ () ( )/σ χ () (â, ˆb) e j ( )/σ χ ( ) ˆσ σ (.), (.3) σ ˆσ (.8) (.9) T a T b (â a) ˆσ t( ), +(x/sx ) (ˆb b) t( ) ˆσ/Sx a, b ˆσ /σ χ ( ) T a, T b t

59 59 [],,,,,, 99. [] R. V. Hogg ad A. T. Craig, Itroductio to Mathematical Statistics, Macmilla Compay, Lodo, 970. [3],,,,, 003.

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp ( 28) ( ) ( 28 9 22 ) 0 This ote is c 2016, 2017 by Setsuo Taiguchi. It may be used for persoal or classroom purposes, but ot for commercial purposes. i (http://www.stat.go.jp/teacher/c2epi1.htm ) = statistics

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

統計学のポイント整理

統計学のポイント整理 .. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4 20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1 t χ F Q t χ F µ, σ N(µ, σ ) f(x µ, σ ) = ( exp (x ) µ) πσ σ 0, N(0, ) (00 α) z(α) t χ *. t (i)x N(µ, σ ) x µ σ N(0, ) (ii)x,, x N(µ, σ ) x = x+ +x N(µ, σ ) (iii) (i),(ii) z = x µ N(0, ) σ N(0, ) ( 9 97.

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

応力とひずみ.ppt

応力とひずみ.ppt in yukawa@numse.nagoya-u.ac.jp 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

Microsoft Word - 表紙.docx

Microsoft Word - 表紙.docx 黒住英司 [ 著 ] サピエンティア 計量経済学 訂正および練習問題解答 (206/2/2 版 ) 訂正 練習問題解答 3 .69, 3.8 4 (X i X)U i i i (X i μ x )U i ( X μx ) U i. i E [ ] (X i μ x )U i i E[(X i μ x )]E[U i ]0. i V [ ] (X i μ x )U i i 2 i j E [(X i

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

populatio sample II, B II?  [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2 (2015 ) 1 NHK 2012 5 28 2013 7 3 2014 9 17 2015 4 8!? New York Times 2009 8 5 For Today s Graduate, Just Oe Word: Statistics Google Hal Varia I keep sayig that the sexy job i the ext 10 years will be statisticias.

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a, [ ] 8 IC. y d y dx = ( dy dx ( p = dy p y dx ( ( ( 8 ( s8. 3 A A = ( A ( A (3 A P A P AP.3 π y(x = { ( 8 ( s8 x ( π < x x ( < x π y(x π π O π x ( 8 ( s83.4 f (x, y, z grad(f ( ( ( f f f grad(f = i + j

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

solutionJIS.dvi

solutionJIS.dvi May 0, 006 6 morimune@econ.kyoto-u.ac.jp /9/005 (7 0/5/006 1 1.1 (a) (b) (c) c + c + + c = nc (x 1 x)+(x x)+ +(x n x) =(x 1 + x + + x n ) nx = nx nx =0 c(x 1 x)+c(x x)+ + c(x n x) =c (x i x) =0 y i (x

More information

I

I I io@hiroshima-u.ac.jp 27 6 A A. /a δx = lim a + a exp π x2 a 2 = lim a + a = lim a + a exp a 2 π 2 x 2 + a 2 2 x a x = lim a + a Sic a x = lim a + a Rect a Gaussia Loretzia Bilateral expoetial Normalized

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

Acrobat Distiller, Job 128

Acrobat Distiller, Job 128 (2 ) 2 < > ( ) f x (x, y) 2x 3+y f y (x, y) x 2y +2 f(3, 2) f x (3, 2) 5 f y (3, 2) L y 2 z 5x 5 ` x 3 z y 2 2 2 < > (2 ) f(, 2) 7 f x (x, y) 2x y f x (, 2),f y (x, y) x +4y,f y (, 2) 7 z (x ) + 7(y 2)

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

untitled

untitled 1 n m (ICA = independent component analysis) BSS (= blind source separation) : s(t) =(s 1 (t),...,s n (t)) R n : x(t) =(x 1 (t),...,x n (t)) R m 1 i s i (t) a ji R j 2 (A =(a ji )) x(t) =As(t) (1) n =

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

統計的データ解析

統計的データ解析 ds45 xspec qdp guplot oocalc (Error) gg (Radom Error)(Systematc Error) x, x,, x ( x, x,..., x x = s x x µ = lm = σ µ x x = lm ( x ) = σ ( ) = - x = js j ( ) = j= ( j) x x + xj x + xj j x + xj = ( x x

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

untitled

untitled 17 5 16 1 2 2 2 3 4 4 5 5 7 5.1... 8 5.2... 9 6 10 1 1 (sample survey metod) 1981 4 27 28 51.5% 48.5% 5 10 51.75% 48.24% (complete survey ( ) ) (populatio) (sample) (parameter) (estimator) 1936 200 2 N

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like () 10 9 30 1 Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ)

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

renshumondai-kaito.dvi

renshumondai-kaito.dvi 3 1 13 14 1.1 1 44.5 39.5 49.5 2 0.10 2 0.10 54.5 49.5 59.5 5 0.25 7 0.35 64.5 59.5 69.5 8 0.40 15 0.75 74.5 69.5 79.5 3 0.15 18 0.90 84.5 79.5 89.5 2 0.10 20 1.00 20 1.00 2 1.2 1 16.5 20.5 12.5 2 0.10

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

webkaitou.dvi

webkaitou.dvi ( c Akir KANEKO) ).. m. l s = lθ m d s dt = mg sin θ d θ dt = g l sinθ θ l θ mg. d s dt xy t ( d x dt, d y dt ) t ( mg sin θ cos θ, sin θ sin θ). (.) m t ( d x dt, d y dt ) = t ( mg sin θ cos θ, mg sin

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

分散分析・2次元正規分布

分散分析・2次元正規分布 2 II L10(2016-06-30 Thu) : Time-stamp: 2016-06-30 Thu 13:55 JST hig F 2.. http://hig3.net ( ) L10 2 II(2016) 1 / 24 F 2 F L09-Q1 Quiz :F 1 α = 0.05, 2 F 3 H 0, : σ 2 1 /σ2 2 = 1., H 1, σ 2 1 /σ2 2 1. 4

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l 1 1 ϕ ϕ ϕ S F F = ϕ (1) S 1: F 1 1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l : l r δr θ πrδr δf (1) (5) δf = ϕ πrδr

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information