A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A"

Transcription

1 91 7,.,, ( ).,,.,.,. 7.1 A B, A B, A = B. 1), 1,.,. 7.1 A, B, 3. (i) A B. (ii) f : A B. (iii) A B. (i) (ii)., 6.9, (ii) (iii).,,,. 1), Ā = B.. A, Ā, Ā,.

2 A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A, A.,,,. 7.2,,.,,,.,.,,.,. 7.3 A, B. f : A B A = f(a). f 1 : A f(a) f 1 (x) = f(x) (f f 1 )., f 1, A = f(a). 7.2 N = {1, 2, 3,... } A., f : N A A.

3 ( 7.2 (3)), A A = B B.. f : N A, A f(n), A.,., A, g : A N, A.,, A = {a 1, a 2,... },. ( 6.1 )., A,.,, N A. 7.4 E = {2, 4, 6,... }., f : N E f(n) = 2n, f. N : f E : ,., E N,., E N, E = N. ( 6.3). 7.5 Z., n 1, n, f(n) = 2 n 2, n, f : N Z.

4 N. K N. K k 1 < k 2 < k 3 < < k n < (7.1). n k n N K, K. 7.7 ( ).,. B, A B., f : N B. f A K = f 1 (A). f 1 : K A f 1 (n) = f(n),., K N, 7.6, K., g : N K., f 1 g : N A, A.,,. 7.8 P = {2, 3, 5, 7, 11,... }., P N, P ( 1.21)., 7.6, P., f : N P, f., ,, K (7.1).,., K, k 1., K (7.1), ( 13 ). 7.9 A, B, A B =. (1) A, B, A B.

5 (2) A, B, A B. (3) A, B, A B. (1) g : N A h : N B., f : N A B f(2n 1) = g(n), f(2n) = h(n), n N,, f, A B., A = {a 1, a 2,... }, B = {b 1, b 2,... }, A B a 1, b 1, a 2, b 2,...,. (2) A g : N A., B, B = n h : [n] B., h(k), k [n], f(k) = g(k n), k {n + 1, n + 2,... }, f : N A B., A B., B, A,. (3) ( ) A, B, A B., A 1,..., A n, A 1 A n. A, B. B\A B ( 7.7)., A B\A, 7.9, A (B\A) = A B., A 1 A n = (A 1 A n 1 ) A n, n. 7.1 A 1,..., A n, A 1 A n., A 1 A n.

6 ( ) A, B. f : A B, A., A, f : A B. f A = f(a) ( 7.3)., B, f(a), 7.7, f(a)., A., g : N B., A, A = n h : [n] A. f = g h 1 : A B. A, h : N A ( ) A, B. f : A B, B., B, f : A B. A, g : N A. h = f g : N B, x B, h 1 ({x}) N.,. φ(x) = min h 1 ({x}), x B,, φ : B N. h(φ(x)) = x, h φ = i B ( )., φ : B N., 7.11, B., B, B = n h : [n] B., φ : N [n] k, k [n], φ(x) = 1, k {n + 1, n + 2,... },,., h φ g 1 : A B. B, h : N B., h g 1 : A B.

7 X ( ) a 1, a 2, a 3,..., a n,... (7.2). ( ) A., a : n a n ( 4.5 ), A A = {a n n N}., 7.12 A., A,., a 1 1, a 2, a 3,..., a 1 2., 1, 2 3.,,. A,., (7.2), A., A., (7.2), 1, [n] N A., 7.12.,,,.,,,.,,., f : N N N f(x, y) = 2 x 1 (2y 1), x, y N,, f.

8 98 7, f. z N, z = 2 k w 2 2 w., x = k + 1 x N,, w w = 2y 1 y N, z = f(x, y)., f., z N z = 2 k w, k, w, f N N N N. N N (x, y) 7.1,., (x, y) f(x, y) = (x + y 2)(x + y 1) 2. (7.3). + y, (x, y) N N, (7.3) y x 7.1: N N (x, y) 7.2 (7.3) f : N N N, A, B, A 1, B 1. A = A 1, B = B 1 A B = A 1 B 1.

9 , g : A A 1 h : B B 1. f : A B A 1 B 1 f(x, y) = (g(x), h(y)), f ( ) A, B, A B., A 1,..., A n, A 1 A n. A = B = N, , A B = N N = N., A B., A 1 A n = (A 1 A n 1 ) A n A, B, A B. B, B = n B = {b 1, b 2,..., b n }. k = 1, 2,..., n, A k = {(x, b k ) x X} X Y., x (x, b k ) A A k, A k., n A B =, A B. 7.3 A 1,..., A n, A 1 A n., A 1 A n.,.,,,, n, m N, n Z, (7.4) m.,.,,. A k

10 Q., N, Z, 7.16, N Z., f(m, n) = n, m N, n Z, m, f : N Z Q., 7.12, Q. Q (, N ),. 7.18,,,., ( ) , A 1, A 2, A 3,..., A n,,...,, n A n, (A n n N). A n = n N n=1 A n A 1, A 2,..., B 1 = A 1, \ n 1 B 2 = A 2 \A 1,..., B n = A n A k,..., (7.5), B 1, B 2,...., B 1, B 2,...,. A n = B n. (7.6) n=1 n=1

11 m n x B m B n. m < n. B n, x A n, x n 1 A k (7.7)., x B m, B m A m x A m., (7.7) 2, B m B n =., (7.6),, n n A k = B k, n = 1, 2,..., (7.8). n = 1 (7.5). n 1 n (7.8)., n+1 ( n ) ( n A k = A k A n+1 = ( n ) = B k B n+1 = n+1 B k ) ( \ n A k A n+1 A k ), (7.8) n + 1.,, (7.8). 2), (7.6). x n=1 A n, n N x A n., (7.8) n A n B k, x n=1 B n., (7.6).,, (7.6) A 1, A 2,... R,.,. A = n=1 2), n,,,. A n B k

12 102 7 A,., A n.,. A 1 A 2 {}}{{}}{{}}{ x (7.9), A,.,. x A, x A n 1, x n g : A N., g(x) = A n nχ n (x), x A, n=1., χ n (x) A n., f(x) = g(x) 1 n=1 A n + {y A g(x) y x}, x A,., x A 1, 1 0., f(x), (7.9) x, f : A N A 1, A 2,... R.,. A = n=1 A n 7.19, B 1, B 2,.... B n A n B n,., M = {n N B n } N. 7.19, A = B n = B n (7.10) n=1 n M., M, (7.10), A., M

13 , M = {n 1, n 2,... } C k = B nk., A =, C 1, C 2,... R, 7.20 A. n. a 0, a 1,..., a n Z, a 0 0, x n a 0 x n + a 1 x n a n 1 x + a n = 0 (7.11)., (7.11) n..,.., 2 p, q Z, p 0, q/p, 1 px q = 0 C k. 2 3, , x 2 + 6x + 7 = 0, (x 1) 3 2 = 0,., ,. (7.11), h = n + a 0 + a a n., m, h h m E m., E m m, m., E m.

14 104 7, E m A m. 1 n n, E m., A m., A, A = A m (7.12) m=1., α, m, α A m., (7.12)., (7.12)., 7.21, A,. A , A n,., A 1, A 2,...,,.,. 11.

- 2 -

- 2 - - 2 - - 3 - (1) (2) (3) (1) - 4 - ~ - 5 - (2) - 6 - (1) (1) - 7 - - 8 - (i) (ii) (iii) (ii) (iii) (ii) 10 - 9 - (3) - 10 - (3) - 11 - - 12 - (1) - 13 - - 14 - (2) - 15 - - 16 - (3) - 17 - - 18 - (4) -

More information

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1 1 1979 6 24 3 4 4 4 4 3 4 4 2 3 4 4 6 0 0 6 2 4 4 4 3 0 0 3 3 3 4 3 2 4 3? 4 3 4 3 4 4 4 4 3 3 4 4 4 4 2 1 1 2 15 4 4 15 0 1 2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4

More information

20 15 14.6 15.3 14.9 15.7 16.0 15.7 13.4 14.5 13.7 14.2 10 10 13 16 19 22 1 70,000 60,000 50,000 40,000 30,000 20,000 10,000 0 2,500 59,862 56,384 2,000 42,662 44,211 40,639 37,323 1,500 33,408 34,472

More information

I? 3 1 3 1.1?................................. 3 1.2?............................... 3 1.3!................................... 3 2 4 2.1........................................ 4 2.2.......................................

More information

1 (1) (2)

1 (1) (2) 1 2 (1) (2) (3) 3-78 - 1 (1) (2) - 79 - i) ii) iii) (3) (4) (5) (6) - 80 - (7) (8) (9) (10) 2 (1) (2) (3) (4) i) - 81 - ii) (a) (b) 3 (1) (2) - 82 - - 83 - - 84 - - 85 - - 86 - (1) (2) (3) (4) (5) (6)

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1, 17 ( ) 17 5 1 4 II III A B C(1 ) 1,, 6, 7 II A B (1 ), 5, 6 II A B (8 ) 8 1 I II III A B C(8 ) 1 a 1 1 a n+1 a n + n + 1 (n 1,,, ) {a n+1 n } (1) a 4 () a n OA OB AOB 6 OAB AB : 1 P OB Q OP AQ R (1) PQ

More information

Chap9.dvi

Chap9.dvi .,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim

More information

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2 6 2 6.1 2 2, 2 5.2 R 2, 2 (R 2, B, µ)., R 2,,., 1, 2, 3,., 1, 2, 3,,. () : = 1 + 2 + 3 + (6.1.1).,,, 1 ,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = 1 + 2 + 3 +,

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

() 3 3 2 5 3 6 4 2 5 4 2 (; ) () 8 2 4 0 0 2 ex. 3 n n =, 2,, 20 : 3 2 : 9 3 : 27 4 : 8 5 : 243 6 : 729 7 : 287 8 : 656 9 : 9683 0 : 59049 : 7747 2 : 5344 3 : 594323 4 : 4782969 5 : 4348907 6 : 4304672

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X 4 4. 4.. 5 5 0 A P P P X X X X +45 45 0 45 60 70 X 60 X 0 P P 4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P 0 0 + 60 = 90, 0 + 60 = 750 0 + 60 ( ) = 0 90 750 0 90 0

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

FX ) 2

FX ) 2 (FX) 1 1 2009 12 12 13 2009 1 FX ) 2 1 (FX) 2 1 2 1 2 3 2010 8 FX 1998 1 FX FX 4 1 1 (FX) () () 1998 4 1 100 120 1 100 120 120 100 20 FX 100 100 100 1 100 100 100 1 100 1 100 100 1 100 101 101 100 100

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2) (1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46

More information

untitled

untitled 1 (1) (2) (3) (4) (1) (2) (3) (1) (2) (3) (1) (2) (3) (4) (5) (1) (2) (3) (1) (2) 10 11 12 2 2520159 3 (1) (2) (3) (4) (5) (6) 103 59529 600 12 42 4 42 68 53 53 C 30 30 5 56 6 (3) (1) 7 () () (()) () ()

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

i ii i iii iv 1 3 3 10 14 17 17 18 22 23 28 29 31 36 37 39 40 43 48 59 70 75 75 77 90 95 102 107 109 110 118 125 128 130 132 134 48 43 43 51 52 61 61 64 62 124 70 58 3 10 17 29 78 82 85 102 95 109 iii

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

表1_表4

表1_表4 HN- 95 HN- 93 HN- 90 HN- 87 HN- 85 HN- 82 HN- 80 HN- 77 HN- 75 HN- 72 HN- 70 HN- 67 HN- 65 HN- 60 HN- 55 HN- 50 HN- 45 HN- 40 HN- 35 HN- 30 HN- 25 HN- 20 HN- 15 HN- 10 H02-80H H02-80L H02-70T H02-60H H05-60F

More information

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1 t χ F Q t χ F µ, σ N(µ, σ ) f(x µ, σ ) = ( exp (x ) µ) πσ σ 0, N(0, ) (00 α) z(α) t χ *. t (i)x N(µ, σ ) x µ σ N(0, ) (ii)x,, x N(µ, σ ) x = x+ +x N(µ, σ ) (iii) (i),(ii) z = x µ N(0, ) σ N(0, ) ( 9 97.

More information

平塚信用金庫の現況 2015

平塚信用金庫の現況 2015 2015 1 2 3 1 2 3 4 5 6 7 1 2 3 4 5 8 9 @ A B C D E F G H I J K HK L M N O P Q R T R T S T U V W 1 2 3 4 5 6 E F C J I O M N K L H 8 7 G D 0 A 6 9 5

More information

Taro13-第6章(まとめ).PDF

Taro13-第6章(まとめ).PDF % % % % % % % % 31 NO 1 52,422 10,431 19.9 10,431 19.9 1,380 2.6 1,039 2.0 33,859 64.6 5,713 10.9 2 8,292 1,591 19.2 1,591 19.2 1,827 22.0 1,782 21.5 1,431 17.3 1,661 20.0 3 1,948 1,541 79.1 1,541 79.1

More information

untitled

untitled 0-1 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 0-2 1 1 2 23 3 46 4 714 5 15 0-3

More information

=

= 2. 2.1 2.2 kuri@ice.uec.ac.jp ( 2007/10/30/16:46) 1 . 1. 1 + 2 = 5. 2. 180. 3. 3 3. 4.. 5.. 2 2.1 1.,,,,. 2., ( ) ( ).,,,, 3.,. 4.,,,. 3 1.,. 1. 1 + 2 = 5. (, ) 2. 180. (, ) 3. 3, 3. (, ) 4.. (, ) 5..

More information

untitled

untitled 351 351 351 351 13.0 0.0 25.8 1.0 0.0 6.3 92.9 0.0 80.5 0.0 1.5 15.9 0.0 3.5 13.1 0.0 30.0 54.8 18.0 0.0 27.5 1.0 0.0 2.5 94.7 0.0 91.7 0.0 1.3 14.7 0.0 3.8 14.4 0.0 25.0 50.5 16.0 0.0 27.5 2.0 0.0 2.5

More information

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1) 7 2 2.1 A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x 1 2.1.1 A (1) A = R x y = xy + x + y (2) A = N x y = x y (3) A =

More information

1 10 1113 14 1516 1719 20 21 22 2324 25 2627 i 2829 30 31 32 33 3437 38 3941 42 4344 4547 48 4950 5152 53 5455 ii 56 5758 59 6061 iii 1 2 3 4 5 6 7 8 9 10 PFI 30 20 10 PFI 11 12 13 14 15 10 11 16 (1) 17

More information

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a 009 I II III 4, 5, 6 4 30. 0 α β α β l 0 l l l l γ ) γ αβ ) α β. n n cos k n n π sin k n π k k 3. a 0, a,..., a n α a 0 + a x + a x + + a n x n 0 ᾱ 4. [a, b] f y fx) y x 5. ) Arcsin 4) Arccos ) ) Arcsin

More information

p-sylow :

p-sylow : p-sylow :15114075 30 2 20 1 2 1.1................................... 2 1.2.................................. 2 1.3.................................. 3 2 3 2.1................................... 3 2.2................................

More information

301-A2.pdf

301-A2.pdf 301 21 1 (1),, (3), (4) 2 (1),, (3), (4), (5), (6), 3,?,?,??,?? 4 (1)!?, , 6 5 2 5 6 1205 22 1 (1) 60 (3) (4) (5) 2 (1) (3) (4) 3 (1) (3) (4) (5) (6) 4 (1) 5 (1) 6 331 331 7 A B A B A B A 23 1 2 (1) (3)

More information

r

r 73 29 2008 200 4 416 2008 20 042 0932 10 1977 200 1 2 3 4 5 7 8 9 11 12 14 15 16 17 18 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 200r 11 1 1 1 1 700200 200

More information

No. 1261 2003. 4. 9 14 14 14 14 15 30 21 19 150 35 464 37 38 40 20 970 90 80 90 181130 a 151731 48 11 151731 42 44 47 63 12 a 151731 47 10 11 16 2001 11000 11 2002 10 151731 46 5810 2795195261998 151731

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1 2013 5 11, 2014 11 29 WWW ( ) ( ) (2014/7/6) 1 (a mapping, a map) (function) ( ) ( ) 1.1 ( ) X = {,, }, Y = {, } f( ) =, f( ) =, f( ) = f : X Y 1.1 ( ) (1) ( ) ( 1 ) (2) 1 function 1 ( [1]) (1) ( ) 1:

More information

EV200R I II III 1 2 3 4 5 6 7 8 9 10 1 2 3 11 4 5 12 6 13 1 2 14 3 4 15 5 16 1 2 17 3 18 4 5 19 6 20 21 22 123 456 123 456 23 1 2 24 3 4 25 5 3 26 4 5 6 27 7 8 9 28 29 30 31 32 1 2 33 3 4 34 1 35 2 1

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

訪問看護ステーションにおける安全性及び安定的なサービス提供の確保に関する調査研究事業報告書

訪問看護ステーションにおける安全性及び安定的なサービス提供の確保に関する調査研究事業報告書 1... 1 2... 3 I... 3 II... 3 1.... 3 2....15 3....17 4....19 5....25 6....34 7....38 8....48 9....58 III...70 3...73 I...73 1....73 2....82 II...98 4...99 1....99 2....104 3....106 4....108 5.... 110 6....

More information

(個別のテーマ) 薬剤に関連した医療事故

(個別のテーマ) 薬剤に関連した医療事故 - 67 - III - 68 - - 69 - III - 70 - - 71 - III - 72 - - 73 - III - 74 - - 75 - III - 76 - - 77 - III - 78 - - 79 - III - 80 - - 81 - III - 82 - - 83 - III - 84 - - 85 - - 86 - III - 87 - III - 88 - - 89

More information

(個別のテーマ) 放射線検査に関連した医療事故

(個別のテーマ) 放射線検査に関連した医療事故 - 131 - III - 132 - - 133 - III - 134 - - 135 - III - 136 - - 137 - III - 138 - - 139 - III - 140 - - 141 - III - 142 - - 143 - III - 144 - - 145 - III - 146 - - 147 - III - 148 - - 149 - III - 150 - -

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ( ) 24 25 26 27 28 29 30 ( ) ( ) ( ) 31 32 ( ) ( ) 33 34 35 36 37 38 39 40 41 42 43 44 ) i ii i ii 45 46 47 2 48 49 50 51 52 53 54 55 56 57 58

More information

untitled

untitled i ii (1) (1) (2) (1) (3) (1) (1) (2) (1) (3) (1) (1) (2) (1) (3) (2) (3) (1) (2) (3) (1) (1) (1) (1) (2) (1) (3) (1) (2) (1) (3) (1) (1) (1) (2) (1) (3) (1) (1) (2) (1) (3)

More information

23 15961615 1659 1657 14 1701 1711 1715 11 15 22 15 35 18 22 35 23 17 17 106 1.25 21 27 12 17 420,845 23 32 58.7 32 17 11.4 71.3 17.3 32 13.3 66.4 20.3 17 10,657 k 23 20 12 17 23 17 490,708 420,845 23

More information

平成18年度「商品先物取引に関する実態調査」報告書

平成18年度「商品先物取引に関する実態調査」報告書 ... 1.... 5-1.... 6-2.... 9-3.... 10-4.... 12-5.... 13-6.... 15-7.... 16-8.... 17-9.... 20-10.... 22-11.... 24-12.... 27-13... 29-14.... 32-15... 37-16.... 39-17.... 41-18... 43-19... 45.... 49-1... 50-2...

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

i

i 14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7

More information

koji07-01.dvi

koji07-01.dvi 2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?

More information

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp ( 28) ( ) ( 28 9 22 ) 0 This ote is c 2016, 2017 by Setsuo Taiguchi. It may be used for persoal or classroom purposes, but ot for commercial purposes. i (http://www.stat.go.jp/teacher/c2epi1.htm ) = statistics

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

第1部 一般的コメント

第1部 一般的コメント (( 2000 11 24 2003 12 31 3122 94 2332 508 26 a () () i ii iii iv (i) (ii) (i) (ii) (iii) (iv) (a) (b)(c)(d) a) / (i) (ii) (iii) (iv) 1996 7 1996 12

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

Solutions to Quiz 1 (April 20, 2007) 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T T T T T F T F F F T T F T F T T T T T F F F T T F

Solutions to Quiz 1 (April 20, 2007) 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T T T T T F T F F F T T F T F T T T T T F F F T T F Quiz 1 Due at 10:00 a.m. on April 20, 2007 Division: ID#: Name: 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T F T T F T T T F F T F T T T F T F T F F T T F F F T 2. 1.1 (1) (7) p.44 (1)-(4)

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

第1章 国民年金における無年金

第1章 国民年金における無年金 1 2 3 4 ILO ILO 5 i ii 6 7 8 9 10 ( ) 3 2 ( ) 3 2 2 2 11 20 60 12 1 2 3 4 5 6 7 8 9 10 11 12 13 13 14 15 16 17 14 15 8 16 2003 1 17 18 iii 19 iv 20 21 22 23 24 25 ,,, 26 27 28 29 30 (1) (2) (3) 31 1 20

More information

?

? 240-8501 79-2 Email: nakamoto@ynu.ac.jp 1 3 1.1...................................... 3 1.2?................................. 6 1.3..................................... 8 1.4.......................................

More information

技能継承に関するアンケートの結果概要

技能継承に関するアンケートの結果概要 I 1 1 1 1 1 1 2 1 3 1 II 2 1 2 2 2 3 2007 2 4 3 III 4 1 4 4 5 6 2 7 7 8 9 3 10 _10 11 _12 _13 _14 15 4 2007 16 2007 16 17 2007 18 5 19 19 I 2007 1 2005 6 21 8 3 3000 2 292 292 9.7 3 100 1 II 1 86 2 OJT

More information

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1 sup inf (ε-δ 4) 2018 1 9 ε-δ,,,, sup inf,,,,,, 1 1 2 3 3 4 4 6 5 7 6 10 6.1............................................. 11 6.2............................... 13 1 R R 5 4 3 2 1 0 1 2 3 4 5 π( R) 2 1 0

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

Otsuma Nakano Senior High School Spring Seminar Mathematics B

Otsuma Nakano Senior High School Spring Seminar Mathematics B Otsuma Nakano Senior High School Spring Seminar Mathematics B 2 a d a n = a + (n 1)d 1 2 ( ) {( ) + ( )} = n 2 {2a + (n 1)d} a r a n = ar n 1 a { r ( ) 1 } r 1 = a { 1 r ( )} 1 r (r 1) n 1 = n k=1 n k

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information