2.3. p(n)x n = n=0 i= x = i x x 2 x 3 x..,?. p(n)x n = + x + 2 x x 3 + x + 7 x + x + n=0, n p(n) x n, ( ). p(n) (mother function)., x i = + xi +

Size: px
Start display at page:

Download "2.3. p(n)x n = n=0 i= x = i x x 2 x 3 x..,?. p(n)x n = + x + 2 x x 3 + x + 7 x + x + n=0, n p(n) x n, ( ). p(n) (mother function)., x i = + xi +"

Transcription

1 ( ) : ( ) n, n., = 2+2+,, = = = ,,,. ( composition.), λ = (2, 2, )... n (partition), λ = (λ, λ 2,..., λ r ), λ λ 2 λ r > 0, r λ i = n i=. r λ, l(λ)., r λ i = n i=, λ, λ., n P n, p(n), (number of partitions).,, (), (, ), (3, 2), (3,, ), (2, 2, ), (2,,, ), (,,,,, ) 7. (), (,,,, ). (,,,, ), (2, 2, ) 2 2, (2,,, ) 2 3..,. P = {,, 2, 2, 3 2, 32, 3 3, 2 3, 2 2 2, 2, }.2. n = 2, 3,, P n., n = 0, 0 ( ), p(0) =. p() =, p(2) = 2, p(3) = 3, p() =, p() = 7, p() =, , masaoishikawa@okayama-u.ac.jp

2 2.3. p(n)x n = n=0 i= x = i x x 2 x 3 x..,?. p(n)x n = + x + 2 x x 3 + x + 7 x + x + n=0, n p(n) x n, ( ). p(n) (mother function)., x i = + xi + x 2 i + x 3 i + x i + i. i= x i = ( + x + x2 + ){ + x 2 + (x 2 ) 2 + },....3, n = 7, 8, 9 p(n). 2,. 2.. (Young ) λ = (λ, λ 2,..., λ r ), λ, 2 λ 2,..., r λ r, (Young diagram) Ferrers Graph. (cell), i i (ith row), j j (jth column), (Alfred Young) ,.,,,, 89, (, ) 0..,. 90,, 90., 902,, (Algebra of Invariants). 907,, ( ). 908,, 90 2 Birdbrook., 92.,,.

3 *** ( ) *** 3 i j (i, j) (cell (i, j)). (row number), (column number)., λ Y λ,, λ, λ., (i, j) Y λ (i, j) λ.., λ = λ Y λ = Y 2 3,,, 2, 3, 3,,. Y X X, 2, (2, ), Y, 3, 2 (3, 2) λ = (λ, λ 2,..., λ r ), Y λ (, ) λ (conjugate), λ = (λ,..., λ s)., s λ., 7 λ = 2 3 Y λ = Y 2 3, λ = Y , λ = (,,, 3,, ) ( ) λ = (λ, λ 2,..., λ r ) Y λ, (i, j) Y λ (i, j). (i, j) ( ), ( ) (i, j) H λ (i, j), (i, j) (hook),, (i, j)., (hook), (i, j) (hook length), h λ (i, j). (i, j) x = (i, j), H λ (x), h λ (x). x a a l l

4 , λ = 2 3 Y 2 3 x = (2, 2), x a ( (arm) ), x l ( (leg) ), x. H λ (x) = H λ (2, 2) = {(2, 2), (2, 3), (2, ), (3, 2), (, 2)}, x = (2, 2), H λ (x) h λ (x) = h λ (2, 2) =.?, λ = 2 3 Y 2 3, λ Y λ, h λ (x) = x, 2 (corner)., x = (i, j) Y λ, (i, j + ), (i +, j) Y λ., λ = 2 3 Y λ Y λ, (, ), (3, ), (, 3) h λ (i, j) = λ i j + λ j i + (2.). x a a a a l l l, λ = 2 3 Y 2 3 x = (, 2), λ 2 = 2 =, λ 2 = = 3, h 2 3(, 2) = = 8.. Y λ (i, j) λ i j, λ j i, (i, j). 2.

5 *** ( ) *** 3,,., Alfred Young,,,,,,,. 3.. ( ) λ = (λ, λ 2,..., λ r ) n, Y λ. Y λ n., Y λ,..., n, T i) ii), T (standard Young tableau),, (standard tableau). 3, λ, (shape)., λ S λ, SYT λ., , 7,,.,,?,?,., 3 2 S 3 2,, SYT 3 2 = (Frame-Robinson-Thrall []) λ n ( λ = n), λ, n! SYT λ x λ h (3.) λ(x) 3 tableau,. tableaux..

6 . Frame-Robinson -Thrall, (hook length formula).,, 3 2,.!,, 3 2 Y ,. n! x λ h λ(x) = =,., 32, Y , n! x λ h λ(x) = = Gilbert de Beauregard Robinson (90 992) 90. St. Andrew, 927.,,,.,, 97,,,. 938,, Robinson-Schensted,. 0,, (The Foundations of Geometry) (90 ), (The Representations of the Symmetric Groups) (9 ), (Vector Geometry) ,,,,.,,, 9.,, H (Best Kept Secret)., (SIGINT Examination Unit).,,, (Most Excellent Order of the British Empire)., 9 (Canadian Mathematical Congress), H.S.M., (Canadian Journal of Mathematics). 99,, 30, (Managing Editor) , (Canadian Mathematical Society) (president), 99.,,, ( ),, (the Society for the History and Philosophy of Mathematics), NRC (National Research Council)

7 *** ( ) *** 7., SYT 32 =,.,,, Greene-Nijenhuis-Wilf [2]... λ SYT λ SYT λ = µ SYT µ (.).,, Y λ, µ., λ = 2 3 Y 2 3, c c 3 c 2 c = (, ), c 2 = (3, ), c 3 = (, 3) 3. c, c 2, c 3, 3 µ.. λ n, T S λ, λ, n,., n, µ T., λ µ T,, n, λ T.?, λ = 32, c = (, 3), c 2 = (2, 2), c 3 = (3, ) 3. c = (, 3) T

8 8. c µ = 2 2 T., c = (, 3), T., c 2 = (2, 2) T , c 2 = (2, 2) µ = 3 2 T., c = (2, 2), T., c 3 = (3, ) T c µ = 32 T., c 3 = (3, ), T., c, c 2, c 3 µ = 2 2, 3 2, 32, λ = 32 SYT 32 = SYT SYT SYT 32 = + + =,. (.)., (.), (3.), (.),., (3.),..2. λ n, F λ = n! x λ h λ(x). λ =, F λ =., x = (α, β) λ, λ, x µ, F µ F λ (α, β)., F λ = (α,β) F λ (α, β) (.2)

9 *** ( ) *** 9.,,, Y λ (α, β).,, λ = λ =,,. (.2) F λ = (α,β) F λ (α, β) F λ (.3).,, (.3)., (.3),... ( ) λ n.., Y λ (i, j )., Y λ /n. (n = λ )., (i, j ), (i, j ) (i 2, j 2 )., /(h λ (i, j ) )., (i 2, j 2 ) (i 2, j 2 ),., /(h λ (i 2, j 2 ) )., Y λ,.,., (α, β) p λ (α, β)., λ = 32, p 32 (, 3). x x = (, 3), (, ), (, 2), (, 3),., (, ), 2 (, 2) (, 3) x, (, 2),., (, 2), (, 3) (2, 2) (, 3). (, 3) 2,., (, ) Start (, 2) (, 3)., p 32 (2, 2) (, 2) (, 3) (, 3) (, 3) p 32 (, 3) = = x

10 0, (, ) (2, ) Start (, 2) (, 2) (2, ) (2, 2) (2, 2) (2, 2) (2, 2) (2, 2). p 32 (2, 2) = = p 32 (3, )., p λ (α, β)?,,.,,,..3. λ n, (α, β) Y λ.,. p λ (α, β) = F λ(α, β) F λ (.), (.), (.3).,.,, (α, β),!.,.3, Frame-Robinson- Thrall.,,,.3.. (α, β), c = (α, β) µ, h µ (i, j), c (i, β), i < α, c (α, j), j < β h µ (i, j) = h λ (i, j),, h µ (i, j) = h λ (i, j), (.). x x x x x c F λ (α, β) F λ = n = n α i= α i= β h λ (i, β) h λ (i, β) j= ( + h λ (i, β) h λ (α, j) h λ (α, j) ) β j= ( ) + h λ (α, j)., h λ (α, β) =.,,.

11 *** ( ) ***.. ( ) λ, (A, B). A = {a,..., a k }, B = {b,..., b l } a < a 2 < < a k, b < b 2 < < b l. k, l., (a k, b l ) λ Y λ., (a, b ), (a, b ), (a k, b l ),,, A, B E A,B., (a, b ) = (i, j ) (i 2, j 2 ) (i m, j m ) = (a k, b l ) {i,..., i m } = A {j,..., j m } = B., (a, b ) E A,B p λ (A, B a, b )., (a, b ), /n., λ = 2 3 Y 2 3 A = {, 3}, B = {, 2, }, c = (i, j ) c 2 = (i 2, j 2 ) c 3 = (i 3, j 3 ) c = (i, j ) {i, i 2, i 3, i } = A {j, j 2, j 3, j } = B, 3. c c 2 c 3 c c c 2 c 3 c c c 2 c 3 c,. p 2 3 (A, B, ) = = 8, λ = 32, A = {2}, B = {, 2}., (2, ) (2, 2), Start (2, ) (2, 2)., p 32 ({2}, {, 2} 2, ) = 2

12 2. (2, ),., A = {, 2}, B = {, 2}, (, ) (2, 2), A = {, 2}, B = {, 2}, Start (, ) (, 2) (2, ) (2, 2) (2, 2),... p 32 ({, 2}, {, 2}, ) = = p 32 ({, 2}, {2}, 2) = 2 p 32 ({2}, {2} 2, 2) =... λ, (A, B) = ({a,..., a k }, {b,..., b l }), (a k, b l ) Y λ. p λ (A, B a, b ) = k i= l h λ (a i, b l ) j= h λ (a k, b j ) (.2).,.., (a, b ),, (a, b 2 ),, (a 2, b ), h λ (a, b )., (a, b 2 ),, b, (a, b 2 ), (A, {b 2,..., b l }),, (a 2, b ),, a, (a 2, b ), ({a 2,..., a k }, B). p λ (A, B a, b ) = h λ (a, b ) p λ (A, B \ {b } a, b 2 ) + h λ (a, b ) p λ (A \ {a }, B a 2, b ) { = pλ (A, B \ {b } a, b 2 ) + p λ (A \ {a }, B a 2, b ) } (.3) h λ (a, b )., B \ {b } B b {b 2,..., b l }. A \ {a } {a 2,..., a k }.,, B \ {b } = A \ {a } =, p λ (A, a, b 2 ) = p λ (, B a 2, b ) = 0., (.3), (.2) A + B. A A.

13 *** ( ) *** 3 (i) A + B = 2, A, B A = {a }, B = {b },, (.2), (a, b ),,. (ii) n 3, A + B = n, (.2). (.3) p λ (A, B a, b ) = { k h λ (a, b ) i= + l h λ (a i, b l ) j=2 k i=2 = h λ(a, b l ) + h λ (a k, b ) h λ (a, b ) l h λ (a i, b l ) j= k i= h λ (a k, b j ) h λ (a k, b j ) l h λ (a i, b l ) j= } h λ (a k, j)., 2. (2.) h λ (a, b l ) = λ a + λ b l a b l +, h λ (a k, b ) = λ ak + λ b a k b +, h λ (a, b ) = λ a + λ b a b +, h λ (a k, b l ) = λ ak + λ b l a k b l + h λ (a, b l ) + h λ (a k, b ) = h λ (a, b ) + h λ (a k, b l ), (a k, b l ), h λ (a k, b l ) = p λ (A, B a, b ) = k i= l h λ (a i, b l ) j=., (.2), A + B = n. (i), (ii), (.2), (A, B). h λ (a k, j),,., λ = 2 3 A = {, 3}, B = {, 2, }, start x x x end, (.2) x h λ (, ) h λ (3, ) h λ (3, 2) = 3 = 8., p λ (A, B, ) = 8.,.3 (.3). (.3) F λ (α, β) F λ = n α i= ( + h λ (i, β) ) β j= ( ) + h λ (α, j)

14 ,. α i= ( + ) = h λ (i, β) h A a A λ (a, β), h λ. (i,β) i A = {a,..., a k } {,..., α }., {,..., α} A. a k = α A. α i= ( + ) = h λ (i, β) A., A = {a,..., a k } a A a α a < < a k = α h λ (a, β)., β j= ( +, B = {b,..., b l } ) = h λ (α, j) B b B b β b < < b l = β h λ (α, b)., F λ (α, β) F λ = n k (A,B) i= l h λ (a i, β) j= h λ (α, b j ).,. (.2), F λ (α, β) F λ = n p λ (A, B a, b ) (A,B)., (a, b ) /n, (A, B), (α, β), p λ (α, β).,.3 (.).,,,., λ = 32, (α, β) = (2, 2) x (.3) F λ (2, 2) = ( + F λ ) ( + h λ (, 2) ) h λ (2, )

15 *** ( ) ***, F λ (2, 2) F λ = ( + h λ (, 2) + h λ (2, ) + h λ (, 2).. (.2). F λ (2, 2) F λ p λ ({2}, {2} 2, 2) = p λ ({, 2}, {2}, 2) = h λ (, 2) = 2 p λ ({2}, {, 2}, 2) = h λ (2, ) = 2 p λ ({, 2}, {, 2}, ) = h λ (, 2) h λ (2, ) = ) h λ (2, ) = {p λ ({2}, {2} 2, 2) + p λ ({, 2}, {2}, 2) + p λ ({2}, {, 2}, 2) + p λ ({, 2}, {, 2}, )} = ( ) = 3 8 (2, 2) p λ (2, 2).,,.,,, ( ).,,,.,,,., ( ), 920 (Georg Ferdinand Frobenius ) Charlottenburg. Christian Ferdinand Frobenius Christine Elizabeth Friedrich. 80 Joachimsthal Gymnasium, 87,,., (Kronecker), (Kummer), (Karl Weierstrass), 870.,,,. Sophienrealschule Joachimsthal Gymnasium, 87,,, (Eidgenossische Polytechnikum). 7,.,. 89 2,,.,,,,. 893,., Prussian Academy of Sciences.,... (Issaj Schur, Issai Schur, ),. ( ) ( )., ,, 99.

16 , Lie, Lie,.,,,,,,,,. 7 [] J. S. Frame, G. de B. Robinson, and R. M. Thrall, The hook graphs of the symmetric group. Canad. J. Math. (9), [2] Curtis Greene, Albert Nijenhuis, and Herbert S Wilf, A probabilistic proof of a formula for the number of Young tableaux of a given shape, Advances in Mathematics, 3 (979), [3] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Mathematical Monographs (999). [] Richard P. Stanley, Enumerative Combinatorics: Volume (Cambridge Studies in Advanced Mathematics), Cambridge University Press (202). [] Richard P. Stanley, Enumerative Combinatorics: Volume 2 (Cambridge Studies in Advanced Mathematics), Cambridge University Press (200). [], ( ), (2002). [7],, (2009). [8] Alfred Young. Quantitative substitutional analysis II, Proc. London Math. Sot., Ser., 3 (902), ,,., 93., 93,, ,.., ( ),.,,,,,.. 929,. 7 Acknowledgement:,., [7],.

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T 0 2 8 8 6 3 0 0 Young Young [F] 0.. Young λ n λ n λ = (λ,, λ l ) λ λ 2 λ l λ = ( m, 2 m 2, ) λ = n, l(λ) = l {λ n n 0} P λ = (λ, ), µ = (µ, ) n λ µ k k k λ i µ i λ µ λ = µ k i= i= i < k λ i = µ i λ k >

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

2010 ( )

2010 ( ) 2010 (2010 1 8 2010 1 13 ( 1 29 ( 17:00 2 3 ( e-mail (1 3 (2 (3 (1 (4 2010 1 2 3 4 5 6 7 8 9 10 11 Hesselholt, Lars 12 13 i 1 ( 2 3 Cohen-Macaulay Auslander-Reiten [1] [2] 5 [1], :,, 2002 [2] I Assem,

More information

数学概論I

数学概論I {a n } M >0 s.t. a n 5 M for n =1, 2,... lim n a n = α ε =1 N s.t. a n α < 1 for n > N. n > N a n 5 a n α + α < 1+ α. M := max{ a 1,..., a N, 1+ α } a n 5 M ( n) 1 α α 1+ α t a 1 a N+1 a N+2 a 2 1 a n

More information

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2 2014 6 30. 2014 3 1 6 (Hopf algebra) (group) Andruskiewitsch-Santos [AFS09] 1980 Drinfeld (quantum group) Lie Lie (ribbon Hopf algebra) (ribbon category) Turaev [Tur94] Kassel [Kas95] (PD) x12005i@math.nagoya-u.ac.jp

More information

2016 Course Description of Undergraduate Seminars (2015 12 16 ) 2016 12 16 ( ) 13:00 15:00 12 16 ( ) 1 21 ( ) 1 13 ( ) 17:00 1 14 ( ) 12:00 1 21 ( ) 15:00 1 27 ( ) 13:00 14:00 2 1 ( ) 17:00 2 3 ( ) 12

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = ( 1 1.1 X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (X 1,..., X n ) ( ) X 1,..., X n f 1,..., f r A T X + XA XBR 1 B T X + C T QC = O X 1.2 X 1,..., X n X i X j X j X i = 0, P i

More information

3 p(3) , 3 +, 2 + 2, 2 + +, p(4) , 6, 7, 8 p(5), p(6), p(7), p(8). p(5) 7, p(6), p(7) 5, p(8) , + +

3 p(3) , 3 +, 2 + 2, 2 + +, p(4) , 6, 7, 8 p(5), p(6), p(7), p(8). p(5) 7, p(6), p(7) 5, p(8) , + + k l. n n n pariion n p(n) p(n).. p() 2 2, + 2 2 2, + 2 p(2) 2 3 3, 2 +, + + 2006 2006 4 5:00 7:00. 3 p(3) 3 2 + + 2 4 4, 3 +, 2 + 2, 2 + +, + + + 5 p(4) 5.2. 5, 6, 7, 8 p(5), p(6), p(7), p(8). p(5) 7,

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X 2 E 8 1, E 8, [6], II II, E 8, 2, E 8,,, 2 [14],, X/C, f : X P 1 2 3, f, (O), f X NS(X), (O) T ( 1), NS(X), T [15] : MWG(f) NS(X)/T, MWL(f) 0 (T ) NS(X), MWL(f) MWL(f) 0, : {f λ : X λ P 1 } λ Λ NS(X λ

More information

合併後の交付税について

合併後の交付税について (1) (2) 1 0.9 0.7 0.5 0.3 0.1 2 3 (1) (a), 4 (b) (a), (c) (a) 0.9 0.7 0.5 0.3 0.1 (b) (d),(e) (f) (g) (h) (a) (i) (g) (h) (j) (i) 5 (2) 6 (3) (A) (B) (A)+(B) n 1,000 1,000 2,000 n+1 970 970 1,940 3.0%

More information

sequentially Cohen Macaulay Herzog Cohen Macaulay 5 unmixed semi-unmixed 2 Semi-unmixed Semi-unmixed G V V (G) V G V G e (G) G F(G) (G) F(G) G dim G G

sequentially Cohen Macaulay Herzog Cohen Macaulay 5 unmixed semi-unmixed 2 Semi-unmixed Semi-unmixed G V V (G) V G V G e (G) G F(G) (G) F(G) G dim G G Semi-unmixed 1 K S K n K[X 1,..., X n ] G G G 2 G V (G) E(G) S G V (G) = {1,..., n} I(G) G S square-free I(G) = (X i X j {i, j} E(G)) I(G) G (edge ideal) 1990 Villarreal [11] S/I(G) Cohen Macaulay G 2005

More information

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t e-mail: koyama@math.keio.ac.jp 0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo type: diffeo universal Teichmuller modular I. I-. Weyl

More information

Microsoft Excelを用いた分子軌道の描画の実習

Microsoft Excelを用いた分子軌道の描画の実習 J. Comput. Chem. Jpn.,Vol.9, No.4, pp.177 182 (2010) 2010 Society of Computer Chemistry, Japan Microsoft Excel a*, b, c a, 790-8577 2-5 b, 350-0295 1-1 c, 305-8568 1-1-1 *e-mail: nagaoka@ehimegw.dpc.ehime-u.ac.jp

More information

Mathematical Logic I 12 Contents I Zorn

Mathematical Logic I 12 Contents I Zorn Mathematical Logic I 12 Contents I 2 1 3 1.1............................. 3 1.2.......................... 5 1.3 Zorn.................. 5 2 6 2.1.............................. 6 2.2..............................

More information

_TZ_4797-haus-local

_TZ_4797-haus-local 1.1.................................... 3.3.................................. 4.4......................... 8.5... 10.6.................... 1.7... 14 3 16 3.1 ()........................... 16 3. 7... 17

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv ( ) 1 ([SU] ): F K k Z p - (cf [Iw2] [Iw3] [Iw6]) K F F/K Z p - k /k Weil K K F F p- ( 41) Z p - Weil Weil F F projective smooth C C Jac(C)/F ( ) : 2 3 4 5 Tate Weil 6 7 Z p - 2 [Iw1] 2 21 K k k 1 k K

More information

Twist knot orbifold Chern-Simons

Twist knot orbifold Chern-Simons Twist knot orbifold Chern-Simons 1 3 M π F : F (M) M ω = {ω ij }, Ω = {Ω ij }, cs := 1 4π 2 (ω 12 ω 13 ω 23 + ω 12 Ω 12 + ω 13 Ω 13 + ω 23 Ω 23 ) M Chern-Simons., S. Chern J. Simons, F (M) Pontrjagin 2.,

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

,.,. NP,., ,.,,.,.,,, (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., , tatsukaw

,.,. NP,., ,.,,.,.,,, (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., , tatsukaw ,.,. NP,.,. 1 1.1.,.,,.,.,,,. 2. 1.1.1 (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., 152-8552 2-12-1, tatsukawa.m.aa@m.titech.ac.jp, 190-8562 10-3, mirai@ism.ac.jp

More information

[I486S] 暗号プロトコル理論

[I486S]  暗号プロトコル理論 [I486S] 2018 5 1 (JAIST) 2018 5 1 1 / 22 : I486S I URL:https://wwwjaistacjp/~fujisaki/i486S (Tuesdays) 5 17:10 18:50 4/17, 4/24, 5/1, 5/15, 5/22, 5/29, 6/5, 6/19, 6/26, 7/3, 7/10, 7/17, 7/24, 7/31 (JAIST)

More information

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n ( ), Jürgen Berndt,.,. 1, CH n.,,. 1.1 ([6]). CH n (n 2), : (i) CH k (k = 0,..., n 1) tube. (ii) RH n tube. (iii). (iv) ruled minimal, equidistant. (v) normally homogeneous submanifold F k tube. (vi) normally

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

NP 1 ( ) Ehrgott [3] ( ) (Ehrgott [3] ) Ulungu & Teghem [8] Zitzler, Laumanns & Bleuler [11] Papadimitriou & Yannakakis [7] Zaroliagis [10] 2 1

NP 1 ( ) Ehrgott [3] ( ) (Ehrgott [3] ) Ulungu & Teghem [8] Zitzler, Laumanns & Bleuler [11] Papadimitriou & Yannakakis [7] Zaroliagis [10] 2 1 NP 1 ( ) Ehrgott [3] 2 1 1 ( ) (Ehrgott [3] ) Ulungu & Teghem [8] Zitzler, Laumanns & Bleuler [11] Papadimitriou & Yannakakis [7] Zaroliagis [10] 2 1 1 1 Avis & Fukuda [1] 2 NP (Ehrgott [3] ) ( ) 3 NP

More information

2014 x n 1 : : :

2014 x n 1 : : : 2014 x n 1 : : 2015 1 30 : 5510113 1 x n 1 n x 2 1 = (x 1)(x+1) x 3 1 = (x 1)(x 2 +x+1) x 4 1 = (x 1)(x + 1)(x 2 + 1) x 5 1 = (x 1)(x 4 + x 3 + x 2 + x + 1) 1, 1,0 n = 105 2 1 n x n 1 Maple 1, 1,0 n 2

More information

untitled

untitled c 645 2 1. GM 1959 Lindsey [1] 1960 Howard [2] Howard 1 25 (Markov Decision Process) 3 3 2 3 +1=25 9 Bellman [3] 1 Bellman 1 k 980 8576 27 1 015 0055 84 4 1977 D Esopo and Lefkowitz [4] 1 (SI) Cover and

More information

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003) 3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)

More information

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌 2016 9 27 RIMS 1 2 3 1983 9-1989 6 University of Illinois at Chicago (UIC) John T Baldwin 1983 9-1989 6 University of Illinois at Chicago (UIC) John T Baldwin Y N Moschovakis, Descriptive Set Theory North

More information

1 2 2 36 8 1212 15 16 20 22 24 26 28 8 14 21 1 31 32 32 3335 37 39 43 45 48 49 5051 54 56 58 6264 6669 43 50 58 2 73 74 7779 8183 85 88 91 93 9698 100 102103 74 85 93 106 106 108 110 112 3 115 116 116

More information

1. 52

1. 52 51 1. 52 5 2. 1 2 54 4 55 5 1 56 2 57 . 1 1 58 2 1 59 2 4 60 61 62 6 64 4. 65 66 67 5 1 2 4 68 1 69 2 70 1 2 71 72 1 2 7 1 2 74 75 1 76 2 77 1 2 78 4 79 5 80 6. 1 81 2 82 8 84 85 86 87 7. 88 89 8. column

More information

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

Chern-Simons   Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q Chern-Simons E-mail: fuji@th.phys.nagoya-u.ac.jp Jones 3 Chern-Simons - Chern-Simons - Jones J(K; q) []Jones q J (K + ; q) qj (K ; q) = (q /2 q /2 )J (K 0 ; q), () J( ; q) =. (2) K Figure : K +, K, K 0

More information

set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9..

set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9.. 12 -- 2 1 2009 5,,.,.,.. 1, 2, 3,., 4),, 4, 5),. 4, 6, 7).,, R A B, 8, (a) A, B 9), (b) {a (a, b) R b B }, {b (a, b) R a A } 10, 11, 12) 2. (a). 11, 13, R S {(a, c) (a, b) R, (b, c) S } (c) R S 14), 1,

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

13,825,228 3,707,995 26.8 4.9 25 3 8 9 1 50,000 0.29 1.59 70,000 0.29 1.74 12,500 0.39 1.69 12,500 0.55 10,000 20,000 0.13 1.58 30,000 0.00 1.26 5,000 0.13 1.58 25,000 40,000 0.13 1.58 50,000 0.00 1.26

More information

sakigake1.dvi

sakigake1.dvi (Zin ARAI) arai@cris.hokudai.ac.jp http://www.cris.hokudai.ac.jp/arai/ 1 dynamical systems ( mechanics ) dynamical systems 3 G X Ψ:G X X, (g, x) Ψ(g, x) =:Ψ g (x) Ψ id (x) =x, Ψ gh (x) =Ψ h (Ψ g (x)) (

More information

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008) ,, 23 4 30 (i) (ii) (i) (ii) Negishi (1960) 2010 (2010) ( ) ( ) (2010) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 16 (2004 ) 2 (A) (B) (C) 3 (1987)

More information

1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Christian Henriot, Little Japan in Shanghai: An Insulated Community,, Robert Bickers and Christian H

1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Christian Henriot, Little Japan in Shanghai: An Insulated Community,, Robert Bickers and Christian H 1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Christian Henriot, Little Japan in Shanghai: An Insulated Community,, Robert Bickers and Christian Henriot, eds., New Frontiers: Imperialism s New Communities

More information

BI BI BI BI Tinbergen, Basic Income Research Group 92 Citizen s Income Research Group 2 Basic Income Earth Network BIEN 1 BIJN BIEN Bas

BI BI BI BI Tinbergen, Basic Income Research Group 92 Citizen s Income Research Group 2 Basic Income Earth Network BIEN 1 BIJN BIEN Bas I Basic Income, BI 2010 4 BIJN 2010 2010 Parijs, 1995 q w e r Parijs, 1995, p. 35 56 means test 2002 1 8 BI 1 BI Fitzpatrick 1999 42 BI BI BI BI 2010 11 BI 2012 BI BI 006 経済理論第 49 巻第 2 号 2012.7 BI BI BI

More information

17 ( :52) α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) ) ) 2 2 4) (α β) A ) 6) A (5) 1)

17 ( :52) α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) ) ) 2 2 4) (α β) A ) 6) A (5) 1) 3 3 1 α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) 2000 2) 5 2 3 4 2 3 5 3) 2 2 4) (α β) 2 3 4 5 20 A 12 20 5 5 5) 6) 5 20 12 5 A (5) 1) Évariste Galois(1811-1832) 2) Joseph-Louis Lagrange(1736-1813) 18 3),Niels

More information

専攻科シラバス 一般科目

専攻科シラバス 一般科目 (Practical English) () 12 2 2 TOEIC TEST TOEIC 1. TOEIC TEST 2. B () 2 Unit 1 Shopping 2 Unit 2 Entertaiment Weather 2 Unit 3 Eating out 2 Unit 4 Travel 2 Unit 5 Health 2 2 Unit 6 Housing Media 2 Unit

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

『図解*社会経済』

『図解*社会経済』 事項索引 (http://www.sakurai shoten.com/) ii (2001 (9) (10) (1) (2) 50 (3) (4) (5) (6) (7) (8) i otani@asahi.email.ne.jp 2001 3 31 1 ii 3035 36 73 74153166182234 234 242408 234 30 236 21, 148, 165, 189, 195

More information

k = The Last Samurai Tom Cruise [1] Oracle Ken Watanabe (I) has a Bacon number of 2. 1: 6(k 6) (small world p

k = The Last Samurai Tom Cruise [1]   Oracle Ken Watanabe (I) has a Bacon number of 2. 1: 6(k 6) (small world p The size of the world It is a small world Araseki Hitoshi Can you believe that everyone is at most six steps away from any other person on the Earth? This phenomenon, which is called small world phenomenon,

More information

1. 1 1840-1919 2 1642 3 3 4 5 6 (1875-1950) 7 1879 8 1881-1946 9 10 1904-1998 11 12 1 2005 pp.17-19 2 1890 1959 p.21 3 1642 3 1893 11 1932 489,pp.340-

1. 1 1840-1919 2 1642 3 3 4 5 6 (1875-1950) 7 1879 8 1881-1946 9 10 1904-1998 11 12 1 2005 pp.17-19 2 1890 1959 p.21 3 1642 3 1893 11 1932 489,pp.340- * 12 Shigeru JOCHI ** 1642?-1708 300 1775-1849 1782-1838 1847-1931 12 1690-12 * 2007 8 21 ** (Graduate School of Japanese Studies, National Kaohsiung First University of Science and Technology) 1 1. 1

More information

12 MM NEWS No.7 2004.3 1994 8 10 787 51.7 35.5 24.0 2003 a. b.

12 MM NEWS No.7 2004.3 1994 8 10 787 51.7 35.5 24.0 2003 a. b. 2004.3 11 10 10 2003 22 16 1991 English for Specific Purposes EAP English for Academic Purposes 1995 1994 2001 12 MM NEWS No.7 2004.3 1994 8 10 787 51.7 35.5 24.0 2003 a. b. 2004.3 13 11 3 14 15 EGP- EAP

More information

第3章 非線形計画法の基礎

第3章 非線形計画法の基礎 3 February 25, 2009 1 Armijo Wolfe Newton 2 Newton Lagrange Newton 2 SQP 2 1 2.1 ( ) S R n (n N) f (x) : R n x f R x S f (x ) = min x S R n f (x) (nonlinear programming) x 0 S k = 0, 1, 2, h k R n ɛ k

More information

JMP V4 による生存時間分析

JMP V4 による生存時間分析 V4 1 SAS 2000.11.18 4 ( ) (Survival Time) 1 (Event) Start of Study Start of Observation Died Died Died Lost End Time Censor Died Died Censor Died Time Start of Study End Start of Observation Censor

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

II (No.2) 2 4,.. (1) (cm) (2) (cm) , ( II (No.1) 1 x 1, x 2,..., x µ = 1 V = 1 k=1 x k (x k µ) 2 k=1 σ = V. V = σ 2 = 1 x 2 k µ 2 k=1 1 µ, V σ. (1) 4, 7, 3, 1, 9, 6 (2) 14, 17, 13, 11, 19, 16 (3) 12, 21, 9, 3, 27, 18 (4) 27.2, 29.3, 29.1, 26.0,

More information

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1 *1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N

More information

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t ( ) 1 ( ) [6],[7] 1. 1928 J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t 6 7 7 : 1 5t +9t 2 5t 3 + t 4 ( :25400086) 2010 Mathematics Subject Classification: 57M25,

More information

JSPS London JSPS London Newsletter No.17 July 2008

JSPS London JSPS London Newsletter No.17 July 2008 JSPS London Recent Dialogues HE Dr Ian Pearson MP, Minister of State for Science and Innovation HE Mr David Warren, Ambassador-designate to Japan 2 Dr Kate Starkey, Head, EU Research Policy Team, International

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

自然な図形と不自然な図形: 幾何図形の二つの「意味」

自然な図形と不自然な図形: 幾何図形の二つの「意味」 ( ) mail: hiroyuki.inaoka@gmail.com 48 2015.11.22 1 1 ( ) ( ) 3 5 3 13 3 2 1 27 Shin Manders Avigad, Mumma, Mueller (Macbeth ) Fowler, Netz [2014] Theorem c a, b a 2 + b 2 = c 2 Proof. c 4 b a 180 b c

More information

三石貴志.indd

三石貴志.indd 流通科学大学論集 - 経済 情報 政策編 - 第 21 巻第 1 号,23-33(2012) SIRMs SIRMs Fuzzy fuzzyapproximate approximatereasoning reasoningusing using Lukasiewicz Łukasiewicz logical Logical operations Operations Takashi Mitsuishi

More information

<30385F928E2D88C9938C2E696E6464>

<30385F928E2D88C9938C2E696E6464> fire insurance maps The Phoenix Fire Insurance Company cross section The British Library The Library of Richard Congress Horwood Charles Goad Sanborn city centre plan The Insurance Map of Boston, Volume

More information

( ) (, ) ( )

( ) (, ) ( ) ( ) (, ) ( ) 1 2 2 2 2.1......................... 2 2.2.............................. 3 2.3............................... 4 2.4.............................. 5 2.5.............................. 6 2.6..........................

More information

ナ畜ナ・カ06 091--102 (窶凖・

ナ畜ナ・カ06  091--102 (窶凖・ 15, 2005 11 * : (Frame) (2002) q w e 1. (Frame) (Gumperz 1982, Goffman 1986, Tannen 1993) * CHEN Ming-jan: [ 91 ] 92 2. (Watanabe 1993 2000 2002 2002) Watanabe (1993) q w e (2002) 1 ( ) ( )( ) 93 1 1 1

More information