Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

Size: px
Start display at page:

Download "Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x"

Transcription

1 University of Hyogo d x(t) =f(t, x(t)), dt (1) x(t 0 ) =x 0 () t n = t 0 + n t x x n n x n x 0 x i i = 0,..., n 1 x n x(t) θ 1 θ x n x n 1 t = θf(t n 1, x n 1 ) + (1 θ)f(t n, x n ) () Euler Euler θ = 1 Euler Euler Euler x n x n 1 t = f(t n 1, x n 1 ) (4) Euler Euler θ = 1 Euler x n x n 1 t = f(t n, x n ) (5) x n x n 1

2 Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x 0 b M t 1 t 0 < b/m t, x, x Lipshitz f(t, x) f(t, x ) L x x (8) N t = t 1 t 0 Euler (x(t)) 1 C x(t n ) x n C t (9) Proof. Euler x n+1 = x n + tf(t n, x n ). (10) (7) t n t n+1 tn+1 x(t n+1 ) = x(t n ) + f(t, x)dt = x(t n ) + tf(t n, x(t n )) + O( t ), (11) t n (f(t) F (t) F (t + t) F (t) = tf(t) + O( t )) x(t n+1 ) x n+1 = x(t n ) x n + t[f(t n, x(t n )) f(t n, x n )] + O( t ). (1) Lipshitz x(t n+1 ) x n+1 x(t n ) x n + t f(t n, x(t n ) f(t n, x n ) + A t. (1) f(t n, x(t n ) f(t n, x n ) L x(t n ) x n (14) e n x(t n ) x n e n+1 e n + tl e n + A t = (1 + tl) e n + A t (15) e 0 = 0 n 1 e n A t (1 + tl) i = A t L [(1 + tl)n 1] (16)

3 (1 + tl) N = exp(l(t 1 t 0 )) (17) x(t n ) x n A t L [exp(l(t 1 t 0 )) 1] (18) 1. (local truncation error) t n 1 x n 1 = x(t n 1 ) t n t n x(t n ) x n e = x(t n ) x n (19) Scheme L(x n 1,, x n k )x n = 0 (0) e = Lx(t n ) (1) Scheme e = O( t m ) or e A t m () Scheme m m ( ) m 1 Euler x(t n+1 ) Taylor x(t n+1 ) = x(t n + t) = x(t n ) + t dx dt + t d x dt + O( t ) () dx/dt = f e Euler = O( t ). (4) Euler 1 Euler 1 Fractional Step Method 1 t n 1 x n 1 f(t, x(t)) x n

4 .1 Runge-Kutta R- (stage) Runge-Kutta R k (r) = f(t n 1 + ta r, x n 1 + t b rs k (s) ) (r = 1,,, R) (5) s=1 R x n = x n 1 + t c r k (r). (6) r=1 a r, b rs, c r R a r = b rs, r = 1,,, R (7) ( X = s=1 ) ( t, F (X) = x(t) ) 1 (8) f(t, x(t)) (5),(6) (consistency condition) (5),(6) R c i = 1. (9) i=1 1. b rs (s r). b rs (s > r) k (1), k (),. R R R 10 m m R R Euler a 1 = b 11 = 0, c 1 = 1 Euler a 1 = b 11 = 1, c 1 = 1 1 Runge-Kutta 1. a = b 1 = 1/, c = 1 k (1) = f(t n 1, x n 1 ) (0) k () = f(t n 1 + t, x n 1 + t k(1) ) (1) x n = x n 1 + tk () () 4

5 . a = b 1 = 1, c 1 = c = 1/ 1 k () = f(t n 1 + t, x n 1 + t f(t n 1, x n 1 )) = f + t = f + t x(t n ) Taylor k (1) = f(t n 1, x n 1 ) () k () = f(t n 1 + t, x n 1 + tk (1) ) (4) x n = x n 1 + t (k(1) + k () ) (5) f t + t f f x + 1 ( t f 4 t + t 4 f f x t + t 4 f f x ( f t + f f ) ( + t f x 8 t + f f x t + f f x ) + O( t ) ) + O( t ) (6) x(t n ) = x(t n 1 ) + t dx dt + t d x dt + t d x 6 dt + O( t4 ) (7) dx = f dt d x dt = df dt = f t + f f x d x dx = d f dt = d ( f dt t + f f ) x = ( f t t + f f ) ( f + x t + f f x = f f + (f + ) f t t x + f f t x + f ) f x + f ( f x t + f f ) x ( f x (8) (9) (40) (41) ) + f f x (4) e rk = x(t n+1 ) x n+1 = O( t ) (4) k (1) + k () = f + t 1 O( t ) ( f t + f f ) ( + t ) f x 4 t + f f x t + f f x + O( t ) (44) 4 4 Runge-Kutta Runge-Kutta 5

6 (a 1 = 0, a = b 1 = 1/, a = b = 1/, a 4 = b 4 = 1, c 1 = c = c = c 4 = 1/) 4 k (1) = f(t n 1, x n 1 ) (45) k () = f(t n 1 + t, x n 1 + t k(1) ) (46) k () = f(t n 1 + t, x n 1 + t k() ) (47) k (4) = f(t n 1 + t, x n 1 + tk () ) (48) x n = x n 1 + t 6 [k(1) + k () + k () + k (4) ] (49) e rk4 = x(t n ) x n = t5 ( ) (50) 880 ( )4 4 Runge-Kutta Gill (Runge-Kutta-GIll ) do i = 1, 4 u = f(x) x = x + t (P i u + Q i v) v = R i u + S i v end do ( = ) u, v Runge-Kutta ((45)-(48) ) Runge-Kutta P 1 = b 1 P = b, P 1 + Q R 1 = b 1 + Q R 1 = b 1 (5) P = b 4, P + Q R = b + Q R = b 4, (5) (51) P 1 + Q R 1 + Q S R 1 = b 1 + Q S R 1 = b 41 (54) P 4 = c 4, P + Q 4 R = b 4 + Q 4 R = c, (55) P + Q R + Q 4 S R = b 4 + Q 4 S R = c, (56) P 1 + Q R 1 + Q S R 1 + Q 4 S S R 1 = b 41 + Q 4 S S R 1 = c 1 (57) Runge-Kutta (51)-(57) (b 41 b 1 )(c b 4 ) = (b 4 b )(c 1 b 41 ). (58) 6

7 a, b, c a 1 = 0, a = 1, b 1 = 1 a = 1, b 1 = c 1 6c, b = 1 6c a 4 = 1, b 41 = 0, b 4 = 1 c, b 4 = c (59) c 1 = 1 6, c = c, c, c 4 = 1 6 c 4 Runge-Kutta a 4 = 1 c = + 6 a 1 = 0, a = 1, b 1 = 1 a = 1, b 1 = 1+, b = a 4 = 1, b 41 = 0, b 4 =, b 4 = + c 1 = 1 6, c = 6, c = + 6, c 4 = 1 6 (60) a, b, c 8 (Q, Q, Q 4, R 1, R, R, S, S ) (51)-(57) 5 R 1 = 1 Q = b 1 b 1 Q = b 4, Q 4 = c 4 P 1 = 1 P = P = + P 4 = 1 6 Q 1 = 0 Q = Q = + Q 4 = 1 R 1 = 1 R = R = + R 4 = 0 S 1 = 0 S = 4 S = +4 S 4 = 0 (61) i = 1 v Q 1 = S 1 = 0 v R 4 = S 4 = 0 Q 1, S 1 Linear Multistep Method ( x f(t, x(t)) x n k β 0 = 0 (8) (6) α i x n i = t β i f(t n i, x n i ) (α 0 0) (6) α i t n i = t β i (6) i i α i x n i = t β i f(t n i, x n i ) (64) i i 7

8 t n t n 1 = t t n α i = t (β i + iα i ) (65) i i t n, t α i = 0 (66) iα i = (66),(67) (consistency condition) k β i (67) γ i x n i = ϕ n, n = n 0, n 0 + 1, (68) γ n γ 0 0, γ k 0 x n0, x n0+1, {x n } γ i x n i = 0, n = n 0, n 0 + 1, (69) {ˆx n } (68) {ψ n } x n = ˆx n + ψ n ϕ n k γ i 0 ψ n = ϕ/ γ i (70) (69) {x n,t }, t = 1,, K a 1 x n,1 + a x n, + + a K x n,k = 0, n = n 0, n 0 + 1, (71) a i (69) k {ˆx n,t }, t = 1,, k fundamental system (69) k t=1 d tx n,t (69) x n,t = rt n γ i rt i = 0. (7) r t P (r) = k γ ir i = 0 P (r) = 0 k r t {r n t } (69) fundamental system (68) x n = d t rt n + ψ n (7) t=1 P (r) = 0 r j, j = 1,, p µ j ( p j=1 µ j = k) x n = [d 1,1 + d 1, n + d 1, n(n 1) + + d 1,µ1 n(n 1) (n µ 1 1)]r n 1 + [d,1 + d, n + d, n(n 1) + + d,µ n(n 1) (n µ 1)]r n + + [d p,1 + d p, n + d p, n(n 1) + + d p,µ n(n 1) (n µ p 1)]r n p + ψ n (74) 8

9 trivial dx/dt = 0, x(0) = 0 α i x n i = 0 (75) ρ ζ ζ α i ζ n i = 0 (76) x n = t[d 1,1 + d 1, n + d 1, n(n 1) + + d 1,µ1 n(n 1) (n µ 1 1)]ζ1 n + t[d,1 + d, n + d, n(n 1) + + d,µ n(n 1) (n µ 1)]ζ n + + t[d p,1 + d p, n + d p, n(n 1) + + d p,µ n(n 1) (n µ p 1)]ζp n (77) t 0 x(t) = 0 lim t 0,n t=x tnq ζ n i = X lim n nq 1 ζ n i = 0 (78) ζ i < 1 Definition 1. ρ(ζ) 1 (zero stable) n e = 1 [ α i x(t n i ) t β i f(x(t n i ))] (79) α 0 = 1 α 0 [ α i x(t n i ) t β i x (t n i )] (80) m x m m p m p m (t) = (t t n ) m p 0,, p m m p j (j = 1,, m) e = 0 m (80) p j (t t n ) j = 0 α 0 e = α i = 0 (81) 9

10 j 0 α 0 e = = [α i (t n i t n ) j tβ i j(t n i t n ) j 1 ] (8) ( i t) j 1 [ i tα i j tβ i ] (8) = ( t) j [i j α i + ji j 1 β i ] = 0 (84) j=0 α i = 0 (85) i j α i = j i j 1 β i (j 1) (86) m α i, β i (i = 0,, k)k + 1 k + 1 m + 1 k m = k k > m = k + 1 [Dahlquist(1956)] m t n Taylor x(t) = x (t) = m j=0 p j (t)x (j) (t n ) j! m p j (t)x(j) (t n ) j=1 j! + p m+1(t)x (m+1) (ξ(t)) (m + 1)! + p m+1(t)x (m+1) (η(t)) (m + 1)! (87) (88) x (j) (t) x t j ξ(t),η(t) t n,t L e = Lx Lp 0 = Lp 1 = = Lp m = 0. [ ] p m+1 (t n i )x (m+1) (ξ i (t n i )) p Lx = α i tβ m+1(t n i )x (m+1) (η i (t n i )) i (89) (m + 1)! (m + 1)! i=1 i=1 t n i ξ i (t n i ), η i (t n i ) t n 1 p m+1 (t n i )x (m+1) (ξ i (t n i )) α i (m + 1)! α ( i t) m+1 x (m+1) (ξ i (t n i )) i (m + 1)! (90) i=1 tm+1 (m + 1)! α i i m+1 x (m+1) (ξ i (t n i)) (91) i=1 10

11 p β m+1(t n i )x (m+1) (η i (t n i )) i (m + 1)! β ( i t) m x (m+1) (η i (t n i )) i m! (9) i=1 i=1 tm m! β i i m x (m+1) (η i (t n i)) (9) i=1 Lx Lx = sup t [t n k,t n] x (m+1) (t) M t m+1 (94) M = 1 α i i m β i i m (m + 1)! m! (95) i=1 i=1 Lx = O( t m+1 ) (96) k = 1 k = 1 k+1 = m+1 m = k = m m = 1 j = 1 α 0 + α 1 =0, (97) α 1 = (β 0 + β 1 ) (98) α 0 = 1 α 1 = 1, β 1 = 1 β 0 x n x n 1 = t (β 0 f n + (1 β 0 )f n 1 ). (99) () m = j = α 1 = β 1 (100) β 1 = 1/, β 0 = 1/ 1.1. Adams α 0 = 1 α i (i = 1,, k) 1 (α l ) ( α l = α 0 = 1) l = 1 Adams 1 Adams 1 β 0 11

12 Adams-Bashforth ( ( ) x n = x n 1 + t f(t n 1, x n 1 ) 1 ) f(t n, x n ), (101) ( ( ) x n = x n 1 + t 1 f(t n 1, x n 1 ) 4 f(t n, x n ) + 5 ) 1 f(t n, x n ). (10) k Adams-Bashforth α i =,..., k β β 0 = 0 k (k 1) 1 = k Adams-Moulton ( 5 ( ) x n = x n 1 + t 1 f(t n, x n ) + f(t n 1, x n 1 ) 1 ) 1 f(t n, x n ) (10) ( ( )4 x n = x n 1 + t 8 f(t n, x n ) f(t n 1, x n 1 ) (104) 5 4 f(t n, x n ) f(t n, x n ) Adams-Moulton β 0 k + 1 Nystöm: l = generalized Milen-Simpson: l = Cotes: k = l ) (105).1. BDF (Backward Differentiation Formulae) β i = 0 (i 0) Gear (BDF) (Stiffly-Stable Method) [Gear] β 0 = 1 α (85)(86) α i x n i = β 0 f(t n, x n ) (106) x n x n x n = f(t n, x n ) (107) 11 6 x n x n 1 + x n 1 x n = f(t n, x n ). (108) k + 1 k k 6 1 BDF f(t, x) f [7]( BDF[explicit BDF] ) α i (i = 0,, k) β 0 (85)(86) β i (i = 1,, k ) k < i k i α i = 0 k = k k = 1 Adams-Bashforth 1

13 1: Coefficients of Gear s BDF Method Coefficient k = 1 k = k = k = 4 k = 5 k = α α α 0 5 α α α α Coefficient k = 1 k = 1 : Coefficients of explicit BDF Method k = k = k = k = k = k = 4 k = k = k = 4 k = α α α 0 α α β β β β β

14 .1.4 (Predictor-Corrector) 1 1) (P) )f(x n ) (E) ) (C) 4) x n f(x n ) (E) ᾱ i x n i = t α i x n i = t β i f(t n i, x n i ) (109) i=1 β i f(t n i, x n i ) (110) 4 PEC α 0 x (0) n + ᾱ i x i = t β i f(t i, x (0) i ) (111) i=1 α i x i = t i=1 β i f(t i, x (0) i ) (11) 1 PEC(E) P(EC) (E).1.5 Lagrange Polynomial Interpolation x f N +1 (x j, f(x j )), j = 0,, N f(x) N P N P N (x) = l 0 0(x) =1, N f(x j )l N j (x) (11) j=0 l N j (x) = (x x 0)(x x 1 ) (x x j 1 )(x x j+1 ) (x x N ) (x j x 0 )(x j x 1 ) (x j x j 1 )(x j x j+1 ) (x j x N ) (114) (N 1). (115) (t n i, f(t n i, x n i )) i = 1,..., N P e N (t n, f(t n, x n )) e explicit (t n 1, f(t n 1, x n 1 )) P1 e f x n x n 1 + tn t n 1 P e 1 (t)dt = x n 1 + tn t n 1 f(t n 1, x n 1 )dt = x n 1 + (t n t n 1 )f(t n 1, x n 1 ) (116) Euler P e, P e Adams-Bashforth P e t t n t t n 1 (t) =f(t n 1, x n 1 ) + f(t n, x n ) (117) t n 1 t n t n t n 1 P e (t t n )(t t n ) (t) =f(t n 1, x n 1 ) (t n 1 t n )(t n 1 t n ) + f(t (t t n 1 )(t t n ) n, x n ) (t n t n 1 )(t n t n ) (t t n 1 )(t t n ) + f(t n, x n ) (t n t n 1 )(t n t n ). (118) 14

15 tn x n x n 1 P e (t)dt t n 1 tn ( ) t t n t t n 1 = f(t n 1, x n 1 ) + f(t n, x n ) dt t n 1 t n 1 t n t n t n 1 [ ( ) f(tn 1, x n 1 ) t = t n 1 t n t n t f(t ( )] n, x n ) t tn t n 1 t n t n 1t t n 1 = f(t ( ) n 1, x n 1 ) t0 (t n + t n 1 ) t n t 0 f(t ( ) n, x n 1 ) t0 (t n + t n 1 ) t n 1 t 0 t 1 t 1 =f(t n 1, x n 1 ) t 0 t 1 ((t n t n 1 ) + (t n 1 t n )) f(t n, x n ) t 0 t 1 ((t n t n 1 )) =f(t n 1, x n 1 ) t 0 ( t 0 + t 1 ) t 1 f(t n, x n ) t 0 t 1. (119) t i = t n i t n i 1 i t = t i ( x n x n 1 t f(t n 1, x n 1 ) 1 ) f(t n, x n ) (10) 15

16 tn x n x n 1 P e (t)dt t n 1 tn ( (t t n )(t t n ) = f(t n 1, x n 1 ) t n 1 (t n 1 t n )(t n 1 t n ) + f(t (t t n 1 )(t t n ) n, x n ) (t n t n 1 )(t n t n ) ) (t t n 1 )(t t n ) +f(t n, x n ) dt (t n t n 1 )(t n t n ) [ ( )] f(t n 1, x n 1 ) t tn = (t n 1 t n )(t n 1 t n ) (t n + t n ) t + t n t n t t n 1 [ ( )] f(t n, x n ) t tn + (t n t n 1 )(t n t n ) (t n 1 + t n ) t + t n 1t n t t n 1 [ ( )] f(t n, x n ) t tn + (t n t n 1 )(t n t n ) (t n 1 + t n ) t + t n 1t n t t n 1 ( = f(t ( ) n 1, x n 1 ) t0 t n + t n t n 1 + tn 1) (t n + t n ) t 0 (t n + t n 1 ) + t n t n t 0 t 1 ( t 1 + t ) ( + f(t ( ) n, x n ) t0 t n + t n t n 1 + tn 1) (t n 1 + t n ) t 0 (t n + t n 1 ) + t n 1 t n t 0 t 1 t ( + f(t ( ) n, x n ) t0 t n + t n t n 1 + tn 1) (t n 1 + t n ) t 0 (t n + t n 1 ) + t n 1 t n t 0 ( t 1 + t ) t = f(t n 1, x n 1 ) t 0 ( ( t 6 t 1 ( t 1 + t ) n + t n t n 1 + t ) n 1) (tn + t n ) (t n + t n 1 ) + 6t n t n f(t n, x n ) t 0 6 t 1 t + f(t n, x n ) t 0 6 t ( t 1 + t ) ( ( t n + t n t n 1 + t ) ) n 1 (tn 1 + t n ) (t n + t n 1 ) + 6t n 1 t n ( ( t n + t n t n 1 + t ) ) n 1 (tn 1 + t n ) (t n + t n 1 ) + 6t n 1 t n. (11) t i = t n t n i = i 1 j=0 t j (t n + t n t n 1 + t n 1) (t n i + t n j ) (t n + t n 1 ) + 6t n i t n j ( = t n + t n (t n t 0 ) + (t n t 0 ) ) ( t n t i t j) (tn t 0 ) + 6 (t n t i) ( t n t ) j = t 0 t 0 ( t i + t j) + 6 t i t j (1) 16

17 t n x n x n 1 t ( 0 t 0 t 0 ( t 0 + t 1 + t ) + 6 ( t 0 + t 1 ) ( t 0 + t 1 + t ) ) f(t n 1, x n 1 ) 6 t 1 ( t 1 + t ) t ( 0 t 0 t 0 ( t 0 + t 1 + t ) + 6 t 0 ( t 0 + t 1 + t ) ) f(t n, x n ) 6 t 1 ( t 1 + t ) + t ( 0 t 0 t 0 ( t 0 + t 1 ) + 6 t 0 ( t 0 + t 1 ) ) f(t n, x n ) 6 t ( t 1 + t ) = t 0 + t 0 ( t 1 + t ) + 6 t 0 t 1 ( t 1 + t ) f(t n 1, x n 1 ) 6 t 1 ( t 1 + t ) t 0 + t 0 ( t 1 + t ) 6 t 1 t f(t n, x n ) + t 0 + t 0 t 1 6 t ( t 1 + t ) f(t n, x n ) (1) x n x n 1 1 f(t n 1.x n 1 ) 4 f(t n, x n ) f(t n, x n ) (14) Adams-Bashforth (t n, f(t n, x n )) N + 1 P i N P i 0 =f(t n, x n ), (15) P1 i =f(t n, x n ) t t n 1 t t n + f(t n 1 ), (16) t n t n 1 t n 1 t n P i =f(t n, x n ) (t t n 1)(t t n ) (t n t n 1 )(t n t n ) + f(t (t t n )(t t n ) n 1, x n 1 ) (t n 1 t n )(t n 1 t n ) (t t n )(t t n 1 ) + f(t n, x n ) (17) (t n t n )(t n t n 1 ) x n x n 1 t 0 f(t n, x n ), (18) x n x n 1 t 0 (f(t n, x n ) + f(t n 1, x n 1 )), (19) x n x n t 0 t 1 6( t 0 + t 1 ) f(t n, x n ) + t 0 + t 0 t 1 f(t n 1, x n 1 ) 6 t 1 Euler Adams-Moulton t 0 6 ( t 0 + t 1 ) t 1 f(t n, x n ). f(t n, x n ) x BDF (t n i, x n i ) (i = 0,..., N) x Q N (t) (10) t t n 1 t t n Q 1 (t) = x n + x n 1 (11) t n t n 1 t n 1 t n dx dt dq 1 = dt x n t n t n 1 + x n 1 t n 1 t n = x n x n 1 t 0 = f(t n, x n ). (1) 17

18 (t t n 1 )(t t n ) Q (t) = x n (t n t n 1 )(t n t n ) + x (t t n )(t t n ) n 1 (t n 1 t n )(t n 1 t n ) + x (t t n )(t t n 1 ) n (t n t n )(t n t n 1 ) dx dt dq dt t (t n 1 + t n ) =x n (t n t n 1 )(t n t n ) + x t (t n + t n ) n 1 (t n 1 t n )(t n 1 t n ) + x t (t n + t n 1 ) n (t n t n )(t n t n 1 ). (14) t = t n dx t n t n 1 t n dt x n t=tn (t n t n 1 )(t n t n ) + x t n t n t n n 1 (t n 1 t n )(t n 1 t n ) + x t n t n t n 1 n (t n t n )(t n t n 1 ) t 0 = t 1 (1) t 0 + t 1 =x n t 0 ( t 0 + t 1 ) x t 0 + t 1 t 0 n 1 + x n = f(t n, x n ). (15) t 0 t 1 ( t 0 + t 1 ) t 1 4 Q x n x n x n = f(t n, x n ). (16) (t t n 1 )(t t n )(t t n ) Q (t) =x n (t n t n 1 )(t n t n )(t n t n ) + x (t t n )(t t n )(t t n ) n 1 (t n 1 t n )(t n 1 t n )(t n 1 t n ) (t t n )(t t n 1 )(t t n ) + x n (t n t n )(t n t n 1 )(t n t n ) + x (t t n )(t t n 1 )(t t n ) n (t n t n )(t n t n 1 )(t n t n ). (17) x Q t = t n dx x n ( dt t t=tn t 0 ( t 0 + t 1 )( t 0 + t 1 + t ) n t n (t n 1 + t n + t n ) + (t n 1 t n + t n t n + t n t n 1 ) ) x n 1 ( t t 0 t 1 ( t 1 + t ) n t n (t n + t n + t n ) + (t n t n + t n t n + t n t n ) ) x n ( + t ( t 0 + t 1 ) t 1 t n t n (t n + t n 1 + t n ) + (t n t n 1 + t n 1 t n + t n t n ) ) x n ( t ( t 0 + t 1 + t )( t 1 + t ) t n t n (t n + t n 1 + t n ) + (t n t n 1 + t n 1 t n + t n t n ) ) x n = t 0 ( t 0 + t 1 )( t 0 + t 1 + t ) ( t 0( t 0 + t 1 ) + ( t 0 + t 1 )( t 0 + t 1 + t ) + t 0 ( t 0 + t 1 + t )) x n 1 t 0 t 1 ( t 1 + t ) ( t 0 + t 1 )( t 0 + t 1 + t ) x n + t 0 ( t 0 + t 1 + t ) ( t 0 + t 1 ) t 1 t x n t 0 ( t 0 + t 1 ) ( t 0 + t 1 + t )( t 1 + t ) t =x n t 0 + (4 t 1 + t ) t 0 + t 1 ( t 1 + t ) t 0 ( t 0 + t 1 )( t 0 + t 1 + t ) x n 1 ( t 0 + t 1 )( t 0 + t 1 + t ) t 0 t 1 ( t 1 + t ) + x n t 0 ( t 0 + t 1 + t ) ( t 0 + t 1 ) t 1 t x n t 0 ( t 0 + t 1 ) ( t 0 + t 1 + t )( t 1 + t ) t =f(t n, x n ). (18) 18

19 t 0 = t 1 = t 11 6 x n x n 1 + x n 1 x n = f(t n, x n ) (19) dq dt t 0 + t 1 x n t 0 ( t 0 + t 1 ) x t 0 + t 1 t 0 n 1 + x n t 0 t 1 ( t 0 + t 1 ) t 1 P e (t n ) (140) tn = f(t n 1, x n 1 ) t n t n t n 1 t n + f(t n, x n ) t n t n 1 t n t n 1 dq dt x n t 0 + (4 t 1 + t ) t 0 + t 1 ( t 1 + t ) t 0 ( t 0 + t 1 ) ( t 0 + t 1 + t ) = f(t n 1, x n 1 ) t 0 + t 1 t 1 f(t n, x n ) t 0 t 1, (141) P e (t n ) (14) t=tn x n 1 ( t 0 + t 1 ) ( t 0 + t 1 + t ) t 0 t 1 ( t 1 + t ) t 0 ( t 0 + t 1 + t ) t 0 ( t 0 + t 1 ) + x n x n ( t 0 + t 1 ) t 1 t ( t 0 + t 1 + t ) ( t 1 + t ) t (t n t n )(t n t n ) = f(t n 1, x n 1 ) (t n 1 t n )(t n 1 t n ) + f(t (t n t n 1 )(t n t n ) n, x n ) (t n t n 1 )(t n t n ) (t n t n 1 )(t n t n ) + f(t n, x n ) (t n t n 1 )(t n t n ) = f(t n 1, x n 1 ) ( t 0 + t 1 )( t 0 + t 1 + t ) t 1 ( t 1 + t ) t 0 = t 1 = t f(t n, x n ) t 0( t 0 + t 1 + t ) t 1 t + f(t n, x n ) t 0( t 0 + t 1 ) ( t 1 + t ) t (14) 11 6 x n x n 1 + x n 1 x n = f(t n 1, x n 1 ) f(t n, x n ) + f(t n, x n ). (144) dq dt t 0 + t 1 x n t 0 ( t 0 + t 1 ) x t 0 + t 1 t 0 n 1 + x n t 0 t 1 ( t 0 + t 1 ) t 1 = f(t n 1, x n 1 ) ( t 0 + t 1 )( t 0 + t 1 + t ) t 1 ( t 1 + t ) P e (t n ) (145) t=tn f(t n, x n ) t 0( t 0 + t 1 + t ) t 1 t + f(t n, x n ) t 0( t 0 + t 1 ) ( t 1 + t ) t (146) 19

20 (85), (86) dq dt c 1 P e (t n ) + c P e (t n ) (147) t=tn (c 1 + c = 1) t 0 + t 1 x n t 0 ( t 0 + t 1 ) x t 0 + t 1 t 0 n 1 + x n t 0 t 1 ( t 0 + t 1 ) t 1 = f(t n 1, x n 1 ) ( t 0 + t 1 )(c t 0 + t 1 + t ) t 1 ( t 1 + t ) c = / t 0 = t 1 = t f(t n, x n ) t 0(c ( t 0 + t 1 ) + t ) t 1 t + f(t n, x n ) c t 0 ( t 0 + t 1 ) ( t 1 + t ) t. (148) x n x n x n = 8 f(t n 1, x n 1 ) 7 f(t n, x n ) f(t n, x n ) (149) c = /. Taylor Hamilton ( ) Symplectic(leap-flog) 4 bound bound ( (standard test problem) ) dx dt = λx, λ C. (150) x Rλ 0 bound (Rλ < 0 ) Euler x n = x 0 (1 + λ t) n λ t 1 [bounded] ( λ t < 1 [convergent]) λ t bound λ t (stability region) ( strict stability region) Definition (A-stability (Dahlquist)). C {λ : Rλ < 0} A 0

21 A Runge-Kutta A A A A R R Runge-Kutta A A C(α) = {λ C : arg(λ) α} A(α) [Widlund] (Stiff Stability)[Gear] Definition (Widlund). α (0, π/) W α = {λ t : π arg(λ t) < α} A(α) α A(0) A(0) k k + 1 α [0, π/] k = m =, k = m = 4 k m A(α) Definition 4 (Gear). R 1, R [stiffly stable] R 1 = {λ t : Rλ t < a} (151) R = {λ t : a Rλ t b, Iλ t c} (15) a, b, c λ t R Runge-Kutta x 0 = 1 Runge-Kutta x n = ξ(λ t) n K = (k (1), k (),, k (R) ) T, B = (b rs ), C = (c r ), E = (1, 1, ) K = λ(x n 1 E + tbk) (15) x n = x n 1 + tc T K (154) K x n = x n 1 + tc T (I λ tb) 1 λx n 1 E. (155) ξ(λ t) = 1 + λ tc T (I λ tb) 1 E. (156) ξ(λ t) Runge-Kutta (R 4) R > Runge-Kutta Lawson[9] 1

22 Im(λ t) R1 c R -a b Re(λ t) -c 4. (150) (α i λ tβ i )x n i = 0. (157) ρ(ζ) = σ(ζ) = α i ζ i (158) β i ζ i (159) π(ζ, λ t) = ρ(ζ) λ tσ(ζ) = 0 (160) ζ i (157) x n = t[d 1,1 + d 1, n + d 1, n(n 1) + + d 1,µ1 n(n 1) (n µ 1 1)]ζ1 n + t[d,1 + d, n + d, n(n 1) + + d,µ n(n 1) (n µ 1)]ζ n + + t[d p,1 + d p, n + d p, n(n 1) + + d p,µ n(n 1) (n µ p 1)]ζp n (161) ζ i < 4. 4.

23 4 Stability Diagram of Runge-Kutta Method Stage[ R]& Order[ m ] R=1, m=1 R=, m= R=, m= R=4, m=4 R=6, m=5[ Lawson] Im( λ t) Re( λ t) 1: Stability diagram of Runge-Kutta method.

24 1.5 1 Stability Diagram of Adams-Bashforth Method Number of Steps k=1 k= k= k=4 k=5 k=6 0.5 Im( λ t) Re( λ t) : Stability diagram of Adams-Bashfortht method. 4

25 4 Stability Diagram of Adams-Moulton Method Number of Steps k=1 k= k= k=4 k=5 k=6 1 Im( λ t) Re( λ t) : Stability diagram of Adams-Moulton method. 5

26 Stability Diagram of Gear s BDF Method Number of Steps k=1 k= k= k=4 k=5 k=6 5 Im( λ t) Re( λ t) 4: Stability diagram of BDF method. 6

27 1.5 1 Stability Diagram of explicit BDF Method Number of Steps k=1 k= k= k=4 k=[ α k=[ =0] =0, α 4 =0] 0.5 Im( λ t) Re( λ t) 5: Stability diagram of explicit BDF method. 7

28 4. stiffness Definition 5. λ t, t = 1,,, m dx dt = Ax + Φ(t) (16) Rλ t < 0, t = 1,,, m max t=1,,,m Rλ t min t=1,,,m Rλ t (stiff) stiffness ratio [1] J.C. Butcher, The Numerical Analysis of Ordinary Differential Equations (John Wiley & Sons, Chichester/New York, 1987). [] J.D. Lambert, Computational Methods in Ordinary Differential Equations (John Wiley & Sons, London, 197). [] C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Prentice-Hall, Englewood Cliffs, N.J., 197). [4] R.D. Richtmyer, K.W. Morton, Difference Methods for Initial Value Problems (Interscience, New York, 1957). [5] P. Hartman, Ordinary Differential Equations (John Wiley & Sons, New York, 1964). [6] C.A.J. Fletcher, Computational Techniques for Fluid Dynamics (Springer, Berlin, 1991). [7] G.E. Karniadakis et al, J. Comput. Phys 97, 414 (1991); M.A. Hulsen, MEAH-18 (1996). [8] S. Gill, Proc. Cambridge Philos. Soc. 47, 95 (1951). [9] J.D. Lawson, SIAM J. Numer. Anal. 9??(197). 8

p12.dvi

p12.dvi 301 12 (2) : 1 (1) dx dt = f(x,t) ( (t 0,t 1,...,t N ) ) h k = t k+1 t k. h k k h. x(t k ) x k. : 2 (2) :1. step. 1 : explicit( ) : ξ k+1 = ξ k +h k Ψ(t k,ξ k,h k ) implicit( ) : ξ k+1 = ξ k +h k Ψ(t k,t

More information

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x = 3 MATLAB Runge-Kutta Butcher 3. Taylor Taylor y(x 0 + h) = y(x 0 ) + h y (x 0 ) + h! y (x 0 ) + Taylor 3. Euler, Runge-Kutta Adams Implicit Euler, Implicit Runge-Kutta Gear y n+ y n (n+ ) y n+ y n+ y n+

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

: 1g99p038-8

: 1g99p038-8 16 17 : 1g99p038-8 1 3 1.1....................................... 4 1................................... 5 1.3.................................. 5 6.1..................................... 7....................................

More information

86 6 r (6) y y d y = y 3 (64) y r y r y r ϕ(x, y, y,, y r ) n dy = f(x, y) (6) 6 Lipschitz 6 dy = y x c R y(x) y(x) = c exp(x) x x = x y(x ) = y (init

86 6 r (6) y y d y = y 3 (64) y r y r y r ϕ(x, y, y,, y r ) n dy = f(x, y) (6) 6 Lipschitz 6 dy = y x c R y(x) y(x) = c exp(x) x x = x y(x ) = y (init 8 6 ( ) ( ) 6 ( ϕ x, y, dy ), d y,, dr y r = (x R, y R n ) (6) n r y(x) (explicit) d r ( y r = ϕ x, y, dy ), d y,, dr y r y y y r (6) dy = f (x, y) (63) = y dy/ d r y/ r 86 6 r (6) y y d y = y 3 (64) y

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

Numerical Analysis II, Exam End Term Spring 2017

Numerical Analysis II, Exam End Term Spring 2017 H. Ammari W. Wu S. Yu Spring Term 2017 Numerical Analysis II ETH Zürich D-MATH End Term Spring 2017 Problem 1 Consider dx = f(t, x), t [0, T ] dt x(0) = x 0 R [28 Marks] with f C subject to the Lipschitz

More information

error_g1.eps

error_g1.eps Runge-Kutta Method Runge-Kutta Method x n+ = x n +hf(t n x n ) dx dt dx x(t+h) x(t) (t) = lim dt h h t = t n h > dx dt (t x(t n +h) x(t n ) n) = lim x(t n+) x(t n ) h h h x = f(tx) x(t n+ ) x(t n ) f(t

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

ver.1 / c /(13)

ver.1 / c /(13) 1 -- 11 1 c 2010 1/(13) 1 -- 11 -- 1 1--1 1--1--1 2009 3 t R x R n 1 ẋ = f(t, x) f = ( f 1,, f n ) f x(t) = ϕ(x 0, t) x(0) = x 0 n f f t 1--1--2 2009 3 q = (q 1,..., q m ), p = (p 1,..., p m ) x = (q,

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

17 1 25 http://grape.astron.s.u-tokyo.ac.jp/pub/people/makino/kougi/stellar_dynamics/index.html http://grape.astron.s.u-tokyo.ac.jp/pub/people/makino/talks/index-j.html d 2 x i dt 2 = j i Gm j x j x i

More information

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n 1, R f : R R,.,, b R < b, f(x) [, b] f(x)dx,, [, b] f(x) x ( ) ( 1 ). y y f(x) f(x)dx b x 1: f(x)dx, [, b] f(x) x ( ).,,,,,., f(x)dx,,,, f(x)dx. 1.1 Riemnn,, [, b] f(x) x., x 0 < x 1 < x 2 < < x n 1

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

Design of highly accurate formulas for numerical integration in weighted Hardy spaces with the aid of potential theory 1 Ken ichiro Tanaka 1 Ω R m F I = F (t) dt (1.1) Ω m m 1 m = 1 1 Newton-Cotes Gauss

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

09 8 9 3 Chebyshev 5................................. 5........................................ 5.3............................. 6.4....................................... 8.4...................................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

2011 8 26 3 I 5 1 7 1.1 Markov................................ 7 2 Gau 13 2.1.................................. 13 2.2............................... 18 2.3............................ 23 3 Gau (Le vy

More information

4 2016 3 8 2.,. 2. Arakawa Jacobin., 2 Adams-Bashforth. Re = 80, 90, 100.. h l, h/l, Kármán, h/l 0.28,, h/l.., (2010), 46.2., t = 100 t = 2000 46.2 < Re 46.5. 1 1 4 2 6 2.1............................

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0 III 2018 11 7 1 2 2 3 3 6 4 8 5 10 ϵ-δ http://www.mth.ngoy-u.c.jp/ ymgmi/teching/set2018.pdf http://www.mth.ngoy-u.c.jp/ ymgmi/teching/rel2018.pdf n x = (x 1,, x n ) n R n x 0 = (0,, 0) x = (x 1 ) 2 +

More information

v_-3_+2_1.eps

v_-3_+2_1.eps I 9-9 (3) 9 9, x, x (t)+a(t)x (t)+b(t)x(t) = f(t) (9), a(t), b(t), f(t),,, f(t),, a(t), b(t),,, x (t)+ax (t)+bx(t) = (9),, x (t)+ax (t)+bx(t) = f(t) (93), b(t),, b(t) 9 x (t), x (t), x (t)+a(t)x (t)+b(t)x(t)

More information

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R = 1 1 1.1 1827 *1 195 *2 x 2 t x 2 = 2Dt D RT D = RT N A 1 6πaη (1.1) D N A a η 198 *3 ( a =.212µ) *1 Robert Brown (1773-1858. *2 Albert Einstein (1879-1955 *3 Jean Baptiste Perrin (187-1942 2 1 x 2 x 2

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

takei.dvi

takei.dvi 0 Newton Leibniz ( ) α1 ( ) αn (1) a α1,...,α n (x) u(x) = f(x) x 1 x n α 1 + +α n m 1957 Hans Lewy Lewy 1970 1 1.1 Example 1.1. (2) d 2 u dx 2 Q(x)u = f(x), u(0) = a, 1 du (0) = b. dx Q(x), f(x) x = 0

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

A

A A05-132 2010 2 11 1 1 3 1.1.......................................... 3 1.2..................................... 3 1.3..................................... 3 2 4 2.1............................... 4 2.2

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

Grushin 2MA16039T

Grushin 2MA16039T Grushin 2MA1639T 3 2 2 R d Borel α i k (x, bi (x, 1 i d, 1 k N d N α R d b α = α(x := (αk(x i 1 i d, 1 k N b = b(x := (b i (x 1 i d X = (X t t x R d dx t = α(x t db t + b(x t dt ( 3 u t = Au + V u, u(,

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg ( 1905 1 1.1 0.05 mm 1 µm 2 1 1 2004 21 2004 7 21 2005 web 2 [1, 2] 1 1: 3.3 1/8000 1/30 3 10 10 m 3 500 m/s 4 1 10 19 5 6 7 1.2 3 4 v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt 6 6 10

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 = 5 5. 5.. A II f() f() F () f() F () = f() C (F () + C) = F () = f() F () + C f() F () G() f() G () = F () 39 G() = F () + C C f() F () f() F () + C C f() f() d f() f() C f() f() F () = f() f() f() d =

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

xia2.dvi

xia2.dvi Journal of Differential Equations 96 (992), 70-84 Melnikov method and transversal homoclinic points in the restricted three-body problem Zhihong Xia Department of Mathematics, Harvard University Cambridge,

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( ) 81 4 2 4.1, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. 82 4.2. ζ t + V (ζ + βy) = 0 (4.2.1), V = 0 (4.2.2). (4.2.1), (3.3.66) R 1 Φ / Z, Γ., F 1 ( 3.2 ). 7,., ( )., (4.2.1) 500 hpa., 500 hpa (4.2.1) 1949,.,

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

三石貴志.indd

三石貴志.indd 流通科学大学論集 - 経済 情報 政策編 - 第 21 巻第 1 号,23-33(2012) SIRMs SIRMs Fuzzy fuzzyapproximate approximatereasoning reasoningusing using Lukasiewicz Łukasiewicz logical Logical operations Operations Takashi Mitsuishi

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3 2 2 1 5 5 Schrödinger i u t + u = λ u 2 u. u = u(t, x 1,..., x d ) : R R d C λ i = 1 := 2 + + 2 x 2 1 x 2 d d Euclid Laplace Schrödinger 3 1 1.1 N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3,... } Q

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

( ) a C n ( R n ) R a R C n. a C n (or R n ) a 0 2. α C( R ) a C n αa = α a 3. a, b C n a + b a + b ( ) p 8..2 (p ) a = [a a n ] T C n p n a

( ) a C n ( R n ) R a R C n. a C n (or R n ) a 0 2. α C( R ) a C n αa = α a 3. a, b C n a + b a + b ( ) p 8..2 (p ) a = [a a n ] T C n p n a 9 8 m n mn N.J.Nigham, Accuracy and Stability of Numerical Algorithms 2nd ed., (SIAM) x x = x2 + y 2 = x + y = max( x, y ) x y x () (norm) (condition number) 8. R C a, b C a b 0 a, b a = a 0 0 0 n C n

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math)) Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math)) 2001 1 e-mail:s00x0427@ip.media.kyoto-u.ac.jp 1 1 Van der Pol 1 1 2 2 Bergers 2 KdV 2 1 5 1.1........................................

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

??

?? ( ) 2014 2014 1/119 = (ISS) ISS ISS ISS iss-clf iss-clf ISS = (ISS) FB 2014 2/119 = (ISS) ISS ISS ISS iss-clf iss-clf ISS R + : 0 K: γ: R + R + K γ γ(0) = 0 K : γ: R + R + K γ K γ(r) (r ) FB K K K K R

More information

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( ) 2 9 2 5 2.2.3 grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = g () g () (3) grad φ(p ) p grad φ φ (P, φ(p )) y (, y) = (ξ(t), η(t)) ( ) ξ (t) (t) := η (t) grad f(ξ(t), η(t)) (t) g(t) := f(ξ(t), η(t))

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

数値計算:常微分方程式

数値計算:常微分方程式 ( ) 1 / 82 1 2 3 4 5 6 ( ) 2 / 82 ( ) 3 / 82 C θ l y m O x mg λ ( ) 4 / 82 θ t C J = ml 2 C mgl sin θ θ C J θ = mgl sin θ = θ ( ) 5 / 82 ω = θ J ω = mgl sin θ ω J = ml 2 θ = ω, ω = g l sin θ = θ ω ( )

More information

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9 No.7, No.8, No.9 email: takahash@sci.u-hyogo.ac.jp Spring semester, 2012 Introduction (Critical Behavior) SCR ( b > 0) Arrott 2 Total Amplitude Conservation (TAC) Global Consistency (GC) TAC 2 / 25 Experimental

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

KENZOU

KENZOU KENZOU 2008 8 9 5 1 2 3 4 2 5 6 2 6.1......................................... 2 6.2......................................... 2 6.3......................................... 4 7 5 8 6 8.1.................................................

More information

II Brown Brown

II Brown Brown II 16 12 5 1 Brown 3 1.1..................................... 3 1.2 Brown............................... 5 1.3................................... 8 1.4 Markov.................................... 1 1.5

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

prime number theorem

prime number theorem For Tutor MeBio ζ Eite by kamei MeBio 7.8.3 : Bernoulli Bernoulli 4 Bernoulli....................................................................................... 4 Bernoulli............................................................................

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

nosenote3.dvi

nosenote3.dvi i 1 1 2 5 3 Verlet 9 4 18 5 23 6 26 1 1 1 MD t N r 1 (t), r 2 (t),, r N (t) ṙ 1 (t), ṙ 2 (t),, ṙ N (t) MD a 1, a 2, a 3 r i (i =1,,n) 1 2 T =0K r i + m 1 a 1 + m 2 a 2 + m 3 a 3 (m 1,m 2,m 3 =0, ±1, ±2,,

More information