1 Euclid Euclid Euclid

Size: px
Start display at page:

Download "1 Euclid Euclid Euclid"

Transcription

1 II 2000

2 1 Euclid Euclid Euclid Lie Lie Riemann Riemann i

3 1 Euclid Euclid V, W p V p V p W ω( ) i j i j i ω(..., v i,..., v j,...) + ω(..., v j,..., v i,...) = 0 (v k V ) ω W V p W V p p (V, W ) p (V, W ) W W = R p (V, R) = p V p V V p 0 (V, W ) = W j p S p p ({1,..., p} ) σ S p sgn(σ) V, W ω p (V, W ), σ S p ω(v σ(1),..., v σ(p) ) = sgn(σ)ω(v 1,..., v p ) (v i V ) σ ω(v σ(1),..., v σ(p) ) = ω(v 1,..., v p ) (v i V ) 1

4 2 1 Euclid σ S p ω(v σ(1),..., v σ(p) ) = sgn(σ)ω(v 1,..., v p ) (v i V ) V 1, V 2, W p f : V 1 V 2 f : p (V 2, W ) p (V 1, W ) ω p (V 2, W ) (f ω)(v 1,..., v p ) = ω(f(v 1 ),..., f(v p )) (v i V 1 ) f : 0 (V 2, W ) = W 0 (V 1, W ) = W f : p (V 2, W ) p (V 1, W ) V, W 1, W 2, W 3 A : W 1 W 2 W 3 ω p (V, W 1 ) η q (V, W 2 ) A(ω η) p+q (V, W 3 ) v i V A(ω η)(v 1,..., v p+q ) = 1 sgn(σ)a(ω(v σ(1),..., v σ(p) ), η(v σ(p+1),..., v σ(p+q) )) p!q! σ S p+q A(ω η) p+q (V, W 3 ) A( ) : p (V, W 1 ) q (V, W 2 ) p+q (V, W 3 ) A A(ω η) ω η /p!q! V, V, W 1, W 2, W 3 A : W 1 W 2 W 3 f : V V f (A(ω η)) = A((f ω) (f η)) (ω p (V, W 1 ), η q (V, W 2 )) v i V f (A(ω η))(v 1,..., v p+q ) = (A(ω η))(f(v 1 ),..., f(v p+q )) = 1 sgn(σ)a(ω(f(v σ(1) ),..., f(v σ(p) )), η(f(v σ(p+1) ),..., f(v σ(p+n) ))) p!q! σ S p+q = 1 sgn(σ)a((f ω)(v σ(1),..., v σ(p) ), (f η)(v σ(p+1),..., v σ(p+q) )) p!q! σ S p+q = A((f ω) (f η))(v 1,..., v p+q ).

5 V, W 1, W 2 A : W 1 W 1 W 2 A ( A(X, Y ) = A(Y, X)) A(ω η) = ( 1) pq A(η ω) (ω p (V, W 1 ), η q (V, W 1 )) A ( A(X, Y ) = A(Y, X)) A(ω η) = ( 1) pq+1 A(η ω) (ω p (V, W 1 ), η q (V, W 1 )) S p+q τ τ = ( 1 p p + 1 p + q q + 1 p + q 1 q ) sgn(τ) = ( 1) pq v 1,..., v p+q V A(ω η)(v 1,..., v p+q ) = 1 sgn(στ)a(ω(v στ(1),..., v στ(p) ), η(v στ(p+1),..., v στ(p+q) )) p!q! σ S p+q = 1 p!q! sgn(τ) sgn(σ)a(ω(v σ(q+1),..., v σ(p+q) ), η(v σ(1),..., v σ(q) )). σ S p+q A = 1 p!q! ( 1)pq sgn(σ)a(η(v σ(1),..., v σ(q) ), ω(v σ(q+1),..., v σ(p+q) )) σ S p+q = ( 1) pq A(η ω)(v 1,..., v p+q ) A = 1 p!q! ( 1)pq+1 σ S p+q sgn(σ)a(η(v σ(1),..., v σ(q) ), ω(v σ(q+1),..., v σ(p+q) )) = ( 1) pq+1 A(η ω)(v 1,..., v p+q ) V W W W W W W V ω p (V, W ), η q (V, W ), ζ r (V, W ) (ω η) ζ = ω (η ζ)

6 4 1 Euclid S p+q = {τ S p+q+r τ(i) = i (p + q + 1 i p + q + r)} v 1,..., v p+q+r V = = = = ((ω η) ζ)(v 1,..., v p+q+r ) 1 sgn(σ)(ω η)(v σ(1),..., v σ(p+q) ) ζ(v σ(p+q+1),..., v σ(p+q+r) )) (p + q)!r! σ S p+q+r 1 sgn(σ) (p + q)!r! σ S p+q+r 1 sgn(τ)ω(v στ(1),..., v στ(p) ) η(v στ(p+1),..., v στ(p+q) ) p!q! τ S p+q ζ(v σ(p+q+1),..., v σ(p+q+r) ) 1 1 sgn(στ) p!q!r! (p + q)! σ S p+q+r τ S p+q (ω(v στ(1),..., v στ(p) ) η(v στ(p+1),..., v στ(p+q) )) ζ(v σ(p+q+1),..., v σ(p+q+r) ) 1 sgn(σ) p!q!r! σ S p+q+r (ω(v σ(1),..., v σ(p) ) η(v σ(p+1),..., v σ(p+q) )) ζ(v σ(p+q+1),..., v σ(p+q+r) ). = (ω (η ζ))(v 1,..., v p+q+r ) 1 sgn(σ) p!q!r! σ S p+q+r ω(v σ(1),..., v σ(p) ) (η(v σ(p+1),..., v σ(p+q) ) ζ(v σ(p+q+1),..., v σ(p+q+r) )) (ω η) ζ = ω (η ζ) V W ω p (V, W ), η q (V, W ), ζ r (V, W ) (ω η) ζ = ω (η ζ) ω η ζ W = R R R R V ω 1,..., ω p 1 V v 1,..., v p V (ω 1 ω p )(v 1,..., v p ) = σ S p sgn(σ)ω 1 (v σ(1) ) ω p (v σ(p) ) = det(ω i (v j ))

7 1.1 5 p p = 1 p = q p = q + 1 (ω 1 ω q+1 )(v 1,..., v q+1 ) = 1 sgn(σ)(ω 1 ω q )(v σ(1),..., v σ(q) ) ω q+1 (v σ(q+1) ) q! σ S q+1 = 1 sgn(σ) sgn(τ)ω 1 (v στ(1) ) ω q (v στ(q) ) ω q+1 (v σ(q+1) ) q! σ S q+1 τ S q = 1 sgn(στ)ω 1 (v στ(1) ) ω q (v στ(q) ) ω q+1 (v σ(q+1) ) q! σ S q+1 τ S q = sgn(σ)ω 1 (v σ(1) ) ω q (v σ(q) ) ω q+1 (v σ(q+1) ) σ S q+1 = det(ω i (v j )) V n e 1,..., e n V ω 1,..., ω n 0 V = R n < p p V = {0} 1 p n ( ) ω j 1 ω j p (1 j 1 < < j p n) p V dim p V = ( ) n ω p V 1 j p 1 < < j p n a j1...j p = ω(e j1,..., e jp ) ω = a j1...j p ω j 1 ω jp j 1 < <j p V = R p > 0 ω p V v 1,..., v p V v i = n j=1 b j i e j ω(v 1,..., v p ) = j 1,...,j p =1 b j 1 1 b j p p ω(e j1,..., e jp ) j k = j l ω(e j1,..., e jp ) = 0 n < p k, l ω = 0 p V = {0} 1 p n j 1,..., j p ω(v 1,..., v p ) = = j 1 < <j p j 1 < <j p b jσ(1) 1 b j σ(p) σ S p sgn(σ)b jσ(1) 1 b j σ(p) σ S p p ω(e jσ(1),..., e jσ(p) ) p ω(e j1,..., e jp ).

8 6 1 Euclid b j σ(i) i = ω j σ(i) (vi ) sgn(σ)b jσ(1) 1 b j σ(p) p = σ S p σ S p sgn(σ)ω j σ(1) (v 1 ) ω j σ(p) (v p ) = (ω j 1 ω j p )(v 1,..., v p ). ω(v 1,..., v p ) = a j1...j p (ω j 1 ω jp )(v 1,..., v p ) j 1 < <j p ω = a j1...j p ω j 1 ω j p. j 1 < <j p ( ) p V ( ) c j1...j p R j 1 < <j p c j1...j p ω j 1 ω j p = 0 (e k1,..., e kp ) (k 1 < < k p ) = c j1...j p ω j 1 ω j p (e k1,..., e kp ) j 1 < <j p = c j1...j p sgn(σ)ω j σ(1) (e k1 ) ω j σ(p) (e kp ) j 1 < <j p σ S p = c k1...k p. ( ) p V ( ) n p dim p V = ( ) n p V n W m e 1,..., e n V ω 1,..., ω n f 1,..., f m W 0 (V, W ) = W n < p p (V, W ) = {0} 1 p n v i V ( ) ω j 1 ω jp f k (1 j 1 < < j p n, 1 k m) (ω j 1 ω j p f k )(v 1,..., v p ) = (ω j 1 ω j p )(v 1,..., v p )f k ( ) p (V, W ) dim p (V, W ) = ( ) n p m ω p (V, W ) 1 j 1 < < j p n m a k j 1...j p f k = ω(e j1,..., e jp ) W k=1

9 1.1 7 ω = m a k j 1...j p ω j 1 ω j p f k j 1 < <j p k=1 p V m m p V p (V, W ) S m S(φ 1,..., φ m ) = φ k f k ((φ 1,..., φ m ) m p V ) k=1 S S f 1,..., f m W Sω p (V, W ) m ω(v 1,..., v p ) = ξ k (v 1,..., v p )f k (v 1,..., v p V ) k=1 ω p (V, W ) kξ k p V S(ξ 1,..., ξ m ) = ω S m p V ( ) p (V, W ) dim p (V, W ) = ( ) n p m j 1 < < j p m ω(e j1,..., e jp ) = ξ k (e j1,..., e jp )f k k=1 a k j 1...j p = ξ k (e j1,..., e jp ) ω = = = m ξ k f k k=1 m k=1 ξ k (e j1,..., e jp )ω j 1 ω jp f k j 1 < <j p m a k j 1...j p ω j 1 ω jp f k. j 1 < <j p k= V, W 1, W 2, W 3 A : W 1 W 2 W 3 ω 1 (V, W 1 ) η 1 (V, W 2 ) A(ω, η) v 1, v 2 V A(ω, η)(v 1, v 2 ) = A(ω(v 1 ), η(v 2 )) A(ω, η) V V W 3 (ω, η) A(ω, η) A A(ω, η) ωη

10 8 1 Euclid V M n M x p (T x (M), V ) ω x ωω V M p R ()M (U; x 1,..., x n ) ( ) x ω x x i,, 1 x x i p x i 1,..., i p U V C V M 0 M V C f M V C f df V M 1 n = dim M M (U; x 1,..., x n ) f C ( ) x df x x i x = f x i (x) U V C df V M ω V n M p M (U; x 1,..., x n ) x U x i x (1 i n) T x (M) (dx i ) x (1 i n) x Uω x p (T x (M), V ) ω x = j 1 < <j p ω x ( x j,, 1 x x jp x ) (dx j 1 ) x (dx j p ) x ω x (dx j 1 ) x (dx j p ) x V C () ω (dx j 1 ) x (dx j p ) x V M p Ω p (M; V ) f, g C (M), ω, η Ω p (M; V ) x M (fω + gη) x = f(x)ω x + g(x)η x ( p (T x (M), V ) )

11 1.2 9 Ω p (M; V ) C (M) C (M) V 1, V 2, V 3 A : V 1 V 2 V 3 φ Ω p (M; V 1 ), ψ Ω q (M; V 2 ) x M A(φ ψ) x = A(φ x ψ x ) ( A( ) p (T x (M), V 1 ) q (T x (M), V 2 ) ) A(φ ψ) Ω p+q (M; V 3 ) C (M) A( ) : Ω p (M; V 1 ) Ω q (M; V 2 ) Ω p+q (M; V 3 ) Ω p (M; V ) C (M) f, g C (M), ω, η Ω p (M; V ) fω + gη Ω p (M; V ) p (T x (M); V ) (U; x 1,..., x n ) M x U ω x = η x = a i1 i p (x)(dx i 1 ) x (dx ip ) x, i 1 < <i p b i1 i p (x)(dx i 1 ) x (dx ip ) x i 1 < <i p a i1 i p, b i1 i p U V C (fω + gη) x = (f(x)a i1 i p (x) + g(x)b i1 i p (x))(dx i 1 ) x (dx i p ) x. i 1 < <i p fa i1 i p + gb i1 i p U V C fω + gη φ Ω p (M; V 1 ), ψ Ω q (M; V 2 ) A(φ ψ) Ω p+q (M; V 3 ) A( ) C (M) x U φ x = ψ x = c i1 i p (x)(dx i 1 ) x (dx i p ) x, i 1 < <i p d j1 j q (x)(dx j 1 ) x (dx j q ) x j 1 < <j q c i1 i p d j1 j q U V 1 V 2 C x U = A(φ ψ) x i 1 < <i p j 1 < <j q A((c i1 i p (x)(dx i 1 ) x (dx ip ) x )

12 10 1 Euclid (d j1 j q (x)(dx j 1 ) x (dx j q ) x )) = i 1 < <i p j 1 < <j q A(c i1 i p (x), d j1 j q (x)) (dx i 1 ) x (dx i p ) x (dx j 1 ) x (dx j q ) x A(φ ψ) x (dx k 1 ) x (dx k p+q ) x A(c i1 i p (x), d j1 j q (x)) U V 3 C A(φ ψ) V 3 M p + q V F M N C x M F df x : T x (M) T F (x) (N) ω Ω p (N; V ) (F ω) x = (df x ) ω F (x) (F ω) x p (T x (M); V ) F ω Ω p (M; V ) m = dim M, n = dim NF ω Ω p (M; V ) F (U) U M N (U; x 1,..., x m ) (U ; y 1,..., y n ) ( ) x (F ω) x x i,, 1 x x i p x i 1,..., i p U V C x U ( ) (y j F ) df x x i = (x) x i y j x j=1 F (x) ( ) (F ω) x x i,, 1 x x ip ( ( ) x ( )) = ω F (x) df x x i,, df 1 x x x ip x (y j 1 F ) = (x) (yj p F ) (x) ω x i F (x) 1 x ip y j,, 1 F (x) j 1,,j p =1 y jp F (x) U V C F ω Ω p (M; V ) F ωω F

13 V F : M M, G : M M C ω Ω p (M, V ) (G F ) ω = F (G ω) d(g F ) x = dg F (x) df x v T x (M) ((G F ) ω) x (v) = ω G F (x) (d(g F ) x (v)) = ω G(F (x)) (dg F (x) df x (v)) = (G ω) F (x) (df x (v)) = (F (G ω)) x (v) (G F ) ω = F (G ω) V 1, V 2, V 3 A : V 1 V 2 V 3 F M N C φ Ω p (N; V 1 ), ψ Ω q (N; V 2 ) F (A(φ ψ)) = A((F φ) (F ψ)) x M F (A(φ ψ)) x = (df x ) (A(φ ψ) F (x) ) = (df x ) (A(φ F (x) ψ F (x) )) = A(((dF x ) φ F (x) ) ((df x ) ψ F (x) )) = A((F φ) x (F ψ) x ) = A((F φ) (F ψ)) x F (A(φ ψ)) = A((F φ) (F ψ)) V M n ω Ω p (M; V ) dω Ω p+1 (M; V ) () M (U; x 1,..., x n ) ω ω x = a i1 i p (x)(dx i 1 ) x (dx ip ) x i 1 < <i p (dω) x = i 1 < <i p i=1 a i1 i p (x)(dx i ) x i x (dx i 1 ) x (dx i p ) x

14 12 1 Euclid i 1 < <i p i=1 a i1 i p (x)(dx i ) x i x (dx i 1 ) x (dx ip ) x p+1 (T x (M), V ) a i1 i p (x) ω x ( ) a i1 i p (x) = ω x x i,, 1 x x i p x (1 i 1 < < i p n) i 1,..., i p a i1 i p (x) (V ; y 1,..., y n ) M 1 ( ) b i1 i p (x) = ω x y i,, 1 x y i p x ω x = b i1 i p (x)(dy i 1 ) x (dy ip ) x i 1 < <i p x U V T x (M) 2 x i x y i x y i = x j=1 (dy i ) x = j=1 x j y i (x) x j x y i x j (x)(dxj ) x b i1 i p (x) = j 1,,j p =1 i=1 x j 1 xjp (x) y i 1 y (x)a ip j 1 j p (x) x j yi (x) yi x (x) = δ k jk ( ) = 1 p! i 1 < <i p i=1 i,i 1,...,i p =1 b i1 i p (x)(dy i ) y i x (dy i 1 ) x (dy ip ) x b i1 i p (x)(dy i ) y i x (dy i 1 ) x (dy ip ) x

15 = 1 p! = 1 p! i,i 1,...,i p=1 i 1,...,i p =1 j,j 1,...,jp=1 k,k 1,...,kp= x j y (x) { } x j 1 xjp (x) i x j y i 1 y (x)a i j p 1 j p (x) y i x k (x)(dxk ) x yi1 x k 1 (x)(dxk 1 ) x yip j 1,...,jp=1 k,k 1,...,kp=1 { x j 1 xjp (x) x k y i 1 y (x)a ip j 1 j p (x) x k (x)(dxk p ) p x } (dx k ) x yi 1 x k 1 (x)(dxk 1 ) x yip x k p (x)(dxkp ) x. i r =1 i r =1 x j r yir (x) ir y x (x) = δ kr j r k r ( ) x j r y i r (x) x k ir y x (x) = n x j ( ) r y i r (x) (x) kr ir i r =1 y x k kr x x jr = y (x) 2 y ir i r x k x (x) k r i r =1 k k r (dx k ) x (dx k 1 ) x (dx k p ) x k k r ( ) = 1 p! = 1 p! = i 1,...,i p =1 k,k 1,...,k p =1 k 1 < <k p k=1 j 1,...,jp=1 k,k 1,...,kp=1 x j 1 xjp (x) y i 1 y (x)a j 1 j p (x) i p x k (dx k ) x yi 1 x k 1 (x)(dxk 1 ) x yip x k p (x)(dxk p ) x a k1 k p (x)(dx k ) x k x (dx k 1 ) x (dx k p ) x a k1 k p x k (x)(dx k ) x (dx k 1 ) x (dx k p ) x. dω dω dω p + 1 dω p = 0 ω Ω 0 (M; V ) M V C dω (dω) x = i=1 ω x i (x)(dxi ) x

16 14 1 Euclid V M d : Ω p (M; V ) Ω p+1 (M; V ) V F M NΓ F F : Ω p (N; V ) Ω p (M; V ) m = dim M, n = dim Nω Ω p (N; V ) F (U) U M N (U; x 1,..., x m ) (U ; y 1,..., y n ) a j1 j p (y) = ω y y j,, 1 y y j p ω U ω y = a j1 j p (y)(dy j 1 ) y (dy j p ) y j 1 < <j p x U ( ) (F ω) x x i,, 1 x x i p x (y j 1 F ) = (x) (yj p F ) (x) a x i 1 x i p j1 j p (F (x)). = (d(f ω)) x j 1,,j p=1 m j 1,,j p =1 i 1 < <i p i=1 { (y j 1 F ) x i x i 1 (dx i ) x (dx i 1 ) x (dx i p ) x. y } (x) (yjp F ) (x) a x i p j1 j p (F (x)) 2 (y j r F ) (x) i i x i r (dx i ) x (dx i 1 ) x (dx i p ) x i i r x ir = (d(f ω)) x m j 1,,j p =1 i 1 < <i p i=1 (y j 1 F ) x i 1 (x) (yjp F ) (x) a j 1 j p (F (x)) x i p x i = 1 p! (dx i ) x (dx i 1 ) x (dx i p ) x m m (y j 1 F ) x i 1 j 1,,j p =1 i 1,,i p =1 i=1 (dx i ) x (dx i 1 ) x (dx ip ) x. (x) (yj p F ) (x) a j 1 j p (F (x)) x ip x i

17 (dω) y = = 1 p! j 1 < <j p j=1 j 1,,j p=1 j=1 a j1 j p (y)(dy j ) y j y (dy j 1 ) y (dy j p ) y a j1 j p (y)(dy j ) y j y (dy j 1 ) y (dy j p ) y (F (dω)) x = (df x ) (dω) F (x) = 1 a j1 j p (F (x))(df p! y j x ) (dy j ) F (x) j 1,,j p =1 j=1 (df x ) (dy j 1 ) F (x) (df x ) (dy j p ) F (x). (df x ) (dy j ) F (x) = (dy j ) F (x) df x = d(y j F ) x = m i=1 (y j F ) (x)(dx i ) x i x = = a j1 j p (F (x))(df j=1 y j x ) (dy j ) F (x) m a j1 j p (F (x)) (yj F ) (x)(dx i ) j=1 i=1 y j x i x m a j1 j p (F (x)) (x)(dx i ) i=1 x i x = 1 p! (F (dω)) x m m j 1,,j p =1 i 1,,i p =1 i=1 (y j 1 F ) x i 1 (dx i ) x (dx i 1 ) x (dx i p ) x = (d(f ω)) x. F (dω) = d(f ω) (x) (yjp F ) (x) a j 1 j p (F (x)) (x) x ip x i M N F : M N N M M M M N

18 16 1 Euclid V M d : Ω p (M; V ) Ω p+1 (M; V ) d V 1, V 2, V 3 A : V 1 V 2 V 3 Mφ Ω p (M; V 1 ), ψ Ω q (M; V 2 ) da(φ ψ) = A(dφ ψ) + ( 1) p A(φ dψ) n = dim M (U; x 1,..., x n ) M Uφ ψ φ x = ψ x = a i1 i p (x)(dx i 1 ) x (dx i p ) x i 1 < <i p b j1 j q (x)(dx j 1 ) x (dx j q ) x j 1 < <j q A(φ ψ) x = i 1 < <i p j 1 < <j q A(a i1 i p (x), b j1 j q (x)) (dx i 1 ) x (dx i p ) x (dx j 1 ) x (dx j q ) x k 1 < < k p+q {i 1,..., i p, j 1,..., j q } {k 1,..., k p+q } ( ) i1 i p j 1 j q sgn = 0 k 1 k p k p+1 k p+q = A(φ ψ) x sgn k 1 < <k p+q i 1 < <i p j 1 < <j q ( i1 i p j 1 j q k 1 k p k p+1 k p+q A(a i1 i p (x), b j1 j q (x))(dx k 1 ) x (dx k p+q ) x ) da(φ ψ) x

19 = = = sgn k 1 < <k p+q i 1 < <i p j 1 < <j q i=1 ( i1 i p j 1 j q k 1 k p k p+1 k p+q A(a i1 i p (x), b j1 j q (x)) (dx i ) x i x (dx k 1 ) x (dx k p+q ) x ( i1 i p j 1 j q sgn k 1 < <k p+q i 1 < <i p j 1 < <j q { ( ai1 i p i=1 A x i (x), b j1 j q (x) k 1 k p k p+1 k p+q ) ( )} + A a i1 i p (x), b j 1 j q (x) x i (dx i ) x (dx k 1 ) x (dx k p+q ) x { ( ) ( ai1 i A p (x), b x i j1 j q (x) + A a i1 i p (x), b )} j 1 j q (x) x i i 1 < <i p j 1 < <j q i=1 ) ) (dx i ) x (dx i 1 ) x (dx i p ) x (dx j 1 ) x (dx j q ) x = A(dφ ψ) x + ( 1) p A(φ dψ) x. da(φ ψ) = A(dφ ψ) + ( 1) p A(φ dψ) V M d d = 0 d : Ω p (M; V ) Ω p+1 (M; V ) n = dim Mω Ω 0 (M; V ) d 2 ω = 0 (U; x 1,..., x n ) M x U (d 2 ω) x = (dω) x = i=1 j=1 j=1 ω x j (x)(dxj ) x 2 ω x i x j (x)(dxi ) x (dx j ) x. 2 ω (x) i j (dx i ) x i x j x (dx j ) x i j (d 2 ω) x = 0 d 2 ω = 0 p > 0 ω Ω p (M; V ) U ω x = a i1 i p (x)(dx i 1 ) x (dx i p ) x i 1 < <i p (dω) x = = i 1 < <i p i=1 a i1 i p (x)(dx i ) x i x (dx i 1 ) x (dx ip ) x i 1 < <i p (da i1 i p ) x (dx i 1 ) x (dx ip ) x

20 18 1 Euclid (d 2 ω) x = i 1 < <i p (d 2 a i1 i p ) x (dx i 1 ) x (dx i p ) x + (da i1 i p ) x i 1 < <i p = 0. (d 2 ω) x = 0 d 2 ω = 0 p ( 1) j (dx i 1 ) x (d 2 x i j ) x (dx i p ) x j= V Mω Ω p (M; V ) p = 0 X X(M) p = 1 X, Y X(M) dω(x) = Xω. dω(x, Y ) = X(ω(Y )) Y (ω(x)) ω([x, Y ]). p = 0 l = dim V V v 1,..., v l ω l ω = ω i v i i=1 (ω i C (M)) X X(M) l l l dω(x) = dω i v i (X) = dω i (X)v i = (Xω i )v i = Xω. i=1 i=1 i=1 p = 1 ω ω = i a i dx i ω dω dω = i,j a i x j dxj dx i X, Y X = i ξ i x, i Y = j η j x j dω(x, Y ) = i,j a i x j (ξj η i η j ξ i )

21 1.3 Euclid 19 ω(y ) = i a i η i X(ω(Y )) = i,j ξ j x (a iη i ) = j i,j ( ξ j ai η i ) x j ηi + a i. x j X Y Y (ω(x)) = i,j ( η j ai ξ i ) x j ξi + a i x j [X, Y ] = i,j = i,j ξ i ηj x i x η j ξi j i,j x j x i ( ) ξ j ηi ξi ηj xj x j x i ω([x, Y ]) = i,j ( ) a i ξ j ηi ξi ηj. xj x j dω(x, Y ) = X(ω(Y )) Y (ω(x)) ω([x, Y ]) p > 0 X 1,... X p+1 X(M) = dω(x 1,..., X p+1 ) p+1 i=1 ( 1) i 1 X i (ω(x 1,..., ˆX i,..., X p+1 )) + i<j( 1) i+j ω([x i, X j ], X 1,..., ˆX i,..., ˆX j,..., X p+1 ). 1.3 Euclid N Euclid R N 1.2

22 20 1 Euclid M N Euclid R N M x T x M R N M R N M 0 M X X Ω 0 (M; R N ) dx Ω 1 (M; R N ) M x R 3 T x M T x M T x M M x dx dx = X + A X. X T x MA X T x M M Y ( X)(Y ) = Y X M fm Y d(fx)(y ) = Y (fx) = (Y f)x + fy X = df(y )X + fdx(y ) = (dfx + fdx)(y ) d(fx) = dfx + fdx (fx) = dfx + f X A fx = fa X M A M A A M x A : T x M T x M T x M ; (X, Y ) A X (Y ) Mξ R N M 0 dξ Ω 1 (M; R N ) Mdξ dξ = B ξ + ξ. B ξ T x M ξ T x M M X ( ξ)(x) = Xξ M fm d(fξ) = dfξ + fdξ B fξ = fb ξ (fξ) = dfξ + f ξ

23 1.3 Euclid 21 B B M x B : T x M T x M T x M ; (X, ξ) B ξ (X) R N R N M X, Y ξ, η d(x Y ) = X Y + X Y, d(ξ η) = ξ η + ξ η. d(x Y ) = dx Y + X dy = ( X + A X ) Y + X ( Y + A Y ) = X Y + X Y. d(ξ η) = dξ η + ξ dη = (B ξ + ξ) η + ξ (B η + η) = ξ η + ξ η R N M X ξ A X ξ + X B ξ = 0. X ξ X ξ = 0 0 = d(x ξ) = dx ξ + X dξ = ( X + A X ) ξ + X (B ξ + ξ) = A X ξ + X B ξ R N M X, Y [X, Y ] = X Y Y X, A(X, Y ) = A(Y, X). A dx(y ) = X(Y ) + A X (Y ) = Y X + A X (Y )

24 22 1 Euclid [X, Y ] = XY Y X = dy (X) dx(y ) = X Y + A Y (X) Y X A X (Y ) = ( X Y Y X) + (A Y (X) A X (Y )). [X, Y ] = X Y Y X, A(X, Y ) = A(Y, X) Euclid 3 Euclid 1.2 M U e 1, e 2 Ω 0 (U; R 3 ) θ 1, θ 2 Ω 1 (U; R) R 3 e 3 = e 1 e 2 e 3 Ω 0 (U; R 3 ) e 1, e 2, e 3 R 3 M R 3 P P M R 3 P Ω 0 (M; R 3 ) P dp Ω 1 (M; R 3 ) U dp = θ 1 e 1 + θ 2 e 2 I = dp dp M I I R 3 U I = dp dp = θ 1 θ 1 + θ 2 θ 2 U e 1, e 2, e 3 R 3 M X [de 1 (X) de 2 (X) de 3 (X)] = [e 1 e 2 e 3 ]ω(x) ω Ω 1 (U; M 3 (R)) M 3 (R) 3 d[e 1 e 2 e 3 ] = [de 1 de 2 de 3 ] = [e 1 e 2 e 3 ]ω

25 1.4 3 Euclid 23 σ = [e 1 e 2 e 3 ] Ω 0 (U; M 3 (R)) σ dσ = σω S S n 1 n σ σ = 1 3 σ Ω 0 (U; M 3 (R)) = d(σ σ) = (dσ )σ + σ dσ = (σω) σ + σ σω = ω σ σ + σ σω = ω + ω. ω U 1 3 o(3) ω Ω 1 (U; o(3)) ω = (ω j i ) de 1 = ω 2 1e 2 + ω 3 1e 3, de 2 = ω 1 2e 1 + ω 3 2e 3, de 3 = ω 1 3e 1 + ω 2 3e 2 e 1 = ω 2 1e 2, e 2 = ω 1 2e 1, A e1 = ω 3 1e 3, A e2 = ω 3 2e 3 e 3 = 0, B e3 = ω 1 3e 1 + ω 2 3e 2 M X U X = X 1 e 1 + X 2 e 2 X = (X 1 e 1 ) + (X 2 e 2 ) = (dx 1 )e 1 + X 1 e 1 + (dx 2 )e 2 + X 2 e 2 = (dx 1 )e 1 + X 1 ω 2 1e 2 + (dx 2 )e 2 + X 2 ω 1 2e 1 = (dx 1 + ω 1 2X 2 )e 1 + (dx 2 + ω 2 1X 1 )e 2. M ωω σ = [e 1 e 2 e 3 ] σ = [ē 1 ē 2 ē 3 ] d σ = σ ω ω Ω 1 (U; o(3)) σ = σf f Ω 0 (U; M 3 (R)) f 3 O(3) ω = f 1 df + f 1 ωf. σ = σf d σ = dσf + σdf = σωf + σdf = σ(ωf + df).

26 24 1 Euclid d σ = σ ω = σf ω. σf ω = σ(df + ωf) f ω = df + ωf ω = f 1 df + f 1 ωf M M e 1, e 2, e 3 ω e 1, e 2, e d d = dθ 1 = θ 2 ω 1 2, dθ 2 = θ 1 ω 2 1, θ 1 ω θ 2 ω 3 2 = = d(dp ) = d(θ 1 e 1 + θ 2 e 2 ) = dθ 1 e 1 θ 1 de 1 + dθ 2 e 2 θ 2 de 2 = dθ 1 e 1 θ 1 (ω 2 1e 2 + ω 3 1e 3 ) + dθ 2 e 2 θ 2 (ω 1 2e 1 + ω 3 2e 3 ) = (dθ 1 θ 2 ω 1 2)e 1 + (dθ 2 θ 1 ω 2 1)e 2 (θ 1 ω θ 2 ω 3 2)e 3. e 1, e 2, e ω1, 3 ω2 3 U 1 A = ω 3 1 = b 3 11θ 1 + b 3 12θ 2, ω 3 2 = b 3 21θ 1 + b 3 22θ 2 2 i,j=1 b 3 ijθ i θ j e 3 A A = θ 1 A e1 + θ 2 A e2 = θ 1 ω1e θ 2 ω2e 3 3 = θ 1 (b 3 11θ 1 + b 3 12θ 2 )e 3 + θ 2 (b 3 21θ 1 + b 3 22θ 2 )e 3 = 2 b 3 ijθ i θ j e 3. i,j=1

27 1.4 3 Euclid ω 3 1, ω = θ 1 ω1 3 + θ 2 ω2 3 = θ 1 (b 3 11θ 1 + b 3 12θ 2 ) + θ 2 (b 3 21θ 1 + b 3 22θ 2 ) = b 3 12θ 1 θ 2 + b 3 21θ 2 θ 1 = (b 3 12 b 3 21)θ 1 θ 2. b 3 12 = b dω 1 2 = (b 3 11b 3 22 b 3 12b 3 21)θ 1 θ = d(de 1 ) = d(ω1e ω1e 3 3 ) = dω1e 2 2 ω1 2 de 2 + dω1e 3 3 ω1 3 de 3 = dω1e 2 2 ω1 2 (ω2e ω2e 3 3 ) + dω1e 3 3 ω1 3 (ω3e ω3e 2 2 ) (ωj i = ω j i ωj i ω j i = 0) = (dω1 2 ω1 3 ω3)e (dω1 3 ω1 2 ω2)e 3 3. dω 2 1 ω 3 1 ω 2 3 = 0, dω 3 1 ω 2 1 ω 3 2 = 0 dω2 1 = dω1 2 = ω1 3 ω3 2 = ω1 3 ω2 3 = (b 3 11θ 1 + b 3 12θ 2 ) (b 21 θ 1 + b 3 22θ 2 ) = (b 3 11b 3 22 b 3 12b 3 21)θ 1 θ (b 3 ij) M Gauss (b 3 ij) 1/2 Gauss M Gauss K dω 1 2 = Kθ 1 θ 2 M e 3 ±1 Gauss e 1, e 2, e R 3 M x O x (M) = {(x; ẽ 1, ẽ 2 ) ẽ 1, ẽ 2 T x M } O(M) = O x (M) x M

28 26 1 Euclid O(M) M R 3 R 3 O(M) R 2 e 1, e 2 R 2 T x M u (u(e 1 ), u(e 2 )) O x (M) = {u u R 2 T x M } R 2 a O(2) R 2 T x M u ua O x (M) O(2) O x (M) O(2) O(M) u O x (M) x π : O(M) M π C x Mπ 1 (x) O(2) O(M) M O(M) ẽ 1, ẽ 2 ẽ 1, ẽ 2 Ω 0 (O(M); R 3 ) M U O(M) ẽ 3 = ẽ 1 ẽ 2 ẽ 3 ẽ 3 Ω 0 (O(M); R 3 ) σ = [ẽ 1 ẽ 2 ẽ 3 ] Ω 0 (O(M); M 3 (R)) d σ = σ ω ω Ω 1 (O(M); M 3 (R)) ω O(3) ω o(3) ω Ω 1 (O(M); o(3)) Mω dẽ 1 = ω 2 1ẽ 2 + ω 3 1ẽ 3, dẽ 2 = ω 1 2ẽ 1 + ω 3 2ẽ 3, dẽ 3 = ω 1 3ẽ 1 + ω 2 3ẽ 2 M U e 1, e 2, e 3 ω O(M) ẽ 1, ẽ 2, ẽ 3 ω s = (e 1, e 2 ) U O(M) C π s = 1 U s ẽ i = ẽ i s = e i s σ = σ σω = dσ = ds σ = s d σ = s ( σ ω) = σs ω. ω = s ω M U e 1, e 2 ω s = (e 1, e 2 ) U O(M) O(M) ω s O(M) ωm e 1, e 2 ωω ω ω ω

29 1.4 3 Euclid 27 M 1 θ 1, θ 2 O(M) R 2 1 θ θ u (X) = u 1 (dπ u (X)) (u O(M), X T u (O(M))) O(M) R 2 1 θ u O(M) R 2 T π(u) M θ = θ 1 e 1 + θ 2 e 2 M s = (e 1, e 2 ) (s θ)(ei ) = s 1 (dπ s ds(e i )) = s 1 d(π s) s (e i ) = s 1 (e i ) = e i. (s θ)(ei ) = (s θ1 )(e i )e 1 + (s θ2 )(e i )e 2 (s θj )(e i ) = δ j i s θ1, s θ2 e 1, e 2 s θi = θ i d θ 1 = θ 2 ω 1 2, d θ 2 = θ 1 ω 2 1, θ1 ω θ 2 ω 3 2 = 0. θu O(M) dπ u = u θ u = u( θ 1 e 1 + θ 2 e 2 ) = θ 1 ue 1 + θ 2 ue 2 = θ 1 ẽ 1 + θ 2 ẽ 2 π : O(M) M R 3 π Ω 0 (O(M); R 3 ) = d(dπ) = d( θ 1 ẽ 1 + θ 2 ẽ 2 ) = d θ 1 ẽ 1 θ 1 dẽ 1 + d θ 2 ẽ 2 θ 2 dẽ 2 = d θ 1 ẽ 1 θ 1 ( ω 2 1ẽ 2 + ω 3 1ẽ 3 ) + d θ 2 ẽ 2 θ 2 ( ω 1 2ẽ 1 + ω 3 2ẽ 3 ) = (d θ 1 θ 2 ω 1 2)ẽ 1 + (d θ 2 θ 1 ω 2 1)ẽ 2 ( θ 1 ω θ 2 ω 3 2)ẽ 3. ẽ 1, ẽ 2, ẽ M s = (e 1, e 2 ) s M 1.4.3

30 2 3 Euclid Lie Lie Lie Lie Lie G G G G; (x, y) xy, G G; x x 1 C G Lie ( e ) Lie Lie V V GL(V ) Lie GL(R n ) GL(n, R) GL(V ) dim V = n End(V ) = {f : V V f } V End(V ) End(V ) n 2 Euclid End(V ) det : End(V ) R End(V ) GL(V ) = {f End(V ) detf 0} 28

31 2.1 Lie Lie 29 GL(V ) End(V ) GL(V ) n 2 GL(V ) GL(V ) GL(V ); (x, y) xy End(V ) C GL(V ) GL(V ); x x 1 End(V ) C (Cramer ) Lie G g L g, R g L g : G G; x gx, R g : G G; x xg gg XG g (dl g ) x (X x ) = X gx (x G) (dr g ) x (X x ) = X xg (x G) Lie G e (U; x 1,..., x n ) g G (L g (U); x 1 L 1 g,..., x n L 1 g ) g g [, ] : g g g X, Y, Z g [X, Y ] = [Y, X], [[X, Y ], Z] + [[Y, Z], X] + [[Z, X], Y ] = 0 g Lie Lie g h [, ] h g Lie M X(M) Lie [, ] Lie V End(V ) X, Y [X, Y ] = XY Y X End(V ) Lie Lie gl(v ) gl(r n ) gl(n, R)

32 30 2 [, ] : End(V ) End(V ) End(V ) End(V ) X, Y, Z [X, Y ] = XY Y X = [Y, X], [[X, Y ], Z] + [[Y, Z], X] + [[Z, X], Y ] = [XY Y X, Z] + [Y Z ZY, X] + [ZX XZ, Y ] = XY Z Y XZ ZXY + ZY X + Y ZX ZY X XY Z + XZY +ZXY XZY Y ZX + Y XZ = 0. End(V ) [, ] Lie G Lie G g g Lie X(G) Lie α : g T e (G); X X e dim g = dim T e (G) = dim G g X(G) X, Y g g G (dl g ) x (X x ) = X gx (dl g ) x (Y x ) = Y gx (x G) Lie (dl g ) x ([X, Y ] x ) = [X, Y ] gx (x G) [X, Y ] g g X(G) Lie α X g, α(x) = 0 g G X g = (dl g ) e (X e ) = 0 X = 0 Kerα = 0 α X T e (G) X g = (dl g ) e (X) X α (U; x 1,..., x n ) G e G G G; (x, y) xy e V V V = {xy x, y V } U X = ξ i x i i=1 e

33 2.1 Lie Lie g G (L g (V ); x 1 L 1 g,..., x n L 1 g ) g y i = x i L 1 g gx L g(v ) (x V ) X gx = (dl gx ) e (X) = d(l g L x ) e (X) = (dl g ) x (dl x ) e (X) = (dl g ) x ξ i (xj L x ) (e) i,j=1 x i x j x = ξ i (xj L x ) (e)(dl x i g ) x x j. x i,j=1 ( (dl g ) x ) ( ) x j y k = x x j (y k L g ) = δ jk x (dl g ) x x j = x y j gx X gx = i,j=1 ξ i (xj L x ) (e) x i y j. gx G G G; (x, y) xy = L x (y) C i, j C j V R; x (xj L x ) (e) x i L g (V ) R; gx i=1 ξ i (xj L x ) (e) x i C X G X α Lie G Lie g Lie G Lie Lie C f : G H f Lie f f 1 f 1 Lie f Lie Lie G HLie f : g h [f(x), f(y )] = f([x, Y ]) (X, Y g) f Lie f f 1 f Lie Lie g h

34 M X M IM c : I M dc dt (t) = X c(t) (t I) c X M X M t 0 M x M X c : I M t 0 I, c(t 0 ) = x c 1, c 2 : I M c 1 (t 0 ) = c 2 (t 0 ) = x X c 1 = c 2 x M (U; x 1,..., x n ) X U X x = a i (x) i=1 x i (x U) x U dc dt (t) = X c(t) (t I) c i=1 d(x i c(t)) dt x i = c(t) a i (c(t)) i=1 x i c(t) d(x i c(t)) dt = a i (c(t)), x i c(t 0 ) = x i (x) (1 i n) Euclid a i C t 0 I c : I U c M (U; x 1,..., x n ) c 1 (I), c 2 (I) U x 1,..., x n dc 1 dt (t) = X c 1 (t), dc 2 dt (t) = X c 2 (t) (t I) Euclid c 1 = c 2 c 1 (I), c 2 (I) M 1 t 0 < s, s I 0 < ε t 0 < t 1 <... < t k = s I i = (t i 1 ε, t i + ε) (1 i k) i c 1 (I i ), c 2 (I i ) M 1 c 1 (t 1 ) = c 2 (t 1 ),..., c 1 (t k ) = c 2 (t k ) c 1 (s) = c 2 (s) t 0 > s, s I c 1 (s) = c 2 (s) c 1 = c 2

35 2.1 Lie Lie R Lie R Lie G Lie G G Lie Lie g Lie g G 1 1 X g X c : R G c(0) = e 1 c G X g c G c dc (0) g dt X c (1),(2) (1) X g X c : R G c(0) = e c G (2) 2 (1) δ > 0 X a : ( δ, δ) G a(0) = e s < δ/2 s 1 b 1 (t) = a(s + t), b 2 (t) = a(s)a(t) ( s < δ/2) t b 1 (t) X ( ) d d dt b 2(t) = (dl a(s) ) a(t) dt a(t) = (dl a(s) ) a(t) (X a(t) ) = X a(s)a(t) t b 2 (t) X b 1 (0) = a(s) = a(s)e = a(s)a(0) = b 2 (0) b 1 (t) = b 2 (t) ( t < δ/2). a(s + t) = a(s)a(t) = a(t)a(s) ( s, t < δ/2) t R t/k < δ/2 k ( ) t k c(t) = a k c : R G t R t/k < δ/2, t/l < δ/2 k, l ( ) t k ( ) t kl ( ) t l a = a = a k kl l

36 34 2 c kc(0) = a(0) = e c G t R t/k < δ/2 kt I s I s/k < δ/2 s I c(s) = a(s/k) k c I C c : R G C s, t R s/k, t/k < δ/4 k s/k, t/k, (s + t)/k < δ/2 c(s)c(t) = ( ) s k ( ) t k ( a a = a k k = ( ) s + t k a = c(s + t). k ( s k ) ( )) t k a k c : R G G c X s R t (s δ, s + δ) c(t) = c(s)c(t s) = L c(s) (c(t s)) ( d dt c(t) d = (dl c(s) ) e t=s dt c(t) t=0 ) = (dl c(s) ) e (X e ) = X c(s). c X (2) X g G c dc(0) = X dt e c g X G c g X X e = dc (0) dt (1) g X G c dc(0) = X dt e c X X G c GL(n, R) GL(n, R) gl(n, R) X gl(n, R) = T e (GL(n, R)) GL(n, R) X X g = gx (g GL(n, R)) X GL(n, R) c dc(t) dt : e A = = c(t)x (t R), c(0) = e n=0 1 n! An c(t) = e tx G Lie Lie g X g X c : R G c(0) = e exp X = c(1) exp : g G exp Lie G GL(n, R) Lie gl(n, R) X e tx GL(n, R) G Lie Lie g X g G t exp tx

37 2.1 Lie Lie 35 X g G t c(t, X) s R d dt c(st, X) = sx c(st,x) (t R) t c(st, X) sx g c(st, X) = c(t, sx) t = 1 c(s, X) = c(1, sx) = exp sx. X g G t exp tx G Lie Lie g G exp : g G C X 1,..., X n g u 1,..., u n u 1,..., u n g G (U; x 1,..., x n ) e U, x 1 (e) =... = x n (e) = 0 n u i X i g c(t; u 1,..., u n ) i=1 d dt c(t; u 1,..., u n ) = u i (X i ) c(t;u1,...,u n ) i=1 X i U (X i ) x = a ji (x) j=1 x j x c(t; u 1,..., u n ) d dt x j(c(t; u 1,..., u n )) = u i a ji (c(t; u 1,..., u n )) i=1 : (t, u 1,..., u n ) (x 1 (c(t; u 1,..., u n )),..., x n (c(t; u 1,..., u n ))) 0 C exp( u i X i ) = c(1; u 1,..., u n ) i=1 exp : g G 0 N C X g p 1 p X N X O 1 p O N exp(z) = exp ( ) p 1 p Z (Z O) exp O C exp : g G C

38 Lie G Lie g G exp g 0 G e X g = T 0 (g) d exp 0 (X) = d dt exp(tx) t=0 = X e = α(x) d exp e = α : g T e (G) d exp e exp g 0 G e G Lie Lie g X, Y g, f C (G), g G (Xf)(g) = d dt t=0 f(g exp tx) ([X, Y ]f)(g) = s t f(g exp sx exp ty (exp sx) 1 ) s=t=0 X g t g exp tx t = 0 (Xf)(g) = X g (f) = d dt f(g exp tx) t=0 (XY f)(g) = f(g exp sx exp ty ) ( ) s t s=t=0 = ( ) t s f(g exp sx exp ty (exp sx) 1 exp sx) s=0 t=0 = ( t s f(g exp sx exp ty (exp sx) 1 ) s=0 + s f(g exp ty exp sx) s=0 ) t=0 (Leibniz ) = s t f(g exp sx exp ty (exp sx) 1 ) +(Y Xf)(g). s=t=0 ([X, Y ]f)(g) = s t f(g exp sx exp ty (exp sx) 1 ). s=t=0

39 2.1 Lie Lie Lie G G Lie g X, Y [X, Y ] = 0 f C (G), g G ([X, Y ]f)(g) = s t f(g exp sx exp ty (exp sx) 1 ) = f(g exp ty ) = 0. s t s=t=0 s=t=0 [X, Y ] = Lie g X, Y [X, Y ] = 0 g Lie Lie Lie Lie Lie Lie G, H Lie Lie g, h f : G H Lie 2.1.9α G : g T e (G), α H : h T e (H) df = αh 1 df e α G : g h Lie X g df e (X e ) T e (H) H df(x) g G x G X, Y g df g (X g ) = df g (dl g ) e (X e ) = d(f L g ) e (X e ). (f L g )(x) = f(gx) = f(g)f(x) = (L f(g) f)(x) df g (X g ) = d(f L g ) e (X e ) = d(l f(g) f)(x e ) = (dl f(g) ) e df e (X e ) = df(x) f(g). df g (X g ) = df(x) f(g), df g (Y g ) = df(y ) f(g) (g G) Lie df g ([X, Y ] g ) = [df(x), df(y )] f(g) (g G)

40 38 2 df e ([X, Y ] e ) = [df(x), df(y )] e [df(x), df(y )] H df([x, Y ]) = [df(x), df(y )]. df : g h Lie Lie f : G H df = αh 1 df e α G : g h f Lie Lie A, B, C Lie Lie a, b, c A a f : A B, g : B C Lie d(g f) = dg df : a c d(id A ) = αa 1 d(g f) = αc 1 = αc 1 d(id A ) e α A = α 1 A d(g f) e α A = α 1 C dg e α B α 1 B id Te (A) α A = id dg e df e α A df e α A = dg df A, B Lie Lie a, b f : A B Lie df : a b Lie df d(f 1 ) = d(f f 1 ) = d(id B ) = id d(f 1 ) df = id d(f 1 ) = df 1 df Lie G, H Lie Lie g, h f : G H Lie f(exp X) = exp(df(x)) (X g) exp G exp H Lie Lie ( ) t f(exp tx) H Y h f(exp tx) = exp ty (t R)

41 2.1 Lie Lie 39 t = 0 () = d dt f(exp tx) t=0 = df e (X e ) () = d dt exp ty t=0 = Y e. df e (X e ) = Y e df(x) = Y f(exp tx) = exp(tdf(x)) t = 1 f(exp X) = exp(df(x)) Lie G V G GL(V ) Lie G Lie g V g gl(v ) Lie g Lie g X ad(x)(y ) = [X, Y ], Y g ad(x) gl(g) ad : g gl(g) Lie X, Y, Z g [ad(x), ad(y )](Z) = ad(x)ad(y )(Z) ad(y )ad(x)(z) = [X, [Y, Z]] [Y, [X, Z]] = [X, [Y, Z]] + [Y, [Z, X]] = [Z, [X, Y ]] (Jacobi ) = ad([x, Y ])(Z) [ad(x), ad(y )](Z) = ad([x, Y ]) ad Lie Lie g ad : g gl(g) g Lie G g Ad(g) = d(l g R g 1) G Lie g Ad(g) GL(g) g exp(x)g 1 = exp(ad(g)x) (g G, X g) Ad : G GL(g) Lie Ad g L g R g 1 G Ad(g) g Ad(g) GL(g) g exp(x)g 1 = exp(ad(g)x) (g G, X g) g, h G Ad(gh) = d(l gh R (gh) 1) = d(l g L h R g 1 R h 1) = d(l g R g 1 L h R h 1) = d(l g R g 1) d(l h R h 1) = Ad(g) Ad(h) Ad : G GL(g)

42 40 2 Ad C GL(g) g X 1,..., X n θ 1,..., θ n GL(g) R; u θ i (u(x j )) G R; g θ i (Ad(g)(X j )) C θ i (Ad(g)(X j )) = θ i (α 1 G dl g dr g 1 α G (X j )) g C Ad g X, Y g, f C (G), g G ([X, Y ]f)(g) = s t f(g exp sx exp ty (exp sx) 1 ) s=t=0 = ( ) f(g exp(ad(exp sx)ty )) s t t=0 s=0 = s ((Ad(exp sx)y )f(g)) s=0 = s ((Ad(exp sx)y )) s=0 f(g) d Ad(exp sx)y ds Ad ad = [X, Y ] = ad(x)(y ) s=0 d Ad(exp sx) = ad(x) ds s= Lie G Ad : G GL(V ) G V GL(V ) GL(V ) g GL(V ), X gl(v ) Ad(g)X = d dt (getx g 1 ) = d t=0 dt etgxg 1 = gxg 1. t= Lie H Lie G Lie H G H G G Lie Lie g G Lie H ι : H G dι : h dι(h) Lie ι dι : h g Lie H G dι : h dι(h) Lie

43 2.1 Lie Lie dι(h) Lie H Lie dι h dι(h) G Lie H G Lie G, H Lie g, h exp G, exp H X h exp G (X) = exp H (X) ι : H G ι Lie X h ι(exp H (X)) = exp G (dι(x)) ι dι exp G (X) = exp H (X) G Lie H G H G H Lie Lie Lie Lie Lie Lie G Lie H Lie g, h h = {X g exp tx H(t R), t exp tx H } H Lie h = {X g exp tx H(t R)} h = {X g exp tx H(t R), t exp tx H } h h X h, s R exp sx G (W ; x 1,..., x n ) V = {z W x i (z) = 0 (k + 1 i n)} H exp sxx 1,..., x k H t exp tx H s I exp tx V (t I) I W ; t exp tx C t x i (exp tx) I C t exp tx H C X h h h h = h H Lie H X g exp tx H(t R) t exp tx H h = {X g exp tx H(t R)}

44 Lie G Lie H, K Lie h, k H K G Lie Lie h k Lie Lie GL(n, R) 2.1.3gl(n, R) T e (GL(n, R)) gl(n, R) Lie GL(n, R) Lie g X gl(n, R) X g X g = (dl g ) e (X) (g GL(n, R)) : gl(n, R) g; X X Lie GL(n, R) = α 1 Lie (i, j)- 1 0 n E ij {E ij 1 i, j n} gl(n, R) {x ij 1 i, j n} x ij gl(n, R) GL(n, R) gl(n, R) e GL(n, R) X gl(n, R) t R e + tx GL(n, R) g GL(n, R) X g = (dl g ) e (X) = (dl g ) e ( d dt (e + tx) t=0 ) = d dt L g(e + tx) = d (g + tgx) t=0 dt t=0 = x ij (gx) = x ik (g)x kj (X) g i,j=1 x ij i,j=1 k=1 X, Y gl(n, R), g GL(n, R). x ij g = = = [ X, Ỹ ] g ( ) x ik (g)x kj (Y ) k=1 x pr (g)x rq (X) x pq i,j,p,q=1 r=1 ( ) x ik (g)x kj (X) k=1 x pr (g)x rq (Y ) r=1 x pq x ij g x ir (g)x rk (X)x kj (Y ) x ir (g)x rk (Y )x kj (X) i,j=1 k,r=1 k,r=1 x ij (gxy gy X) i,j=1 x ij g x ij g

45 2.1 Lie Lie 43 = i,j=1 = [X, Y ] g. x ij (g[x, Y ]) x ij g [ X, Ỹ ] = [X, Y ] Lie V n Lie GL(V ) GL(n, R) Lie gl(v ) gl(n, R) v 1,..., v n V f End(V ) f v 1,..., v n R(f) f[v 1,..., v n ] = [v 1,..., v n ]R(f) R : End(V ) End(R n ) R R Lie R : gl(v ) gl(n, R) R GL(V ) Lie R GL(V ) : GL(V ) GL(n, R) Lie : gl(n, R) g Lie gl(n, R) Lie GL(n, R) Lie g gl(n, R) GL(n, R) Lie V gl(v ) GL(V ) Lie Lie g ρ : g gl(v ) v V h = {X g ρ(x)v = 0} h g Lie a, b R, X, Y h ρ(ax + by )v = aρ(x)v + bρ(y )v = 0, ρ([x, Y ])v = ρ(x)ρ(y )v ρ(y )ρ(x)v = 0 ax + by, [X, Y ] h h g Lie

46 Lie G ρ : G GL(V ) v V H = {g G ρ(g)v = v} H G Lie h H Lie h = {X g dρ(x)v = 0} g, h Hρ(gh 1 )v = ρ(g)ρ(h 1 )v = v gh 1 H H G ρ : G GL(V ) C ρ v : G V ; g ρ(g)v ρ v C H = ρ 1 v (v) G H G Lie ( ) X h t R exp tx H ρ(exp tx)v = v t = = d dt t=0 ρ(exp tx)v = d dt etdρ(x) v = dρ(x)v. t=0 dρ(x)v = 0 X g t R ρ(exp tx)v = exp(tdρ(x))v = exp tx H X h n=0 1 n! (tdρ(x))n v = v V det : GL(V ) GL(R) = R {0} GL(V ) det tr : gl(v ) gl(r) = R det : GL(V ) GL(R) = R {0} GL(V ) X gl(v ) X : V V λ i (1 i k) p i k k det(e tx ) = (e λit ) p i = e p iλ i t. d dt det(etx ) = d t=0 dt det tr i=1 i=1 k e p iλ i t k = p i λ i = tr(x) i=1 t=0 i= V SL(V ) = {g GL(V ) detg = 1} SL(V ) Lie SL(V ) SL(V ) Lie sl(v ) sl(v ) = {X gl(v ) trx = 0} R n Lie SL(n, R), sl(n, R)

47 2.1 Lie Lie V A : V V R G = {g GL(V ) A(gu, gv) = A(u, v) (u, v V )} G Lie g G Lie g = {X gl(v ) A(Xu, v) + A(u, Xv) = 0 (u, v V )} V V R M 2 (V, R) b, c R, B, C M 2 (V, R) (bb + cc)(u, v) = bb(u, v) + cc(u, v) (u, v V ) bb + cc M 2 (V, R) M 2 (V, R) g GL(V ), B M 2 (V, R) (ρ(g)b)(u, v) = B(g 1 u, g 1 v) (u, v V ) ρ(g)b M 2 (V, R) ρ(g) GL(M 2 (V, R)) g, h GL(V ), u, v V (ρ(gh)b)(u, v) = B((gh) 1 u, (gh) 1 v) = B(h 1 g 1 u, h 1 g 1 v) = (ρ(h)b)(g 1 u, g 1 v) = (ρ(g)(ρ(h)b))(u, v) ρ(gh) = ρ(g)ρ(h) ρ : GL(V ) GL(M 2 (V, R)) u, v V, B M 2 (V, R) g (ρ(g)b)(u, v) C ρ C ρ Lie ρ G = {g GL(V ) ρ(g)a = A} G Lie G Lie ρ X gl(v ), B M 2 (V, R), u, v V (dρ(x)b)(u, v) = d dt (ρ(etx )B)(u, v) = d t=0 dt B(e tx u, e tx v) = B(Xu, v) B(u, Xv) g = {X gl(v ) dρ(x)a = 0} = {X gl(v ) A(Xu, v) + A(u, Xv) = 0 (u, v V )} V A V V A O(V ) = O(V ; A) O(V ) Lie O(V ) O(V ) Lie o(v ) = o(v ; A) o(v ) = {X gl(v ) A(Xu, v) + A(u, Xv) = 0 (u, v V )} R n Lie O(n), o(n) t=0

48 O(n) n o(n) n V A V SO(V ) = SO(V ; A) = SL(V ) O(V ; A) SO(V ) Lie SO(V ) SO(V ) Lie so(v ) = so(v ; A) so(v ) = sl(v ) o(v ) = o(v ) R n Lie SO(n), so(n) SO(n) O(n) O(n) π E : E M M (1) E, Mπ E : E M C (2) k M p p U Φ U : π 1 E (U) U R k u π E (U) Φ U (u) U π E (u) Φ U (u) = (π E (u), φ U (u)) (u π 1 E (U)) x Uπ 1 E (x) φ U π 1 E (x) : π 1 E (x) R k E M π E π 1 E (x) x k ranke π : E M π : E M M φ : E E π = π φ x M φ Ex : E x E x φ E E V M V M M V M M E M V E M T M M

49 Lie G Lie g Lie φ : G g T G ; (g, X) X g φφ T G G M T M = x M T x M u T M u T x M x M π(u) = x π : T M M M p p (U; x 1,..., x n ) π 1 (U) u u = ξ i x i π(u) Φ U (u) = (π(u), ξ 1,..., ξ n ) (u π 1 (U)) Φ U : π 1 (U) U R n π 1 (U) (x 1,..., x n, ξ 1,..., ξ n ) (V ; y 1,..., y n ) v π 1 (V ) v = η i y i π(v) π 1 (V ) (y 1,..., y n, η 1,..., η n ) (x 1,..., x n, ξ 1,..., ξ n ) η i = ξ j yi x j. ( ) y 1,..., y n, ξ j y1 yn,..., ξj xj x j C T M π π(x 1,..., x n, ξ 1,..., ξ n ) = (x 1,..., x n )

50 48 2 π : T M M C Φ U Φ U (u) U π(u) ( ) φ U ξ i = (ξ 1,..., ξ n ) x i x Uφ U π 1 (x) : π 1 (x) R n π : T M M M π E : E M M C σ : M E π E σ = 1 M E E Γ(M, E) Γ(E) M M MΓ(T M) M V p (T M, V ) = x M p (T x M, V ) ω p (T M, V ) ω p (T x M, V ) x M π(ω) = x π : p (T M, V ) M π : p (T M, V ) M M Γ( p (T M, V )) = Ω p (M; V ) M p M T p M, p M C X, Y X, Y M C, M Riemann (M,, ) Riemann Riemann Riemann Euclid ι : M M M Riemann ( M, g) M x ι dι x : T x M T ι(x) M M Riemann g dι g = ι g M Riemann (M, g) ( M, g) Riemann M Riemann M Riemann M Riemann Riemann (M, g) ( M, g) C ιm x dι x : T x M T ι(x) M ι(m, g) ( M, g) Riemann

51 ι : M ( M, g) Riemann ( M, g) Riemann x M T x M = {u T ι(x) M u, dιx (T x M) = 0} T M = x M T x M T M u T M u T x M x M π(u) = x π : T M M π : T M M M M n ñm p p (U; x 1,..., x n ) ι U : U M U x ι ι(x) M U M x U T x M T x Mp M (Ũ; x1,..., xñ) U = {y Ũ xn+1 (y) = = xñ(y) = 0} x U x 1,..., x x n x T x M ( ) x 1,..., x xñ x Gram-Schmidt (e 1 ) x,..., (eñ) x a 1 [ ] 1(x) a 1 ñ(x). [(e 1 ) x (eñ) x ] = x xñ x x aññ(x) a i j(x) U C ( ) T Ũ U C (e 1 ) x,..., (eñ) x C (e i ) x x 1,..., x x i x

52 50 2 (e 1 ) x,..., (e n ) x T x M T x M (e n+1 ) x,..., (eñ) x Tx Mπ 1 (U) T M u ñ u = ξ i (e i ) π(u) i=n+1 Φ U (u) = (π(u), ξ n+1,..., ξñ) (u π 1 (U)) Φ U : π 1 (U) U Rñ n π 1 (U) (x 1,..., x n, ξ n+1,..., ξñ) (V ; y 1,..., y n ) Gram-Schmidt y V (f 1 ) y,..., (fñ) y b 1 [(f 1 ) y (fñ) y ] = 1(y) b 1 ñ(y). y yñ y y bññ(y) v π 1 (V ) v = ñ i=n+1 η i (f i ) π(v) π 1 (V ) (y 1,..., y n, η n+1,..., ηñ) U V π 1 (U) π 1 (V ) x U V x i = x ñ j=1 y j x i y j x [ x 1 x ] [ = xñ x y 1 x yñ x ] y 1 x 1 (x). yñ (x) x 1 y 1 xñ (x). yñ (x) xñ. [ ] y i J(x) = x (x) j A(x) = [a i j(x)], B(x) = [b i j(x)]

53 [ x 1 [e 1 eñ] = [f 1 fñ] = xñ ] = [ ] x A 1 xñ [ ] y B 1 yñ [ ] y J. 1 yñ [e 1 eñ] = = [ ] x A 1 xñ [ ] y JA 1 yñ = [f 1 fñ] B 1 JA [e 1 eñ] = [f 1 fñ] B 1 JA u π 1 (U V ) u = [f 1 fñ] 0. 0 η n+1. ηñ = [e 1 eñ] 0. 0 ξ n+1. ξñ = [f 1 fñ]b 1 JA 0. 0 ξ n+1. ξñ η n+1. ηñ = B 1 JA 0. 0 ξ n+1. ξñ (x 1,..., x n, ξ n+1,..., ξñ) (y 1,..., y n, η n+1,..., ηñ) C T M

54 52 2 π π(x 1,..., x n, ξ n+1,..., ξñ) = (x 1,..., x n ) π : T M M C Φ U Φ U (u) U π(u) ñ φ U ξ i e i = (ξ n+1,..., ξñ) i=n+1 x Uφ U π 1 (x) : π 1 (x) Rñ n π : T M M π : T M MRiemann M T M M Euclid π : E M M r x M E x = π 1 (x) r P x = {(x; ẽ 1,..., ẽ r ) ẽ 1,..., ẽ r E x } P = P x x M P p M p U Φ U : π 1 (U) U R r P x R r R r GL(r, R) Lie Φ r U : x U P x U GL(r, R) ; (x; ẽ 1,..., ẽ r ) (x, Φ U (ẽ 1 ),..., Φ U (ẽ r )) P R r e 1,..., e r R r E x u (u(e 1 ),..., u(e r )) P x = {u u R r E x }

55 R r a GL(r, R) R r E x u ua GL(r, R) P x GL(r, R) P u P x x π : P M π C x Mπ 1 (x) GL(r, R) P E G Lie π P : P M M G (1) P, Mπ P : P M C (2) Lie G P u P a G π P (u a) = π P (u) x M G πp 1 (x) (3) M p p U Φ U : πp 1 (U) U G u πp 1 (U) Φ U (u) U π P (u) Φ U (u) = (π P (u), φ U (u)) (u πp 1 (U)) a G φ U (u a) = φ U (u)a P M π P πp 1 (x) x a G P R a R a (u) = u a M O(M) M O(2) M r M GL(r, R) π P : P M G M G ρ : G GL(V ) M E = P ρ V G P V (u, v) g = (ug, ρ(g) 1 v) (g G, (u, v) P V ) P V G P ρ V P ρ V (u, v) P V [u, v] π E [u, v] = π P (u) ((u, v) P V )

56 54 2 π E : E M g G π P (ug) = π P (u) π E (3) Φ U : πp 1 (U) U G Ψ U : π 1 E (U) U V ; [u, v] (π P (u), ρ(φ U (u))v) Ψ U g G [ug, ρ(g) 1 v] (π P (ug), ρ(φ U (ug))ρ(g) 1 v) = (π P (u), ρ(φ U (u))ρ(g)ρ(g) 1 v) = (π P (u), ρ(φ U (u))v) Ψ U Ψ U E π E : E M M E = P ρ V ρ u P V E π(u) ; v [u, v] u uv = [u, v] P E E M r P EP GL(r, R) 1 : GL(r, R) GL(r, R) P 1 R r P 1 V E ; [u, v] uv E P M P M G G f : P P f : G G f (u a ) = f (u )f (a ) (u P, a G ) f = (f, f ) P P f : P P M M f (u a ) = f (u )f (a ) (u P, a G ) f (π 1 (π(u ))) = f (u G ) = f (u )f (G ) f (u )G = π 1 (π(f (u ))) f : P P M M

57 f : P P f : G G f f f : M M P f(p ) G G M M P P P M G G Lie g X Xu = d u exp tx (u P ) dt t=0 P X X X u P dπ u X u = 0 X P M G G Lie g X g G (Ad(g)X) = dr g 1X u P (Ad(g)X) u = d u exp tad(g)x = d ug exp txg 1 dt t=0 dt ( t=0 ) d = (dr g 1) ug ug exp tx = (dr dt g 1) ug Xug t=0 = (dr g 1X ) u (Ad(g)X) = dr g 1X E M, E E s, t s, t (x) = s(x), t(x) (x M) M s, t C, E (E,, ) Riemann Riemann Riemann Riemann

58 π : E M M r x M E x = π 1 (x) r P x = {(x; ẽ 1,..., ẽ r ) ẽ 1,..., ẽ r E x } P = P x x M P p M p U Φ U : π 1 (U) U R r P x R r R r O(r) Lie Φ r U : x U P x U O(r) ; (x; ẽ 1,..., ẽ r ) (x, Φ U (ẽ 1 ),..., Φ U (ẽ r )) P R r e 1,..., e r R r E x u (u(e 1 ),..., u(e r )) P x = {u u R r E x } R r a O(r) R r E x u ua O(r) P x O(r) P u P x x π : P M π C x Mπ 1 (x) GL(r, R) P E E M r P E P O(r) 1 : O(r) GL(r, R) P 1 R r E π : P M M G ρ : G GL(V ) P ρ E = P ρ V M E Γ(E) {Φ Ω 0 (P ; V ) Φ(ua) = ρ(a) 1 Φ(u) (u P, a G)} M E φ Φ(u) = u 1 (φ(π(u))) (u P ) P V Φ

59 M E φ Φ Φ(ua) = (ua) 1 (φ(π(ua))) = ρ(a) 1 u 1 (φ(π(u))) = ρ(a) 1 Φ(u) Φ(ua) = ρ(a) 1 Φ(u) P V Φx M π(u) = x u P φ(x) = uφ(u) E φ u P a G ua (ua)φ(ua) = uρ(a)ρ(a) 1 Φ(u) = uφ(u) π 1 (x) M E φ Φ(u) = u 1 (φ(π(u))) (u P ) P V Φ x Mπ(u) = x u P uφ(u) = uu 1 (φ(π(u))) = φ(x) φ Φ(ua) = ρ(a) 1 Φ(u) P V Φx M π(u) = x u P φ(x) = uφ(u) E φ Φ u 1 φ(π(u)) = u 1 uφ(u) = Φ(u)

60 Euclid M E M : Γ(T M) Γ(E) Γ(E); (X, φ) X φ (1) (4) E (1) X+Y φ = X φ + Y φ, (X, Y Γ(T M), φ Γ(E)) (2) X (φ + ψ) = X φ + X ψ, (X Γ(T M), φ, ψ Γ(E)) (3) fx φ = f X φ, (X Γ(T M), φ Γ(E), f C (M)) (4) X (fφ) = f X φ + (Xf)φ. (X Γ(T M), φ Γ(E), f C (M)) X Γ(T M) X φ = 0 φ Γ(E) 3.1.2, M EE X φ, ψ = X φ, ψ + φ, X ψ (X Γ(T M), φ, ψ Γ(E)), Euclid M Eφ Γ(E) x M X T x M X φ E x M x φ T x M E x

61 E n M M x p (T x (M), E x ) ω x ωω E M p ()M (U; x 1,..., x n ) ( ) x ω x x i,, 1 x x ip i 1,..., i p U E C M E p Ω p (M; E) ( 3.1.1) M E M : Ω 0 (M; E) Ω 1 (M; E); φ φ (1) (2) E (1) (φ + ψ) = φ + ψ, (φ, ψ Ω 0 (M; E)) (2) (fφ) = f φ + dfφ. (φ Ω 0 (M; E), f C (M)) 3.1.6, M EE x d φ, ψ = φ, ψ + φ, ψ (φ, ψ Γ(E)), Euclid E M r P E EM U e 1,..., e r Ω 0 (U; E) e i Ω 1 (U; E) U 1 ω j i Ω 1 (U) e 1,..., e r r e i = e j ω j i j=1 ω = (ω j i ) Ω 1 (U; gl(r, R)) E Uφ φ = e i φ i φ = e i (dφ i ) + e j φ j = e i ( dφ i + ω i jφ j) E ωω

62 M E M U σ = [e 1,..., e r ] σ = [ē 1,..., ē r ] ω ω σ = σω σ = σ ω σ = σf f Ω 0 (U; M r (R)) f r GL(r, R) ω = f 1 df + f 1 ωf. σ = σf σ = σf + σdf = σωf + σdf = σ(ωf + df). σ = σ ω = σf ω. σf ω = σ(df + ωf) f ω = df + ωf ω = f 1 df + f 1 ωf π : E M M r M {U α α A} α A x U α Φ α : π 1 (U α ) U α R r Φ α Ex : E x R r φ α (x) = Φ α Ex : E x R r U β x U α U β ψ αβ (x) = φ α (x) φ β (x) 1 : R r R r C ψ αβ : U α U β GL(r, R) {ψ αβ α, β A} {U α } E M E {ψ αβ } ψ αα (x) = 1 r (x U α ) ψ βα (x) = ψ αβ (x) 1 (x U α U β ) ψ αβ (x) ψ βγ (x) ψ γα (x) = 1 r. (x U α U β U γ ) M {U α } C ψ αβ : U α U β GL(r, R) {ψ αβ }

63 M {U α } C ψ αβ : U α U β GL(r, R) {ψ αβ } α (U α R r ) (x, u) U α R r (y, v) U β R r x = y u = ψ αβ (x)v (x, u) (y, v) U α R r {ψ αβ } E M r M {U α } {ψ αβ } R r e 1,..., e r EU α E e i (x) = φ α (x) 1 e i (x U α ) {e i } ω α U α U β ω β = ψ 1 αβ dψ αβ + ψ 1 αβ ω αψ αβ U α gl(r, R) {ω α } {ω α } E {e i } U β E ē i (x) = φ β (x) 1 e i (x U β ) {ē i } ω β x U α U β ē i (x) = φ β (x) 1 e i = φ α (x) 1 φ α (x)φ β (x) 1 e i = r φ α (x) 1 ψ αβ (x)e i = φ α (x) 1 e j (ψ αβ (x)) j i r = e j (x)(ψ αβ (x)) j i. j=1 j=1 σ = [e 1,..., e r ], σ = [ē 1,..., ē r ] σ = σψ αβ U α gl(r, R) {ω α } ω α U α U E ξ = σφ = [e 1... e r ] φ 1. φ r

64 62 3 ξ = ( dφ i + φ j (ω α ) i j) ei = σ(dφ + ω α φ) U α M U α U β U α U β f = ψ αβ E U α U β ξ = σφ = σ φ σφ = σ φ = σf φ φ = f φ φ = f 1 φ ff 1 = 1 r σ(d φ + ω β φ) dff 1 + fd(f 1 ) = 0 = σf(d(f 1 φ) + (f 1 df + f 1 ω α f)f 1 φ) = σf(df 1 φ + f 1 dφ + f 1 dff 1 φ + f 1 ω α φ) = σ(fdf 1 φ + dφ + dff 1 φ + ω α φ) = σ(dφ + ω α φ). U α U β M E n M E ω Ω p (M; E) d ω Ω p+1 (M; E) () M (U; x 1,..., x n ) ω ω x = a i1 i p (x)(dx i 1 ) x (dx i p ) x i 1 < <i p ( a i1 i p Ω 0 (U; E) ) (d ω) x = ( ) a i1 i p i 1 < <i p i=1 x i (dx i ) x (dx i 1 ) x (dx i p ) x x

65 ( ) a i1 i p i 1 < <i p i=1 x i (dx i ) x (dx i 1 ) x (dx ip ) x x p+1 (T x (M), E x ) a i1 i p (x) ω x ( a i1 i p (x) = ω x x i,, 1 x ) x ip x (1 i 1 < < i p n) i 1,..., i p a i1 i p (x) (V ; y 1,..., y n ) M 1 ( ) b i1 i p (x) = ω x y i,, 1 x y i p x ω x = b i1 i p (x)(dy i 1 ) x (dy ip ) x i 1 < <i p x U V T x (M) 2 x i x y i x y i = x j=1 ( ) b i1 i p (x) = (dy i ) x = j 1,,j p =1 i=1 j=1 x j y i (x) x j x y i x j (x)(dxj ) x x j 1 xjp (x) y i 1 y (x)a ip j 1 j p (x) x j yi (x) yi x (x) = δ k jk ( ) b i1 i p i 1 < <i p i=1 y i (dy i ) x (dy i 1 ) x (dy ip ) x x = 1 /y p! i x b i1 i p (dy i ) x (dy i 1 ) x (dy ip ) x i,i 1,...,i p =1

66 64 3 = 1 p! = 1 p! i,i 1,...,i p=1 i 1,...,i p =1 j,j 1,...,jp=1 k,k 1,...,kp=1 x j { } x j y (x) 1 xjp i /x j x (x) y i 1 y (x)a i j p 1 j p (x) y i x k (x)(dxk ) x yi1 x k 1 (x)(dxk 1 ) x yip x k p (x)(dxk p ) x j 1,...,jp=1 k,k 1,...,kp=1 { x j 1 xjp /x k x (x) y i 1 y (x)a ip j 1 j p (x) (dx k ) x yi 1 x k 1 (x)(dxk 1 ) x yip x k p (x)(dxkp ) x. } i r =1 i r =1 x j r yir (x) ir y x (x) = δ kr j r k r ( ) x j r y i r (x) x k ir y x (x) = n x j ( ) r y i r (x) (x) kr ir i r =1 y x k kr x x jr = y (x) 2 y ir i r x k x (x) k r i r =1 k k r (dx k ) x (dx k 1 ) x (dx k p ) x k k r ( ) = 1 p! i 1,...,i p=1 j 1,...,jp=1 k,k 1,...,kp=1 x j 1 xjp (x) y i 1 y (x) i /x p k x a j1 j p (dx k ) x yi 1 x k 1 (x)(dxk 1 ) x yip x k p (x)(dxk p ) x = 1 p! /x k x a j1 j p (dx k ) x (dx k 1 ) x (dx k p ) x k,k 1,...,k p =1 ( ) = a k1 k p k 1 < <k p k=1 x k (dx k ) x (dx k 1 ) x (dx k p ) x. x d ω d ω d ω E p + 1 d ω p = 0 ω Ω 0 (M; E) E d ω ( ) (d ω) x = ω x i (dx i ) x i=1 x

67 M X d ω = ω ( ) (d ω) x (X) = ω i=1 x i (dx i ) x (X) = ( ω) x (X). x E M E d : Ω p (M; E) Ω p+1 (M; E) E E M E d : Ω p (M; E) Ω p+1 (M; E) d E M E φ Ω p (M; E) ψ Ω q (M) d (φ ψ) = d φ ψ + ( 1) p φ dψ (U; x 1,..., x n ) M Uφ ψ φ x = ψ x = (a i1 i p Ω p (U; E), b j1 j q (φ ψ) x = a i1 i p (x)(dx i 1 ) x (dx i p ) x i 1 < <i p b j1 j q (x)(dx j 1 ) x (dx j q ) x j 1 < <j q i 1 < <i p Ω q (U) ) j 1 < <j q a i1 i p (x)b j1 j q (x) (dx i 1 ) x (dx i p ) x (dx j 1 ) x (dx j q ) x k 1 < < k p+q {i 1,..., i p, j 1,..., j q } = {k 1,..., k p+q } sgn ( i1 i p j 1 j q k 1 k p k p+1 k p+q ) = 0

68 66 3 = (φ ψ) x sgn k 1 < <k p+q i 1 < <i p j 1 < <j q a i1 i p (x)b j1 j q (x)(dx k 1 ) x (dx k p+q ) x ( i1 i p j 1 j q k 1 k p k p+1 k p+q ) = = d (φ ψ) x sgn k 1 < <k p+q i 1 < <i p j 1 < <j q ( i1 i p j 1 j q k 1 k p k p+1 k p+q /x i x (a i1 i p b j1 j q )(dx i ) x (dx k 1 ) x (dx k p+q ) x i=1 sgn k 1 < <k p+q i 1 < <i p j 1 < <j q { i=1 ( i1 i p j 1 j q k 1 k p k p+1 k p+q } ( /x i x a i1 i p )b j1 j q (x) + a i1 i p (x) b j 1 j q (x) x i ) ) = (dx i ) x (dx k 1 ) x (dx k p+q ) x { ( /x i x a i1 i p )b j1 j q (x) + a i1 i p (x) b } j 1 j q (x) x i i 1 < <i p j 1 < <j q i=1 (dx i ) x (dx i 1 ) x (dx i p ) x (dx j 1 ) x (dx j q ) x = (d φ ψ) x + ( 1) p (φ dψ) x. d (φ ψ) = d φ ψ + ( 1) p φ dψ E M E φ Ω 0 (M; E) ψ Ω p (M) d d (φψ) = (d d φ) ψ p = 0 d d (φψ) = (d d φ)ψ d d : Ω 0 (M; E) Ω 2 (M; E) x M d d : E x 2 (T x M, E x )

69 R = d d Ω 2 (M; EndE) d d φ = R φ. (φ Ω p (M; E)) 3.2.5φ Ω 0 (M; E) ψ Ω p (M) d d (φψ) = d ((d φ) ψ + φdψ) = (d d φ) ψ (d φ) dψ + (d φ) dψ + φddψ ( ddψ = 0) = (d d φ) ψ. p = 0 d d (φψ) = (d d φ)ψ ψ Ω 0 (M) = C (M) x M (d d φ) x 2 (T x M, E x ) φ(x) d d : E x 2 (T x M, E x ) R = d d Ω 2 (M; EndE) φ Ω p (M; E) φ 1 Ω 0 (M; E) φ 2 Ω p (M) φ 1 φ 2 φ = φ 1 φ 2 d d φ = R φ d d φ = d d (φ 1 φ 2 ) = (d d φ 1 ) φ 2 = (R φ 1 ) φ 2 = R φ 1 φ 2 = R φ R E M E ω Ω p (M; E) p = 0 X X(M) p = 1 X, Y X(M) d ω(x) = X ω. d ω(x, Y ) = X (ω(y )) Y (ω(x)) ω([x, Y ]) p = 0 d ω = ω X X(M) d ω(x) = X ω. p = 1 ω ω = i a i dx i ω d ω d ω = /x ja i dx j dx i i,j

70 68 3 X, Y X = i ξ i x, i Y = j η j x j d ω(x, Y ) = i,j /x ja i (ξ j η i η j ξ i ) ω(y ) = i a i η i X (ω(y )) = i,j ξ j /x j(a i η i ) = i,j ξ j ( ( /x ja i )η i + a i η i x j ). X Y Y (ω(x)) = i,j η j ( ( /x ja i )ξ i + a i ξ i x j ) [X, Y ] = ξ i ηj i,j x i x η j ξi j i,j x j x i = ( ) ξ j ηi ξi ηj i,j xj x j x i ω([x, Y ]) = i,j ( ) a i ξ j ηi ξi ηj. xj x j d ω(x, Y ) = X (ω(y )) Y (ω(x)) ω([x, Y ]) p > 0 X 1,... X p+1 X(M) = d ω(x 1,..., X p+1 ) p+1 i=1 ( 1) i 1 Xi (ω(x 1,..., ˆX i,..., X p+1 )) + i<j( 1) i+j ω([x i, X j ], X 1,..., ˆX i,..., ˆX j,..., X p+1 ).

71 E M E R R (X, Y )φ = ( X Y Y X [X,Y ] )φ. (X, Y X(M), φ Ω 0 (M; E)) Ricci R(X, Y )φ = (d d φ)(x, Y ) = X (d φ(y )) Y (d φ(x)) d φ([x, Y ]) = X ( Y φ) Y ( X φ) [X,Y ] φ = ( X Y Y X [X,Y ] )φ E M E Φ Ω 0 (M; EndE) ( X Φ)φ = X (Φφ) Φ( X φ) (X X(M), φ Ω 0 (M; E)) X Φ Ω 0 (M; EndE) EndE X Φ Ω 0 (M; EndE) f C (M) ( X Φ)(fφ) = X (Φ(fφ)) Φ( X (fφ)) = X (fφφ) Φ(f X φ + (Xf)φ) = f X (Φφ) + (Xf)Φφ fφ( X φ) (Xf)Φφ = f( X (Φφ)) Φ( X φ)) = f( X Φ)φ. x M ( X Φ)φ x φ(x) X Φ : Ω 0 (M; E) Ω 0 (M; E) x M X Φ : E x E x X Φ Ω 0 (M; EndE) EndE (1) (3) E f C (M) ( X (fφ))φ = X (fφφ) fφ( X φ) = f X (Φφ) + (Xf)Φφ fφ( X φ) = f( X Φ)φ + (Xf)Φφ.

72 70 3 X (fφ) = f( X Φ) + (Xf)Φ EndE E M E Φ Ω p (M; EndE) ψ Ω q (M; E) d (Φ ψ) = d Φ ψ + ( 1) p Φ d ψ 3.2.5(U; x 1,..., x n ) M UΦ ψ Φ x = ψ x = (A i1 i p Ω p (U; EndE), b j1 j q (Φ ψ) x = A i1 i p (x)(dx i 1 ) x (dx ip ) x i 1 < <i p b j1 j q (x)(dx j 1 ) x (dx jq ) x j 1 < <j q i 1 < <i p Ω q (U; E) ) j 1 < <j q A i1 i p (x)b j1 j q (x) (dx i 1 ) x (dx ip ) x (dx j 1 ) x (dx jq ) x k 1 < < k p+q {i 1,..., i p, j 1,..., j q } {k 1,..., k p+q } sgn ( i1 i p j 1 j q k 1 k p k p+1 k p+q ) = 0 = (Φ ψ) x sgn k 1 < <k p+q i 1 < <i p j 1 < <j q A i1 i p (x)b j1 j q (x)(dx k 1 ) x (dx k p+q ) x ( i1 i p j 1 j q k 1 k p k p+1 k p+q ) = d (Φ ψ) x ( i1 i p j 1 j q sgn k 1 < <k p+q i 1 < <i p j 1 < <j q k 1 k p k p+1 k p+q )

73 = /x i x (A i1 i p b j1 j q )(dx i ) x (dx k 1 ) x (dx k p+q ) x i=1 ( i1 i p j 1 j q sgn k 1 < <k p+q i 1 < <i p j 1 < <j q k 1 k p k p+1 k p+q { } ( /x i x A i1 i p )b j1 j q (x) + A i1 i p (x) /x i x b j1 j q ) i=1 = (dx i ) x (dx k 1 ) x (dx k p+q ) x { } ( /x i x A i1 i p )b j1 j q (x) + A i1 i p (x) /x i x b j1 j q i 1 < <i p j 1 < <j q i=1 (dx i ) x (dx i 1 ) x (dx i p ) x (dx j 1 ) x (dx j q ) x = (d Φ ψ) x + ( 1) p (Φ d ψ) x. d (Φ ψ) = d Φ ψ + ( 1) p Φ d ψ E M E R d R = 0. Bianchi φ Ω 0 (M; E) d φ Ω 1 (M; E) d d d φ = d d (d φ) = R d φ R Ω 2 (M; EndE) d d d φ = d (d d φ) = d (R φ) = (d R )φ + R d φ (d R )φ = 0. φ Ω 0 (M; E) d R = E M E M U E σ = [e 1,..., e r ] ω Ω Ω 2 (U; gl(r, R)) R σ = σω Ω = dω + ω ω (d R )σ = σ(dω Ω ω + ω Ω)

74 72 3 Bianchi dω Ω ω + ω Ω = 0 Bianchi Ω R σ = d d σ = d (σω) = (d σ) ω + σdω = σω ω + σdω = σ(dω + ω ω). Ω = dω + ω ω R σ = σω d (R σ) = (d R )σ + R d σ = (d R )σ + R σω = (d R )σ + R σ ω = (d R )σ + σω ω. d (σω) = (d σ) Ω + σdω = σω Ω + σdω. (d R )σ = σ(dω Ω ω + ω Ω) Bianchi Ω = dω + ω ω ddω = 0 dω = dω ω ω dω = (Ω ω ω) ω ω (Ω ω ω) = Ω ω ω ω ω ω Ω + ω ω ω = Ω ω ω Ω. dω Ω ω + ω Ω = 0

75 Euclid 3.1.9α σ α (x) = φ α (x) 1 [e 1,..., e r ] (x U α ) E P U α σ α {ω α } P ω σ α ω = ω α Φ r α : πp 1 (U α ) U α GL(r, R) ; u (π P (u), φ α (π P (u))u) φ α (x) : E x R r u E x φ α (π P (u))u R r GL(r, R) U α GL(r, R) gl(r, R) 1 ω α ( ω α ) (x,g) = g 1 dg + g 1 (ω α ) x g ((x, g) U α GL(r, R)) π P 1 (U α ) (Φ r α) ω α P πp 1 (U α U β ) (Φ r α) ω α (Φ r β) ω β ω β = ((Φ r β) 1 ) (Φ r α) ω α = (Φ r α (Φβ) r 1 ) ω α Φ r α (Φ r β) 1 (x, g) = (x, φ α (x) φ β (x) 1 g) = (x, ψ αβ (x)g) (Φ r α (Φ r β) 1 ) ω α = (ψ αβ g) 1 d(ψ αβ g) + (ψ αβ g) 1 ω α (ψ αβ g) = g 1 ψαβ 1 ((dψ αβ)g + ψ αβ dg) + g 1 ψαβ 1 ω αψ αβ g = g 1 dg + g 1 (ψαβ 1 dψ αβ + ψαβ 1 ω αψ αβ )g = g 1 dg + g 1 ω β g = ω β. (Φ r α) ω α P gl(r, R) 1 ω σ α ω σ α ω = σ α(φ r α) ω α = (Φ r ασ α ) ω α

II Lie Lie Lie ( ) 1. Lie Lie Lie

II Lie Lie Lie ( ) 1. Lie Lie Lie II Lie 2010 1 II Lie Lie Lie ( ) 1. Lie Lie 2. 3. 4. Lie i 1 1 2 Lie Lie 4 3 Lie 8 4 9 5 11 6 14 7 16 8 19 9 Lie 23 10 Lie 26 11 Lie Lie 31 12 Lie 35 1 1 C Lie Lie 1.1 Hausdorff M M {(U α, φ α )} α A (1)

More information

II I Riemann 2003

II I Riemann 2003 II I Remann 2003 Dfferental Geometry II Dfferental Geometry II I Dfferental Geometry I 1 1 1.1.............................. 1 1.2................................. 10 1.3.......................... 16 1.4.........................

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1 1 Ricci V, V i, W f : V W f f(v = Imf W ( f : V 1 V k W 1 {f(v 1,, v k v i V i } W < Imf > < > f W V, V i, W f : U V L(U; V f : V 1 V r W L(V 1,, V r ; W L(V 1,, V r ; W (f + g(v 1,, v r = f(v 1,, v r

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

1. x { e 1,..., e n } x = x1 e1 + + x n en = (x 1,..., x n ) X, Y [X, Y ] Intrinsic ( ) Intrinsic M m P M C P P M P M v 3 v : C P R 1

1. x { e 1,..., e n } x = x1 e1 + + x n en = (x 1,..., x n ) X, Y [X, Y ] Intrinsic ( ) Intrinsic M m P M C P P M P M v 3 v : C P R 1 1. x { e 1,..., e n } x = x1 e1 + + x n en = (x 1,..., x n ) X, Y [X, Y ] Intrinsic ( ) Intrinsic M m P M C P P M P M v 3 v : C P R 1 f, g C P, λ R (1) v(f + g) = v(f) + v(g) (2) v(λf) = λv(f) (3) v(fg)

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

I

I I 2008 I i 1 1 1.1.............................. 1 1.2................................. 7 1.3......................... 13 2 23 2.1......................... 23 2.2............................... 31 3 37

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

第10章 アイソパラメトリック要素

第10章 アイソパラメトリック要素 June 5, 2019 1 / 26 10.1 ( ) 2 / 26 10.2 8 2 3 4 3 4 6 10.1 4 2 3 4 3 (a) 4 (b) 2 3 (c) 2 4 10.1: 3 / 26 8.3 3 5.1 4 10.4 Gauss 10.1 Ω i 2 3 4 Ξ 3 4 6 Ξ ( ) Ξ 5.1 Gauss ˆx : Ξ Ω i ˆx h u 4 / 26 10.2.1

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63) 211 12 1 19 2.9 F 32 32: rot F d = F d l (63) F rot F d = 2.9.1 (63) rot F rot F F (63) 12 2 F F F (63) 33 33: (63) rot 2.9.2 (63) I = [, 1] [, 1] 12 3 34: = 1 2 1 2 1 1 = C 1 + C C 2 2 2 = C 2 + ( C )

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

January 16, (a) (b) 1. (a) Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t

January 16, (a) (b) 1. (a) Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t January 16, 2017 1 1. Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) (simple) (general) (stable) f((1 t)x + ty) (1 t)f(x)

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) ( + + 3 + 4 +... π 6, ( ) 3 + 5 7 +... π 4, ( ). ( 3 + ( 5) + 7 + ) ( 9 ( ( + 3) 5 + ) ( 7 + 9 + + 3 ) +... log( + ), ) +... π. ) ( 3 + 5 e x dx π.......................................................................

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ),

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ), 1 1 1.1,,. 1.1 1.2 O(2) R 2 O(2).p, {0} r > 0. O(3) R 3 O(3).p, {0} r > 0.,, O(n) ( SO(n), O(n) ): Sym 0 (R n ) := {X M(n, R) t X = X, tr(x) = 0}. 1.3 O(n) Sym 0 (R n ) : g.x := gxg 1 (g O(n), X Sym 0

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

Microsoft Word - 表紙.docx

Microsoft Word - 表紙.docx 黒住英司 [ 著 ] サピエンティア 計量経済学 訂正および練習問題解答 (206/2/2 版 ) 訂正 練習問題解答 3 .69, 3.8 4 (X i X)U i i i (X i μ x )U i ( X μx ) U i. i E [ ] (X i μ x )U i i E[(X i μ x )]E[U i ]0. i V [ ] (X i μ x )U i i 2 i j E [(X i

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

等質空間の幾何学入門

等質空間の幾何学入門 2006/12/04 08 tamaru@math.sci.hiroshima-u.ac.jp i, 2006/12/04 08. 2006, 4.,,.,,.,.,.,,.,,,.,.,,.,,,.,. ii 1 1 1.1 :................................... 1 1.2........................................ 2 1.3......................................

More information

January 27, 2015

January 27, 2015 e-mail : kigami@i.kyoto-u.ac.jp January 27, 205 Contents 2........................ 2.2....................... 3.3....................... 6.4......................... 2 6 2........................... 6

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, (

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, ( ( ),.,,., C A (2008, ). 1,,. 1.1. (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,,. 1.2. (M, g) p M, s p : M M p, : (1) p s p, (2) s 2 p = id ( id ), (3) s p ( )., p ( s p (p) = p),,

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information