Size: px
Start display at page:

Download ""

Transcription

1 2014

2

3 i

4 ii

5 1 Joseph von Fraunhofer( ) 1819 [1, 2](1785 David Rittenhouse [3] ) ( ) [4, 5] [6, 7] [8, 9] [10, 11] [12, 13] [14, 15] DVD Blu-ray LSI Intel G. Moore 1965 LSI 1 2 Moore 20 nm

6 (Rigorous Coupled Wave Analysis: RCWA) KrF ( 248 nm)

7 ( ) "!"!!! #! "!!! #! λ φ in p

8 4 1 ( )h w θ w p ( )f h r 1.2 "#$%&'#()*%+,(!!!"! "!!!!! $%!! #!! % 1/0(! -(,!./0(! 1.2 λ φ in λ φ m sin φ in + sin φ m = m λ p (1.1) m p p p λ

9 1.2 5 p λ φ m (1.1) m=0 (Effective Medium Theory: EMT) [10] 1.3 #! "!!!!&#'%!!"#$%!!! 1.3 TE (s ) n TE = fn 2 + (1 f) (1.2) TM (p ) n TM = 1 f/n2 + (1 f) (1.3) n (Form Birefringence) 1.4 n= f=0 f=1 f=0.55 [16] (1.2) (1.3) n n + ik 1.5

10 (a) ( ) (b) ( ) 1.5 n= k= TE TM 0.5 TM TE (Wire Grid Polarizer: WGP)[17] (1.2) (1.3) p λ Maxwell (Rigorous Coupled Wave Analysis: RCWA)[19, 20, 21] RCWA DiffractMOD TM (RSoft Design Group Inc., Ossining, NY, USA)[22]

11 (a) (a) (USP958469B2 ) (b) 1.6 [18] (LD) (GT) ±1 90 λ/8 (QZ1 QZ2) (CG1 CG2) λ/8 (QZ1 QZ2) (GT) λ/8 (QZ1 QZ2) (GT) ±1 (GT) (GT4) 4 45 (POL1 POL4) PD41 PD42 PD43 PD44

12 ( 1.6(b)) (a) 1.7 (b) λ/8 λ/8 (a) 1.8 (b) p=260 nm h=1.5 µm ( 1.8(a)) p=260 nm h=200 nm

13 ( 1.8(b)) ± !"#$%&'(#)*$! +*,-./%/-0! 12-%-$*./.%' 3-#%/04! 56,-."$*'7' +*8*9-,:*0%! 5%;2/04! <.2/04! +/;/04! 32/,! 1.10

14 10 1 φ=200 mm ( ) (Chemical Vapor Deposition: CVD) (Physical Vapor Deposition: PVD) PVD PVD 1.3 (Reactive Ion Etching: RIE) RIE (Capacitive Couples Plasma: CCP) RIE-10NR

15 (Magnetic Neutral Loop Discharge: NLD) NLD-5700 ( ) ( ) g (λ=436 nm) i (λ=365 nm) (KrF) (λ=248 nm) (ArF) (λ=193 nm) i ArF KrF ( CLEAN TRACK ACT 8) 1.12 KrF KrF ( ) ( ) FPA-6000ES6a 1.4 FPA-6000ES6a

16 12 1!"#$%&'()%"$*+,%"! 3%0('*%$+*(6/)%/0! -**.)(/+0(1/$120(',! 3%0('*%! 4"15%'0(1/$120(',! 8+9%"$+*(6/)%/0! #1'.,$7%0%'0(1/! :+,%"$(/0%"9%"1)%0%"! 8+9%"! 8+9%"$,0+6%! 1.12 KrF 1.1 item FPA-6000ES6a specification Light source Wavelength Wafer size Resolution Numerical aperture(na) Reticle size KrF excimer laser 248 nm 200 mm 90 nm 0.86 (max) 6 in. Reduction ratio 1/4 Field size Overlay accuracy Throughput 26 mm 33 mm 8 nm (silicon wafer) 170 wph (58 shots) 90 nm R Rayleigh λ R = k 1 NA (1.4) [23] k FPA-6000ES6a λ=248 nm NA 0.86 (1.4) 72 nm FPA-6000ES6a p=144 nm

17 / mm 33 mm KrF

18 14 1

19 (Deep Ultra Violet: DUV) [24] ( ) [25]

20 16 2 (Glan Thompson) (Rochon) [17] [26] [27] [28] [29] [31, 30, 32] [29] [33] [34] [35] [36] [37] 50:1(17 db) [30] 5:1(7 db) [31] 15:1(12 db) [32] ArF (λ=193 nm) 100:1(20 db) 2.2 RCWA RCWA

21 λ=193 nm RCWA $%&'()%*+,'-!*!!&#'%!!"#$%! 3)*0,+45'()! #! "!!! 670/*8+1791*/0*)!!"#$%!./0%12'**)(+,'-!*! 2.2 ±1 p (1.1) sin φ in + n sub sin φ m = m λ p (2.1) λ φ in φ m m n sub (φ in = 0 ) 1 (m = ±1) sin φ ±1 1 (2.1) ±λ/p sin 0 sin φ ±1 = > 1 n sub p < λ. (2.2) n sub λ=193 nm n sub = p (2.2) 120 nm p=90 nm

22 18 2 w 20 db TM ( ) TE ( ) T TM T TE 10 log(t TM /T TE ) (Cr 2 O 3 ) (Al 2 O 3 ) (Ta 2 O 5 ) (TiO 2 ) 4 RCWA (Al) Cr 2 O 3, Al 2 O 3, Ta 2 O 5, TiO 2, Al p=90 nm TM RCWA f w/p RCWA n + ik (SCI Filmtek3000) 2.5 λ=193 nm Cr 2 O i Al 2 O i Ta 2 O i TiO i Al i 2.3 Al 2 O 3 Al 193 nm TM 120 nm 2.6 p=90 nm h=120 nm TM RCWA Cr 2 O db TiO Cr 2 O 3 TM 10% Ta 2 O 5 TM Cr 2 O 3 20dB p=90 nm h=120 nm f=0.3 TE TM RCWA TE 2.7(b) Al 2.7(a) Cr 2 O 3 Al TE

23 (a) Cr 2 O 3 (b) Al 2 O 3 (c) Ta 2 O 5 (d) TiO 2 (e) Al 2.3 RCWA ( 50 db 0 )

24 20 2 (a) Cr 2 O 3 (b) Al 2 O 3 (c) Ta 2 O 5 (d) TiO 2 (e) Al 2.4 TM RCWA

25 (a) Cr 2 O 3 (b) Al 2 O 3 (c) Ta 2 O 5 (d) TiO 2 (e) Al 2.5 Cr 2 O 3 Ta 2 O 5 TiO 2 Al Cr 2 O (e) Al 2 O 3 TE 2.1 p=90 nm h=120 nm 0.3 TM RCWA

26 22 2 (a) (b) TM 2.6 p=90 nm h=120 nm f RCWA (a) Cr 2 O 3 (b) Al 2 O 3 (c) Ta 2 O 5 (d) TiO 2 (e) Al 2.7 p=90 nm h=120 nm f=0.3 TE RCWA 2.1 P=90 nm h=120 nm f=0.3 TM RCWA Extinction ratio Transmission Cr 2 O db 36.0% Al 2 O db 74.8% Ta 2 O db 41.4% TiO db 10.4% Al 4.30 db 46.0%

27 (a) Cr 2 O 3 (b) Al 2 O 3 (c) Ta 2 O 5 (d) TiO 2 (e) Al 2.8 p=90 nm h=120 nm f=0.3 TM RCWA Cr 2 O (a) 2.9 (b) TM Cr 2 O 3 RCWA RCWA 1 φ in = db RCWA 193 nm p=90 nm h=120 nm f=0.3

28 [38] 1.4 KrF p=180 nm k 1 =0.25 p=144 nm p=90 nm /0-,! +$, -.!!"#$%&'(")(%$#%*! (a) Cr 2 O 3 SiO 2 (e) (2 )!"#$#%&'('$! (b) (1 ) (f) (2 ) (c) (1 ) (g) SiO 2 (2 ) (d) SiO 2 (1 ) 2.10 (h) Cr 2 O (a) 120 nm Cr 2 O nm SiO 2 Cr 2 O 3 (b) 170 nm ( GKR-5201A) (c) p=720 nm p=180 nm

29 SEM (d) 2.11 (1 ) SEM NLD RIE SiO 2 10 sccm C 3 F sccm O 2 1 Pa 2.12 SEM (e) 2.12 SiO 2 (1 ) SEM (f) p=720 nm (c) p=180 nm 2.13(a) 2.13(b) (g) (g)

30 26 2 (a) (b) 2.13 (2 ) NLD RIE SiO SEM (h) SiO SiO 2 (2 ) SEM CCP RIE Cr 2 O 3 60 sccm Cl sccm O 2 38 sccm Ar 2 Pa 120 nm Cr 2 O sec nm/sec 2 Cr 2 O w=37.5 nm( f=0.417) w=34.0 nm( f=0.378) Cr 2 O 3 SEM SiO 2??

31 (a) f=0.417 (b) f= Cr 2 O nm TM TE 2.16!"#$%&'! )744/4!,"-./!"0&'()*+! &/0/1# 234/&%5/4! 6$%01 *3/&'-/0 '/$%478.4! +,)! -%&'$.! ()*! ()*! )744/4!!"#"!"$%"&'()*+! 2.16 ( L1835) ( VU-200) ( DUVGT-08) ( R374) Cr 2 O 3 TM TE 18.6% 0.134% 21.4 db Cr 2 O 3

32 28 2 TM TE 31.1% 0.423% 18.7 db p=90 nm 20 db [30] p=90 nm 2.2 RCWA SiO 2 RCWA RCWA 2.17 Cr 2 O 3 TM (a) (b) TM 2.17 SiO 2 RCWA RCWA 10 nm

33 nm ±4 nm SiO SiO 2 (a) 2.18 SiO 2 RCWA (b) TM TM RCWA λ=193 nm SiO 2 n SiO2 = i RCWA SiO 2 TM SiO (a) SEM Cr 2 O 3 RCWA 2.19(a) TE TE 2.19(b) TM Cr 2 O 3 TE TM RCWA 0.002% % 38.2 db RCWA RCWA [39]

34 30 2 (a) TE (b) TM 2.19 Cr 2 O 3 RCWA RCWA RCWA 2.6 RCWA 90 nm

35 ( ) [40]

36 RCWA g (λ=436 nm) i (λ=365 nm) (Al) p=160 nm h=100 nm (Ta)

37 Ta 3 TM ( V-7200) 3.2 λ=240 nm (a) 3.2 Ta TM (b) TM TM ( KBF794N) TM 150 ( ) ( ) 300 ( ) λ=300 nm TM 450 ( ) TM Ta 100 nm Ta (J. A. Woollam M-2000) 3.4 Ta 450 6

38 34 3 (a) 1 (d) 1 TM (b) 2 (e) 2 TM (c) 3 (f) 3 TM 3.3 Ta TM

39 (a) Ta (b) Ta 3.4 (c) Ta 2 O 5 3.4(b) 100 nm (Ta 2 O 5 ) 3.4(c) Ta Ta 2 O 5 λ=300 nm 3.3 TM 3.5 (a)

40 36 3 (a) (b) 3.5 (b) (MEMS) 3.6 (a) (b) 10 6 (c) (d) (b) 3.7 (a) 105 nm Ta 35 nm SiO 2 Ta (b) 45 nm ( DUV42) 160 nm (

41 (a) (b) (c) (d) 3.6 S i O T a Quartz substrate (a) Ta SiO 2 (d) SiO 2 Photoresist (b) (e) Ta (c) 3.7 (f)

42 38 3 GKR-5201A) (c) p=640 nm p=160 nm 3.8 SEM (d) 3.8 SEM NLD RIE SiO 2 25 sccm CHF 3 75 sccm Ar 1 Pa (e) SiO 2 NLD RIE Ta 120 sccm Cl Pa 3.9 SEM (f) 3.9 Ta SEM ( MWB-08-AX)

43 Ta TM TE Ta Ta (a) Ta (b) Ta 3.10 SEM 3.10 Ta SEM 3.9 Ta Ta 3.10(a) Ta 3.10(b) Ta 3.11 Ta TM 3.2 Ta Ta TM Ta

44 40 3 (a) 3.11 (b) TM Ta TM (a) SEM Ta nm SiO nm 3.4(b) 3.12 RCWA λ=300 nm TM λ=320 nm λ=300 nm TM λ=300 nm

45 (a) 3.12 (b) TM Ta RCWA 3.10(b) SEM Ta nm SiO nm 3.4(a) 3.13 RCWA (a) 3.13 (b) TM Ta RCWA TM Ta Al

46 nm Ta

47 (10 15 ) (10 18 ) (10 12 ) (10 15 ) [43] ( ) (Chirped Pulse Amplification: CPA) [44] 4.1 (Pulse Stretcher) 1,000 10,000 (Pulse Compressor) 4.2

48 44 4 2$! 0$5,$! 0$5,$! 2$! 4$)+##3'.(!!"#$%&$'(%')*+,-! 1/0#+2+)3'+.,!!"#$%&)./0(%$$+.,! 4.1!"#$%&'! (%"")"!!"#$%&'! (%"")"!!"#$%&'!!"#$%&'! (a) (b) 4.2 ( ) [45, 46] [47] RCWA

49 RCWA 4.2!!!!"! $%&!'! "! #!! #$! 4.3 λ o φ in 1 φ +1 φ in 1 φ +1 (1.1) 1 sin φ in + sin φ +1 = λ 0 p, (4.1) φ in = φ +1 φ in ( ) φ in = φ +1 = sin 1 λ0 2p (4.2) 1 2 p φ in = sin 1 (λ/2p) 2

50 46 4 sin φ in + sin φ +2 = 2λ 0 p, (4.3) sin φ in = λ 0 2p sin φ +2 1 (4.4) sin φ +2 = 3λ 0 2p p < 3λ 0 2 > 1, (4.4) p RCWA TE(s) (Anti-Reflection: AR) (Ti:Sapphire) λ 0 =800 nm p=575 nm λ 0 =800 nm p=575 nm RCWA RCWA h=1.16 µm f=0.49 φ in = % λ 0 =800 nm p=800 nm

51 RCWA 4.5 λ 0=800 nm p=800 nm RCWA h=1.38 µm f=0.5 φ in = % (Yb) λ 0 =1030 nm p=575 nm?? 4.6 λ 0 =1030 nm p=575 nm RCWA RCWA

52 48 4 h=1.22 µm f=0.48 φ in = % 4.1 λ p f h φ in Wavelength Period Duty cycle Groove depth Incident angle Diffraction efficiency 800 nm 575 nm µm % 800 nm 800 nm µm % 1030 nm 575 nm µm % 4.1 (λ=800 nm) p=575 nm 800 nm (λ=1030 nm) p=800 nm RCWA KrF 26 mm 33 mm 4.7 (a) (b) (c) ( TDUR-P009) 500 nm 1 µm 4.8 SEM 4.7(d) 1/ mm 10 mm 40 mm 40 mm p=800 nm Ry=40 mm p=3.2 µm Rx=40 mm

53 ,-%-$*(.(%!!#!!"!!$%&'($)!"#$%&'(")(%$#%*! (a) *+,-$'%&,.)/0%&'1) (b)!"#$%&'# 234$+)!(#$%&'# (c) (d) 4.7 (a) p=575 nm 4.8 SEM (b) p=800 nm p=575 nm Ry=40 mm p=2.3 µm Rx= mm x y x p=800 nm 10 mm p=575 nm mm y mm x y Nx=18

54 第 4 章 スティッチング露光を用いた大面積素子化と大面積高効率透過型回折格子 50 N y=6 回とすることで 60 mm 180 mm の大面積化が可能となる 図 4.3 に 露光ステップ 図 4.9 露光ステップの境界での上面観察 SEM 画像 の境界を上面から観察した SEM 画像を示す 明らかに中心の 1 本が細くなっているのが分か る これは 投影縮小光学系の倍率誤差に起因している 露光機の本来の用途である半導体集 積回路パターンでは 素子面積が小さくレチクル上に同一パターンが配置されている そのた め 投影縮小光学系の倍率による影響は日常管理項目で制御できるレベルである これに対し て スティッチング露光を要する大面積素子においては 露光面積が大きいため 倍率誤差に よる絶対値が大きくなり 影響が無視できないという課題がここで顕在化されたことになる 露光倍率の誤差を抑えるために 倍率補正量の条件出しを行った 図??に 倍率オフセット (a) -1 ppm (b) -2 ppm (c) -3 ppm (d) -4 ppm (e) -5 ppm (f) -6 ppm (g) -7 ppm (h) -8 ppm (i) -9 ppm (j) -10 ppm 図 4.10 倍率オフセット量ごとの上面観察 SEM 画像

55 SEM x CCP RIE 90 sccm CHF Pa 0.31 nm/sec?? λ=800 nm p=575 nm SEM λ=800 nm p=800 nm λ=1030 nm p=575 nm???? ( ) 0.5% ( DAD3350)

56 52 4 (a) ( f=0.468 h=1.19 µm) (b) ( f=0.468 h=1.21 µm) (c) ( f=0.468 h=1.19 µm) 4.12 λ=800 nm p=575 nm SEM

57 4.3 スティッチング露光を用いた素子加工 (a) 左端付近 (デューティー比 f =0.49 溝深さ h=1.37 µm) (b) 中心付近 (デューティー比 f =0.484 溝深さ h=1.39 µm) (c) 右端付近 (デューティー比 f =0.49 溝深さ h=1.37 µm) 図 4.13 対象波長 λ=800 nm 格子周期 p=800 nm 向け回折格子の断面形状 SEM 観察像 53

58 54 4 (a) ( f=0.483 h=1.23 µm) (b) ( f=0.483 h=1.26 µm) (c) ( f=0.483 h=1.23 µm) 4.14 λ=1030 nm p=575 nm SEM

59 ( V-7300) 4.4 ±50 nm RCWA 4.15(a) λ=800 nm p=575 nm λ=800 nm 95.9% 90% 750 nm 840 nm 90% 100 nm 4.15(b) λ=800 nm p=800 nm λ=800 nm 97.3% 750 nm 850 nm 93% p=575 nm (c) λ=1030 nm p=575 nm λ=1030 nm 92.3% 90% 980 nm 1035 nm 55 nm 90% 45 nm 800 nm 4.4

60 56 4 (a) λ=800 nm p=575 nm (b) λ=800 nm p=800 nm (c) λ=1030 nm p=575 nm 4.15 :

61 (a) λ=800 nm p=575 nm (b) λ=800 nm p=800 nm (c) λ=1030 nm p=575 nm 4.16 :

62 58 4 (a) λ=800 nm p=575 nm (b) λ=800 nm p=800 nm (c) λ=1030 nm p=575 nm 4.17 :

63 ± (a) λ=800 nm p=575 nm % 4.16(b) λ=800 nm p=800 nm % 4.16(c) λ=1030 nm p=575 nm % 2 90% x 25 mm λ=1030 nm p=575 nm 5 mm 2% 4.5 RCWA 60 mm 180 mm

64 60 4 [48] [49]

65 RCWA 90 nm

66 nm 4 RCWA 60 mm 180 mm KrF ArF

67 63,,,,,,,,,.,,,,.,,,,.,,,.,,.,.,.

68 64 [1] M. Born and E. Wolf, Principles of Optics, 7th ed., Cambridge University Press, Cambridge (1999), Chapter 8. [2] J. Fraunhofer, Kurtzer Bericht von den Resultaten neuerer Versuche über die Sesetze des lichtes, und die Theorie derselbem, Ann. D. Phys., 74, (1823). [3] D. Rittenhouse, An optical problem, proposed by Mr. Hopkinson, and solved by Mr. Rittenhouse, Trans. Amer. Phil. Soc., 2, (1786). [4] J. Turunen and F. Wyrowski ed., Diffractive Optics for Industrial and Commercial Applications, Akademie Verlag, Berlin (1997). [5],,, (2006). [6] K. Iga, Y. Kokubun, M. Oikawa, Fundamentals of Micro-optics, Academic Press Inc., New York (1984). [7],,, (1995). [8] E. Yablonovitch, Inhibited Spontaneous Emission in Solid-State Physics and Electronics, Phys. Rev. Lett., 58, (1987) [9],,, (2011). [10] H. Kikuta, H. Toyota, and W. Yu, Optical Elements with Subwavelength Structured Surfaces, Opt. Rev., 10, (2003). [11],,,, (2011). [12] E. Rudberg, Characteristic Energy Losses of Electrons Scattered from Incandescent Solids, Proc. Roy. Soc. A, 127, (1930). [13],,,, (2010).

69 65 [14] V. G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and µ, Sov. Phys. USPEKHI, 10, (1968). [15],,, (2007). [16] D. C. Flanders, Submicrometer periodicity gratings as artificial anisotropic dielectrics, Appl. Phys. Lett., 42, (1983). [17] G. R. Bird and M. Parrish Jr., The wire grid as a near-infrared polarizer, J. Opt. Soc. Am., 50, (1960). [18] K. Ishizuka, Diffraction grating interference system encoder for detecting displacement information, U. S. Patent, 6,958,469 B2 (2005). [19] M. G. Moharam and T. K. Gaylord, Rigorous coupled-wave analysis of metallic surfacerelief gratings, J. Opt. Soc. Am. A, 3, (1986). [20] M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach, J. Opt. Soc. of Am. A, 12, (1995). [21] L. Li, Use of Fourier series in the analysis of discontinuous periodic structures, J. Opt. Soc. Am. A, 13, (1996). [22] [23], 38,, (1999), 7. [24] B. W. Smith and J. Cashmore, Challenges in high NA, polarization, and photoresist, Proc. SPIE, 4691, (2002). [25],,, (2012). [26] I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, Terahertz wire-grid polarizers with micrometer-pitch Al gratings, Opt. Lett., 34, (2009). [27] H. Tamada, T. Doumuki, T. Yamaguchi, and S. Matsumoto, Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-µm-wavelength band, Opt. Lett., 22, (1997). [28] L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, Large flexible nanowire grid visible polarizer made by nanoimprint lithography, Appl. Phys. Lett., 90, (2007).

70 66 [29] S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography, Nanotechnol., 16, (2005). [30] T. Weber, T. Käsebier, M. Helgert, E. B. Kley, and A. Tünnermann, Tungsten wire grid polarizer for applications in the DUV spectral range, Appl. Opt., 51, (2012). [31] J. M. Papalia, D. H. Adamson, P. M. Chaikin, and R. A. Register, Silicon nanowire polarizers for far ultraviolet (sub-200 nm) applications: Modeling and fabrication, J. Appl. Phys., 107, (2010). [32],,, (2009). [33] J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids, Appl. Phys. Lett., 90, (2007). [34] B. Schnabel, E. B. Kley, and F. Wyrowski, Study on polarizing visible light by subwavelength-period metal-stripe gratings, Opt. Eng., 38, (1999). [35] G. Schider, J. R. Kren, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, F. R. Aussenegg, Optical properties of Ag and Au nanowire gratings, J. Appl. Phys., 90, (2001). [36] J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, 30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography, Appl. Phys. Lett., 89, (2006). [37] T. Weber, H. J. Fuchs, H. Schmidt, E. B. Kley, A. Tünnermann, Wire-grid polarizer for the UV spectral region, Proc. SPIE, 7205, (2009). [38] T. Ebihara, M. D. Levenson, W. Li, J. He, W. Yeh, S. Ahn, T. Oga, M. Shen, and H. M saad, Beyond k 1 =0.25 lithography : 70nm L/S patterning using KrF scanners, Proc. SPIE, 5256, (2003). [39] A. Lehmuskero, M. Kuittinen, and P. Vahimaa, Refractive index and extinction coefficient dependence of thin Al and Ir films on deposition technique and thickness, Opt. Express., 15, (2007). [40],, (2010).

71 67 [41] Y. Kumai, Polarization device, method of manufacturing the same, liquid crystal device, and electronic apparatus, U. S. Patent, 2011/ A1 (2011). [42] T. Suga, K. Miyazawa, and Y. Yamagata, Direct bonding of ceramics and metals by means of a surface activation method in ultrahigh vacuum, Proceedings of the MRS International Meeting on Advanced Materials, 8, (Tokyo, 1988). [43],,,, 81(Suppl.), (2005). [44] D. Strickland and and G. Mourou, Compression of amplified chirped optical pulses, Opt. Commun., 55, (1985). [45] S. Backus, C. G. Durfee III, G. Mourou, H. C. Kapteyn, and M. M. Murnane, 0.2-TW laser system at 1 khz, Opt. Lett., 25, (1997). [46] T. Nabekawa, T. Togashi, T. Sekikawa, S. Watanabe, S. Konno, T. Kojima, S. Fujikawa, and K. Yasui, All-solid-state high-peak-power Ti:sapphire laser system above 5-kHz repetition rate, Appl. Phys. B, 70(Suppl.), S171 S179 (1997). [47] J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H. -J. Fuchs, E. -B. Kley, H. Zellmer, and A. Tünnermann, High-power femtosecond Yb-doped fiber amplifier, Opt. Express., 10, (2002) [48] C. Zhou, T. Seki, T. Sukegawa, T. Kanai, J. Itatani, Y. Kobayashi, and S. Watanabe, Large-scale, high-efficiency transmission grating for terawatt-class Ti:sapphire lasers at 1 khz, Appl. Phys. Express., 4, (2011) [49] Y. Kobayashi, N. Hirayama, A. Ozawa, T. Sukegawa, T. Seki, Y. Kuramoto, and S. Watanabe, 10-MHz, Yb-fiber chirped-pulse amplifier system with large-scale transmission gratings, Opt. Express., 21, (2013)

72 68 1. K. Asano, S. Yokoyama, A. Kemmochi, and T. Yatagai, Fabrication and Characterization of a Deep Ultraviolet Wire Grid Polarizer with a Chromium Oxide Sub-Wavelength Grating, Appl. Opt., 53, (2014). 2. K. Asano, A. Kemmochi, S. Yokoyama, and T. Yatagai, Improvement of ultraviolet irradiation durability of a wire grid polarizer buried by room-temperature wafer bonding, (to be submitted). 3. K. Asano, S. Yokoyama, A. Kemmochi, Y. Kuramoto, T. Sukegawa, T. Kitamura, T. Seki, and T. Yatagai, Large area patterning for high-efficiency transmission gratings by a KrF scanning stepper, (to be submitted). 1. A. Kemmochi, S. Yokoyama, T. Isano, K. Asano, and Y. Kaneda, 8-inch-quartz Mold fabricated by KrF Double Patterning/Exposure, 23rd International Microprocesses and Nanotechnology Conference, 12D (Fukuoka, 2010). 2. Y. Gyoda, T. Arai, S. Yokoyama, K. Asano, K. Mikami, and K. Tsujita Source Mask Optimization of Photolithography Tool for Nanoimprint Quartz Mold Fabrication, 2010 International Symposium on Lithography Extensions, (Hyogo, 2010). 3. K. Asano, S. Yokoyama, A. Kemmochi, K. Kikuchi, and T. Yatagai, Fabrication of a Sealed Wire Grid Polarizer by Use of Room-Temperature-Bonding, 18th Microoptics Conference, PD-2 (Tokyo, 2013).

73 69 1. ArF, Optics and Photonics Japan 2010, 9pP4 (, 2010).

研究成果報告書

研究成果報告書 10m 2m Ge Si BaF2 ZnSZnSe Sb-Ge-Sn-S IIR-SF1 1 2 Tungsten SilicideWSi WSi () IIR-SF 1 Sb-Ge-Sn-S 0.85~11μm2.710μm 253 C Al Al 220μm He-Cd laser 1 Exposure Photoresist WSi (a) 500 nm Development RIE WSi

More information

着色斜め蒸着膜の光学的性質~無機偏光膜への応用

着色斜め蒸着膜の光学的性質~無機偏光膜への応用 Anisotropy in the Optical Absorption of Metal-insulator Obliquely Deposited Thin Films The Application for an Inorganic Polarizer Motofumi Suzuki, Yasunori Taga Abstract An attempt has been made to clarify

More information

13 EUVA EUV EUVLL (NEDO) EUV (EUVA) 10 EUVA EUV W EUV EUV LPP EUV DPP EUVA 2 Selete 26nm IMEC EUVA NEDO

13 EUVA EUV EUVLL (NEDO) EUV (EUVA) 10 EUVA EUV W EUV EUV LPP EUV DPP EUVA 2 Selete 26nm IMEC EUVA NEDO 13 EUVA EUV EUVLL 2002 6 (NEDO) EUV (EUVA) 10 EUVA 2002 2005 EUV 2007 2 2005 1050W EUV EUV LPP EUV DPP EUVA 2 Selete 26nm IMEC 1 2008 2010 EUVA NEDO EUVA EUV 2006 Selete EUVA 1. EUVA 436nm 365nm 1/17 KrF

More information

Fig.2 Optical-microscope image of the Y face-cross sec- tion of the bulk domain structure of a 0.4-mm-thick MgO-LiNbO3 crystal after chemical etching.

Fig.2 Optical-microscope image of the Y face-cross sec- tion of the bulk domain structure of a 0.4-mm-thick MgO-LiNbO3 crystal after chemical etching. Blue EGreen Solid State Lasers Using MgO-LiNbO3 Periodic Domain Inverted Bulk Crystal and Their Applications Koji KAMIYAMA, Yoji OKAZAKI, and Akinori HARADA Fuji Photo Film. Co., Ltd., Miyanodai Technology

More information

16 (16) poly-si mJ/cm 2 ELA poly-si super cooled liquid, SCL [3] a-si poly-si [4] solid phase crystalization, SPC [5] mJ/cm 2 SPC SCL (di

16 (16) poly-si mJ/cm 2 ELA poly-si super cooled liquid, SCL [3] a-si poly-si [4] solid phase crystalization, SPC [5] mJ/cm 2 SPC SCL (di (15) 15 ELA により形成された poly-si 結晶成長様式 - グレイン形状と水素の関係 - Crystal Growth Mode of Poly-Si Prepared by ELA -Relationship between the Grain Morphology and ydrogens- Naoya KAWAMOTO (Dept. of Electrical and Electronic

More information

untitled

untitled 213 74 AlGaN/GaN Influence of metal material on capacitance for Schottky-gated AlGaN/GaN 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1 1 AlGaN/GaN デバイス ① GaNの優れた物性値 ② AlGaN/GaN HEMT構造 ワイドバンドギャップ半導体 (3.4eV) 絶縁破壊電界が大きい

More information

1

1 2-2 Atom Optics and Atom Lithography OHMUKAI Ryuzo and WATANABE Masayoshi High-resolution atomic channeling using velocity-selected atoms may be able to overcome precision limitations of the conventional

More information

, vol.43, no.2, pp.71 77, Simultaneous Measurement of Film Thickness and Surface Profile of Film-Covered Objects by Using White-Light Interfer

, vol.43, no.2, pp.71 77, Simultaneous Measurement of Film Thickness and Surface Profile of Film-Covered Objects by Using White-Light Interfer , vol.43, no.2, pp.71 77, 2007. 1 Simultaneous Measurement of Film Thickness and Surface Profile of Film-Covered Objects by Using White-Light Interferometry 1 2 3 1 3 1 ( ) 1-1-45 2 ( ) 1 3 2-12-1 sugi@cs.titech.ac.jp

More information

2D-RCWA 1 two dimensional rigorous coupled wave analysis [1, 2] 1 ε(x, y) = 1 ε(x, y) = ϵ mn exp [+j(mk x x + nk y y)] (1) m,n= m,n= ξ mn exp [+j(mk x

2D-RCWA 1 two dimensional rigorous coupled wave analysis [1, 2] 1 ε(x, y) = 1 ε(x, y) = ϵ mn exp [+j(mk x x + nk y y)] (1) m,n= m,n= ξ mn exp [+j(mk x 2D-RCWA two dimensional rigoros copled wave analsis, 2] εx, εx, ϵ mn exp +jmk x x + nk ] m,n m,n ξ mn exp +jmk x x + nk ] 2 K x K x Λ x Λ ϵ mn ξ mn K x 2π Λ x K 2π Λ ϵ mn ξ mn Λ x Λ x Λ x Λ x Λx Λ Λx Λ

More information

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index MEMOIRS OF SHONAN INSTITUTE OF TECHNOLOGY Vol. 42, No. 1, 2008 Li 2 B 4 O 7 (LBO) *, ** * ** ** Optical Scatterer and Crystal Growth Technology of LBO Single Crystal For Development with Optical Application

More information

15H02248 研究成果報告書

15H02248 研究成果報告書 70Gbps ICT 100Tbps LAN 100Gbps 10Gbps 40Gbps TU Berlin 25Gbps 60Gbps (IBM) (APL 2013, APEX 2014) 10 m (Optics Express 2014) 100Gbps 3 VCSEL 4 7 図 10 変調器集積面発光レーザ 8 NRZ 48Gbps 11 図 12 製作した変調器集積 VCSEL の近視野像

More information

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s 1 1 1, Extraction of Transmitted Light using Parallel High-frequency Illumination Kenichiro Tanaka 1 Yasuhiro Mukaigawa 1 Yasushi Yagi 1 Abstract: We propose a new sharpening method of transmitted scene

More information

XFEL/SPring-8

XFEL/SPring-8 DEVELOPMENT STATUS OF RF SYSTEM OF INJECTOR SECTION FOR XFEL/SPRING-8 Takao Asaka 1,A), Takahiro Inagaki B), Hiroyasu Ego A), Toshiaki Kobayashi A), Kazuaki Togawa B), Shinsuke Suzuki A), Yuji Otake B),

More information

untitled

untitled (a) (b) (c) (d) (e) (f) (g) (f) (a), (b) 1 He Gleiter 1) 5-25 nm 1/2 Hall-Petch 10 nm Hall-Petch 2) 3) 4) 2 mm 5000% 5) 1(e) 20 µm Pd, Zr 1(f) Fe 6) 10 nm 2 8) Al-- 1,500 MPa 9) 2 Fe 73.5 Si 13.5 B 9 Nb

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

研究成果報告書(基金分)

研究成果報告書(基金分) (DMS) 1 3 DMS 2 4 DMS II-VI CdTe ZnTe 2 4 DMS 2 4 DMS II-VI 2 3d 4 3d (MBE) II-VI ZnTe CdTe 3d Mn, Cr, Fe 2 4 DMS MBE X (XRD)X (XAFS) II (SQUID) (a) 4 DMS (Cd,Mn,Cr)Te 4 DMS II-VI CdTe 2 Mn, Cr (Cd,Mn,Cr)Te

More information

表紙

表紙 Akira Fujishima 2005.Vo.3 1 Kiyoshi kanamura kanamura-kiyoshi@c.metro-u.ac.jp 2 2005.Vol.3 Rechargeable Lithium Ion-Battery Active Material Liquid Electrolyte σ = 10-2 10-3 S cm -1 3D Interface of Solid

More information

1 Visible spectroscopy for student Spectrometer and optical spectrum phys/ishikawa/class/index.html

1 Visible spectroscopy for student Spectrometer and optical spectrum   phys/ishikawa/class/index.html 1 Visible spectroscopy for student Spectrometer and optical spectrum http://www.sci.u-hyogo.ac.jp/material/photo phys/ishikawa/class/index.html 1 2 2 2 2.1................................................

More information

pp * Yw; Mq 1. 1L 20 cc [1] Sonoluminescence: Light emission from acoustic cavitation bubble. Pak-Kon Choi (Departm

pp * Yw; Mq 1. 1L 20 cc [1] Sonoluminescence: Light emission from acoustic cavitation bubble. Pak-Kon Choi (Departm 73 7 2017 pp. 447 454 447 * 43.25.Yw; 78.60.Mq 1. 1L 20 cc [1] Sonoluminescence: Light emission from acoustic cavitation bubble. Pak-Kon Choi (Department of Physics, Meiji University, Kawasaki, 214 8571)

More information

4_Laser.dvi

4_Laser.dvi 1 1905 A.Einstein 1917 A.Einstein 1954 C.H.Townes MASER Microwave Amplification by Stimulated Emission of Radiation 23.9 GHz 1.26 cm 1960 T.H.Maiman LASER Light Amplification by Stimulated Emissin of Radiation

More information

Laser Ablation Dynamics of Amorphous Film of a Cu-Phthalocyanine Derivative Masahiro HOSODA*,**, Hiroshi FURUTANI*,**. Hiroshi FUKUMURA*,** Hiroshi MASUHARA*, Masanobu NISHII*** Nobuyuki ICHINOSE**,***,

More information

Vol. 19, No. 3 (2012) 207 Fig. 2 Procedures for minute wiring onto polyimide substrate. Fig. 3 Ink - jet printing apparatus as part of laser sintering

Vol. 19, No. 3 (2012) 207 Fig. 2 Procedures for minute wiring onto polyimide substrate. Fig. 3 Ink - jet printing apparatus as part of laser sintering 206 : 316-8511 4-12 - 1 Laser Sintering Characteristics of Silver Nanoparticle Paste for Electronics Packaging YAMASAKI Kazuhiko, MAEKAWA Katsuhiro (Received January 10, 2012) Ibaraki University, Faculty

More information

IEEE HDD RAID MPI MPU/CPU GPGPU GPU cm I m cm /g I I n/ cm 2 s X n/ cm s cm g/cm

IEEE HDD RAID MPI MPU/CPU GPGPU GPU cm I m cm /g I I n/ cm 2 s X n/ cm s cm g/cm Neutron Visual Sensing Techniques Making Good Use of Computer Science J-PARC CT CT-PET TB IEEE HDD RAID MPI MPU/CPU GPGPU GPU cm I m cm /g I I n/ cm 2 s X n/ cm s cm g/cm cm cm barn cm thn/ cm s n/ cm

More information

1

1 5-3 Photonic Antennas and its Application to Radio-over-Fiber Wireless Communication Systems LI Keren, MATSUI Toshiaki, and IZUTSU Masayuki In this paper, we presented our recent works on development of

More information

Terahertz Color Scanner Takeshi YASUI Terahertz THz spectroscopic imaging is an interesting new tool for nondestructive testing, security screening, b

Terahertz Color Scanner Takeshi YASUI Terahertz THz spectroscopic imaging is an interesting new tool for nondestructive testing, security screening, b Terahertz Color Scanner Takeshi YASUI Terahertz THz spectroscopic imaging is an interesting new tool for nondestructive testing, security screening, biological imaging, and other applications because of

More information

1

1 2 Light Source Technologies 2-1 Fourier Synthesis of Optical Pulses HYODO Masaharu, Kazi Sarwar ABEDIN, ONODERA Noriaki, and WATANABE Masayoshi With the rapid progress made recently in the field of optical

More information

Introduction to Microfabrication

Introduction to Microfabrication 2005 Introduction to Microfabrication 1 1.1 Microfabrication disciplines Microfabrication technologies IC industry and related industries MEMS, solar cells, flat-panel displays, optelectronics In-plane

More information

1

1 4 Nano Device Technologies From New Functions of Extreme Substances to Telecommunication Technologies 4-1 Controlling Intermolecular Interactions using Nano- Structural Molecules OTOMO Akira, YOKOYAMA

More information

レーザ誘起蛍光法( LIF法) によるピストンの油膜挙動の解析

レーザ誘起蛍光法( LIF法) によるピストンの油膜挙動の解析 Analysis of Piston Oil Film Behavior by Using Laser Induced Fluorescence Method Shuzou Sanda, Akinori Saito ( Laser Induced Fluorescence Method LIF ) LIF Scanning -LIF Abstract Analysis of the oil film

More information

表紙_偏光・位相差デバイスのコピー

表紙_偏光・位相差デバイスのコピー 2 Table of Contents 2 Note: Polarizers are available from less than 5mm square to 200 mm and greater diameter Polarizers Retarders 3 Polarizers Retarders Fig. 1-2 4 Polarizers Retarders polarizer. Polarized

More information

news

news ETL NEWS 1999.9 ETL NEWS 1999.11 Establishment of an Evaluation Technique for Laser Pulse Timing Fluctuations Optoelectronics Division Hidemi Tsuchida e-mail:tsuchida@etl.go.jp A new technique has been

More information

研究成果報告書

研究成果報告書 EL EL 17% 1.5 (F. Li, et al. Org. Elect., Vol. 8, 635, 2007 ) (S.Hore, et al., Sol. Energy Mater. Sol. Cells, pp. Vol. 90, 1176, 2006) (C. Haase et al., Proc. of SPIE, Vol. 6645, 66450W, 2007) (T. Fukuda

More information

藤村氏(論文1).indd

藤村氏(論文1).indd Nano-pattern profile control technology using reactive ion etching Megumi Fujimura, Yasuo Hosoda, Masahiro Katsumura, Masaki Kobayashi, Hiroaki Kitahara Kazunobu Hashimoto, Osamu Kasono, Tetsuya Iida,

More information

修士論文

修士論文 SAW 14 2 M3622 i 1 1 1-1 1 1-2 2 1-3 2 2 3 2-1 3 2-2 5 2-3 7 2-3-1 7 2-3-2 2-3-3 SAW 12 3 13 3-1 13 3-2 14 4 SAW 19 4-1 19 4-2 21 4-2-1 21 4-2-2 22 4-3 24 4-4 35 5 SAW 36 5-1 Wedge 36 5-1-1 SAW 36 5-1-2

More information

1-x x µ (+) +z µ ( ) Co 2p 3d µ = µ (+) µ ( ) W. Grange et al., PRB 58, 6298 (1998). 1.0 0.5 0.0 2 1 XMCD 0-1 -2-3x10-3 7.1 7.2 7.7 7.8 8.3 8.4 up E down ρ + (E) ρ (E) H, M µ f + f E F f + f f + f X L

More information

Fundamental Study on the SOX Gas Sensor Utilizing Beta-Alumina with Sputtered Praseodymium Oxide Thin Films by Shinya YAO1*, Kenji MIYAGAWA1, Shigeru

Fundamental Study on the SOX Gas Sensor Utilizing Beta-Alumina with Sputtered Praseodymium Oxide Thin Films by Shinya YAO1*, Kenji MIYAGAWA1, Shigeru Fundamental Study on the SOX Gas Sensor Utilizing Beta-Alumina with Sputtered Praseodymium Oxide Thin Films by Shinya YAO1*, Kenji MIYAGAWA1, Shigeru IIJIMA2 and Zensaku KOZUKA1 1. Faculty of Engineering,

More information

スライド 1

スライド 1 High-k & Selete 1 2 * * NEC * # * # # 3 4 10 Si/Diamond, Si/SiC, Si/AlOx, Si Si,,, CN SoC, 2007 2010 2013 2016 2019 Materials Selection CZ Defectengineered SOI: Bonded, SIMOX, SOI Emerging Materials Various

More information

J. Jpn. Inst. Electron. Packaging 17(4): (2014)

J. Jpn. Inst. Electron. Packaging 17(4): (2014) 一般社団法人エレクトロニクス実装学会 第 3 回定時総会報告 1. 26 5 23 14 00 15 00 2. 167-0042 3-12-2 3. 2,230 2,230 4. 1,140 37 1,103 1,140 5. 6. 1 25 2 25 3 26 4 26 5 7. 11 15 2 TDK 1 25 25 2 25 25 25 4 1 26 3 31 23 2 3 26 26 4

More information

1 1 LD [1] 2 3dB Er 2 [2] 1 P 1330cm 1 P 2 O 5 500cm 1 SiO 2 Ge,Si P Er 1480nm Yb 1289nm nm nm 3 1: P [3] 1330cm 1 510cm 1 [5

1 1 LD [1] 2 3dB Er 2 [2] 1 P 1330cm 1 P 2 O 5 500cm 1 SiO 2 Ge,Si P Er 1480nm Yb 1289nm nm nm 3 1: P [3] 1330cm 1 510cm 1 [5 1 1 LD [1] 2 3dB Er 2 [2] 1 P 1330cm 1 P 2 O 5 500cm 1 SiO 2 Ge,Si P Er 1480nm Yb (19W@1100nm) 1289nm 1 1380nm 2 1484nm 3 1: P [3] 1330cm 1 510cm 1 [5] 2: 3 2 FBG(Fiber Bragg Gratings) 1 2 R > 99% FBG

More information

Temperature Rise in a Birefringent Substrate by RF Discharge Plasma Koichi Takaki, Member, Kunioh Sayama, Student Member, Atsushi Takahashi, Student M

Temperature Rise in a Birefringent Substrate by RF Discharge Plasma Koichi Takaki, Member, Kunioh Sayama, Student Member, Atsushi Takahashi, Student M Temperature Rise in a Birefringent Substrate by RF Discharge Plasma Koichi Takaki, Member, Kunioh Sayama, Student Member, Atsushi Takahashi, Student Member, Tamiya Fujiwara, Member (Iwate University),

More information

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law) ( ) ( ) 2002.11 1 1 1.1 (Blackbody Radiation).............................. 1 1.2 (Stefan-Boltzmann s Law)................ 1 1.3 (Wien s Displacement Law)....................... 2 1.4 (Kirchhoff s Law)...........................

More information

光学

光学 Si Nano-Photodiode with Surface-Plasmon Antenna Junichi FUJIKATA, Keishi OHASHI and Toru MOGAMI We studied the surface plasmon SP resonance effect on Si nano-photodiode PD characteristics for future optical

More information

** Department of Materials Science and Engineering, University of California, Los Angeles, CA 90025, USA) Preparation of Magnetopulmbite Type Ferrite

** Department of Materials Science and Engineering, University of California, Los Angeles, CA 90025, USA) Preparation of Magnetopulmbite Type Ferrite ** Department of Materials Science and Engineering, University of California, Los Angeles, CA 90025, USA) Preparation of Magnetopulmbite Type Ferrite Thin Films by Dip-Coating Method and Magnetic Properties

More information

燃焼圧センサ

燃焼圧センサ 49 Combustion Pressure Sensor Kouji Tsukada, Masaharu Takeuchi, Sanae Tokumitsu, Yoshiteru Ohmura, Kazuyoshi Kawaguchi π 1000N 150 225N 1 F.S Abstract A new combustion pressure sensor capable of measuring

More information

SFN

SFN THE STAR FORMATION NEWSLETTER No.291-14 March 2017 2017/04/28 16-20 16. X-Shooter spectroscopy of young stellar objects in Lupus. Atmospheric parameters, membership and activity diagnostics 17. The evolution

More information

1 2 2 (Dielecrics) Maxwell ( ) D H

1 2 2 (Dielecrics) Maxwell ( ) D H 2003.02.13 1 2 2 (Dielecrics) 4 2.1... 4 2.2... 5 2.3... 6 2.4... 6 3 Maxwell ( ) 9 3.1... 9 3.2 D H... 11 3.3... 13 4 14 4.1... 14 4.2... 14 4.3... 17 4.4... 19 5 22 6 THz 24 6.1... 24 6.2... 25 7 26

More information

PowerPoint Presentation

PowerPoint Presentation / 2008/04/04 Ferran Salleras 1 2 40Gb/s 40Gb/s PC QD PC: QD: e.g. PCQD PC/QD 3 CP-ON SP T CP-OFF PC/QD-SMZ T ~ps, 40Gb/s ~100fJ T CP-ON CP-OFF 500µm500µm Photonic Crystal SMZ K. Tajima, JJAP, 1993. Control

More information

空気の屈折率変調を光学的に検出する超指向性マイクロホン

空気の屈折率変調を光学的に検出する超指向性マイクロホン 23 2 1M36268 2 2 4 5 6 7 8 13 15 2 21 2 23 2 2 3 32 34 38 38 54 57 62 63 1-1 ( 1) ( 2) 1-1 a ( sinθ ) 2J D ( θ ) = 1 (1-1) kaka sinθ ( 3) 1-2 1 Back face hole Amplifier Diaphragm Equiphase wave surface

More information

X線分析の進歩45

X線分析の進歩45 Advances in X-Ray Chemical Analysis, Japan, 45 (2014) ISSN 0911-7806 NaCl Color Center in NaCl Takuya TSUJI, Hiroyuki IWASAKI and Jun KAWAI NaCl Color Center in NaCl Takuya TSUJI, Hiroyuki IWASAKI and

More information

プラズマ核融合学会誌11月【81‐11】/小特集5

プラズマ核融合学会誌11月【81‐11】/小特集5 Japan Atomic Energy Agency, Ibaraki 311-0193, Japan 1) Kyoto University, Uji 611-0011, Japan 2) National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8569, Japan 3) Central Research

More information

光学

光学 Control of Refractive Indices of Optical Polymers: Theoretical Prediction and Molecular Design Method Shinji ANDO The fundamental theory and a method to predict the refractive indices and dispersions of

More information

X線分析の進歩36 別刷

X線分析の進歩36 別刷 X X X-Ray Fluorescence Analysis on Environmental Standard Reference Materials with a Dry Battery X-Ray Generator Hideshi ISHII, Hiroya MIYAUCHI, Tadashi HIOKI and Jun KAWAI Copyright The Discussion Group

More information

H17-NIIT研究報告

H17-NIIT研究報告 DLC SiC 1 2 3 4 4 5 5 6 The Influence of SiC Shot Blasting on Adhesion of DLC Film MIKI Yasuhiro *1), TANIGUCHI Tadashi *2), MATSUOKA Takashi *3) SASAKI Kenji *4), FUKUSHI Takayoshi *4), YUKI Tamotsu *5),

More information

Fig. ph Si-O-Na H O Si- Na OH Si-O-Si OH Si-O Si-OH Si-O-Si Si-O Si-O Si-OH Si-OH Si-O-Si H O 6

Fig. ph Si-O-Na H O Si- Na OH Si-O-Si OH Si-O Si-OH Si-O-Si Si-O Si-O Si-OH Si-OH Si-O-Si H O 6 NMR ESR NMR 5 Fig. ph Si-O-Na H O Si- Na OH Si-O-Si OH Si-O Si-OH Si-O-Si Si-O Si-O Si-OH Si-OH Si-O-Si H O 6 Fig. (a) Na O-B -Si Na O-B Si Fig. (b) Na O-CaO-SiO Na O-CaO-B -Si. Na O-. CaO-. Si -. Al O

More information

Surface Characterization and Performance of Surface-Treated Materials (II) Container Material Kinji Saijo* *Toyo Kohan Co., LTD Technical Research Laboratory This article reviews the application of surface

More information

01_辻

01_辻 20 EBSD 2008.11.28 scanning electron microscope: SEM EBSD electron back scattering diffraction [1-4] 10 EBSD anisotropy polycrystal orientation texture EBSD EBSD EBSD EBSD Table 1 EBSD Table 1-10 mmφ

More information

Vol. 21, No. 2 (2014) W 3 mm SUS304 Ni 650 HV 810 HV Ni Ni Table1 Ni Ni μm SUS mm w 50 mm l 3 mm t 2.2 Fig. 1 XY Fig. 3 Sch

Vol. 21, No. 2 (2014) W 3 mm SUS304 Ni 650 HV 810 HV Ni Ni Table1 Ni Ni μm SUS mm w 50 mm l 3 mm t 2.2 Fig. 1 XY Fig. 3 Sch 110 : 565-0871 2-1 567-0871 11-1 660-0811 1-9 - 1 tanigawa@jwri.osaka - u.ac.jp Influence of Laser Beam Profile on Cladding Layer TANIGAWA Daichi, ABE Nobuyuki, TSUKAMOTO Masahiro, HAYASHI Yoshihiko, YAMAZAKI

More information

untitled

untitled ( ) ( ) 1 MEMS : MEMS ( +13% / ) 2 3 ISFET ph,co 2 (K.Shimada, M.Esashi, Med.& Biol.Eng.& Comp.,18 (1980) p.741) (M.Esashi T.Matsuo, Supplement to the J.J.AP.,44 (1975),339-343) 4 5 (Y.Matsumoto, S.Shoji,

More information

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applied Heat Technology Division, Japan Atomic Energy Agency,

More information

1611 原著 論文受付 2009 年 6 月 2 日 論文受理 2009 年 9 月 18 日 Code No. 733 ピクセル開口率の向上による医用画像表示用カラー液晶モニタの物理特性の変化 澤田道人 石川晃則 1) 松永沙代子 1) 1) 石川陽子 有限会社ムツダ商会 1) 安城更生病院放射

1611 原著 論文受付 2009 年 6 月 2 日 論文受理 2009 年 9 月 18 日 Code No. 733 ピクセル開口率の向上による医用画像表示用カラー液晶モニタの物理特性の変化 澤田道人 石川晃則 1) 松永沙代子 1) 1) 石川陽子 有限会社ムツダ商会 1) 安城更生病院放射 1611 原著 論文受付 2009 年 6 月 2 日 論文受理 2009 年 9 月 18 日 Code No. 733 ピクセル開口率の向上による医用画像表示用カラー液晶モニタの物理特性の変化 澤田道人 石川晃則 1) 松永沙代子 1) 1) 石川陽子 有限会社ムツダ商会 1) 安城更生病院放射線技術科 緒言 3D PET/CT Fusion 1 liquid crystal display:

More information

36 th IChO : - 3 ( ) , G O O D L U C K final 1

36 th IChO : - 3 ( ) , G O O D L U C K final 1 36 th ICh - - 5 - - : - 3 ( ) - 169 - -, - - - - - - - G D L U C K final 1 1 1.01 2 e 4.00 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 Mg 24.31 Periodic

More information

main.dvi

main.dvi FDTD S A Study on FDTD Analysis based on S-Parameter 18 2 7 04GD168 FDTD FDTD S S FDTD S S S S FDTD FDTD i 1 1 1.1 FDTD.................................... 1 1.2 FDTD..................... 3 2 S 5 2.1 FDTD

More information

Ni PLD GdBa 2 Cu 3 O 7 x 2 6

Ni PLD GdBa 2 Cu 3 O 7 x 2 6 Ni PLD GdBa 2 Cu 3 O 7 x 2 6 1 1 1.1.................................. 1 1.2................................ 2 1.2.1......................... 3 1.3 RE 1 Ba 2 Cu 3 O 7 x...................... 3 1.3.1...............................

More information

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag 2004 RGB A STUDY OF RGB COLOR INFORMATION AND ITS APPLICATION 03R3237 Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One

More information

untitled

untitled 1 2 3 4 5 130mm 32mm UV-irradiation UV-cationic cure UV-cationic cure UV-cationic cure Thermal cationic Reaction heat cure Thermal cationic Cation Reaction heat cure Cation (a) UV-curing of

More information

Hideki MATSUOKA: An Introduction to Small-angle Scattering Fundamental aspects of small-angle scattering technique are duly explained from the very ba

Hideki MATSUOKA: An Introduction to Small-angle Scattering Fundamental aspects of small-angle scattering technique are duly explained from the very ba Hideki MATSUOKA: An Introduction to Small-angle Scattering Fundamental aspects of small-angle scattering technique are duly explained from the very basic points for the beginners and newcommers of this

More information

untitled

untitled - 37 - - 3 - (a) (b) 1) 15-1 1) LIQCAOka 199Oka 1999 ),3) ) -1-39 - 1) a) b) i) 1) 1 FEM Zhang ) 1 1) - 35 - FEM 9 1 3 ii) () 1 Dr=9% Dr=35% Tatsuoka 19Fukushima and Tatsuoka19 5),) Dr=35% Dr=35% Dr=3%1kPa

More information

Degradation Mechanism of Ethylene-propylene-diene Terpolymer by Ozone in Aqueous Solution Satoshi MIWA 1 *, 2, Takako KIKUCHI 1, 2, Yoshito OHTAKE 1 a

Degradation Mechanism of Ethylene-propylene-diene Terpolymer by Ozone in Aqueous Solution Satoshi MIWA 1 *, 2, Takako KIKUCHI 1, 2, Yoshito OHTAKE 1 a Degradation Mechanism of Ethylene-propylene-diene Terpolymer by zone in Aqueous Solution Satoshi MIWA 1, 2, Takako KIKUCHI 1, 2, Yoshito TAKE 1 and Keiji TANAKA 2 ( 1 Chemicals Evaluation and Research

More information

untitled

untitled - i - - i - Application of All-Optical Switching by Optical Fiber Grating Coupler Yasuhiko Maeda Abstract All-optical switching devices are strongly required for fast signal processing in future optical

More information

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 = 3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u

More information

teionkogaku43_527

teionkogaku43_527 特集 : 振動流によるエネルギー変換 熱輸送現象と応用技術 * Oscillatory Flow in a Thermoacoustic Sound-wave Generator - Flow around the Resonance Tube Outlet - Masayasu HATAZAWA * Synopsis: This research describes the oscillatory

More information

ArF, KrF,, CO 2 ) X MFE ITER IFE ns, MJ/ ns, MJ/ ms, MJ/ ELM JT60-SA, ITER, DEMO [µm] W 65kV 2.3A [ ] Simple estimation of the threshold thermal load on divertor surface with ELM For Carbon Divertor Case

More information

第1章 溶接法および機器

第1章 溶接法および機器 670 ) ) ) ) 2.1 ) 42 671 Sn T m K. T m. T m. T m 2.2 JIS BAl BPd Al-Si Al-Mn KAlF -K AlF H O Ni 43 672 Sn-In Zn EU RoHS ) Pb Cd Hg JIS Z ( ) ) ) 3.1 44 673. MO HX MX H O M X (d) Young sf lf cos sl sf lf

More information

000..\..

000..\.. Bull. Nagoya Univ. Museum No. 20, 79 91, 2004 Quantitative chemical analysis of rocks with X-ray fluorescence analyzer XRF-1800 NAKAZAKI Mineko TSUBOI Motohiro KANAGAWA Kazuyo KATO Takenori SUZUKI Kazuhiro

More information

物理予稿01-

物理予稿01- http://www.riken.jp/lab/dri/newpro/ 1 7 11 00 11 30 8 11 30 12 00 10 12 00 12 30 12 12 30 12 40 12 40 13 40 15 13 40 14 15 16 14 15 14 20 19 14 20 14 40 20 14 40 15 00 22 15 00 15 20 24 15 20 15 40 26

More information

21 Daya Bay θ 13 Lawrence Berkeley National Laboratory Brookhaven National Laboratory 2012 ( 24 ) Daya Bay 2011

21 Daya Bay θ 13 Lawrence Berkeley National Laboratory Brookhaven National Laboratory 2012 ( 24 ) Daya Bay 2011 21 Daya Bay θ 13 Lawrence Berkeley National Laboratory YNakajima@lbl.gov Brookhaven National Laboratory thide@bnl.gov 2012 ( 24 ) 5 16 1 Daya Bay 2011 12,, θ 13, 55 2012 3 sin 2 2θ 13 Daya Bay sin 2 2θ

More information

無電解めっきとレーザー照射による有機樹脂板上へのCuマイクロパターン形成

無電解めっきとレーザー照射による有機樹脂板上へのCuマイクロパターン形成 Title 無電解めっきとレーザー照射による有機樹脂板上への Cu マイクロパターン形成 Author(s) 菊地, 竜也 ; 和智, 悠太 ; 坂入, 正敏 ; 高橋, 英明 ; 飯野, 潔 ; 片山, 直樹 Citation 表面技術, 59(8): 555-561 Issue Date 2008-08 Doc URL http://hdl.handle.net/2115/36647 Type

More information

c c SSIS10 10 10 1998 2001 SSIS 2001 LSI 2001 MIRAI NECASKA SELETE 21 5ISSCC LSI 2004 2004SSIS PR 60 70

c c SSIS10 10 10 1998 2001 SSIS 2001 LSI 2001 MIRAI NECASKA SELETE 21 5ISSCC LSI 2004 2004SSIS PR 60 70 Encore SSIS 10 c c SSIS10 10 10 1998 2001 SSIS 2001 LSI 2001 MIRAI NECASKA SELETE 21 5ISSCC LSI 2004 2004SSIS PR 60 70 SSIS NOSIDE PR SSIS SSIS PR 2000 5SSIS SSIS 1 2001 5 8 3 2004 SSIS 1 2 SSIS 24 SSISPR

More information

èCò_ï\éÜ.pdf

èCò_ï\éÜ.pdf [Co/Ru] 20 Antiferromagnetic Exchange Coupling Energy in [Co/Ru] 20 19 1...1 1.1...1 1.2...1 1.2.1...1 1.2.2...2 1.3...2 1.4...3 1.4.1...3 1.4.2...5 1.5...5 1.5.1...5 1.5.2 SF...6 1.5.3 TAMR...6 2...8

More information

2008/02/18 08:40-10:10, 12:50-14:20 14:30-16:00, 16:10-17:40,

2008/02/18 08:40-10:10, 12:50-14:20 14:30-16:00, 16:10-17:40, 008/0/18 08:40-10:10, 1:50-14:0 14:30-16:00, 16:10-17:40, 1pt A 1911 Leiden Heike Kammelingh-Onnes H.Kammelingh Onnes 1907 He 1 4. K H H c T c T H c Hg:40 mt, Pb:80 mt, Sn:30 mt 100 mt I c H c H c H

More information

untitled

untitled 254nm UV TiO 2 20nm :Sr 5 Ta 4 O 15 3 4 KEY-1 KEY-2 (Ti,Nb,Ta) 5 KEY-1 KEY-2 6 7 NiO/ Sr 2 Ta 2 O 7 mmol h -1 g -1 20 15 10 5 H 2 O 2 H 2 O 2 0 0 2 4 6 8 10 12 NiO/Sr 2 Ta 2 O 7 The synthesis of photocatalysts

More information

fj111_109

fj111_109 15 1 111 Super Low-Loss / Super High-Density Multi-fiber Optical Connector * * * *2 Katsuki Suematsu Masao Shinoda Takashi Shigenaga Jun Yamakawa *2 *3 *3 Masayoshi Tsukamoto Yoshimi Ono Takayuki Ando

More information

LD

LD 989935 1 1 3 3 4 4 LD 6 7 10 1 3 13 13 16 0 4 5 30 31 33 33 35 35 37 38 5 40 FFT 40 40 4 4 4 44 47 48 49 51 51 5 53 54 55 56 Abstract [1] HDD (LaserDopplerVibrometer; LDV) [] HDD IC 1 4 LDV LDV He-Ne Acousto-optic

More information

1).1-5) - 9 -

1).1-5) - 9 - - 8 - 1).1-5) - 9 - ε = ε xx 0 0 0 ε xx 0 0 0 ε xx (.1 ) z z 1 z ε = ε xx ε x y 0 - ε x y ε xx 0 0 0 ε zz (. ) 3 xy ) ε xx, ε zz» ε x y (.3 ) ε ij = ε ij ^ (.4 ) 6) xx, xy ε xx = ε xx + i ε xx ε xy = ε

More information

The Plasma Boundary of Magnetic Fusion Devices

The Plasma Boundary of Magnetic Fusion Devices ASAKURA Nobuyuki, Japan Atomic Energy Research Institute, Naka, Ibaraki 311-0193, Japan e-mail: asakuran@fusion.naka.jaeri.go.jp The Plasma Boundary of Magnetic Fusion Devices Naka Fusion Research Establishment,

More information

研究成果報告書

研究成果報告書 ., SUS34 Inconel6, Cr,.,, Cr,. Cr Cr,., Cr,,,.,,,,.,.,,,.,,.,,., SUS34, Inconel6,. (). CoZrNb, -2 m.,., 9. Cu, 2 m. SUS34, Inconel6 SUS34, Inconel6, 5mm mmmm.,,,. (2) (HP8752A).,. - MHz, -2 dbm.,. (3)

More information

Influence of Material and Thickness of the Specimen to Stress Separation of an Infrared Stress Image Kenji MACHIDA The thickness dependency of the temperature image obtained by an infrared thermography

More information

*1 *2 *1 JIS A X TEM 950 TEM JIS Development and Research of the Equipment for Conversion to Harmless Substances and Recycle of Asbe

*1 *2 *1 JIS A X TEM 950 TEM JIS Development and Research of the Equipment for Conversion to Harmless Substances and Recycle of Asbe *1 *2 *1 JIS A 14812008X TEM 950 TEM 1 2 3 4 JIS Development and Research of the Equipment for Conversion to Harmless Substances and Recycle of Asbestos with Superheated Steam Part 3 An evaluation with

More information

スライド 1

スライド 1 Front End Processes FEP WG - - NEC 1 ITRS2006 update 2 ITRS vs. 2-1 FET 2-2 Source Drain Extension 2-3 Si-Silicide 2-4 2-5 1 , FEP Front End Processes Starting Materials: FEP Si,, SOI SOI: Si on Insulator,

More information

1

1 3 Photonics Technologies 3-1 Optical Modulators for Photonic Sideband Management KAWANISHI Tetsuya and IZUTSU Masayuki In this paper, we presented our recent works on development of optical modulators

More information

第3節

第3節 Prolith 3.1 Post Exposure Bake PEB PC 1970 F.H.Dill [1-2] PC Aerial Image Image in Resist Latent Image before PEB Resist Profile Develop Time Contours Latent Image after PEB 1 NA PEB [3-4] NA Cr 2 3 (b)

More information

i

i i ii 1 6 9 12 15 16 19 19 19 21 21 22 22 23 26 32 34 35 36 3 37 5 5 4 4 5 iii 4 55 55 59 59 7 7 8 8 9 9 10 10 1 11 iv ozein Van Marum 1801 Cruiokshank Marum 1840 Schonbein 3 / atm 1 N 1892 50 1960 1970

More information

Microsoft PowerPoint - 山形大高野send ppt [互換モード]

Microsoft PowerPoint - 山形大高野send ppt [互換モード] , 2012 10 SCOPE, 2012 10 2 CDMA OFDMA OFDM SCOPE, 2012 10 OFDM 0-20 Relative Optical Power [db] -40-60 10 Gbps NRZ BPSK-SSB 36dB -80-20 -10 0 10 20 Relative Frequency [GHz] SSB SSB OFDM SSB SSB OFDM OFDM

More information

Microsoft Word - 学士論文(表紙).doc

Microsoft Word - 学士論文(表紙).doc GHz 18 2 1 1 3 1.1....................................... 3 1.2....................................... 3 1.3................................... 3 2 (LDV) 5 2.1................................ 5 2.2.......................

More information

Siマイクロマシニングと集積化技術.PDF

Siマイクロマシニングと集積化技術.PDF ケミカル エンジニアリング(化学工業社) 25 年 9 月号 pp.731-735. シリコンマイクロマシニングと集積化技術 佐々木実*1 金森義明*2 羽根一博*3 Minoru Sasaki, Yoshiaki Kanamori, Kazuhiro Hane 東北大学大学院工学研究科 *1 助教授 工学博士 *2 助手 工学博士 *3 教授 工学博士 1 はじめに LSI に代表される半導体産業の黎明期にフォト

More information

untitled

untitled 2013 74 Tokyo Institute of Technology AlGaN/GaN C Annealing me Dependent Contact Resistance of C Electrodes on AlGaN/GaN, Tokyo Tech.FRC, Tokyo Tech. IGSSE, Toshiba, Y. Matsukawa, M. Okamoto, K. Kakushima,

More information

untitled

untitled Tokyo Institute of Technology high-k/ In.53 Ga.47 As MOS - Defect Analysis of high-k/in.53 G a.47 As MOS Capacitor using capacitance voltage method,,, Darius Zade,,, Parhat Ahmet,,,,,, ~InGaAs high-k ~

More information

untitled

untitled 2008-11/13 12 4 12 5 401 501 702 401 501 A-1 9:00-10:30 B-1 9:15-10:30 C-1 9:00-10:30 A-5 9:00-10:30 B-5 9:15-10:30 A A-2 10:45-12:15 B-2 10:45-12:15 C-2 10:45-12:15 A-6 10:45-12:15 B-6 10:45-12:15 A B

More information

プラズマ・核融合学会Vol.85-12

プラズマ・核融合学会Vol.85-12 a Al-BSFBack Surface Filed b 3. Surface Passivation Films for Crystalline Silicon Solar Cells MIYAJIMA Shinsuke F.F. F.F Ω μ author s e-mail: miyajima.s.aa@m.titech.ac.jp μ μ μ μ CVD a-al xo x p μ Solar

More information

The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Inst

The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Inst The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Institute of Colloid and Interface Science, Science University

More information