Size: px
Start display at page:

Download ""

Transcription

1 211

2

3 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x, y) R 2 f(x, y) = x 2 + y 2 f R 2 : f : R 2 R *5 f : R 2 (x, y) f(x, y) = x 2 + y 2 R *6 f(, ) =, f(1, ) = 1, f( 1, 1) = x y f(x, y)m f(x, y) x y 2 f(, ) = 1.3. x y f(x, y)hpa f(x, y) x y ( ) *1 R R *2 x R x R x *3 D R n D D R n ) 7 4 *4 *5 2 R 2 (x 1, x 2 ) (x, y) f(x, y) x y 2 2 *6 1

4 2 f : D R (D R 2 ) R 3 { ( x, y, f(x, y) ) (x, y) D} f f R 3 2 f : D R c {(x, y) D f(x, y) = c} f c 2 1.2, 1.3 f R 2 f R 2 * xy ( ) (x, y) (, ) f(x, y) = x 2 + y 2 ( ) (x, y) = (, ) : f(, ), f(1, 1), f(1, 2), f(1, 3). f(2, 4), f(3, 6), f(4, 8). f(a, ma) (m, a ) f 1, 2, f(x, y) = x 2 y , 1.3 f 1.2 f f 1-8 3, 4... *7 Scalar field. 2

5 2 2.1 ( ) I R f a I (2.1) lim h f(a + h) f(a) h f a (2.1) f a f (a) I f f 2.1. f : I x f (x) R f(x) = x f x = f(x) = 3 x (x R) f x = f α x α sin 1 f(x) = x + 1 x (x ) 2 (x = ) f α > 1 ( R ) αx α 1 sin 1 f x xα 2 cos 1 x + 1 (x ) 2 (x) = 1 (x = ) 2 f y = f(x) f (x) = dy dx f (x) f (x) f (x) f 2 (2 ) f (x) 3... f (y = f(x)) n f () (x) = f(x) f (n) (x) = dn y dx n ( ) 3

6 2.2 D R 2 2 f : D (x, y) f(x, y) R (a, b) D f (a, b) = lim x h f(a + h, b) f(a, b), h f f(a, b + k) f(a, b) (a, b) = lim y k k f (a, b) ( ) f f (a, b) (a, b) x y f (a, b) x (y ) f D f x f : D (x, y) (x, y) R x D 2 f x f y f y 2.2 ( ). f x 2 d f x = f x, f y = f y f (f(x, y)) x y x 1 f(x, y) x, y f x f(x, y) y x 2.3 f(x, y) f x (x, y), f y (x, y) 4 2 f xx = 2 f x 2 = f x x, f xy = 2 f y x = f y x, f yx = 2 f x y = f x y, f yy = 2 f y 2 = f y y f f(x, y) = x 3 + 3x 2 y + y 2 f x (x, y) = 3x 2 + 6xy, f y (x, y) = 3x 2 + 2y. 4

7 2 f xx = 6x + 6y, f xy = 6x, f yx = 6x, f yy = 2 f xy (x y ) f yx (y x ) f xy f yx 2-7 f xy f yx () xy ( ) (x, y) (, ) f(x, y) = x 2 + y 2 ( ) (x, y) = (, ) 2-3 (t, x) 2 u(t, x) ( ) u t 2 u x 2 = ( ) u(t, x) = 1 e x2 4t t ( ) f(x, y) f xx + f yy = f ( ). f(x, y) = log x 2 + y 2, g(x, y) = tan 1 y x. x, y f(x, y, z) f xx + f yy + f zz = f (3 ) F (t) f(x, y, z) = F ( x 2 + y 2 + z 2 ) 3 f F 5

8 2-6 2 f(x, y) f x + f y = x 1 + fx 2 + fy 2 y 1 + fx 2 + fy 2 f ( ) ( ) f(x, y) = log ( x2 + y 2 + x 2 + y 2 1), g(x, y) = log cos x cos y. 2-7 xy(x 2 y 2 ) ( ) (x, y) (, ) f(x, y) = x 2 + y 2 ( ) (x, y) = (, ) 2 2 (cf. 21 7) 2-8 n 2 6

9 3 3.1 ( ) I R 1 f a I lim f(x) = f(a) x a 3.1. f(x) = { 1 (x ) (x = ) lim f(x) = lim x x n = x + f(x) = f(x) = lim f(x) = 1 f() = x { sin 1 x (x ) (x = ) [( 2n + 1 ) 1 [( π], y n = 2n + 3 ) 1 π] (n = 1, 2, 3... ) 2 2 {x n }, {y n } lim x n =, lim y n n n lim f(y n) = 1 lim f(x) n x = lim n f(x n) = 1, 3.2. f a a. ( ) lim f(x) x a ( ( ) ( ) f(a + h) f(a) f(a) = lim f(x) f(a) = lim f(a + h) f(a) = lim x a h h h ( ) ( ) f(a + h) f(a) = lim lim h h h = f (a) =. h ) h C r - I f f I I f I C - f I I f I f f I (f ) f I C 1 -f I f I r f I C r - f r f (r) I f r C r - f C ( ) 7

10 3.3. f I a I a + h I h f(a + h) f(a) = f (a + θh)h ( < θ < 1) θ *8 3.2 f lim f(x, y) = A (x,y) (a,b) (x, y) (a, b) f(x, y) A * (i) lim f(x, y) = lim f(a + h, b + k). (x,y) (a,b) (h,k) (,)) (ii) lim f(a + h, b + k) = A h 2 + k 2 f(a + h, b + k) A (h,k) (,) (iii) lim f(a + h, b + k) = A (h,k) (,) h = r cos θ, k = r sin θ (r > ) r f(a + h, b + k) = f(a + r cos θ, b + r sin θ) A (iv) 2 α(h, k), β(h, k) (v) 2 f lim (x,y) (a,b) lim α(h, k) =, lim β(h, k) = (h,k) (,) f(x, y) = A (h,k) (,) lim f( a + α(h, k), b + β(h, k) ) = A (h,k) (,) lim f(x, y) = A 2 {h n}, {k n } lim f(a+h n, b+k n ) = (x,y) (a,b) n A. (vi) lim f(x, y) = A, 2 {h n}, {k n } (x,y) (a,b) f(a + h n, b + k n ) A 3.5. f(x, y) = 2xy/(x 2 + y 2 ) h n = 1 n, k n = 1 n lim f(h n, k n ) = 1 n h n = 1 n, k n = 1 n lim f(h n, k n ) = 1 lim f(x, y) n (x,y) (,) ( ) ( ) lim lim f(x, y) =, lim lim f(x, y) = x y y x *8 f θ a h a, h θ *9 8

11 f(x, y) = (x 2 y 2 )/(x 2 + y 2 ) (x, y) (, ) ( ) x 2 ( ) lim lim f(x, y) = lim x y x x 2 = 1, lim lim f(x, y) y 2 = lim y x y y 2 = 1 f(x, y) = xy(x 2 y 2 )/(x 2 + y 2 ) (x, y) (, ) x = r cos θ, y = r sin θ ( ) f(x, y) = f(r cos θ, r sin θ) = r 2 cos θ sin θ(cos 2 θ sin 2 θ) = 1 2 r2 sin 2θ cos 2θ = 1 4 r2 sin 4θ sin 4θ 1 r 2 sin 4θ 4 r2 4 ( ) r r2 4 r2 r2 sin 4θ D R 2 2 f (a, b) R 2 lim f(x, y) = f(a, b) (x,y) (a,b) 3.7. (1) R 2 f(x, y) = { 2xy ( ) x 2 +y (x, y) (, ) 2 ( ) (x, y) = (, ) (, ) f (, ) f x (, ) = f y (, ) = (2) R 2 f(x, y) = (, ) { xy(x 2 y 2 ) ( ) x 2 +y (x, y) (, ) 2 ( ) (x, y) = (, ) 3.8. D R 2 f(x, y) (a, b) D A, B (a + h, b + k) D (h, k) ( ) f(a + h, b + k) f(a, b) = Ah + Bk + ε(h, k) h 2 + k 2 lim ε(h, k) = (h,k) (,) 9

12 3.9. f(x, y) (a, b) f (a, b) ( ) A, B A = f x (a, b), B = f y (a, b). ( ) k = ε(h, ) ε(h, ) h h f(a + h, b) f(a, b) h h = B = f y (a, b) = Ah + ε(h, ) h 2 h = A + ε(h, ) h h ε(h, ) h ε(h, ) f(a + h, b) f(a, b) A = lim = f x (a, b). h h 3.1. f (a, b) (a, b). ( ) (h, k) (, ) (1) f (, ) D f D f x, f y D f D. (a, b) D ( ) A = f x (a, b), B = f y (a, b) ε(h, k) ((h, k) (, )) : k ε(h, k) = f(a + h, b + k) f(a, b) f x(a, b)h f y (a, b)k h2 + k 2 F (h) := f(a + h, b + k) f(a, b + k) * 1 f F h F (h) = f x (a + h, b + k), F () = F 3.3 F (h) = F (h) F () = F ( + θh)h = F (θh)h = f x (a + θh, b + k)h ( θ = θ(h, k) 1) θ (θ h k (h, k) ) G(k) = f(a, b + k) f(a, b) k δ G(k) = G (δk)k = f y (a, b + δk)k ( δ = δ(k) 1) ε(h, k) = F (h) + G(k) f x(a, b)h f y (a, b)k h2 + k 2 = ( f x (a + θh, b + k) f x (a, b) ) h h2 + k + ( f y (a, b + δk) f x (a, b) ) k 2 h2 + k 2 *1 := () 1

13 < θ < 1, < δ < 1 θh, δk ((h, k) (, )) h/ h 2 + k 2 1, k/ h 2 + k 2 1 (h, k) (, ) { ( ) (x 2 + y 2 ) sin 1 (x, y) (, ) f(x, y) = x 2 +y 2 ( ) (x, y) = (, ) (, ) f x, f y C r - D R 2 f f D D f I C - f D D f D D f f x, f y D f D C 1 - D f x, f y D f D C 2 -f 2 f xx, f xy, f yx, f yy D D (). D R 2 f 2 2 f xy, f yx, f xy = f yx 2 7 f C 2 - f xy = f yx 3-1 α k { x α sin 1 f(x) = x (x ) (x = ) R C k C k h >, h < C 1 - f(x, y) = x 2 + y 2 (, ) C r - C r - r k C k C - 11

14 D R 2 f(x, y) (a, b) D A, B (a + h, b + k) D (h, k) ( ) f(a + h, b + k) f(a, b) = Ah + Bk + ε(h, k) h 2 + k 2 lim ε(h, k) = (h,k) (,) 4.2. f(x, y) (a, b) f (a, b) ( ) A, B A = f x (a, b), B = f y (a, b) 4.3. D R 2 f(x, y) (a, b) D f (a, b) f(a + h, b + k) f(a, b) f x (a, b)h f y (a, b)k lim = (h,k) (,) h2 + k 2 f(x, y) P = (a, b) ( ) f f (df) P = (a, b), (a, b) x y 2 (df) P f P (x, y) 2 ( f x (x, y), f y (x, y) ) (4.1) df = f ( f x, f ) y 4.4. ϕ(x, y) = x, ψ(x, y) = y dϕ = (1, ), dψ = (, 1) dx = (1, ), dy = (, 1) ( ) 12

15 (4.1) (4.2) df = f f dx + x y dy f P = (a, b) f(a + h, b + k) f(a, b) = (df) P h + ε(h) h h = ( h k), h = h 2 + k 2 lim h ε(h) = (df) P h 1 1 * 11 I 1 x(t), y(t) ( x(t), y(t) ) I R 2 γ : I t γ(t) = ( x(t), y(t) ) R 2. x(t), y(t) * 12 γ γ(t) = ( x(t), y(t) ) γ(t) = dγ dt (t) = ( ẋ(t), ẏ(t) ) ( ) dx dy = (t), dt dt (t) ( x(t), y(t) ) * 13 2 f(x, y) γ(t) = ( x(t), y(t) ) (4.3) F (t) = f ( x(t), y(t) ) f(x, y) γ(t) = ( x(t), y(t) ) (4.3) df dt (t) = f x ( x(t), y(t) )dx dt f ( )dy (t) + x(t), y(t) y dt (t) *11 (x, y) (a, b) (h, k) t (h, k) x = t (x, y) f(x, y) f(x) f(a + h) = (df)ah + ε(h) h, *12 γ *13 velocity speed 13

16 t ε 1(δ) := x(t + δ) x(t) δ ẋ(t), ε 2(δ) := y(t + δ) y(t) δ x, y δ ε j (δ) h(δ) := δ ( ẋ(t) + ε 1 (δ) ), k(δ) := δ ( ẏ(t) + ε 2 (δ) ) ẏ(t) δ h, k f F (t + δ) F (t) = f ( x(t + δ), y(t + δ) ) f ( x(t), y(t) ) = f ( x(t) + h(δ), y(t) + k(δ) ) f ( x(t), y(t) ) = f ( ) f ( ) ( ) x(t), y(t) h(δ) + x(t), y(t) k(δ) + ε h(δ), k(δ) h(δ)2 + k(δ) x y 2 ε(h, k) (h, k) (, ) δ δ 4.6 df dt = f dx x dt + f dy = (df) γ y dt γ v = t (v 1, v 2 ) P = (a, b) γ(t) = t (a+tv 1, b+tv 2 ) = a+tv (a = t (a, b)) γ(t) t = P v γ P 2 f (4.3) F (t) (4.4) F () = f x (a, b)v 1 + f y (a, b)v 2 = (df) p v f P v P = (a, b) f ( ) fx (a, b) grad f P := f y (a, b) f P gradient vector * 14 (4.4) (df) P v = ( (grad f) P ) v f, γ(t) t (4.3) 4-2 (x, y) f(x, y) = x 2 + xy + y γ(t) = ( cos t, sin t ) *14 (df) P 14

17 4-3 P = (a, b) 2 f P (df) P (, ) f P v (df) P v v (grad f ) P v v = t (cos t, sin t) 4-4 P = (a, b) 2 f P (df) P (, ) P f γ(t) = ( x(t), y(t) ) (γ() = P ) t = γ γ() (grad f) P 4-5 f f(x, y) = { 1 (y = x 2 x ). (otherwise) v = t (v 1, v 2 ), f v d dt f ( ) tv 1, tv 2 t= f 15

18 5 () 5.1 ( ( 4.6 )). 2 f(x, y) γ(t) = ( x(t), y(t) ) F (t) = f ( x(t), y(t) ) df dt (t) = f x ( x(t), y(t) )dx dt f ( )dy (t) + x(t), y(t) y dt (t) (). 2 f(x, y) 2 2 x = x(ξ, η), y = y(ξ, η) 2 f(ξ, η) = f ( x(ξ, η), y(ξ, η) ) f ξ f η f ( ) x f ( ) y (ξ, η) = x(ξ, η), y(ξ, η) (ξ, η) + x(ξ, η), y(ξ, η) (ξ, η) x ξ y ξ f ( ) x f ( ) y (ξ, η) = x(ξ, η), y(ξ, η) (ξ, η) + x(ξ, η), y(ξ, η) (ξ, η) x η y η f(ξ, η) f(ξ, η) f(x, y) f () 5.2 f ξ = f x x ξ + f y y ξ, f η = f x x η + f y y η z = f(x, y) = f ( x(ξ, η), y(ξ, η) ) = f(ξ, η) z ξ = z x x ξ + z y y ξ, z η = z x x η + z y y η ( ) 16

19 R m R n m m R m ( 1, 3 ) * 15 D R m F : D R n n D (x 1,..., x m ) R n F (x 1,..., x m ) y = F (x 1,..., x m ) R n n (y 1,..., y n ) y j (x 1,..., x m ) y j (x 1,..., x m ) * 16 F : R m D R n D R m n (5.1) F : R m D (x 1,..., x m ) ( F 1 (x 1,..., x m ),..., F n (x 1,..., x m ) ) R n. F j : D R (j = 1,..., n) D F F F j (j = 1,..., n) F = (F 1,..., F n ) F = (F 1,..., F n ): R m D R n C r - * 17 j F j : D R C r - ( 3 ) 5.4. D R m C 1 - F = (F 1,..., F n ): D R n F 1 x 1... df =..... F n x 1... F 1 x m F n x m (n m ) F differential Jacobian matrix (x 1,..., x m ) D R m F : R m D R n G: R n U R k x D F (x) U, G F : R m D x G ( F (x) ) R k G F : R m D R k F G 5.5. F, G C 1 - d(g F ) = dg df, d(g F )(x) = dg ( F (x) ) df (x) D R m x id D : D x id D (x) = x D *15 47 (1) R m (2) R m {(x 1,..., x m) R m (x 1 ) (x m) 2 < 1} *16 *17 C r - 17

20 D identity map D R m U R m F : D U G: U D G F = id D, F G = id U G F inverse map G = F D = {(r, θ) R 2 r >, π 2 < θ < π 2 } U = {(x, y) R2 x > } ( F : D (r, θ) F (r, θ) = (r cos θ, r sin θ) U, G: U (x, y) x2 + y 2, tan x) 1 y D G = F 1, F = G 1, r >, π 2 < θ < π 2 ( ) G F (r, θ) = G(r cos θ, r sin θ) = r 2 cos 2 θ + r 2 sin 2 1 r sin θ θ, tan = (r, tan 1 tan θ) = (r, θ), r cos θ θ = tan 1 y x π 2 < θ < π 2 cos θ > x > cos tan 1 y x = cos θ = tan 2 θ = tan 2 tan 1 y x sin tan 1 y x = sin θ = cos θ tan θ = x y x2 + y 2 x = = y x2 + y 2. 1 = 1 + y2 x 2 x x2 + y 2 = x x2 + y 2, ( F G(x, y) = F x2 + y 2, tan x) 1 y ( = x2 + y 2 cos tan 1 y x, x 2 + y 2 sin tan x) 1 y = (x, y) (x, y) 5.6 (r, θ) = G(x, y), (r, θ) polar coordinate system * 18 (x, y) Cartesian coordinate system 5.8. F : R m D U R m G = F 1 F F 1 C 1 - df 1 = (df ) 1 d(f 1 ) ( F (x) ) = ( df (x) ) 1 1 m E F 1 F = id D 5.5 df 1 df = E, F F 1 = id U 5.5 df df 1 = E df 1 df ( ) 5.9 (). 5.6 (5.2) x = x(r, θ) = r cos θ, y = y(r, θ) = r sin θ. F : (r, θ) (x, y) ( ) ( ) xr x (5.3) df = θ cos θ r sin θ = sin θ r cos θ *18 θ π < θ < π y r y θ 18

21 G = F 1 : (x, y) (r, θ) r = x 2 + y 2, θ = tan 1 y x (5.4) dg = C 2 - f(x, y) ( ) ( x rx r y = θ x θ y x2 +y 2 y x 2 +y 2 (5.5) z = f = 2 f x f y 2 y x2 +y 2 x x 2 +y 2 Laplacian * 19 f(x, y) (5.2) (r, θ) f f r, θ (5.6) ( 5.2) f x = r f x r + θ f x θ = ( 2 f x 2 = x = x = 2 f y 2 = ( x x2 + y 2 f r x x2 + y 2 ) f r + y 2 x2 + y 23 f r + + 2xy (x 2 + y 2 ) 2 f θ = x2 x 2 + y 2 f rr y2 x 2 + y 2 f rr + x x2 + y 2 f r y x 2 + y 2 f θ y x 2 + y 2 f θ ) x x2 + y 2 f r x x ( x x x2 + y 2 x2 + y f 2 rr ( y x 2 + y 2 2xy x2 + y 23 f rθ + 2xy x2 + y 23 f rθ + x x2 + y 2 f θr y 2 (x 2 + y 2 ) 2 f θθ + x 2 (x 2 + y 2 ) 2 f θθ + ) ( ) y x 2 + y 2 f θ ) y x 2 + y 2 f rθ y x 2 + y 2 f θθ ) y 2 x2 + y 23 f r + x 2 x2 + y 23 f r y f θ x 2 + y 2 x 2xy (x 2 + y 2 ) 2 f θ. 2xy (x 2 + y 2 ) 2 f θ. r = x 2 + y 2 f = f xx + f yy = f rr + 1 r f r + 1 r 2 f θθ ( ) ( ) (5.6) dg = d(f 1 ) = (df ) 1 cos θ sin θ rx r = 1 r sin θ 1 r cos θ = y θ x θ y x = cos θ r 1 r sin θ θ, y = sin θ r + 1 r cos θ θ. *19 19

22 2 f x 2 = cos2 θf rr 2 r cos θ sin θf rθ + 1 r 2 sin2 θf θθ + 1 r sin2 θf r + 2 r 2 sin θ cos θf θ 2 f y 2 = sin2 θf rr + 2 r cos θ sin θf rθ + 1 r 2 cos2 θf θθ + 1 r cos2 θf r 2 r 2 sin θ cos θf θ f(x, y) f = f xx + f yy = f F (t) f(x, y) = F ( x 2 + y 2 ) f(x, y) = tan 1 y x 5-5 c ( = ) ξ = x + ct, η = x ct (t, x) (ξ, η) C 2 - f(t, x) 2 f t 2 c2 2 f x 2 = 4c2 2 f ξ η f tt c 2 f xx = C 2 - f 2 C 2 - F, G f(t, x) = F (x + ct) + G(x ct) f tt = c 2 f xx d Alembert 5-6 f(x, y, z) f = f xx + f yy + f zz x = r cos θ cos ϕ, y = r sin θ cos ϕ, z = r sin ϕ ( r >, π < θ < π, π 2 < ϕ < π ) 2 r x r y r z cos θ cos ϕ sin θ cos ϕ sin ϕ θ x θ y θ z = 1 sin θ 1 cos θ r cos ϕ r cos ϕ ϕ x ϕ y ϕ z 1 r cos θ sin ϕ 1 r sin θ cos ϕ 1 r cos ϕ. f = f rr + 2 r f r + 1 r 2 cos 2 ϕ f θθ + 1 r 2 f ϕϕ 1 r 2 tan ϕf ϕ 2

23 6? ( ) (C - ) 6.1 u(t) 2... u(t) 6.1. A t A u(t) u(t) (6.1) du dt = λu (λ ) k u(t) = ke λt t = t A k Kg t u(t) (6.1) (6.2) u(t ) = k (6.1) (6.2) u(t) = k exp{ λ(t t )} * 2 (6.2) 6.2. m x kx (k > ) mγ dx dt (γ > ) t x(t) (6.3) m d2 x dx +mγ dt2 dt +kx = x = x(t) 2 2 (6.1) 1 t = t (6.4) x(t ) = x, ( ) *2 e X exp(x) dx dt (t ) = v 21

24 6.3. {t t > } f(t) (6.5) f (t) + p t f (t) =, f(1) = α, f (1) = β p, α, β u(t) = 1 ( t 1 p 1 ) + α (p 1 ) β u(t) = β log t + α (p = 1 ) u = u(x, y), 3 w = w(x, y, z) u = 2 u x u y 2, w = 2 w x w y w z 2 (Laplacian) C 2 - u(x, y) (w(x, y, z)) u = ( w = ) () u (w) harmonic function ( ) ( ) w = ρ (ρ = ρ(x, y, z) (x, y, z) ( ) ) w = ρ (ρ ) 6.4. u = u(x, y) F u(x, y) = F ( x 2 + y 2 ) u () (x, y) = (r cos θ, r sin θ) (6.6) u = u rr + 1 r u r + 1 r 2 u θθ u u r θ : u = u(r) * 21 u u rr + 1 r u r = 6.3 u = β log x 2 + y 2 + α (α, β ) *21 u(r) F 22

25 u (.5, x) u (.1, x) u (.15, x) u (.2, x) u (.25, x) u (.3, x) u (.35, x) u (.4, x) u (.45, x) u (.5, x) 1 (c = 1) 6.5. w = w(x, y, z) w = F ( x 2 + y 2 + z 2 ) w = β r + α (α, β ) u(t, x) u x t x (6.7) u t = u c 2 x 2 (1 ) c (6.8) u (t, x) = 1 ) ( 2 πct exp x2 4ct {(t, x) t > } R 2 (6.7) (6.7) C t u (t, x) 2ct ( 2ct) * 22 t u (t, x) dx = lim u (t, x) = t + ) 1 ( 2 πct exp x2 = 1 4ct { (x ) (x = ) t > ( 1) f(x) = { 1 ( 1 2 x 1 2 ) (otherwise) *22 23

26 u(.1, x) u(.2, x) u(.3, x) u(.4, x) u(.5, x) u(.6, x) u(.7, x) u(.8, x) u(.9, x) u(.1, x) 2 (6.9) (c = 1) (6.9) u(t, x) = u (t, x y)f(y) dy u(t, x) (6.7) t f * 23 ( 2) (x, y), t u(t, x, y) u (6.1) u t = c u (c ) (x, y) u = u xx + u yy. u (x, y) u = u(t, x 2 + y 2 ) x = r cos θ, y = r sin θ (6.1) ( u t = c u rr + 1 ) r u r (6.11) u(t, r) = 1 ) ( 4π ct exp r2 4ct u = u(t, x, y, z) u t = c u = 2 x y z 2 *23 24

27 x t u(t, x) u (6.12) 2 u t 2 = c2 2 u x 2 c u(t, x) = F (x + ct) + G(x ct) F, G ( ) 1 ( 5-5) * 24 u tt = c 2 u ( ) ( 137 Cs) 3.17 (6.1) λ () 6-2 (6.3) γ = ω = k/m x(t) = α cos(ωt) + β sin(ωt) (α, β ) (6.4) ( 2-5) 6-4 (6.11) ( ) 6-5 θ e iθ = cos θ + i sin θ (i ) ( ) z = x + iy (x, y ) e z = e x+iy = e x (cos y + i sin y), e z Re e z Im e z (x, y) 6-6 z = x + iy f(z) = z m (m ) Re f(z) (Im f(z)) (x, y) (x, y) *24 25

28 x ( 1 x 1) x = cos y ( y π) y y = cos 1 x x ( 1 x 1) x = sin y ( π 2 y π 2 ) y y = sin 1 x x x = tany ( π 2 < y < π 2 ) y y = tan 1 x cos 1 x, sin 1 x, tan 1 x,, 7.2. cos 1, sin 1, tan 1 arccos, arcsin, arctan tan 1 1 = π 4 + nπ (n ) 7.1 Cos 1 x, Arccos x (7.1) d dx cos 1 x = 1, 1 x 2 d 1 dx sin 1 x =, 1 x 2 d dx tan 1 x = x 2. x = ±1 cos 1 x, sin 1 x (7.1) (7.2) tan 1 x = x cos 1 x + sin 1 x = π 2 1 x 1 + t 2 dt, 1 sin 1 x = dt 1 t 2 (x α ) C x cosh x = ex + e x, sinh x = ex e x, tanh x = sinh x 2 2 cosh x = ex e x e x + e x x hyperbolic cosine, hyperbolic sine, hyperbolic tangent hyperbolic functions ( ) 26

29 7.4. cosh t ht cos ht cosh 2 x sinh 2 x = 1 * 25 ( x(t), y(t) ) = (cosh t, sinh t) (x, y) x 2 y 2 = 1 ( circular functions.) cosh(x + y) = cosh x cosh y + sinh x sinh y, sinh(x + y) = sinh x cosh y + cosh x sinh y, * 26 d d cosh x = sinh x, dx tanh(x + y) = d sinh x = cosh x, dx tanh x + tanh y 1 + tanh x tanh y. u = u, u() = A, u () = B u(t) u(t) = A cosh t + B sinh t dx tanh x = 1 tanh2 x t 1, t 2 1 t 2 + t 4 + ( 1) N t 2N = 1 ( t2 ) N t 2 = t 2 + ( 1)N t 2N t 2 t = x tan 1 x = x dt 1 + t 2 = x 1 3 x3 + + ( 1)N 2N + 1 x2n+1 + R N (x) R N (x) = R N (x) = x x t 2N t 2 dt t 2N t 2 dt x x t 2N+2 dt= x 2N+3 2N + 3 ( (7.3) tan 1 x = x x ( 1)N N 2N + 1 x2n+1 + R N (x) = t 2N x 2 dt = 1 x 2N+3 2N x 2 k= ( x ( 1) N+1 t 2N+2 ) R N (x) = 1 + t 2 dt ) ( 1) k x 2k+1 + R N (x) 2k + 1 x 2N+3 (2N + 3)(1 + x 2 ) R N (x) x 2N+3 2N + 3 *25 cosh 2 x (cosh x) 2 *26 (tanh x) = 1/ cosh 2 x (tan x) = 1 + tan 2 x 27

30 x 1 lim R N(x) = N ( 1 x 1 ) (7.4) tan 1 x = x x3 3 + x5 5 + = k= ( 1) k x 2k+1 2k + 1 ( 1 x 1) (7.4) x = 1, (7.5) π 4 = R N (7.3) R N (1) ) 13 ( 1)N π = 4 ( N + 3 R N, 2 2N + 3 R 4 N 2N R N 1 1 N N ( ) (7.6) (7.3) α = 1 5, β = 1 M π = 4 k= 4( 1) k α k 2k + 1 π 4 = 4 1 tan tan N j= ( 1) j β j 2j R M,N, R M,N 16α2M+1 2M β2N+1 2N + 1 (!) R M,N 1 1 M = 1, N = 2 (7.5) (1 1 ) 7-1 cosh x 1, 1 < tanh x < 1 cosh x sinh x, tanh x y = cosh x, y = sinh x, y = tanh x 2 3 t = tanh u 2 cosh u, sinh u t x 2 y 2 = 1 x y 28

31 A, B A cos t + B sin t r cos(t + α), r sin(t + β) () x 1 x x = cosh y y y y = cosh 1 x cosh 1 x = log ( x + x 2 1 ) sinh 1 x, tanh 1 x sinh 1 x = log ( x + x ), tanh 1 x = 1 2 log 1 + x 1 x 7-2 (7.3) π 5 π 4 = tan tan log x = (x) log x log x cos 1 x, sin 1 x, tan 1 x 7-4 n I n = π/2 cos n x dx n 2 I n = n 1 n I n 2 2m 1 2m 3 π/2 I n = cos n x dx = 2m 2m π (n = 2m), 2 2 2m 2m 2 2m + 1 2m (n = 2m + 1) 3 m sin n x x 2 x = sin θ 1 x u = 1+x 7-6 f(x) = (x 1)(x 2)(x + 4) 2 1/f(x) ( ) 7-7 a, b 1/(x 2 2ax + b) a 2 b =, 1/(x + a) 2 a 2 b > ( ) a 2 b < 1/(1 + u 2 ) 7-8 1/ cos x (= sec x) t = tan x 2 1 cos x = cos x 1 sin 2 x 1 cos x t u = sin x = cosh u x 2 (x) 1 + x 2 1/ 1 + x 2 x = tan θ x = sinh u x 4 1, 1 x 3 1, 1 x

32 7-11 ( R ) 1 1 R R (1 ) 3

33 8 R * 27 (a, b) = {x R a < x < b} ( ) [a, b] = {x R a x b} ( ) (a, b] = {x R a < x b} [a, b) = {x R a x < b} (, a) = {x R x < a} (, a] = {x R x a} (a, ) = {x R a < x} [a, ) = {x R a x}. R = (, ) [a, b] = {x, x 1, x 2,..., x N } a = x < x 1 < < x N = b := max{ x 1 x, x 2 x 1,..., x N x N 1 } I = [a, b] f I = {x, x 1,..., x N } N N (8.1) S (f) := f j x j, S (f) := f j x j, j=1 j=1 x j = x j x j 1 f j :=( [x j 1, x j ] f ), f j :=( [x j 1, x j ] f ) 8.1. I f I I S, S f(x) dx = b I a f(x) dx 8.2. [, 1] f(x) = { 1 (x ) (x ) *27. 31

34 = {x, x 1,..., x N } [x j 1, x j ] N N S (f) = 1(x j x j 1 ) = x N x = 1, S (f) = (x j x j 1 ) = f [, 1] j=1 j= [ 1, 1] f(x) = { 1 (x = ) () [ 1, 1] = {x,..., x N } k = k( ) [x k 1, x k ] f [x k 1, x k ] 1 f S (f) = x k x k 1 ( k = k( ) ), S (f) =. < x k x k 1 S (f) f [ 1, 1] 1 1 f(x) dx = b < a b f(x) dx = a a b f(x) dx 8.4. I = [a, b] f I 8.5 (). I = [a, b] f F (x) = x F I F (x) = f(x) a f(t) dt ( ) f F (x) = f(x) F I f 2 F, G G(x) = F (x) + d { } G(x) F (x) = G (x) F (x) = f(x) f(x) = dx G(x) F (x) I I f 32

35 8.6. I f I a F (x) = x a f(x) dx 8.7. e x2 ( ) x e x2 dx f F (x) F (x) = f(x) dx * I f F I a, b b a f(x) dx = F (b) F (a) ( ) 8.9. [a, b] C 1 - f ( ) b a 1 + {f (x)} 2 dx [a, b] = {x, x 1,..., x N } (x, f(x )), (x 1, f(x 1 )),..., (x N, f(x N )) I = N ( ) 2 f(xj) f(x j 1) 1 + (x j x j 1) x j x j 1 j=1 ξ j f(x j) f(x j 1) x j x j 1 = f (ξ j ) x j 1 < ξ j < x j I = N j=1 1 + (f (ξ j)) 2 (x j x j 1) N F j j, j=1 N I F j j j=1 F (x) = 1 + (f (x)) 2 F j = ( [x j 1, x j] F ), F j = ( [x j 1, x j] F ), j = x j x j 1 F (x) I F (x) a b *28 +C 33

36 8.1. t γ(t) = ( x(t), y(t) ) (a t b) C 1 - b a (dx ) 2 + dt ( ) 2 dy dt dt 8-1 f(x) F (x) b a f(x) dx = F (b) F (a) 8-2 E : x2 a + y2 2 b = 1 (a > b > ) 2 E πab E π 2 4a 1 k 2 sin 2 a2 b t dt, k = 2 a km, km ( 1 x 1 x 2 ) (x ) 43.5 ±.1km 8-3 x 2 y 2 = 1 1 P (x, y) O(, ), A(1, ) OA, OP, AP t/2 P x, y t 8-4 y = x 2 x a 8-5 γ(t) = ( t sin t, 1 cos t ) t 2π x 8-6 R r ( ) ρ = ρ(r)kg/m 3 ρ ρ [, R] 34

37 9 [a, b] [c, d] [a, b] [c, d] = {(x, y) x [a, b], y [c, d]} = {(x, y) a x b, c y d} R 2 [a, b] [c, d] R 2 [a, b] [c, d] (9.1) a = x < x 1 < < x m = b, c = y < y 1 < < y n = d I = [a, b] [c, d] mn I = [a, b] [c, d] = j = 1,..., m k = 1,..., n jk, jk = [x j 1, x j ] [y k 1, y k ] 2 := max{(x 1 x ), (x 2 x 1 ),..., (x m x m 1 ), (y 1 y ),..., (y n y n 1 )} R 2 D R 2 * 29 f 1,..., f n {x R 2 f 1 (x) >,..., f n (x) > } R 2 R 2 {(x, y) x 2 + y 2 < 1} = {(x, y) 1 x 2 y 2 > } R 2 R 2 D R 2 2 D D * 3 R 2 f 1,..., f n {x R 2 f 1 (x),..., f n (x) } R 2 R 2 R 2 D I D I R 2 * * *3 (R n ) *31 R n 35

38 I = [a, b] [c, d] f I (9.1) m j=1 k=1 m f(ξ jk, η jk )(x j+1 x j )(y k+1 y k ) ( ξ jk [x j 1, x j ], η jk [y k 1, y k ]) (ξ jk, η jk ) I f f(x, y) dx dy * 32 D I I R 2 D f f(x, y) = { f(x, y) ( ) (x, y) D ( ) (x, y) D I f f(x, y) dx dy = D I f(x, y) dx dy f D * 33 D R 2 f(x, y) = 1 D D := dx dy D D D R 2 f D Ω f D f 9.1. R 2 D f D f(x, y) dx dy D R 3 D () R m *32 2 *33 D I 36

39 x x = a x = b x ρ(x) (kg/m) b a ρ(x) dx xy D (x, y) D ρ(x, y) (kg/m 2 ) D ρ(x, y) dx dy D (x, y, z) D ρ(x, y, z) (kg/m 3 ) D ρ(x, y, z) dx dy dz I = [a, b] [c, d] R 2 I = (b a)(d c) [a, b] () ϕ(x), ψ(x) ϕ(a) ψ(a), ϕ(b) ψ(b) D := {(x, y) R 2 ϕ(x) y ψ(x), a x b} () R 2 D D = b a [ ] ψ(x) f(x, y) dy dx ϕ(x) [a, b] a = x < x 1 < < x m = b j = [x j 1, x j ] D ϕ(x j 1 ) D j := {(x, y) D, x j } [ ] ψ(xj 1) f(x j, y) dy x j ( x j = x j x j 1 ) j D = {(x, y) x 2 + y 2 1} f(x, y) = x 2 [ 1 ] 1 x 2 x 2 dx dy = D 1 x 2 dy dx 1 x 2 [ 1 ] 1 x 2 = 2 x 2 dy dx 1 = x 2 1 x 2 dx = 4 1 x 2 1 x 2 dx. 37

40 , R 3 1 D D dx dy dz R 4, R

41 D = {(x, y) 3 x y 2 1} R 2 D D := {(x, y) 3 x y 2 1, x, y } D D = 4 D D = 1 dx dy = D 3π/ y 2 dy dx = 1 [ 1 3 y 2 3 ] dy = 3π f(x, y) = 1 x2 a 2 y2 b 2 (a,b ) xy f(x, y) { D = (x, y) x 2 } a 2 + y2 b 2 1 D [x, x + x] [y, y + y] f(x, y) D f(x, y) dx dy = f(x, y) x y D 1 x2 a 2 y2 b 2 dx dy = 2 3 πab 1.3. D = {(x, y, z) z 2 4x, y 2 x x 2 } D D = {(x, y) y 2 x x 2 } D = D dx dy dz = dx dy D 2 x 2 x dz = 4 x dx dy = = 32 D z = f(x, y) ((x, y) D) D R 2 f D C 1 - D [x, x + x] [y, y + y] 3 P = ( x, y, f(x, y) ), Q = ( x + x, y, f(x + x, y) ), R = ( x, y + y, f(x, y + y) ) ( ) 39

42 P Q, P R 2 ( ) P Q P R = ( x,, f(x + x, y) f(x, y)) (, y, f(x, y + y) f(x, y)) ( ) 2 ( ) 2 f(x + x, y) f(x, y) f(x, y + y) f(x, y) = x y x y ( ) 2 ( ) 2 f f 1 + (x, y) + (x, y) x y x y 1 + (f x ) 2 + (f y ) 2 dx dy D ( ) 1-1 R 2 D = [a, b] [c, d] C 2 - F D 2 F dx dy = F (b, d) F (a, d) F (b, c)+f (a, c) x y 1-2 (x 2 + y 2 ) dx dy, D = {(x, y) x + y 1, x, y }, D x D y dx dy D = {(x, y) 1 y x2, 2 x 4} x 2 y dx dy D = {(x, y) x π, y sin x} D xy dx dy D = {(x, y) x, y, x + y 1} D D (x 2 + y 2 + z 2 ) dx dy dz D = {(x, y, z) x, y, z, x + y + z 1}. 1-3 Ω = {(x, y, z) x2 Ω = a 2 + y2 b 2 + z2 } c 2 1 } {(x, y, z) x2 a 2 + y2 b 2 + z4 c 4 1 a, b, c. a, b, c. 1-4 xy D {(x, y) y > } 4

43 xy D x 2π y dx dy D D ( ) ( ) 1 x dx dy, y dx dy D = dx dy D D D D 1-5 xy y = f(x) (a x b) x 2π b a f(x) 1 + ( f (x) ) 2 dx [a, b] f(x) > 1-6 xy C C : γ(t) = ( x(t), y(t) ) (a t b) x(t), y(t) t C 1 - [a, b] y(t) > C x b (dx ) 2 ( ) 2 dy 2π y(t) + dt dt dt C 1 L b a (dx ) 2 x(t) + dt a ( ) 2 dy b dt, y(t) dt a (dx ) 2 ( ) 2 dy + dt dt dt b (dx ) 2 L = + dt a ( dy dt ) 2 dt 41

44 11 R 2 L A : R 2 x X = Ax R 2 (A 2 ) A det A L A L A 1 1 ( ) A L A L A R 2 L A 2 P, Q R 2 l P, Q p, q l L A l L A l = {(1 t)p + tq t R} L A ( (1 t)p + tq ) = (1 t)ap + taq l = {(1 t) p + t q t R} p = Ap, q = Aq OP = p, OQ = q P, Q (1) P Q l P, Q (2) P = Q l P 1 det A L A 1 1 (2) L A R L A l 2 P, Q l 2 R, S l det( P R, P Q) det( P S, P Q) R 2 det 2 2 t (a, b) = P Q n = t ( b, a) (1) det(v, P Q) = (v, n) R 2 (2) n l l R l n P R n ( P R, n) > (1) L A R 2 R 2 L A L A P QRS p = OP, q = OQ P Q {(1 t)p + tq t 1} P, Q P, Q L A P, Q ( )

45 11.5. P QRS det(a, b) a = P Q, b = P R 2. a, b θ (11.1) a b sin θ = a 2 b 2 a 2 b 2 cos 2 θ = a 2 b 2 (a, b) 2. (a, b) a, b a = t (a 1, a 2 ), b = t (b 1, b 2 ) (11.1) L A D det A D D D D = P QRS p, q, r, s a = P Q = q p, b = P R = r p P, Q, R L A P, Q, R P Q = Aq Ap = A(q p) = Aa, P R = Ab D = det(aa, Ab) = det ( A(a, b) ) = det A det(a, b) = det A D. 2 R 2 C 1 - F : R 2 (u, v) F (u, v) = ( x(u, v), y(u, v) ) R 2 ( ) ( ) xu (a, b) x F (a+h, b+k) = F (a, b)+ v (a, b) h + h y u (a, b) y v (a, b) k + k 2 ε(h, k) ε(h, k) as (h, k) (, ) t (h, k) F df ( 5) (h, k) Φ(h, k) := F (a + h, b + k) F (a, b) ( ( ) xu (a, b) x v (a, h y u (a, b) y v (a, b)) k. ( ) (x, y) (u, v) = det xu x v y u y v Jacobian (x, y) (u, v) 43

46 11.7 ( 92 ). xy D uv E F 1 1 f(x, y) dx dy = f ( x(u, v), y(u, v) ) (x, y) (u, v) du dv D E ,7; 95 8, , 12; 11 13, , 2, 3, 4. 44

47 12 ( ) (a, b] f b lim f(x) dx ε + a+ε b a f(x) dx f [a, b) b [a, ) f a f(x) dx M lim f(x) dx M + a a f(x) dx b f(x) dx * ε (, 1) 1 ε 1 x dx = [2 x] 1 ε = 2(1 ε) ε (, 1) 1 1 x dx = lim ε + 2(1 ε) = 2. 1 ε 1 x dx = [log x]1 ε = log 1 log ε = log ε M 1 1 dx = lim log ε +. x ε + M e x dx = [ e x ] M = e M + 1 M M 1 1 x dx = [log x]m 1 = log M 1 e x dx = lim (1 M + e M ) = 1. 1 x dx = lim log M = + M ( ) *34 45

48 12.2. k (, 1) ε (, 1) 1 ε 1 k2 x 2 1 x 2 dx = 1 1 k2 x 2 1 x 2 dx sin 1 (1 ε) 1 k 2 sin 2 t dt (x = sin t) [, π 2 ] ε + * k2 x 2 π 2 1 x 2 dx = 1 k 2 sin 2 t dt f(x) (a, b) b ε2 a+ε 1 f(x) dx ε 1, ε 2 b a f(x) dx * ε 1, ε 2 (, 1) 1 ε2 1+ε 1 [ x 1 x 2 dx = 1 ] 1 ε2 [ 1 2 log(1 ( ) ] 1 ε 2 x2 ) = log(1 x) + log(1 + x) 1+ε 1 2 = 1 ( ) log ε2 + log(2 ε 2 ) log(2 ε 1 ) log ε 1 2 ε x 1 x 2 dx (ε 1, ε 2 ) (, ) 1 ε 1+ε x 1 x 2 dx = [ 1 ( ) ] 1 ε log(1 x) + log(1 + x) = (ε +) 2 1+ε 1+ε x dx = 1 x2 *35 *

49 12.4. I = (a, b] f, g I f(x), g(x) f(x) g(x) (x I), b a g(x) dx b a f(x) dx * ( ). s > e x x s 1 dx Γ(s) = e x x s 1 dx (s > ) 12.6 ( ). p, q B(p, q) = 1 x p 1 (1 x) q 1 dx f(x) [a, b) b 12-2 f(x) (, b] = x α dx, a f(x) dx b 1 f(x) dx x β dx α, β (, 1] [1, + ) m lim x xm e x =. *37 47

50 x > f m (x) := e x (1 + x + 12! x m! ) xm > f m(x) = f m 1 (x) 12-5 s Γ(s + 1) = sγ(s) n Γ(n) = (n 1)!

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta 009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y 017 8 10 f : R R f(x) = x n + x n 1 + 1, f(x) = sin 1, log x x n m :f : R n R m z = f(x, y) R R R R, R R R n R m R n R m R n R m f : R R f (x) = lim h 0 f(x + h) f(x) h f : R n R m m n M Jacobi( ) m n

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si I 8 No. : No. : No. : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No. : I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin.

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even. 08 No. : No. : No.3 : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No.0 : No. : sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin

More information

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even. I 0 No. : No. : No. : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No.0 : I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y 5 5. 2 D xy D (x, y z = f(x, y f D (2 (x, y, z f R 2 5.. z = x 2 y 2 {(x, y; x 2 +y 2 } x 2 +y 2 +z 2 = z 5.2. (x, y R 2 z = x 2 y + 3 (2,,, (, 3,, 3 (,, 5.3 (. (3 ( (a, b, c A : (x, y, z P : (x, y, x

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a 009 I II III 4, 5, 6 4 30. 0 α β α β l 0 l l l l γ ) γ αβ ) α β. n n cos k n n π sin k n π k k 3. a 0, a,..., a n α a 0 + a x + a x + + a n x n 0 ᾱ 4. [a, b] f y fx) y x 5. ) Arcsin 4) Arccos ) ) Arcsin

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

2014 S hara/lectures/lectures-j.html r 1 S phone: , 14 S1-1+13 http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r 1 S1-1+13 14.4.11. 19 phone: 9-8-4441, e-mail: hara@math.kyushu-u.ac.jp Office hours: 1 4/11 web download. I. 1. ϵ-δ 1. 3.1, 3..

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

. sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y = e x, y = e x 6 sinhx) coshx) 4 y-axis x-axis : y = cosh x, y = s

. sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y = e x, y = e x 6 sinhx) coshx) 4 y-axis x-axis : y = cosh x, y = s . 00 3 9 [] sinh x = ex e x, cosh x = ex + e x ) sinh cosh 4 hyperbolic) hyperbola) = 3 cosh x cosh x) = e x + e x = cosh x ) . sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y =

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) CALCULUS II (Hiroshi SUZUKI ) 16 1 1 1.1 1.1 f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) lim f(x, y) = lim f(x, y) = lim f(x, y) = c. x a, y b

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP 1. 1 213 1 6 1 3 1: ( ) 2: 3: SF 1 2 3 1: 3 2 A m 2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

More information

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1) ( ) 1., : ;, ;, ; =. ( ).,.,,,., 2.,.,,.,.,,., y = f(x), f ( ).,,.,.,., U R m, F : U R n, M, f : M R p M, p,, R m,,, R m. 2009 A tamaru math.sci.hiroshima-u.ac.jp 1 ,.,. 2, R 2, ( ).,. 2.1 2.1. I R. c

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

di-problem.dvi

di-problem.dvi 005/05/05 by. I : : : : : : : : : : : : : : : : : : : : : : : : :. II : : : : : : : : : : : : : : : : : : : : : : : : : 3 3. III : : : : : : : : : : : : : : : : : : : : : : : : 4 4. : : : : : : : : : :

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1. Section Title Pages Id 1 3 7239 2 4 7239 3 10 7239 4 8 7244 5 13 7276 6 14 7338 7 8 7338 8 7 7445 9 11 7580 10 10 7590 11 8 7580 12 6 7395 13 z 11 7746 14 13 7753 15 7 7859 16 8 7942 17 8 Id URL http://km.int.oyo.co.jp/showdocumentdetailspage.jsp?documentid=

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A, B Z Z m, n Z m n m, n A m, n B m=n (1) A, B (2) A B = A B = Z/ π : Z Z/ (3) A B Z/ (4) Z/ A, B (5) f : Z Z f(n) = n f = g π g : Z/ Z A, B (6)

More information

1

1 1 1 7 1.1.................................. 11 2 13 2.1............................ 13 2.2............................ 17 2.3.................................. 19 3 21 3.1.............................

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

Chap10.dvi

Chap10.dvi =0. f = 2 +3 { 2 +3 0 2 f = 1 =0 { sin 0 3 f = 1 =0 2 sin 1 0 4 f = 0 =0 { 1 0 5 f = 0 =0 f 3 2 lim = lim 0 0 0 =0 =0. f 0 = 0. 2 =0. 3 4 f 1 lim 0 0 = lim 0 sin 2 cos 1 = lim 0 2 sin = lim =0 0 2 =0.

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information