- γ 1929 γ - SI γ 137 Cs 662 kev γ NaI active target NaI γ NaI 2 NaI γ NaI(Tl) γ 2 NaI γ γ γ

Size: px
Start display at page:

Download "- γ 1929 γ - SI γ 137 Cs 662 kev γ NaI active target NaI γ NaI 2 NaI γ NaI(Tl) γ 2 NaI γ γ γ"

Transcription

1

2 - γ 1929 γ - SI γ 137 Cs 662 kev γ NaI active target NaI γ NaI 2 NaI γ NaI(Tl) γ 2 NaI γ γ γ

3 1 3 2 γ γ γ γ Dirac M NaI(Tl) NaI(Tl) NIM/CAMAC NIM CAMAC γ

4 Cs Na Co ADC NaI(Tl) NaI γ A 100 B 102 C 105 D 107 2

5 γ γ NaI(Tl) 1. γ γ γ NaI(Tl) 4. γ NaI active target γ 3

6 2 γ γ 3 γ NaI 1 1 NaI active target 1 NaI 7 4

7 2 γ I 0 A n (x ) : N t N t = n Ad 5

8 2.2: 2.2 σ t σ t N t = σ t n Ad d σ t n Ad A = σ t nd (2.1) σ t N t A 1 (2.1) ( ) N y N y = I 0 (σ t nd) (2.2) σ t σ σ N y I 0 nd (2.3) I 0 nd L L = I 0 nd (2.3) ( ) 6

9 Ω Ω 2.3: Ω = A 2 l 2 dσ dω N y ( Ω) = dσ ΩL dω NaI(Tl) γ σ N y 2.4 x N y (2.2) dx di(x) di(x) = σni(x)dx I(x) = I 0 e σnx = I 0 e µx 7

10 µ µ = σn N y 2.4: N y = σn d 0 d dxi(x) = σni 0 e µx dx 0 = σn 1 e µd I 0 (2.4) µ = (1 e µd )I 0 (2.5) (2.5) σn = µ γ (2.4) (2.5) d dx (2.2) N y = I 0 (1 e µdx ) I 0 µdx = I 0 σndx Ω (2.4) σ dσ Ω dω N y ( Ω) = dσ e µd Ωn1 I 0 dω µ 8

11 2.2 γ γ K E e ( 2.5) E e = hν E b E b Z E b kev Z kev 2.5: Z 5 K L M K K 5/

12 γ hν hν = hν 1 + hν m e (1 cos θ) c 2 m e hν E e 2.6: hν E e = hν 1 + hν m e (1 cos θ) c 2 (2.6) θ = π hν E e (θ = π) = hν (2.7) hν m e c 2 (2.6) E e (θ = 0) = 0 (2.7) - [ ] 2 ] dσ dω = r2 e 1 [1 + cos 2 θ + α2 (1 cos θ) α(1 cos θ) 1 + α(1 cos θ) r e α = hν m e - c 2 σ c - [ 1 + α σ c = 2πre 2 α 2 ( 2(1 + α) 1 + 2α ) log(1 + 2α) log(1 + 2α) α ] α 2α (1 + 2α) 2 (2.8) Z 10

13 E e E e + E e + E e + = hν 2m e c 2 2m e c 2 = 1024 kev 2.7: 2.8: - Z

14 Z 2.8 vertex M Z σ σ M 2 Z 2 Z γ γ ( 2.9) ( 2.10) µ ρ µ ρ µ ( ) = µ ρ µ ( ) γ 300 kev 300 kev 7 MeV 7 MeV 2.10 γ γ 662 kev 0.1 cm 2 /g ρ lead 11.3 g/cm 3 d =5 cm γ e µd = e 0.1 ρlead d = % 12

15 2.9: (NaI) ( [1] ) ( )(cm 2 /g) γ (MeV) Photo τ/ρ Compton total σ/ρ Pair κ/ρ Total attenuation µ 0 /ρ Total absorption µ a /ρ (Compton scattering σ s /ρ) (Rayleigh σ r /ρ) γ Compton absorption σ a /ρ 13

16 2.10: (Pb) ( [1] )

17 3 1) 2) γ hν hν E e 3.1) 3.1: hν hν E e 3 hν c = hν c cos θ + γm ev e cos ϕ (3.1) 0 = hν c sin θ γm ev e sin ϕ (3.2) m e c 2 + hν = hν + γm e c 2 (3.3) 15

18 (3.1) (3.2) ( hν c hν ) 2 c cos θ = (γm e v e ) 2 cos 2 ϕ ) 2 = (γm e v e ) 2 sin 2 ϕ ( hν c sin θ ( ) 2 h [(ν ν cos θ) 2 + (ν sin θ) 2 ] = (γm e v e ) 2 c (3.3) [m e c 2 + h(ν ν )] 2 = 1 m 2 1 β ec 4 e 2 1 βe 2 m 2 = ec 4 [m e c 2 + h(ν ν )] 2 β 2 e = 1 = γ 2 m 2 ec 2 βe 2 = β2 e m 2 1 β ec 2 (3.4) e 2 m 2 ec 4 [m e c 2 + h(ν ν )] 2 β 2 e 1 β 2 e = 1 c 2 (2h(ν ν )m e c 2 + (h(ν ν )) 2 ) (3.5) (3.4) 2h(ν ν )m e c 2 + (h(ν ν )) 2 = (hν) 2 2hνhν cos θ + (hν ) 2 m e c 2 (E E ) = 2hνhν (1 cos θ) hν hν hν = hν m ec (1 cos θ) (3.6) E e E e = hν hν hν = hν hν m e (1 cos θ) + 1 c 2 16

19 662 kev 3.2 θ θ = 0 0 θ 200 kev 3.2: 662 kev θ θ = 0 0 θ 200 kev [2] [3] γ M 17

20 3.2.1 Dirac Dirac (p µ γ µ m)ψ = (p/ m)ψ = 0 (p/ = p µ γ µ ) (3.7) Dirac ψ ψ ψ γ 0 ψ Dirac u r (p), v r (p); (r = 1, 2) u r (p) = N v r (p) = N ( χ r σ p χ E+m r ) ( σ p E+m χ 3 r χ 3 r ) (3.8) (3.9) N N = E + m χ r σ Dirac ( ) ( ) 1 0 χ 1 = χ 2 = (3.10) 0 1 u r(p)u s (p) = 2Eδ rs = v r(p)v s (p) (3.11) u r(p)v s (p) = 0 = v ru s (p) (3.12) u r (p)ū r (p) = p/ + m (3.13) r=1,2 v r (p) v r (p) = p/ m (3.14) r=1,2 r, s A B γ TrAB = TrBA (3.15) {γ µ, γ ν } = 2g µν (3.16) 18

21 γ Tr[γ µ γ ν ] = 4g µν (3.17) Tr[γ ρ γ σ γ α γ β ] = 4(g ρσ g αβ + g ρβ g σα g ρα g σβ ) (3.18) Tr[γ µ 1 γ µ 2... γ µ 2n 1] = 0 }{{} (n = 1, 2,... ) (3.19) γ γ µ = γ 0 γ µ γ 0 (3.20) γ ( ) ( ) γ σ = γ = 0 1 σ 0 (3.21) 4 k µ = (ω; k) m 2 = E 2 p 2 m = 0 k µ k µ = ω 2 k 2 = E 2 p 2 = 0 (3.22) ϵ(k, λ) 4 k µ k µ ϵ µ (k, λ) = 0 (λ = 1, 2) (3.23) λ λ = 1, 2 (λ = 0) (λ = 3) ϵ µ (λ)ϵ µ (ρ) = g λρ (3.24) A µ A µ d 3 k [ = ϵ µ (k, λ)a(k, λ)e ikx + ϵ µ (k, λ)a (k, λ)e ikx] (3.25) (2π) 3 2ω λ ϵ µ (k, λ) a(k, λ), a (k, λ) [a(k, λ), a (k, λ )] = 2ω(2π) 3 δ λ,λ δ 3 (k k ) (3.26) 19

22 Dirac Dirac : d 3 p [ ψ = apr u (2π) 3 r (p)e ipx + b 2E prv r (p)e ipx] (3.27) r d ψ 3 p [ = a (2π) 3 2E pr ū r (p)e ipx + b pr v r (p)e ipx] (3.28) r a pr, a pr b pr, b pr 0 {a pr, a qs} = (2π) 3 2Eδ 3 (p q)δ rs (3.29) {b pr, b qs} = (2π) 3 2Eδ 3 (p q)δ rs (3.30) is F (x 1 x 2 ) 0 T (ψ(x 1 ) ψ(x 2 )) 0 (3.31) 0 ψ(x 1 ) ψ(x 2 ) 0 t 1 > t 2 = 0 ψ(x (3.32) 2 )ψ(x 1 ) 0 t 1 < t 2 T ( ) 20

23 (3.11) (3.12) (3.13) (3.14) (3.32) is F (x 1 x 2 ) d 3 p = 0 T ( (a (2π) 3 pr u r (p)e ipx 1 + b 2E prv r (p)e ipx 1 ) r d 3 q (a (2π) 3 2E qsū(q)e iqx 2 + b qs v r (q)e iqx 2 ) 0 s = d 3 p d 3 q 0 (2π) 3 2E (2π) 3 2E (a pra qsu r (p)ū s (q)e iqx 2 ipx 1 + b prb qs v r (p) v s (q)e ipx 1 iqx 2 ) 0 θ(t 1 t 2 ) r,s d 3 p d 3 q 0 (2π) 3 2E (2π) 3 2E (a qsa pr u r (p)ū s (q)e iqx 2 ipx 1 + b qs b prv r (p) v s (q)e ipx 1 iqx 2 ) 0 θ(t 2 t 1 ) r,s = d 3 p d 3 q 0 (2π) 3 2E (2π) 3 2E (a pra qsu r (p)ū s (q)e iqx 2 ipx 1 ) 0 θ(t 1 t 2 ) r,s d 3 p d 3 q 0 (2π) 3 2E (2π) 3 2E (b qsb prv r (p) v s (q)e ipx 1 iqx 2 ) 0 θ(t 2 t 1 ) ( a 0 = 0, b 0 = 0) r,s = (2π) 3 2Eδ 3 d 3 p d 3 q (p q)δ rs 0 (2π) 3 2E (2π) 3 2E u r(p)ū s (q)e iqx 2 ipx 1 ) 0 θ(t 1 t 2 ) r,s d 3 p d 3 q 0 (2π) 3 2E (2π) 3 2E (a qsa pr u r (p)ū s (q)e iqx 2 ipx 1 ) 0 θ(t 1 t 2 ) r,s (2π) 3 2Eδ 3 d 3 p (p q)δ rs 0 (2π) 3 2E + r,s 0 d 3 p (2π) 3 2E r,s d 3 q (2π) 3 2E (v r(p) v s (q)e ipx 1 iqx 2 ) 0 θ(t 2 t 1 ) d 3 q (2π) 3 2E (b prb qs v r (p) v s (q)e ipx 1 iqx 2 ) 0 θ(t 2 t 1 ) ( (3.29), (3.30)) d 3 p = (2π) 3 2E ( u r (p)ū r (p)e ipx 2 ipx 1 θ(t 1 t 2 ) v r (p) v r (p)e ipx 1 ipx 2 θ(t 2 t 1 )) r r d 3 p = (2π) 3 2E ((p/ + m)eipx 2 ipx 1 θ(t 1 t 2 ) (p/ m)e ipx 1 ipx 2 θ(t 2 t 1 )) = i [ ] d 4 pe ip(x 1 x 2 ) p/ + m (2π) 4 p 2 m 2 + iϵ Dirac B 21

24 3.3: p µ M ( dσ = M fi 2 (2π) 4 δ 4 p 1 + p 2 ) p f 2E 1 2E 2 v 12 f f ( d 3 p f (2π) 3 2E f ) (3.33) p 1 p 2 p f E 1 E 2 E f v m 1 = m 3 = 0 E 1 = p 1, E 3 = p 3 (3.34) p 2 = 0 E 2 = m p 2 2 = m 2 (3.35) 2E 1 E 2 v 12 ( p1 2E 1 2E 2 v 12 = 2E 1 E 2 p ) 2 E 1 E ( 2 p1 = 4E 1 m 2 p ) 2 E 1 E 2 p 1 = 4E 1 m 2 ( p E 2 = 0) 1 = 4m 2 p 1. ( p E = γmv γm ( (3.35)) = v, γ ) 22

25 ( 1 (2π) 4 δ 4 p 1 + p 2 ) ( ) d 3 p f p f 2E 1 2E 2 v 12 (2π) 3 2E f f f ( 1 = 4m 2 p 1 (2π)4 δ 4 p 1 + p 2 ) ( ) d 3 p f p f (2π) 3 2E f f f ( ) ( ) 1 d = 4m 2 p 1 (2π)4 δ (E 1 + E 2 E 3 E 4 ) δ 3 3 p 3 d 3 p 4 (p 1 + p 2 p 3 p 4 ) (2π) 3 2E 3 (2π) 3 2E 4 ( ) ( ) 1 d = 4m 2 p 1 (2π)4 δ (E 1 + m 2 E 3 E 4 ) δ 3 3 p 3 d 3 p 4 (p 1 p 3 p 4 ) (2π) 3 2E 3 (2π) 3 2E 4 (3.36) d 3 p 4 ( ) ( ) 1 d 3 p 3 1 4m 2 p 1 (2π)4 δ (E 1 + m 2 E 3 E 4 ) (2π) 3 2E 3 (2π) 3 2E 4 (3.37) p 4 = p 1 p 3 E 4 E 4 = M 2 + p 2 4 = M 2 + (p 1 p 3 ) 2. (3.37) d 3 p 3 = p 3 2 d p 3 dω d p 3 p 3 δ(f(x)) = 1 f (x 0 ) δ(x x 0). (3.38) E 1 + m 2 E 3 E 4 E 1 + m 2 E 3 E 4 = E 1 + m 2 E 3 M 2 + (p 1 p 3 ) 2 = E 1 + m 2 p 3 M 2 + p p 1 p 3 cos θ + p 3 2 (E 1 + m 2 E 3 E 4 ) p 3 = 1 2 p 1 cos θ + 2 p 3 2E 4 = E 4 + E 3 p 1 cos θ E 4 = E 2 + E 1 p 1 cos θ E 4 = m 2 + p 1 (1 cos θ) E 4. (3.39) p 1 p 3 = p 4 p 2 (p 1 p 3 ) 2 = 2p 1 p 3 = 2(E 1 E 3 p 1 p 3 cos θ) = 2 p 1 p 3 (1 cos θ) (p 4 p 2 ) 2 = p p 2 2 2p 4 p 2 = 2m 2 2 2E 4 m 2 23

26 (3.39) p 1 (1 cos θ) = m2 2 + E 4 m 2. (3.40) p 3 (E 1 + m 2 E 3 E 4 ) p 3 = m 2 p 3 m 2 + E 4 E 4 p 3 = m 2 p 1 m 2 + m 2 E 4 p 3 = m 2 p 1 E 4 p 3. (3.41) (3.37) (3.38) (3.41) ( ) ( ) 1 p3 2 d p 3 dω 1 dσ = 4m 2 p 1 (2π)4 δ (E 1 + m 2 E 3 E 4 ) (2π) 3 2E 3 (2π) 3 2E 4 ( ) ( ) 1 1 p3 2 dω 1 = 4m 2 p 1 (2π)4 (E 1 +m 2 E 3 E 4 ) (2π) 3 2E 3 (2π) 3 2E 4 p 3 ( ) ( ) 1 E 4 p 3 p3 2 dω 1 = 16(2π) 2 m 2 p 1 m 2 p 1 E 3 E 4 ( ) 2 1 p3 = dω (3.42) 64π 2 m 2 2 p 1 γ + e γ + e (3.43) 3.4 vertex vertex H I (x)h I (y) = j µ (x)a µ (x)j ν (y)a ν (y) (3.44) it fi = S fi δ fi = ( ie)2 d 4 xd 4 y f T (j µ (x)a µ (x)j ν (y)a ν (y)) i. (3.45) 2! 24

27 3.4: y off-shell x y - on-shell off-shell x 25

28 x, y 2! it fi = ( i) 2 e 2 d 4 xd 4 y f T (j µ (x)a µ (x)j ν (y)a ν (y)) i (3.46) = ( i) 2 e 2 d 4 xd 4 yt [ k A µ (x) 0 p j µ (x)j ν p 0 A ν (y) k ] (3.47) = ( i) 2 e 2 d 4 xd 4 yϵ µ (k ) p T (j µ (x)j ν (y)) p ϵ ν (k)e ik x iky. (3.48) 0 A ν (y) k = 0 = 0 = 0 d 3 k 1 (2π) 3 2ω d 3 k 1 (2π) 3 2ω d 3 k 1 (2π) 3 2ω = ϵ ν (k, λ)e iky [ ϵ ν (k 1, λ 1 )a(k 1, λ 1 )e ik1y + ϵ ν (k 1, λ 1 )a (k 1, λ 1 )e ] ik1y k, λ 1 [ ϵ ν (k 1, λ 1 )a(k 1, λ 1 )e ] ik1y a (k, λ) 0 ( 0 a = 0) λ 1 [ ϵ ν (k 1, λ 1 )e ] ik1y (2π) 3 2ωδ 3 (k 1 k)δ λ1 λ 0 λ 1 j µ = ϕ(x)γ µ ϕ(x) p T (j µ (x)j ν (y) p = p T ( ψ(x)γ µ ψ(x) ψ(y)γ ν ψ(y)) p (3.49) Dirac (3.29) (3.30) p ψ(x)γ µ ψ(x) ψ(y)γ ν ψ(y) p = p d 3 q 1 (a (2π) 3 q 2E 1 r1ūr 1 (q 1)e iq 1 x + b q 1 r 1 v r1 (q 1)e iq 1 x )γ µ r 1 d 3 q 2 (a (2π) 3 q 2E 2 r 2 u r2 (q 2)e iq 2 x + b q 2 r v r 2 2 (q 2)e iq 2 x ) r 2 d 3 q 1 (a (2π) 3 q 2E 1 s 1 ū s1 (q 1 )e iq1y + b q1 r 1 v s1 (q 1 )e iq1y )γ ν s 1 d 3 q 2 (a (2π) 3 q2 s 2E 2 u s2 (q 2 )e iq2y + b q 2 r 2 v s2 (q 2 )e iq2y ) p. (3.50) s 2 16 p a aa a p, p baa b p 0, 0 26

29 p a q 1 r 1 a q 2 r 2 a q 1 s 1 a q2 s 2 p = 0 a p ua q 1 r 1 a q 2 r 2 a q 1 s 1 a q2 s 2 a pt 0 = (2π) 3 2Eδ 3 (p q 1)δ ur1 0 a q 2 r 2 a q 1 s 1 a q2 s 2 a pt 0 0 a q 1 r 1 a p ua q 2 r 2 a q 1 s 1 a q2 s 2 a pt 0 = (2π) 3 2Eδ 3 (p q 1)δ ur1 0 a q 2 r 2 a q 1 s 1 a q2 s 2 a pt 0 = ((2π) 3 2E) 2 δ 3 (p q 1)δ ur1 δ 3 (q 2 p)δ s2 t 0 a q 2 r 2 a q 1 s 1 0 = ((2π) 3 2E) 3 δ 3 (p q 1)δ ur1 δ 3 (q 2 p)δ s2 tδ 3 (q 2 q 1 )δ r2 s 1 (3.50) d 3 q 1 ū (2π) 3 u (p )e ip x γ µ u s1 (q 1 )e iq1xū s1 (q 1 )e iq1y γ ν u t (p)e ipy 2E s 1 = ū u (p )e ip x γ µ d 3 q 1 (2π) 3 2E (q / 1 + m)e iq1( x+y) γ ν u t (p)e ipy (3.51) p b q 1 r 1 a q 2 r 2 a q 1 s 1 b q 2 s 2 p = 0 a p ub q 1 r 1 a q 2 r 2 a q 1 s 1 b q 2 s 2 a pt 0 = 0 b q 1 r 1 b q 2 s 2 a p ua q 2 r 2 a q 1 s 1 a pt 0 = (2π) 3 2Eδ 3 (q 1 q 2 )δ r1 s 2 0 a p ua q 2 r 2 a q 1 s 1 a pt 0 = ((2π) 3 2E) 2 δ 3 (q 1 q 2 )δ r1 s 2 δ 3 (q 2 q 1 )δ r2 s 1 0 a p ua pt 0 (2π) 3 2Eδ 3 (q 1 q 2 )δ r1 s 2 0 a p ua q 1 s 1 a q 2 r 2 a pt 0 = ((2π) 3 2E) 3 δ 3 (q 1 q 2 )δ r1 s 2 δ 3 (q 2 q 1 )δ r2 s 1 δ 3 (p p)δ ut 0 0 ((2π) 3 2E) 3 δ 3 (q 1 q 2 )δ r1 s 2 δ 3 (p q 1 )δ us1 δ 3 (q 2 p)δ r2 t 0 0 = const. ((2π) 3 2E) 3 δ 3 (q 1 q 2 )δ r1 s 2 δ 3 (p q 1 )δ us1 δ 3 (q 2 p)δ r2 t 0 0 ((2π) 3 2E) 3 δ 3 (q 1 q 2 )δ r1 s 2 δ 3 (p q 1 )δ us1 δ 3 (q 2 p)δ r2 t ū u (p )e ip y γ ν (q 2 ) d 3 q 2 (2π) 3 2E ( q / 2 + m)e iq2(x y) γ µ u t (p)e ipx (3.52) (3.52) T x y µ ν ū u (p )e ip x γ µ d 3 q 2 (q 2 ) (2π) 3 2E ( q / 2 + m)e iq2(y x) γ ν u t (p)e ipy (3.53) 27

30 (3.51) (3.53) ū u (p )e ip x γ µ d 3 q 1 (2π) 3 2E (q / 1 + m)e iq1( x+y) γ ν u t (p)e ipy θ(t x t y ) ū u (p )e ip x γ µ d 3 q 2 (q 2 ) (2π) 3 2E ( q / 2 + m)e iq2(y x) γ ν u t (p)e ipy θ(t y t x ) = ū u (p )e ip x γ µ d 3 q 1 (2π) 3 2E {(q / 1 + m)e iq1( x+y) ( q/ 1 + m)e iq1( y+x) }γ ν u t (p)e ipy id = ū u (p )e ip x γ µ 4 q 1 (2π) { q/ 1 + m 4 q1 2 m 2 + iϵ }γν u t (p)e ipy. id it fi = ( i) 2 e 2 d 4 xd 4 yϵ µ (k )ū u (p )e ip x γ µ 4 q 1 (2π) { q/ 1 + m 4 q1 2 m 2 + iϵ }γν u t (p)e ipy ϵ ν (k)e ik x iky. = (2π) 4 δ 4 (k + p k p )( i) 2 e 2 ϵ µ (k )ū u (p )γ µ i(p/ + k/ + m) { (p + k) 2 m 2 + iϵ }γν u t (p)ϵ ν (k). M 1 = e 2 ϵ µ (k )ū u (p )γ µ p/ + k/ + m { (p + k) 2 m 2 + iϵ }γν u t (p)ϵ ν (k). (3.54) M 2 = e 2 ϵ ν (k)ū u (p )γ ν p/ k / + m { (p k ) 2 m 2 + iϵ }γµ u t (p)ϵ µ (k ) M M M [ M = M 1 + M 2 = e 2 ū s (p (p/ + k/ + m) ) ϵ/ (p + k) 2 m ϵ/ + ϵ/ (p/ ] k/ + m) 2 (p k ) 2 m 2 ϵ/ u r (p) (3.55) ϵ/ = ϵ µ γ µ, k/ = k µ γ µ p = (m; 0) ϵ = (0; ϵ), ϵ = (0; ϵ ) 28

31 ϵ p = (0; ϵ) (m; 0) = 0 (3.56) ϵ p = (0; ϵ ) (m; 0) = 0 (3.57) ϵ k = (0; ϵ) (ω; k) = ϵ k = 0 (3.58) ϵ k = (0; ϵ ) (ω ; k ) = ϵ k = 0 (3.59) ϵ (p + k ) = ϵ (p + k) = ϵ p + ϵ k = 0 ϵ = ϵ k (3.60) ϵ (p k) = ϵ (p k ) = ϵ p ϵ k = 0 (3.61) ϵ ϵ = ϵ ϵ = 1 ( (λ = 1, 2) (3.24) ). (3.62) p + k = p + k ϵ/p/ = ϵ µ γ µ p ν γ ν = ϵ µ p ν (2g µν γ ν γ µ ) = ϵ p p/ϵ/ = p/ϵ/ (3.63) ϵ / p/ = ϵ µγ µ p ν γ ν = ϵ µp ν (2g µν γ ν γ µ ) = ϵ p p/ϵ / = p/ϵ / (3.64) ϵ/k/ = ϵ µ γ µ k ν γ ν = ϵ µ k ν (2g µν γ ν γ µ ) = ϵ k k/ϵ/ = k/ϵ/ (3.65) ϵ / k / = ϵ µγ µ k νγ ν = ϵ µk ν(2g µν γ ν γ µ ) = ϵ k k / ϵ / = k / ϵ / (3.66) p k = p k (3.22) (3.63) (3.64) (p + k) 2 = (p + k ) 2 m 2 + 2p k + k 2 = m 2 + 2p k + k 2 p k = p k ( (3.22)) (3.67) (p + k ) 2 = (p k) 2 m 2 2p k + k 2 = m 2 2p k + k 2 p k = p k ( (3.22)) (3.68) (p + k) 2 m 2 = p 2 + 2p k + k 2 m 2 = 2p k (3.69) (p k ) 2 m 2 = p 2 2p k + k 2 m 2 = 2p k (3.70) (p/ + m)ϵ/u(p) = ( ϵ/p/ + mϵ/)u(p) = ϵ/(p/ m)u(p) = 0 (3.71) (p/ + m)ϵ / u(p) = ( ϵ/ p/ + mϵ / )u(p) = ϵ / (p/ m)u(p) = 0 (3.72) 29

32 M [ ] ϵ/ M = e 2 ū r (p k/ϵ/ ) 2p k + ϵ/k/ ϵ / u 2k s (p) (3.73) p (3.42) 2 M 2 = e4 [ ] { [ ] ϵ/ ū r (p k/ϵ/ ) 2 2p k + ϵ/k/ ϵ / ϵ/ u 2k s (p) ū r (p k/ϵ/ ) p 2p k + ϵ/k/ ϵ / u 2k s (p)} (3.74) p r,s {ū r (p )γ µ γ ν γ ρ u s (p)} = u s (p) γ ρ γ ν γ µ ū r (p ) = u s (p) γ 0 γ 0 γ ρ γ 0 γ 0 γ ν γ 0 γ 0 γ µ γ 0 u r (p ) ( (γ 0 ) 2 = 1 ) = ū s (p)(γ 0 γ ρ γ 0 )(γ 0 γ ν γ 0 )(γ 0 γ µ γ 0 )u r (p ) = ū s (p)γ ρ γ ν γ µ u r (p ) ( (3.20)) (3.74) M 2 = e4 [ ϵ/ ū r (p k/ϵ/ ) 2 2p k + ϵ/k/ ϵ / 2k p r,s [ { = e4 ϵ/ 2 Tr (p/ k/ϵ/ + m) 2p k + ϵ/k/ ϵ / 2k p ] [ ϵ/k/ϵ/ u s (p)ū s (p) } (p/ + m) k Tr[(p / + m)ϵ / k/ϵ/(p/ + m)ϵ/k/ϵ / ] = Tr[p / ϵ / k/ϵ/p/ϵ/k/ϵ / ] + m 2 Tr[ϵ / k/ϵ/ϵ/k/ϵ / ] ] u r (p ) 2p k + ϵ / k/ ϵ/ 2k p { ϵ/k/ϵ/ 2p k + ϵ / k/ }] ϵ/ 2k p ( (3.13 )) ( m γ (3.19) 0) (3.75) = Tr[p / ϵ / ϵ/k/p/k/ϵ/ϵ / ] + m 2 Tr[ϵ / ϵ/k/k/ϵ/ϵ / ] ( (3.65)) (3.76) m 2 k/k/ 0 A, B Tr[Ak/k/B] = Tr[Ak µ γ µ k ν γ ν B] = Tr[Ak µ k ν (2g µν γ ν γ µ )B] ( (3.15)) = 2k µ k µ Tr[AB] Tr[Ak/k/B] = Tr[Ak/k/B] ( (3.22) k µ k µ = 0) 30

33 (3.76) Tr[p / ϵ / ϵ/k/p/k/ϵ/ϵ / ] = 2k ptr[p / ϵ / ϵ/k/ϵ/ϵ / ] + Tr[p / ϵ / ϵ/p/k/k/ϵ/ϵ / ] = 2k ptr[p / ϵ / ϵ/k/ϵ/ϵ / ] ( (3.77)) = 2k ptr[p / ϵ / ϵ/( ϵ/k/)ϵ / ] ( (3.65)) Tr[Ak/k/B] = 0 (3.77) k/p/ = 2k p p/k/ (3.78) = 2k ptr[p / ϵ / k/ϵ / ] ( (3.24) ϵ/ϵ/ = 2ϵ ϵ ϵ/ϵ/ = 2 ϵ/ϵ/ ϵ/ϵ/ = 1) = 2(k p)p ρϵ σk α ϵ β4(g ρσ g αβ + g ρβ g σα g ρα g σβ ) ( (3.18)) = 2(k p)4{(p ϵ )(k ϵ ) + (p ϵ )(ϵ k) (p k)(ϵ ϵ )} = 8(k p){2(p ϵ )(k ϵ ) + (p k)} ( (3.62)) = 8(k p){2(k ϵ ) 2 + (p k )} ( (3.60)). Tr[(p / + m)ϵ / k/ϵ/(p/ + m)ϵ/k/ϵ / ] = 8(k p){2(k ϵ ) 2 + (p k)}. (3.79) (3.75) k 2 k k Tr[ϵ/k / ϵ / (p/ + m)ϵ / k / ϵ/(p / + m)] = Tr[ϵ/k / ϵ / p/ϵ / k / ϵ/p / ] + m 2 Tr[ϵ/k / ϵ / ϵ / k / ϵ/] 1 = Tr[ϵ/k / ϵ / p/ϵ / k / ϵ/p / ] m 2 Tr[ϵ/k / k / ϵ/] = Tr[ϵ/k / ϵ / p/ϵ / k / ϵ/p / ] = 2(ϵ p )Tr[ϵ/k / ϵ / k / ϵ/p / ] Tr[ϵ/k / p/ϵ / ϵ / k / ϵ/p / ] 2(ϵ p )Tr[ϵ/k / ϵ / k / ϵ/p / ] = 2(ϵ p )Tr[ϵ/( ϵ / k / )k/ ϵ/p / ] = 0 31

34 2 Tr[ϵ/k / p/ϵ / ϵ / k / ϵ/p / ] = Tr[ϵ/k / p/k / ϵ/p / ] = 2(k p)tr[ϵ/k / ϵ/p / ] + Tr[ϵ/p/k / k / ϵ/p / ] = 2(k p)tr[ϵ/k / ϵ/p / ] = 2(k p)4{(ϵ k )(ϵ p ) + (ϵ p )(ϵ k ) (ϵ ϵ)(k p )} = 2(k p)4{2(ϵ p )(ϵ k ) + (k p )} = 2(k p)4{ 2(ϵ k ) 2 + (k p )} = 8(k p){ 2(ϵ k ) 2 + (k p)} ( (3.67)) Tr[ϵ/k / ϵ / (p/ + m)ϵ / k / ϵ/(p / + m)] = 8(k p){ 2(ϵ k ) 2 + (k p)} (3.80) k k Tr [(p/ + m) {ϵ/ k/ϵ/} (p/ + m) {ϵ/ k/ ϵ/}] = Tr [p/ ϵ/ k/ϵ/p/ϵ / k/ ϵ/] + m 2 Tr [ϵ/ k/ϵ/ϵ / k/ ϵ/] ( γ 0) = Tr [p/ ϵ/ ϵ/k/p/k/ ϵ / ϵ/] + m 2 Tr [ϵ/ ϵ/k/k/ ϵ / ϵ/] ( (3.65) (3.66)) = (Tr [p/ϵ/ ϵ/k/p/k/ ϵ / ϵ/] + m 2 Tr [ϵ/ ϵ/k/k/ ϵ / ϵ/]) + Tr [k/ϵ/ ϵ/k/p/k/ ϵ / ϵ/] Tr [k/ ϵ/ ϵ/k/p/k/ ϵ / ϵ/] ( p = p + k k ) (3.81) γ (3.81) Tr [p/ϵ/ ϵ/k/p/k/ ϵ / ϵ/] + m 2 Tr [ϵ/ ϵ/k/k/ ϵ / ϵ/] p/p/ = 1 2 {p/, p/} = 1 2 p µp ν 2g µν = p p = m 2 (3.82) = 2(k p)tr [p/ϵ/ ϵ/k/ ϵ / ϵ/] Tr [p/ϵ/ ϵ/p/k/k/ ϵ / ϵ/] + m 2 Tr [ϵ/ ϵ/k/k/ ϵ / ϵ/] ( (3.78)) = 2(k p)tr [p/ϵ/ ϵ/k/ ϵ / ϵ/] Tr [ϵ/ p/p/ϵ/k/k/ ϵ / ϵ/] + m 2 Tr [ϵ/ ϵ/k/k/ ϵ / ϵ/] ( (3.63) (3.64)) = 2(k p)tr [p/ϵ/ ϵ/k/ ϵ / ϵ/] m 2 Tr [ϵ/ ϵ/k/k/ ϵ / ϵ/] + m 2 Tr [ϵ/ ϵ/k/k/ ϵ / ϵ/] ( (3.82)) = 2(k p)tr [p/ϵ/ ϵ/k/ ϵ / ϵ/] = 2(k p)2(ϵ ϵ)tr [p/k/ ϵ / ϵ/] + 2(k p)tr [p/ϵ/ϵ/ k/ ϵ / ϵ/] (3.83) 32

35 (3.83) 1 4(k p)(ϵ ϵ)tr [p/k/ ϵ / ϵ/] = 4(k p)(ϵ ϵ)4{(p k )(ϵ ϵ) + (p ϵ)(k ϵ ) (k ϵ)(p ϵ )} 2 = 16(k p)(p k )(ϵ ϵ) 2 ( (3.56) (3.57)) 2(k p)tr [p/ϵ/ϵ / k/ ϵ / ϵ/] = 2(k p)tr [ϵ/p/ϵ / k/ ϵ / ϵ/] (3.83) = 2(k p)tr [ϵ/ϵ/p/ϵ/ k/ ϵ / ] ( (3.15)) = 2(k p)tr [p/ϵ / k/ ϵ / ] ( ϵ/)ϵ/ = 1) = 2(k p)4((p ϵ )(k ϵ ) + (p ϵ )(ϵ k ) (p k )(ϵ ϵ )) = 8(k p)(k p) ( (3.56) (3.57)) Tr [p/ϵ/ ϵ/k/p/k/ ϵ / ϵ/] + m 2 Tr [ϵ/ ϵ/k/k/ ϵ / ϵ/] = 16(k p)(p k )(ϵ ϵ) 2 8(k p)(k p) (3.81) Tr [k/ϵ/ ϵ/k/p/k/ ϵ / ϵ/] = Tr [k/ϵ/ k/ϵ/p/k/ ϵ / ϵ/] ( (3.65)) = 8(k p)(p k ){2(ϵ ϵ) 2 1} (3.84) = 2(k ϵ )Tr [k/ϵ/p/k/ ϵ / ϵ/] + Tr [ϵ/ k/k/ϵ/p/k/ ϵ / ϵ/] = 2(k ϵ )Tr [k/ϵ/p/k/ ϵ / ϵ/] ( (3.15) = 2(k ϵ )Tr [ϵ/k/ϵ/p/k/ ϵ / ] ( (3.65)) = 2(k ϵ )Tr [k/ϵ/ϵ/p/k/ ϵ / ] ( ϵ/)ϵ/ = 1) = 2(k ϵ )Tr [k/p/k/ ϵ / ] = 2(k ϵ )4((k p)(k ϵ ) + (k ϵ )(p k ) (k k )(p ϵ )) = 8(k ϵ ) 2 (p k ) ( (3.57) (3.59)) 33

36 (3.81) Tr [k/ / ϵ ϵ/k/p/k / ϵ / ϵ/] = Tr [k/ ϵ / ϵ/k/p/ϵ / k / ϵ/] ( (3.66)) = 2(k ϵ)tr [k/ / ϵ ϵ/k/p/ϵ / ] Tr [k/ ϵ / ϵ/k/p/ϵ / ϵ/k / ] = 2(k ϵ)tr [k/ / ϵ ϵ/k/p/ϵ / ] ( Tr [k/ ϵ / ϵ/k/p/ϵ / ϵ/k / ] = Tr [k/ k / ϵ / ϵ/k/p/ϵ / ϵ/] = 0) = 2(k ϵ)tr [ϵ/ k / ϵ / ϵ/k/p/] = 4(k ϵ)(k ϵ )Tr [ϵ/ ϵ/k/p/] 2(k ϵ)tr [k/ ϵ / ϵ / ϵ/k/p/] = 2(k ϵ)tr [k/ ϵ / ϵ / ϵ/k/p/] ( (3.59)) = 2(k ϵ)tr [k/ ϵ/k/p/] = 2(k ϵ)4((k p)(ϵ k) + (k ϵ)(k p) (k k)(ϵ p)) = 8(k ϵ) 2 (k p) (3.81) Tr [(p/ + m) {ϵ/ k/ϵ/} (p/ + m) {ϵ/ k/ ϵ/}] = 8(k p)(p k )(2(ϵ ϵ) 2 1) 8(k ϵ ) 2 (p k ) + 8(k ϵ) 2 (k p) M M 2 = e 4 8(p k) 8(k p){2(k 2 ϵ ) 2 + (p e 4 k)} + 8(p k ) 2 8(k p){ 2(ϵ k ) 2 + (k p)} e 4 + 4(p k)(p k ) (8(k p)(p k )(2(ϵ ϵ) 2 1) 8(k ϵ ) 2 (p k ) + 8(k ϵ) 2 (k p)) = e 4 [ 2(k ϵ ) 2 + (p k) p k = e 4 [ p k p k + k p k p + 4(ϵ ϵ) (ϵ k ) 2 + (k p) k p ] (3.85) + 2{2(ϵ ϵ) 2 1) (k ϵ ) 2 p k + (k ϵ) 2 p k } p k = (m; 0) (ω; k) = mω, (3.86) p k = (m; 0) (ω ; k ) = mω (3.87) ] [ mω M 2 = = e 4 mω + mω ] mω + 4(ϵ ϵ) 2 2 [ ω = e 4 ω + ω ] ω + 4(ϵ ϵ)

37 3.5: k, k ϵ λ ϵ 1 ϵ 2 k θ ϵ 1 ϵ 2 k ϵ 2 ϵ 2 ϵ 1 θ ϵ 1 (3.42) ( ) dσ 1 k dω = e 4 2 [ ω LAB 64π 2 m 2 e k ω + ω ] ω + 4(ϵ ϵ) 2 2 (3.88) ( ) e 4 ω 2 [ ω = 64π 2 m 2 e ω ω + ω ] ω + 4(ϵ ϵ) 2 2. (3.89) dσ dω = 1 1 LAB 2 64π 2 m 2 λ,λ e = 1 64π 2 m 2 e ( ) ω e 4 2 [ ω ω ω + ω ] ω + 4(ϵ λ ϵ λ )2 2 ( ) ω e 4 2 [ω 2 ω ω + ω ω + (ϵ λ ϵ λ )2 2 λ,λ ] (3.90). (3.91) 3.5 ϵ 1 ϵ 2 k θ ϵ 1 ϵ 2 k ϵ 2 ϵ 2 ϵ 1 θ ϵ 1 ϵ 2 ϵ 2 = 1 ϵ 1 ϵ 1 = ϵ 1 ϵ 1 cos θ = cos θ dσ dω = LAB 1 32π 2 m 2 e ( ) ω e 4 2 [ ω ω ω + ω ] ω + (1 + cos2 θ) 2. (3.92) (3.92) SI 35

38 2 1 m 2 e 1 ħ2 c 2 [MeV 2 cm 2 ] = ħ2 m 2 ec 4 [MeV 2 ] m 2 ec 2 (3.93) e 4 e 4 [C 4 ] ϵ 2 0[C 4 /(MeV 2 cm 2 )]ħ 2 c 2 [MeV 2 cm 2 ] (3.94) m 2 e SI (3.92) e4 32π 2 m 2 e 1 1 e 4 1 ( ) ( ) ħ 2 e 4 32π 2 m 2 e 32π 2 m 2 ec 2 ϵ 2 0ħ 2 c 2 = e 4 32π 2 ϵ 2 0m 2 ec 4 r e = e 2 4πϵ 0 m ec 2 e 4 32π 2 ϵ 2 0m 2 ec = r2 e 4 2 ω ω hν (3.6) ω ω = hν hν 1 = hν m ec (1 cos θ) = α(1 cos θ) + 1 α = (3.92) ω ω + ω ω + (1 + cos2 θ) 2 = (3.92) SI [ dσ dω = r2 e LAB 2 hν m e c 2 (3.95) α(1 cos θ) + (1 + α(1 cos θ)) + (1 + cos2 θ) 2 = (1 + cos 2 θ) α(1 cos θ) + α(1 cos θ) + α2 (1 cos θ) α(1 cos θ) = 1 + cos 2 θ + α2 (1 cos 2 θ) 1 + α(1 cos θ) α(1 cos θ) ] 2 [ ] 1 + cos 2 θ + α2 (1 cos 2 θ). (3.96) 1 + α(1 cos θ) 36

39 662 kev 3.6 (θ < 90 ) (θ < 90 ) 8 θ θ = 0 θ = 90 θ θ = : 662 kev (θ < 90 ) (θ < 90 ) θ θ 37

40 4 4.1 NaI(Tl) γ γ : NaI(Tl) Z γ NaI(Tl) NaI(Tl) NaI Tl

41 4.2: : (PMT) PMT 39

42 NaI(Tl) NaI(Tl) 88/DM NaI 5.08 cm(2 inch) 2.54 cm(1 inch) /DM NaI(Tl) 4.5 NaI 4.6 NaI NaI PMT 4.4: 88/DM NaI(Tl) NaI PMT( ) NaI PMT 2 inch NaI 40

43 図 4.5: 88/DM 型の NaI(Tℓ) 検出器の正面図 NaI 結晶と検出器のケースの大きさが見 えるようにその他の部分を省いている NaI 結晶は直径 2 inch 高さ 2 inch の円柱形で ある 図 4.6: 使用した NaI 検出器の画像 NaI 結晶と PMT が一つのアルミケースに入ってい る 左に接続されている黒いソケットは PMT に適切な電圧をかけるための Divider 回路 である 銀色のアルミケースの内部の左側に PMT がある 右側には NaI 結晶がある 41

44 NaI の密度 ρnai は 3.67 g/cm3 であり モル質量 ANaI は 150 g/mol である そのため 単位体積あたりの原子数 n 個/cm3 は n= ρnai NA = (個/cm ) ANaI 150 (4.1) である ナトリウム Na の電子数は 11 ヨウ素 I の電子数は 53 であるから 単位体積あ たりの電子数は 3 n ( ) (個/cm ) である 4.2 NIM/CAMAC モジュール 本実験の同時計測回路およびその読み取りで使用した NIM と CAMAC のモジュール について説明する 図 はモジュールを実際に接続している様子である 図 4.7: 使用した NIM モジュール HVPS は別の場所にある Gate and Delay Generator は 2 台用いている このクレートの下に CAMAC のクレート (図 4.8) がある 42

45 図 4.8: 使用した CAMAC モジュールおよび Delay このクレートの上に NIM のクレー トがある ADC は 2 つ接続されているが使用するのは上の 1 つだけである NIM モジュール NIM とは Nuclear Instrument Modules の略で原子核 高エネルギー物理のためのモ ジュールの規格である High Voltage Power Supply 光電子増倍管に電圧をかけるために高電圧電源 (HVPS) を用いた 本実験では 林栄 精器株式会社の RPH-030 型 -3.2 kv 4ch 高圧電源を用いた Gate and Delay Generator CAMAC の ADC に Gate 信号を送るのに用いる NIM 信号の幅を広げたり 信号のタ イミングを遅らせることができる 本実験で使用したのは テクノランドコーポレーショ ン社の N-TM 307 型 2ch Gate and delay である Discriminator 光電子増倍管から出力されたアナログ信号を NIM のデジタル信号に変換するために用 いる Discriminator はアナログ信号が設定したスレッショルドを超えたときにデジタル 信号を出力する装置である 本実験ではテクノランドコーポレーション社の N-TM 405 型 8 ch Discriminator を用いた 43

46 Coincidence Coincidence VETO VETO N-TM 103 3ch 4-Fold 1-VETO Coincidence Delay Delay Delay N Hoshin 16ch 300 ns fixed delay TDC 300 ns N-TS ns delay delay ADC Fan in / Fan out Fan In / Fan Out Phillips Scientific NIM Model 740 quad linear Fan-In/Out CAMAC CAMAC Computer Automated Measurement And Control NIM Scaler Scaler C-SE 113 ADC CAMAC ADC(Analog to Digital Converter) 4096 ch Gate C-QV

47 TDC TDC(Time to Digital Converter) Start Stop C-TS 105 CC-USB CAMAC (Crate controller CC) Wiener CC-USB CC-USB USB 4.3 γ γ α β γ α 4 2α 241 Am A ZX A 2 Z 2 Y +4 2 α β A ZX A Z+1 Y + e + ν e A ZX A Z 1 Y + e + + ν e (β ) (β + ) β 3 β

48 4.9: β n p d W u W e ν e 4.10: β + p n u W + d W + e + ν e β γ X X + γ γ β γ γ t N(t) N(t) dn(t) dt = λn(t) (4.2) λ τ τ = 1 λ (4.2) N(t) = N 0 exp( λt) 46

49 N 0 t = 0 t 1/2 t 1/2 = log 2 λ dn dt dn ( dt = dn ) dt e λt = t=0 = τ log 2 t=0 = λn 0 ( dn dt ) t=0 e t log 2 t 1/ Cs 137 Cs β 137 Ba 662 kev γ 137 Cs Cs t 1/ Cs 4.11: 137 Cs [4] µci(±3.7%) (Bq) exp ( ) log 2 = (Bq) Cs 3 4 mm 1 mm 47

50 図 4.12: 137 Cs 線源の画像 線源は 23 mm 10 mm の長方形のケースに入っている 放 射性物質は 1 mm 程度の幅をもつ Na Na は崩壊して 22 Ne になり 1275 kev の γ 線を放出する 22 Na 原子の崩壊図を図 4.13 に示す 22 Na 線源によって観測される γ 線は γ 崩壊による 1275 kev の γ 線の他に 511 kev の γ 線もある 22 Na 原子核は β + 崩壊して陽電子を放出するが この陽電子が物質 中の電子と対消滅して 511 kev の γ 線を 2 つ放出するためである e + e+ 2γ このとき 陽電子は物質中でエネルギーを失ってから対消滅するため γ 線のエネルギー は電子と陽電子の静止質量エネルギーを 2 つにわけた 511 kev となるのである 22 Na の 半減期 t1/2 は 年である 本実験で使用した 22 Na 線源の 2014 年 2 月 12 日時点で Bq であった そのため 2016 年 1 月 20 日時点では ( ) (Bq) exp log 2 = (Bq) である 放射能は JRIA(日本アイソトープ協会) 校正値であり 誤差は ±2 5% であるが 今回は ±5 % と見積もった 48

51 4.13: 22 Na [4] Co 60 Co 60 Ni 1333 kev 1173 kev γ 60 Co Co t 1/ : 60 Co [4] 60 Co Bq ( (Bq) exp ) log 2 = (Bq) JRIA( ) ±2 5% ±5 % 49

52 Discriminator1 2 Coincidence Gate and Delay Generator 5.1: NIM CAMAC ADC TDC Scaler CC-USB 5.2 Discriminator 1 2 Coincidence Gate and Delay Generator Discriminator mv Discriminator mv γ Discriminator width 40 nsec Coincidence 3 nsec 50

53 5.2: CAMAC TDC Scaler CC-USB CAMAC ADC 5.1 Discriminator 1 2 Coincidence Gate and Delay Generator CAMAC Scaler ADC TDC ADC Gate Coincidence Gate and Delay Generator 5.3 Gate NaI 1 NaI 2 Gate and Delay Generator Coincidence Veto Gate Gate and Delay Generator Gate and Delay Generator Veto 200 µsec CAMAC 51

54 5.3: ADC Gate PMT ADC Gate NaI 1 NaI 2 Gate 5.2 ADC CAMAC ADC 5.1 Coincidence Discriminator 1 Discriminator sec NaI NaI Root 5.3 ADC Channel 1000 ch 40 K γ D ADC Channel 0 ch pedestal Pedestal ADC Gate 52

55 5.4: NaI Cs 662 kev 5.5: NaI 1 22 Na 511 kev 5.6: NaI 1 22 Na 1275 kev 53

56 5.7: NaI 1 60 Co 1173 kev 5.8: NaI 1 60 Co 1333 kev Energy (kev) = p 0 + p 1 (ADC Channel) Root p 0 p 1 σ p0 σ p1 E 2 E = σ 2 p 0 + (ADC Channel) 2 σ 2 p 1 cov(p 0, p 1 ) NaI Energy (kev) = ( ± 6.469) + (1.419 ± ) (ADC-1 Channel) (5.1) NaI Energy (kev) = (12.58 ± 1.963) + (1.448 ± ) (ADC-2 Channel) (5.2) reduced χ 2 NaI 1 12 NaI

57 5.9: NaI : NaI NaI(Tl) 5.11 NaI 2 γ NaI γ I s NaI γ 55

58 5.11: NaI 2 N det Ω ϵ abs N det = ϵ abs I s Ω ϵ int ϵ abs = Ω 4π ϵ int ϵ ϵ int Root ) A (x µ)2 exp ( + p 2πσ 2σ p 1 x x µ, σ, A A A 4 ch 1 bin 1/4 22 Na 511 kev 2 γ 1/ : NaI Cs 56

59 5.13: NaI 2 22 Na 5.14: NaI 2 22 Na 5.15: NaI 2 60 Co 5.16: NaI 2 60 Co ϵ Ω γ E γ ϵ Ω = p 0 (E γ ) p 1 (p 0, p 1 ) Root NaI 2 ϵ Ω 5.17 ϵ Ω = E γ 57

60 5.1: γ (MeV) ϵ Ω p 0 p 1 σ p0 = σ p1 = cov(p 0, p1) = σ Is σ Ndet 2 ϵ Ω = (ϵ Ω) 2 ( σ 2 Ndet N 2 det + σ2 I s I 2 s ) (5.3) σ p0 σ p1 ϵ Ω ϵ Ω ( ) 2 (ϵ Ω) 2 ϵ Ω = σp 2 p ( (ϵ Ω) p 1 ) 2 ( (ϵ Ω) σp p 1 ) ( (ϵ Ω) p 0 ) cov(p 0, p 1 ) = σ 2 p 0 E 2p 1 γ + σ 2 p 1 (p 0 E p 1 γ log E γ ) 2 + 2cov(p 0, p 1 )p 0 E 2p 1 γ log E γ (5.4) 58

61 5.17: NaI 2 ϵ Ω Ω NaI 35 cm ϵ (5.3) σ Is σ Ndet ϵ Ω 2 ϵ Ω (5.4) γ ϵ Ω 59

62 6 6.1 NaI 1 active target γ NaI 1 NaI 2 NaI 1 NaI NaI Cs γ 1 cm NaI 1 NaI 1 θ NaI NaI 6.1 Coincidence NaI 2 NaI Cs ( ) 300 sec 6.5 ADC-1 channel 6.6 ADC-1 channel 6.6 γ 465 ch γ 662 kev 662 kev γ γ

63 6.1: 137 Cs γ NaI 1 γ NaI 1 θ NaI 2 l 1 NaI 137 Cs 6.2: 5 cm γ γ NaI 61

64 6.3: ( ) γ 1 cm 6.4: NaI NaI NaI 1 D 2 NaI 1 NaI NaI D 3 62

65 6.5: 137 Cs NaI ADC-Channel 6.6: 137 Cs NaI 1 63

66 465 ch ± (kev) 662 kev ch γ γ kev ( ) 330 ch ± (kev) ch γ kev 184 kev 120 ch ± (kev) ch γ γ ch 1 bin counts counts/sec 64

67 6.7: 137 Cs NaI ADC-Channel D NaI γ γ NaI γ D D D = D l 1 l (cm) = 1 (cm) = (cm) 6.9 NaI 1 θ ( 6.9 ) γ γ 65

68 6.8: D = 1 cm γ D 6.9: NaI θ γ θ d θ γ γ 66

69 NaI d L(θ) Ω Ω = D (l 1 θ) l 2 1 = D θ l 1 γ γ I s I s Ω 4π = I s D θ 4πl 1 (2.4) L(θ) = n 1 e µd Ω I s µ 4π d θ d = 2 R 2 l1 2 sin 2 θ L(θ) γ θ L n Is 4π = θmax θ min L(θ) n Is 4π = θmax θ min 1 e µd µ D θ l 1 I s n µ 2.9 NaI 662 kev γ µ = 0.075/3.67 = cm 1 L n Is 4π L n Is 4π = (6.1) N y σ N y = Lσ = L n I s 4π I s nσ 4π 67

70 137 Cs I s = Bq (6.1) γ σn σn = = 99, 83 (counts/sec) ( ) L Is 4π n Is 4π (counts/sec) π (cm 1 ) NaI n (4.1) σ σ = (cm 1 ) (cm 3 ) = (cm 2 ) = 5.79 (barn) σn ρ = (cm 1 ) 3.67 = (cm 2 /g) 2.9 γ 662 kev τ ρ = (cm2 /g) σ ρ = (cm2 /g) 2 γ 2.9 γ 68

71 NaI 2 Coincidence NaI 1 active target NaI 1 2 θ γ θ ADC 6.10: θ = 30 ADC ADC-1 Channel ADC-2 Channel NaI 1 NaI 2 2 θ = NaI 1 NaI kev NaI 1 γ NaI 2 ( 6.16) γ 662 kev 69

72 6.11: θ = 45 ADC 6.12: θ = 60 ADC 70

73 6.13: θ = 75 ADC 6.14: θ = 90 ADC 71

74 6.15: θ = 45 ADC γ NaI 1 NaI 2 NaI 1 NaI 2 γ NaI 1 NaI : 6.15 NaI 1 γ NaI 2 NaI 1 NaI 1 NaI kev 72

75 6.17: 6.15 NaI 1 NaI 2 2 γ NaI NaI 1 NaI kev ( ) θ γ NaI 1 NaI NaI 1 NaI 2 γ NaI 1 NaI 2 2 ( 6.17) γ NaI 1 NaI θ ADC-1 Channel+ADC-2 Channel NaI 662 kev kev ADC-1 Channel - ADC-2 Channel

76 6.18: θ = 45 ADC-1+ADC-2 Channel 6.19: θ = 45 ADC-1+ADC-2 Channel ADC-1 ADC-2 Channel ADC-Channel 6.1 ADC-1 Channel ADC-2 Channel 74

77 6.20: ADC-1+ADC-2 Channel ADC 1 bin ADC-1+ADC-2 Channel x θ = : θ ADC Channel θ ( ) ADC-1 + ADC-2 channel ADC-1 ADC-2 channel

78 6.21: ADC-1 ADC-2 Channel ADC ADC-1+ADC-2 Channel ADC-1 ADC-2 Channel 1 bin ADC-1 ADC-2 Channel x θ = 45 76

79 6.22: NaI γ E mean E mean = i E in i i bin E i n i bin θ ADC- 1 ADC-2 Channel 6.22 Emean σ ni p 0 + p 1 Channel i E mean = i E in i = 2 E mean = σ 2 p 0 + = σ 2 p 0 + i n i i n i i (p 0 + p 1 Channel i ) i n i i = p 0 + p Channel i n i 1 i n i ( i Channel ) 2 i n i σp ni i ( i Channel i n i i n i p 1 i Channel i n i i n i n i ) 2 ( σp p 2 i Channel2 i n i 1 ( i n ( i) 2 2 ( n i ) 2 i Channel ) i n i ) 2 ( i n i) 3 77

80 6.22 NaI NaI 2 γ NaI 1 NaI 1 NaI 2 NaI 2 NaI kev TDC NaI 1 NaI 2 Coincidence Discriminator width ±37 nsec TDC nsec ±37 nsec Coincidence( ) 200 µsec TDC TDC TDC θ 30 TDC-0 Channel TDC-1 Channel 90 TDC-0 Channel TDC-1 Channel NaI 1 NaI 2 NaI 1 NaI 2 78

81 θ θ Coincidence NaI 1 NaI 2 θ = 30 θ = NaI 1 NaI θ = 30 θ = 90 θ = 30 Discriminator θ = 30 NaI 2 NaI 1 79

82 6.23: θ = 30 tdc-1 tdc-2 channel 6.24: θ = 45 tdc-1 tdc-2 channel 6.25: θ = 60 tdc-1 tdc-2 channel 6.26: θ = 75 tdc-1 tdc-2 channel 6.27: θ = 90 tdc-1 tdc-2 channel 80

83 6.28: θ = 30 tdc-1 tdc-2 channel 6.29: θ = 45 tdc-1 tdc-2 channel 6.30: θ = 60 tdc-1 tdc-2 channel 6.31: θ = 75 tdc-1 tdc-2 channel 6.32: θ = 90 tdc-1 tdc-2 channel 81

84 6.33: θ = 30 tdc-1 tdc-2 channel 6.34: θ = 45 tdc-1 tdc-2 channel 6.35: θ = 60 tdc-1 tdc-2 channel 6.36: θ = 75 tdc-1 tdc-2 channel 6.37: θ = 90 tdc-1 tdc-2 channel 82

85 6.38: θ = 90 Coincidence NaI 1 NaI ns 1 10 mv mv 6.39: θ = 30 Coincidence NaI 1 NaI ns 1 10 mv mv 83

86 6.3.3 NaI NaI 2 N det N det = L dσ dω Ω ϵ (6.2) Ω NaI 1 NaI 2 ϵ NaI 2 γ NaI (6.2) f(θ) N det = L dσ dω Ω ϵ f(θ) (6.3) 6.40 x γ x γ y γ x γ γ x γ γ y l l = y ( D 2 D 2 + D 3 ) sin θ x γ I scat y I scat y D x γ γ I scat D D 2 D 2 e µl = I scat D D 2 D 2 exp ( µ y ( D D )) D 3 sin θ = I scat sin θ (1 e µd sin θ )e µ( D µd 2 D 2+D 3 ) 84

87 6.40: x γ θ NaI γ y l γ NaI 6.41: x γ θ 6.40 γ f(θ) 85

88 f(θ) f(θ) = sin θ µd (1 e µd sin θ )e µ( D 2 D 2+D 3 ) µ γ E γ θ µ γ 1 MeV µ = µ photo + µ comp µ comp (2.8) µ comp = Zσ c N A A ρ N A A NaI Z NaI (Z = Z Na + Z I ) ρ NaI τ [5] [ ( 3 mc τ = 2 φ 0α 4 Z 5 2 hν [ ( 4 γ(γ 2) + 3 γ + 1 )] ( mc 2 1 hν ) 4 (γ 2 1) γ γ 2 1 log ( γ + ))] γ 2 1 γ γ 2 1 ν1 exp( 4ξcot 1 ξ) 2π ν 1 exp( 2πξ) hν γ E γ mc 2 Z Z I ϕ 0 = 8π 3 ( e2 mc 2 )2 α = hν + mc2 γ = mc 2 hν 1 = (Z 0.03) 2 mc 2 α2 2 ν1 ξ = ν ν 1 µ photo µ photo = τ N A A ρ 86

89 γ NaI 1 NaI ADC Channel θ 6.2 (6.3) : θ ADC Channel θ ( ) n (counts) : γ θ (cm 2 /str) 87

90 6.4: θ θ ( ) θ min ( ) θ max ( ) I s σ Is ϵ Ω σ ϵ Ω n σ n σ dσ/dω σ 2 dσ/dω = ( ) { 2 (σis dσ dω I s ) 2 + } ( ) 2 ( σϵ Ω σn ) 2 + ϵ Ω n (6.4) I s σ Is % 5.3 (5.4) n n (%) : θ ϵ Ω θ ( ) ϵ Ω (%) n (%) θ θ 6.43 θ max θ min θ γ θ 6.4 NaI 2 2 (6.4)

91 6.43: θ θ max θ min θ γ 6.44: I s σ Is ϵ Ω σ ϵ Ω n σ n 89

92 6.4 θ θ 6.45: γ 2 γ NaI 2 NaI : γ γ γ 6.45 γ 2 γ NaI 2 NaI 2 γ NaI γ NaI 2 γ γ NaI 1 NaI 2 ( ) γ NaI 1 NaI 2 NaI 1 3 NaI 2 2 γ 6.45 NaI NaI 90

93 6.5: θ θ ( ) θ ROOT TRandom3 class [6] γ γ NaI 1 NaI NaI 1 NaI 2 γ γ 6.53 γ 6.54 γ l 1 γ NaI 1 l 3 γ NaI 1 l 4 NaI 1 γ g(θ) g(θ) = 1 e µ 662 l 3 e µ hν l4 {ϵ Ω(hν )} l 1 2 µ kev γ NaI µ hν γ NaI ϵ Ω(hν ) γ γ g(θ) g(θ) θ 91

94 6.47: θ = : θ = : θ = : θ = : θ = 90 92

95 6.52: NaI 1 γ γ NaI γ θ 1 θ θ 6.53: γ 93

96 6.54: γ 6.55: θ = 30 g(θ) ( ) θ x g(θ) y 2 ( ) NaI 1 θ g(θ) e µ hν l 4 µ hν l

97 6.56: θ = 45 g(θ) ( ) θ x g(θ) y 2 ( ) 6.57: θ = 60 g(θ) ( ) θ x g(θ) y 2 ( ) 6.58: θ = 75 g(θ) ( ) θ x g(θ) y 2 ( ) 95

98 6.59: θ = 90 g(θ) ( ) θ x g(θ) y 2 ( ) 6.6: g(θ) θ θ ( ) NaI 2 γ θ ±

99 7-2 M M SI γ 137 Cs 662 kev γ 2 NaI(Tl) NaI 1 active target NaI γ NaI 2 2 NaI γ γ γ 1 97

100 CAMAC CC-USB NaI 98

101 [1] Robley Dunglison Evans, The atomic nucleus, McGraw-Hill, New York, United States, [2] Michael Edward Peskin, An introduction to quantum field theory, Perseus, Reading, Mass., United States, [3],,, [4] Richard B. Firestone et al., Table of Isotopes, Wiley, New York, 8th edition, [5] Kai Siegbahn, Alpha-, beta- and gamma-ray spectroscopy, North-Holland, Amsterdam, Netherlands, [6] ROOT homepage: TRandom3 class reference, classtrandom3.html, 2016/2/13. [7] B. Povh, K. Rith, C. Scholtz, F. Zesche,, Particles and nuclei : an introduction to the physical concepts,,, [8] Glenn F. Knoll,,,, 4, [9] William. R. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer- Verlag Berlin Heiderberg GmbH, second revised edition, [10] I,

102 A i E mean = E in i i n i E mean = i n ie i ( i n i) 2 (A.1) n i A.1: E i E i n i Channel E i N = i n i (A.2) 100

103 X µ σ 2 ( ) e ixt = ) e ixt f(x)dx = exp (iµt σ2 2 t2 f(x) f(x) = 1 ( ) (X µ) 2 exp. 2πσ 2σ 2 (A.3) E mean ( e ie mean t i = exp i E ) in i N t ( = exp i E ) in i N t i = ( ( )) Ei t exp in i N i ( n i ) (A.4) n i n i n i = n i σ 2 = n i ( e in i t = exp in i t n ) it 2 (A.4) (A.5) t E it N ( i ( ( )) Ei t exp in i = N i exp ( ) Ei t in i N ( ( i = exp i n ie i N (A.5) n i 2 ) t t2 2 ( ) ) 2 Ei t N ( )) i E2 i n i N 2 (A.3) E mean i µ(e mean ) = n ie i σ 2 i (E N mean ) = n ie i N 101

104 B i d 4 pe ip(x 1 x 2 ) p/ + m (2π) 4 p 2 m 2 + iϵ d 3 p { = (p/ + m)e ip(x 1 x 2 ) θ(t (2π) 4 1 t 2 ) (p/ m)e ip(x 2 x 1 ) θ(t 2 t 1 ) } (B.1) 2E p/+m p 0 p 2 m 2 +iϵ (p 0 m 2 + p 2 + iϵ)(p 0 + m 2 + p 2 iϵ) = (p 0 ) 2 ( m iϵ) 2 = (p 0 ) 2 (m 2 + p 2 ) + 2iϵ m 2 + p 2 + O(ϵ 2 ) 2ϵ m 2 + p 2 ϵ (p 0 m 2 + p 2 + iϵ)(p 0 + m 2 + p 2 iϵ) p 2 m 2 + iϵ m 2 + p 2 + iϵ m 2 + p 2 + iϵ E E = m 2 + p 2 E + iϵ E + iϵ 2 B.1 2 E = m 2 + p 2 i dp 0 d 3 p/ + m p (2π) 4 C 1 (p 0 m 2 + p 2 + iϵ)(p 0 + m 2 + p 2 iϵ) e ip 0(t 1 t 2 ) e ip (x 1 x 2 ) = i (2π) 2πi d 3 p p/ + m p 0 =E e ie(t 1 t 2 ) e ip (x 1 x 2 ) 4 2E = 1 d 3 p(p/ + m)e ip(x 1 x 2 ) (2π) 3 2E 102

105 B.1: p 0 C 1 C 2 C R1 i dp 0 d 3 p/ + m p (2π) 4 C R1 (p 0 ) 2 p 2 m 2 + iϵ e ip 0(t 1 t 2 ) e ip (x 1 x 2 ) 0 ire iθ dθ R (t 1 t 2 ) θ= π R 2 e ireiθ 0 = dθe R sin θ(t 1 t 2 ) π = dθe R sin θ(t 1 t 2 ) 1 R θ= π 0 (R ) θ=0 π 0 e r sin θ dθ < π r R(t 1 t 2 ) > 0 t 1 t 2 > 0 C R1 0 = C 1 C R1 = i d 4 pe ip(x 1 x 2 ) p/ + m (2π) 4 p 2 m 2 + iϵ θ(t 1 t 2 ) = C 1 d 3 p (2π) 4 2E (p/ + m)e ip(x 1 x 2 ) θ(t 1 t 2 ) (B.2) 103

106 p 0 = E + iϵ i dp 0 d 3 p/ + m p (2π) 4 C 2 (p 0 m 2 + p 2 + iϵ)(p 0 + m 2 + p 2 iϵ) e ip 0(t 1 t 2 ) e ip (x 1 x 2 ) = i (2π) 2πi d 3 p (p/ + m) p 0 = E e ie(t 1 t 2 ) e ip (x 1 x 2 ) 4 2E = i (2π) 2πi d 3 ( p) ( Eγ 0 i pi γ i + m) e ie(t 1 t 2 ) e ip (x 1 x 2 ) (B.3) 4 2E 1 = d 3 p( p/ + m)e ip(x 2 x 1 ) (B.4) (2π) 3 2E (B.3) p p C R2 i dp 0 d 3 p/ + m p (2π) 4 C R 2 (p 0 ) 2 (m 2 + p 2 ) + iϵ e ip 0(t 1 t 2 ) e ip (x 1 x 2 ) π ire iθ dθ R (t 1 t 2 ) θ=0 R 2 e ireiθ π = dθe R sin θ(t 1 t 2 ) 1 R θ=0 0 (R ) R(t 1 t 2 ) < 0 t 1 t 2 < 0 C R2 R 0 = C 2 C R2 C 2 (B.5) (B.4) (B.5) i (2π) 4 d 4 pe ip(x 1 x 2 ) p/ + m p 2 m 2 + iϵ θ( t 1 + t 2 ) = d 3 p (2π) 4 2E (p/ m)e ip(x 2 x 1 ) θ(t 2 t 1 ) (B.6) (B.2) (B.6) (B.1) 104

107 C [3] [2] C.1 vertex C.2 M C.3 2 C.3 M 1 M 2 ( ) M 1 = M 2 = d 4 xd 4 yϵ ν(k, λ )e ik xū(p )e ip x ieγ ν i(p/ + k/ + m) (p + k) 2 m 2 + iϵ ieγµ u(p)e ipy ϵ µ (k, λ)e iky d 4 xd 4 yϵ ν (k, λ)e ikx ū(p )e ip x ieγ ν i(p/ k / + m) (p k ) 2 m 2 + iϵ ieγµ u(p)e ipy ϵ µ(k, λ )e ik y d 4 xd 4 y C.1: vertex vertex 105

108 C.2: vertex p u(p) v(p) x vertex 4 C.3: 106

109 D [4] D.1-D.3 D.4 40 K 40 K γ 1461 kev D.1: 137 Cs D.2: 60 Co 107

110 D.3: 22 Na D.4: 40 K 108

25 3 4

25 3 4 25 3 4 1 µ e + ν e +ν µ µ + e + +ν e + ν µ e e + TAC START STOP START veto START (2.04 ± 0.18)µs 1/2 STOP (2.09 ± 0.11)µs 1/8 G F /( c) 3 (1.21±0.09) 5 /GeV 2 (1.19±0.05) 5 /GeV 2 Weinberg θ W sin θ W

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge 22 2 24 W 1983 W ± Z 0 3 10 cm 10 cm 50 MeV TAC - ADC 65000 18 ADC [ (µs)] = 0.0207[] 0.0151 (2.08 ± 0.36) 10 6 s 3 χ 2 2 1 20 µ + µ 8 = (1.20 ± 0.1) 10 5 (GeV) 2 G µ ( hc) 3 1 1 7 1.1.............................

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

Muon Muon Muon lif

Muon Muon Muon lif 2005 2005 3 23 1 2 2 2 2.1 Muon.......................................... 2 2.2 Muon........................... 2 2.3................................. 3 2.4 Muon life time.........................................

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

24 10 10 1 2 1.1............................ 2 2 3 3 8 3.1............................ 8 3.2............................ 8 3.3.............................. 11 3.4........................ 12 3.5.........................

More information

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 23 1 Section 1.1 1 ( ) ( ) ( 46 ) 2 3 235, 238( 235,238 U) 232( 232 Th) 40( 40 K, 0.0118% ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 2 ( )2 4( 4 He) 12 3 16 12 56( 56 Fe) 4 56( 56 Ni)

More information

1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( )

1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( ) ( ) TA 2234 oda@phys.kyushu-u.ac.jp TA (M1) 2161 sumi@epp.phys.kyushu-u.ac.jp TA (M1) 2161 takada@epp.phys.kyushu-u.ac.jp TA (M1) 2254 tanaka@epp.phys.kyushu-u.ac.jp µ ( ) 1 2 1.1...............................................

More information

Drift Chamber

Drift Chamber Quench Gas Drift Chamber 23 25 1 2 5 2.1 Drift Chamber.............................................. 5 2.2.............................................. 6 2.2.1..............................................

More information

SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT

SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT 3 SPECT SJ SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT 9ch MPPC array 3 3 9 3 3 9.mm(sigma) . SPECT..................................................................3............

More information

thesis.dvi

thesis.dvi 3 17 03SA210A 2005 3 1 introduction 1 1.1 Positronium............ 1 1.2 Positronium....................... 4 1.2.1 moderation....................... 5 1.2.2..................... 6 1.2.3...................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

0 ϕ ( ) (x) 0 ϕ (+) (x)ϕ d 3 ( ) (y) 0 pd 3 q (2π) 6 a p a qe ipx e iqy 0 2Ep 2Eq d 3 pd 3 q 0 (2π) 6 [a p, a q]e ipx e iqy 0 2Ep 2Eq d 3 pd 3 q (2π)

0 ϕ ( ) (x) 0 ϕ (+) (x)ϕ d 3 ( ) (y) 0 pd 3 q (2π) 6 a p a qe ipx e iqy 0 2Ep 2Eq d 3 pd 3 q 0 (2π) 6 [a p, a q]e ipx e iqy 0 2Ep 2Eq d 3 pd 3 q (2π) ( ) 2 S 3 ( ) ( ) 0 O 0 O ( ) O ϕ(x) ϕ (x) d 3 p (2π) 3 2Ep (a p e ipx + b pe +ipx ) ϕ (+) (x) + ϕ ( ) (x) d 3 p (2π) 3 2Ep (a pe +ipx + b p e ipx ) ϕ ( ) (x) + ϕ (+) (x) (px p 0 x 0 p x E p t p x, E p

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

目次 2 1. イントロダクション 2. 実験原理 3. データ取得 4. データ解析 5. 結果 考察 まとめ

目次 2 1. イントロダクション 2. 実験原理 3. データ取得 4. データ解析 5. 結果 考察 まとめ オルソポジトロニウムの寿命測定による QED の実験的検証 課題演習 A2 2016 年後期 大田力也鯉渕駿龍澤誠之 羽田野真友喜松尾一輝三野裕哉 目次 2 1. イントロダクション 2. 実験原理 3. データ取得 4. データ解析 5. 結果 考察 まとめ 第 1 章イントロダクション 実験の目的 4 ポジトロニウム ( 後述 ) の崩壊を観測 オルソポジトロニウム ( スピン 1 状態 ) の寿命を測定

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

soturon.dvi

soturon.dvi Stopped Muon 94S2003J 11 3 10 1 2 2 3 2.1 Muon : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 2.2 : : : : : : : : 4 2.3 : : : : : : : : : : : : : 6 3 7 3.1 : : : : : : : : : : : : : : : :

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

2004 A1 10 4 1 2 2 3 2.1................................................ 3 2.2............................................. 4 2.3.................................................. 5 2.3.1.......................

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

2005 4 18 3 31 1 1 8 1.1.................................. 8 1.2............................... 8 1.3.......................... 8 1.4.............................. 9 1.5.............................. 9

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

0406_total.pdf

0406_total.pdf 59 7 7.1 σ-ω σ-ω σ ω σ = σ(r), ω µ = δ µ,0 ω(r) (6-4) (iγ µ µ m U(r) γ 0 V (r))ψ(x) = 0 (7-1) U(r) = g σ σ(r), V (r) = g ω ω(r) σ(r) ω(r) (6-3) ( 2 + m 2 σ)σ(r) = g σ ψψ (7-2) ( 2 + m 2 ω)ω(r) = g ω ψγ

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

Donald Carl J. Choi, β ( )

Donald Carl J. Choi, β ( ) :: α β γ 200612296 20 10 17 1 3 2 α 3 2.1................................... 3 2.2................................... 4 2.3....................................... 6 2.4.......................................

More information

untitled

untitled BELLE TOP 12 1 3 2 BELLE 4 2.1 BELLE........................... 4 2.1.1......................... 4 2.1.2 B B........................ 7 2.1.3 B CP............... 8 2.2 BELLE...................... 9 2.3

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 74 Re, bondar laer (Prandtl) Re z ω z = x (5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 76 l V x ) 1/ 1 ( 1 1 1 δ δ = x Re x p V x t V l l (1-1) 1/ 1 δ δ δ δ = x Re p V x t V

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a 1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

[ ] [ ] [ ] [ ] [ ] [ ] ADC

[ ] [ ] [ ] [ ] [ ] [ ] ADC [ ] [ ] [ ] [ ] [ ] [ ] ADC BS1 m1 PMT m2 BS2 PMT1 PMT ADC PMT2 α PMT α α = n ω n n Pn TMath::Poisson(x,[0]) 0.35 0.3 0.25 0.2 0.15 λ 1.5 ω n 2 = ( α 2 ) n n! e α 2 α 2 = λ = λn n! e λ Poisson Pn 0.1

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

main.dvi

main.dvi SGC - 48 208X Y Z Z 2006 1930 β Z 2006! 1 2 3 Z 1930 SGC -12, 2001 5 6 http://www.saiensu.co.jp/support.htm http://www.shinshu-u.ac.jp/ haru/ xy.z :-P 3 4 2006 3 ii 1 1 1.1... 1 1.2 1930... 1 1.3 1930...

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 19 Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 1 1 1.1 γ ΛN................. 1 1.2 KEK J-PARC................................ 2 1.2.1 J-PARC....................................

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t) 338 7 7.3 LCR 2.4.3 e ix LC AM 7.3.1 7.3.1.1 m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x k > 0 k 5.3.1.1 x = xt 7.3 339 m 2 x t 2 = k x 2 x t 2 = ω 2 0 x ω0 = k m ω 0 1.4.4.3 2 +α 14.9.3.1 5.3.2.1 2 x

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t 1 1 2 2 2r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t) V (x, t) I(x, t) V in x t 3 4 1 L R 2 C G L 0 R 0

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

Microsoft Word - 章末問題

Microsoft Word - 章末問題 1906 R n m 1 = =1 1 R R= 8h ICP s p s HeNeArXe 1 ns 1 1 1 1 1 17 NaCl 1.3 nm 10nm 3s CuAuAg NaCl CaF - - HeNeAr 1.7(b) 2 2 2d = a + a = 2a d = 2a 2 1 1 N = 8 + 6 = 4 8 2 4 4 2a 3 4 π N πr 3 3 4 ρ = = =

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( ) 81 4 2 4.1, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. 82 4.2. ζ t + V (ζ + βy) = 0 (4.2.1), V = 0 (4.2.2). (4.2.1), (3.3.66) R 1 Φ / Z, Γ., F 1 ( 3.2 ). 7,., ( )., (4.2.1) 500 hpa., 500 hpa (4.2.1) 1949,.,

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

多体問題

多体問題 Many Body Problem 997 4, 00 4, 004 4............................................................................. 7...................................... 7.............................................

More information

( ) ) AGD 2) 7) 1

( ) ) AGD 2) 7) 1 ( 9 5 6 ) ) AGD ) 7) S. ψ (r, t) ψ(r, t) (r, t) Ĥ ψ(r, t) = e iĥt/ħ ψ(r, )e iĥt/ħ ˆn(r, t) = ψ (r, t)ψ(r, t) () : ψ(r, t)ψ (r, t) ψ (r, t)ψ(r, t) = δ(r r ) () ψ(r, t)ψ(r, t) ψ(r, t)ψ(r, t) = (3) ψ (r,

More information

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE 21 2 27 Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE ) Bethe-Bloch 1 0.1..............................

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

素粒子物理学2 素粒子物理学序論B 2010年度講義第2回

素粒子物理学2 素粒子物理学序論B 2010年度講義第2回 素粒子物理学2 素粒子物理学序論B 2010年度講義第2回 =1.055 10 34 J sec =6.582 10 22 MeV sec c = 197.33 10 15 MeV m = c = c =1 1 m p = c(mev m) 938M ev = 197 10 15 (m) 938 =0.2 10 13 (cm) 1 m p = (MeV sec) 938M ev = 6.58

More information

高知工科大学電子 光システム工学科

高知工科大学電子 光システム工学科 卒業研究報告 題 目 量子力学に基づいた水素分子の分子軌道法的取り扱いと Hamiltonian 近似法 指導教員 山本哲也 報告者 山中昭徳 平成 14 年 月 5 日 高知工科大学電子 光システム工学科. 3. 4.1 4. 4.3 4.5 6.6 8.7 10.8 11.9 1.10 1 3. 13 3.113 3. 13 3.3 13 3.4 14 3.5 15 3.6 15 3.7 17

More information