1. Γ, R 2,, M R. M R. M M Map(M, M) 3, Aut R (M). ρ : Γ Aut R (M) Γ. M R n, R, R ρ : Γ Aut R (M) GL n (R) := {g M n (R) det(g) R } 4. ρ Γ R R M.,,.,,

Size: px
Start display at page:

Download "1. Γ, R 2,, M R. M R. M M Map(M, M) 3, Aut R (M). ρ : Γ Aut R (M) Γ. M R n, R, R ρ : Γ Aut R (M) GL n (R) := {g M n (R) det(g) R } 4. ρ Γ R R M.,,.,,"

Transcription

1 I ( ) (i) l, l, l (ii) (Q p ) l, l, l (iii) Artin (iv). (i),(ii). (iii) 1. (iv),.. [9]. [4] L-,.. Contents l l l Artin l, l, l Weil-Deligne References 27 1 Artin,,.,, Artin l. 1

2 1. Γ, R 2,, M R. M R. M M Map(M, M) 3, Aut R (M). ρ : Γ Aut R (M) Γ. M R n, R, R ρ : Γ Aut R (M) GL n (R) := {g M n (R) det(g) R } 4. ρ Γ R R M.,,.,, Γ K G K := Gal(K sep /K)., K,, R l Q l, l Z l, F l (Z l /l n Z l, Z l [[X]],...) Banach. G K ρ 1, ρ 2 : Γ Aut R (M) Γ., ρ 1 ρ 2 (equivalent) t Aut R (M), ρ 1 (g) = tρ 2 (g)t 1, g Γ., ρ 1 ρ 2. R M, : trρ i : Γ ρ i tr Aut R (M) GL n (R) R, i = 1, 2. M R. ρ 1, ρ 2,, ( ). 2,. X, X 1. 3 X, Y, Map(X, Y ) X Y. X A Y B, W (A, B) := {f Map(X, Y ) f(a) B}. W (A, B) Map(X, Y ). 4 GL n, M, Aut R (M) Aut R (M, ) = {f Aut R (M) f } G. G, GSp 2n, GO(n), GU(n, m)., 2004 ([17]). 2

3 1-2. Γ ρ : Γ Aut R (M) H Γ, M H M H := {m M h H, ρ(h)m = m} Γ/H R. ρ H : ρ H :.Γ/H Aut R (M H )., H M/M H Γ/H ρ H. 1-3.(1) ρ : Γ Aut R (M) Γ., R R, ρ R ρ R. m r M R R,., M R R, ρ R (m r ) = ρ(m) r (2) ρ : Γ Aut R (M) Γ. ρ, ρ M 0 M Γ R. (3) K, V K. ρ : Γ Aut K (V ) Γ. ρ, K L, ρ L (1) Γ ρ : Γ Aut R (M), R M m M, M, Sym r RM, r R M, r r r ρ, m ρ, Sym m ρ, r ρ., M R n, detρ := n ρ ρ., Aut R (M) GL n (R), ρ 1 Γ ρ Aut R (M) GL n (R) det R., det., M M := Hom R (M, R) ρ, (contragredient representation)., φ M, γ Γ,. γφ(m) := φ(γ 1 m), m M 1 χ : Γ R χ n, n Z ρ ρ χ n ρ χ n. (2) Γ ρ i : Γ Aut R (M i ), i = 1, 2, M 1 R M 2, M 1 R M 2 ρ 1 ρ 2, ρ 1 ρ 2., Γ ρ : Γ Aut R (M), End R (M) = M R M, adρ := ρ ρ, ρ (adjoint representation)., φ End R (M), γ Γ, γφ(m) := γφ(γ 1 m), m M 3

4 K, p l. Σ K K. L K ( ), O L. Gal(L/K), Krull (cf. [9]). v K, v L w., D L,v = {σ Gal(L/K) σ(w) = w} v. D L,v w, Gal(L/K)., D L,v Gal(F w /F v ), σ σ mod w., F w := O L /w w. I L,v, v : 1 I L,v D L,v Gal(F w /F v ) 1. Gal(F w /F v ) Frob v (x) = x F v, x F w Frob v, ( ) 5. D L,v Frob v., I L,v = {1} L v,, L v. L v Frob v. S K, K S S Σ K K (S ). L = K S, v S, v K S, Frob v D KS,v., D KS,v G KS, v K S w, Frob v w R, M R 6. v K, I v := I K,v. G K ρ : G K Aut R (M) v, ρ(i v ) = {1},, ρ v. I v (, w ). ρ K K Sρ := K Kerρ, K Sρ S ρ ρ. 6 {id M } Aut R (M), Kerρ., ( ) ([9] 1.12 ), G K /Kerρ Gal(K Sρ /K). 5. 6, Hausdorff., Aut R (M) Hausdorff (cf. [21] p (2)),, Aut R (M). 4

5 , ρ : G K π ρ Aut R (M) eρ Gal(K Sρ /K), π σ σ KS ρ. v S ρ, Frob v D KS ρ,v ρ(frob v ). Frob v Gal(K Sρ /K), G K., ρ, ρ(frob v ) ρ(frob v )., ρ(frob v ) v K Sρ w. w, g G K, gfrob v g 1. ρ ( ρ ), ρ(gfrob v g 1 ) = ρ(g)ρ(frob v )ρ(g) 1 ρ(frob v )., ρ(frob v ) w. ρ l. E Q l, O E, V E. V 0 V O E 7, V., ρ : G K Aut E (V ) l., Aut E (V ) V Map(V, V ). V Aut E (V ) GL n (E), (n = dim E V ), GL n (E) E,. E Q l, ρ Q l ( 2.2.8)., l E V Q l. l l µ l n(k) := {x K x ln = 1} Z/l n Z {µ l n+1(k) l µ l n(k)} n Z l (1) := lim l µ l n(k) Z l. G K µ l n(k) (l ), G K Z l (1). χ l : G K Aut Zl (Z l (1)) Z l l. ( ). χ l Q l χ l. i, Z l, G K χ i l Z l (i) i Tate (i-th Tate Twist)., 7 V O E T, T OE E = V. 5

6 Q l (i) := Z l (i) Zl Q l. Frob p, p l Z l (i) Q l (i) p i., χ i l (Frob p) = p i. i l (ρ, V ), V (i) V, G K ρ χ i l, V i Tate., µ l 1 (Q l ) Z l., Z l µ l 1 (1 + lz l ), l χ l χ l = ω l χ l,1, ω l : G K µ l 1, χ l,1 : G K 1 + lz l. ω l Teichmüller. l Teichmüller lift log l : (1 + lz l ) lz l, x (1 x) n l., n n 1 ( ) 1 log ρ : G K GL 2 (Q l ), g ρ(g) = l χ l,1 (g) 0 1., K, E P 2 K [x : y : z] Weierstrass zy 2 + a 1 xyz + a 3 z 2 y = x 3 + a 2 zx 2 + a 4 z 2 x + a 6 z 3, a 1, a 3, a 2, a 4, a 6 K, K. O K. K L, E(L) := {[x : y : z] P 2 (L) zy 2 + a 1 xyz + a 3 z 2 y = x 3 + a 2 zx 2 + a 4 z 2 x + a 6 z 3 } O E := [0 : 1 : 0] ( [16] )., l n - E[l n ](K) = {P E(K) l n P = O} (Z/l n Z) 2 {E[l n+1 ](K) l E[l n ](K)} n T l (E) := lim E[l n ](K) Z 2 l l l (l-adic Tate module). V l (E) = T l (E) Zl Q l, l ( l-adic rational Tate module). V l (E) Q l 2. l K, G K E[l n ] G K., G K T l (E) V l (E)., ρ E,l : G K Aut Ql (V l (E)) GL 2 (Q l ). V l (E) G K T l (E) ( ). g A l Tate V l (A), Q l 2g. p l K v, F v. v E D E ( O K ) ρ E,l v (cf. [16] 5.1)., ρ E,l (Frob v ), ( ) 6

7 .,, det(ρ E,l (Frob v )) = χ l (Frob v ) = F v, tr(ρ E,l (Frob v )) = F v + 1 Ẽ(F v) ([16] )., Ẽ E v. l. 4 ([7]) l G K., G K,, l., K, G K l. Grothendieck ( [7] )., l, ( 2-2-2)., l E V G K., V E[G K ] V 0 = V V 1 V t = {0} V i /V i+1, i = 0,..., t 1 E[G K ] ( - ). {V i /V i+1 } t 1 i=0., E[G K ] t 1 V ss := V i /V i+1 i=0 V. l (ρ, V ) ρ ss., ρ v, trρ(frob v ) = trρ ss (Frob v ), detρ(frob v ) = detρ ss (Frob v )., ρ ρ ss = ρ.,. [4] Chebotarev ρ : G K Aut E (V ) S ρ., ρ ρ ss trρ(frob v ), v Σ K \ S ρ.. ρ, ρ : G K Aut E (V ) tr(ρ(frob v )) = tr(ρ (Frob v )), v Σ K \ S, S := S ρ S ρ 7

8 , ρ ρ., ( ) trρ(g) = trρ (g), g G K. H = G K /(Kerρ Kerρ ), ρ, ρ H., : F := {h H v Σ K \ S such that h = Frob v } {h H trρ(h) = trρ (h)} H H 8. H S, H Chebotarev, F H,, ( ). A = E[G K ] M = V, ρ ρ k p 0, A k-, M, M k A. p > 0, p > max{dim k (M), dim k (M )}., tr M (a) = tr M (a), a A, M M A., tr M (a) k M a.. (5 ) S ρ... S ρ 0... ( [4] 1., [20] ) ρ : G K Aut Ql (V ) Aut E (V E )., E Q l V E G K V E dim E V E = dim Ql V.., V {e i }, Aut Ql (V ) GL n (Q l ). Imρ = Imρ GL n (E ) E /Q l :, Imρ GL n (E ),., Imρ,., (Baire category theorem) 9 E, Imρ GL n (E )., H := Imρ GL n (E ). G K /ρ 1 (H), 8 H E E, h (trρ(h), trρ (h)) E = {(x, x) E E}. 9 X X X. ( ),,,. 8

9 {g i } r i=1, ρ(g i), 1 i r E E E Q l., Imρ GL n (E). V E = i Ee i l. E Q l, O E, π O. T O n, O 0 T, T., ρ : G K Aut O (T ) l., Aut O (T ) Map(T, T )., O GL n (O)( M n (O) O n2 ) G K E- V, V G K -,, O T T O E V.. {e λ } λ V, T 0 = λ Oe λ. T 0 V., G K -. ρ : G K Aut E (V ) G K V. V Aut O (T 0 ) Aut E (V )., ρ T 0 H = {g G K ρ(g)t 0 = T 0 } G K, [G K : H]. G K /H {γ i } t i=1. T := t i=1 γ it 0,., G K = t i=1 γ ih, g G K γ i, 1 i t, gγ i = γ ki h, h H, 1 k i t ({k 1,..., k t } = {1,..., t})., ρ(g)t = t ρ(gγ i )T 0 = i=1 t ρ(γ ki )ρ(h)t 0 = i=1 t ρ(γ ki )T 0 = T. i=1, l V E-, ρ : G K Aut E (V )., ρ, l V G K , G K - T. ρ : G K Aut OE (T ), ρ OE E = ρ, Imρ Imρ, Imρ Aut OE (T ). π O E, n 1 mod πn U n := Ker(Aut OE (T ) Aut OE /π n O E (T/π n T )). U n Aut OE (T ), 1 = id T., G K /ρ 1 (U n ) Aut OE (T )/U n,., G K ( ) ρ 1 (U n ) G K. Aut OE (T ) gu n, g Aut OE (T ), n 1,., ρ

10 Rep E (G K ) G K E, Rep O (G K ) G K O., Rep O (G K ) Rep E (G K ), T T Zl Q l (essentially surjective) E/K, T l (E) l (cf )., ρ l : G K Aut Zl (T l (E)) GL 2 (Z l ) l l χ l : G K Z l. ( ) l X/K K., T l := H í et(x K, Z l )/(torsion) (0 i 2dimX) Z l (cf. ). G K T l l l. F l F l (F F l ). F. V F n., ρ : G K Aut F (V ) l. Aut F (V ),., Aut F (V ) GL n (F),. l, l l. ρ : G K Aut E (V ) l., 2-3-1, V G K O E T., ρ : G K ρ Aut OE (T ) mod m E Aut OE /m E (T/m E T ) l. ρ ρ. ρ V ρ ss ( ). l ρ : G K Aut O (T ), O m, {ρ n : G K Aut O/m n(v n )} n., V n = V O O/m n,. n = 1, l 10, Rep E (G K ) Rep O (G K ). 10

11 ρ = ρ 1 : G K Aut F (V 1 ) : ρ G K ρ n ρ:=ρ 1 Aut O (T ) mod m n Aut O/m n(v n ) mod m Aut F (V 1 ), F := O/m., {ρ n : G K Aut O/m n(v n )} n, l., l : { } { } l ρ : G K Aut O (V ) {(ρ n, V n )} n ρ = lim n ρ n {ρ O O/m n } n = {ρ n } n. l [20]. l l ρ : G K Aut F (V ) S. S., ρ ρ ss tr i ρ(frob v ), v Σ K \ S, i = 1,..., n., ρ l > dim F (V ), ρ.. ρ, ρ l, tr i ρ(frob v ) = tr i ρ (Frob v ), v Σ K \ S ρ S ρ, i = 1,..., n, Chebotarev, G K., k p > 0, A k-, M, M k A. dim k (M) = dim k (M ) =: n., tr i M(a) = tr i M (a), a A, i = 1,..., n ( a A ), M M A.. (5 ) G K µ l (K) Z/lZ = F l 1 l χ l : G K Aut Z/lZ (µ l (K)) F l l. l χ l. 11

12 G K E l E[l](K). ρ E,l : G K Aut Z/lZ (E[l](K)) GL 2 (F l ) l, l K., 1 ρ : G K F l l ( : G K Imρ,, ρ (Z/NZ). N = l t M, l M. l t = 1 ) h Z p Λ = Z p [[T 1,..., T h ]]. Λ (p, T 1,..., T h ). Λ.. S K, G K,S K S. p ρ : G K,S GL n (F p ). F p (A, m A ) ρ : G K,S GL n (A) (ρ, A), ρ (lift) : ρ G K,S GLn (A) ρ mod m A GL n (F p ) A ρ, R(ρ), ρ univ., A ρ, ι R(ρ) A, : ρ univ GL n (R(ρ)) G K,S ρ ρ ι GL n (A) mod m A GL n (F p ) Mazur ( ), Mazur., ρ. Λ/I (I Λ ), Krull h ρ.,. [10]. 12

13 . R(ρ) (rigid analytic space)x, E X(E), (E Q p ) ρ E p. p ρ X,., Artin. K Q, V C., ρ : G K Aut C (V ) Artin.,., V, Aut C (V ) GL n (C) M n (C) C n2., Aut C (V ) C n2,.,, ρ(c), (c )., 2 Artin ρ : Gal(Q/Q) GL 2 (C)., ρ (odd),, det(ρ(c)) = 1, 1, Neben-type , ρ : G K Aut C (V ).. G K., G K. V, Aut C (V ) GL n (C). GL n (C) B I n ( ), 1 2., ρ 1 (B ),, G K H ρ(h) B., ρ(h) = {I n } ( [G : H]<, ). ρ(h) T I n. M n (C) = End(C n ), GL n (C).. T 1, Jordan, T N I n > 1 N., T 2 α, α N 1 > 1 2 N., T N B. Artin, ρ : G K Aut C (V )., ρ K ρ : G K Aut C (V ) S ρ ( S ρ < )., ρ trρ(frob v ), v Σ K \ S ρ., trρ(frob v ) ρ(frob v ). 11 K = Q, ρ : G Q GL 2 (C) Artin Khare Wintenberger Serre,. 13

14 . ρ, ρ : G K Aut C (V ) tr(ρ(frob v )) = tr(ρ (Frob v )), v Σ K \ S ρ S ρ, ρ ρ. ρ, ρ K L, L/K S := S ρ S ρ. L/K Chebotarev, σ Gal(L/K), v Σ K \ S, Frob v = σ., tr(ρ(σ)) = tr(ρ (σ)), σ Gal(L/K), (cf. [13], p.17 3), ρ ρ L F (x) = x 3 + ax + b, a, b Q, 3 S 3 = σ, τ σ 3 = τ 2 = 1, τστ = σ 1. ι : S 3 GL 2 (C) ( ) ( ) ζ ι(σ) =, ι(τ) = 0 ζ , ζ 3 = e 2π 1 3., ρ : G Q L Gal(L/Q) S 3 ι GL 2 (C) 2 ( )Artin. F (x), detρ(c) = detι(τ) = 1. F (x), ρ Maass (Maass form) (cf. [18]) K = Q( 47) Hilbert H. (1) K 5,, H F (x) = x 5 x 4 + x 3 + x 2 2x + 1 K F ( ) ([22] ( ). ), Gal(H/Q) ( ) D (2) A =, B =, C = θ A, θ B, θ C : θ A (τ) = q m2 +mn+12n 2, θ B (τ) = q 3m2 +mn+4n 2, θ C (τ) = m,n Z q 2m2 +mn+6n 2., m,n Z ( ) f(τ) := θ A (τ) θ B (τ) 2 ( m,n Z ) θ C (τ) S 1 (Γ 0 (47), χ), χ = ( 47 )., f Hecke ( [11] 6 Hecke [1] p.204 ). ( ) ζ (3) D 5 = σ, τ σ 5 = τ 2 = 1, τστ = σ 1 5 0, σ, τ 0 ζ5 1 ( ) Gal(H/Q) Artin ρ. ρ 1 0 f ρ f (cf. [4], [5]), F p f p. 14

15 3. l,. K. p v Σ K K K v., G Kv := Gal(K v /K v ) G K, σ σ K. G K G Kv G K v D K,v (cf. 2.1 )., G K., G K l ρ : G K Aut E (V ), G Kv ρ GK, v.,. v l. v l [8] p Hodge l, l, l. l, p l., K Q p, E Q l. K F. 2-1 G K G F I K : 1 I K G K G F 1 [9] I K = Gal(K/K ur ), K ur = K(ζ n )., p n ζ n K 1 n., G K I K,. K π, K tm := K ur (π 1 n ) K p n (maximal tamely ramified extension ), K K ur K tm K G K I K P K {1}. I K p P K := Gal(K/K tm ) (wild inertia), I t := I K /P K = Gal(K tm /K ur ) (tame inertia group). ( ): 1 I K G K G F 1, 1 I t G K /I P = Gal(K tm /K) G F 1 I t = lim Gal(K ur (π 1 n )/K ur ) lim Z/nZ(1) = p n p n r p Z r (1), I t τ G F G K /P K σ στσ 1 = τ χ l(τ) (G K /P K ). 15

16 ,. G K ρ : G K = Gal(Q l /K) Aut E (V ) l. l l. [7], l V X (, 2-2-3), V X. Grothendieck SGA 7-I K A l ρ : G K Aut Ql (V l (A)). l ρ Ip.. [15] Appendix.,, SGA 7-I Deligne [2] (Grothendieck 12 ) v l, ρ(i K ) (quasi-unipotent matrix) 13.. O E E, π. D v, ρ Imρ., a 1,..., a r 0 x 1,..., x r GL n (E), Imρ = r i=1 (x i + π a i M n (O E )). GL n (O E ), K L, ρ GL GL n (O E ). k 1, I n + π k M n (O E ) GL n (O E ),, L M, g ρ(g M ) g I n mod π k., Imρ g g I n + π k M n (O E )., Imρ l., Imρ. P K I K p, ρ(p K ) = {I n }, ρ IK I t := I K /P K. F K, 1 I t = Gal(K tm /K ur ) Gal(K tm /K) Gal(K ur /K) = G F 1, G F t s Gal(K tm /K ur ) 14, Gal(K tm /K) l χ l : G F Z l, tst 1 = s χ l(t) (cf. [9])., ρ(tst 1 ) = ρ(s χ l(t) ) = ρ(s) χ l(t) ( ρ ). X = log ρ(s), X ρ(t)xρ(t) 1 = log ρ(s) χ l(t) = χ l (t)x. a i (X) X i, a i (X) = a i (χ l (t)x) = χ l (t) i a i (X) 12 Grothendieck. 13 A, m, n 1, (A m I) n = 0., I G F = Gal(K ur /K) K ur Gal(K tm /K ur ). 16

17 . K F, χ l., i χ l (t) i 1 t., a i (X) = 0, i 0., X 0, X n = 0. k exp log ρ(s) = ρ(s) n 1 X j, ρ(s) = expx =,. j! j= p l, ρ(p K ).. G K, K L, Imρ GL l., ρ GL (P K G L ) p,. [G K, G L ]<, ρ(p K ) (1) p = l,, ρ(p K ) (quasi-unipotent matrix)., ρ., P K Z p, Z p γ 1, log p ρ(γ a ) a log p ρ(γ a ), ρ Hodge-Tate ( log p χ p (γ a ) [8] ). (2) l,, ( )., {X z } z D := {z C z < 1}, z D \ {0} 1. z = 0 X 0 ( ) π top 1 (D \ {0}, z) = γ 0 Z 1 H 1 (X z, Z) Z 2., γ 0 z, 0., z = 0 ( ) ρ top z : π top 1 (D \ {0}, z) Aut Z, (H 1 (X z, Z)) = SL 2 (Z).. γ 0 x = 0 (cf. [3] II 4 ). X 0 1,, X 0 ( ). ρ top z. E Qp Q p, E Q ur p Qur p p. E Q ur p C ). SpecZ ur p. Qur p. E SpecZ ur p SpecZur p Zur p. Néron E (cf. [16] Appendix {(p), (0)},, p 0 = SpecF p, p 1 = SpecQ ur p ( ), Spec Z ur p \ {p 0 } = {p 1 } E Q ur p π 1 (SpecZ ur p. p 0 \ {p 0 }) = π 1 (SpecQ ur p ) = Gal(Q p /Q ur p ) = I Qp 17

18 T l (E p1 ) = T l (E Q ur p ) : ρ l : I Qp Aut Ql (T l (E Q ur p ))., ρ l Q ur p I Q p l Z l (1), γ. D = {z C z < 1} SpecZ ur p 0 p 0 = SpecF p π top 1 (D \ {0}, z) Z γ 0 π 1 (SpecZ ur p \ {p 0 }) l Z l (1) γ {X z } z D E Spec Z ur p H 1 (X z, Z) Z 2 T l (E p1 ) = T l (E Q ur p Z 2 l 3.2. Weil-Deligne. Grothendieck, Weil Weil-Deligne. Langlands. Langlands.. l p, K/Q p, E/Q l. F K, q := F., 1 I K G K ι G F 1. Frob q G F Ẑ, Z-span FrobZ q = {Frob n q n Z} ι W K, K Weil : 1 I K W K ι Frob Z q Z 1. Z G F Ẑ, W K G K. 1 Z W K Φ, Weil W K W K = n Z Φn I K. I K G K, (W K I K )W K. E V, l ρ : G K Aut(V ) W K., t l : I K Q l. I K c Q l, c t l (I K ) = Z l., Imt l l, P K K p, p l t l I t := I K /P K., I K /P K r p Z r (1) ([9]), t l l Z l (1), t l Hom cont (Z l (1), Q l ) = Q l.. 18

19 , t l : I K Q l, c Q l c t l (I K ) = Z l 15., γ c I K 1 Z l = c t l (I K ). p l., Grothendieck ( 3-1-1) P K ρ ( 3-1-2), I K I ρ(i ) l., ρ I I K /P K l σ I σ = γ c tl(σ)., γ c tl(γ) = γ 1 = γ., ρ(σ) = ρ(γ c tl(σ) ) = ρ(γ) c tl(σ) = exp(t l (σ)n), N = c log(ρ(γ)). 3-1, N., W K Φ n σ, n Z, σ I K., ρ, W K r r(φ n σ) := ρ(φ n σ) exp( t l (σ)n). σ I, r(σ) = ρ(σ) exp( t l (σ)n) = ρ(σ) exp( log ρ(γ) ctl(σ) ) = ρ(σ) exp( log ρ(σ)) = 1, r(i). g W K, σ I K, gσg 1 = σ χl(g) mod P K, t l (gσg 1 ) = χ l (g)t l (σ). g W K, ρ(g)nρ(g) 1 = ρ(g)(c log(ρ(γ)))ρ(g) 1 = log(ρ(gγ c g 1 ))) = log ρ(γ ct l(gγ c g 1) ) = log ρ(γ cχl(g) ) = χ l (g)n., r(g)nr(g) 1 = χ l (g)n, g W K., r Φ t l K/Q p, q. Ω 0, V Ω., Weil-Deligne /Ω K Weil W K r : W K g = Φ n σ, n Z, σ I K 17. Aut Ω (V ) 16 N End Ω (V ), r(g)nr(g) 1 = q n N 15 K π, π l n {π 1 l n } n I t σ σ(π l 1 n ), π l 1 n I t Z l (1) Z l. t l. 16 V v, {σ W K r(σ)v = v} W K. 17 Frob geom q : x x 1 q, r(g)nr(g) 1 = q n N q. 19

20 l p, : { } { Weil W K /Q l 1:1 Weil-Deligne /Q l ρ : W K Aut Ql (V ) (r, N) }. σ W K, ρ(σ) = r(σ)exp(t l (σ)n) ρ (1) Ω 0. n Z, ω n (Φ) = q n, ω n (I K ) = 1 ω n : W K Ω 1 Weil. (2) Ω 0. V = Ω n {e i } n 1 i=0., r(φ)e i = ω i (Φ)e i, Ne i = e i+1, i = 0,..., n 2, Ne n 1 = 0, Φ n σ, σ I K, r(φ n σ) = r(φ n )exp(t l (σ)n) r sp(n), (special representation). Weil-Deligne (r, N) Im(r) I K Φ., Im r., ι : Q l Ω, { } { } 1:1 Weil-Deligne /Q l Weil-Deligne /Ω, V V ι Ω (1) W K G K { } { } l /Q l Weil W K /Q l, ρ ρ WK 1:1. W K r G K r(φ) l. (2) W K 18,., W K r., ω s, r ωs 1., ω s ω s (I K ) = 1, ω s (Φ) = q s, s C W K (q s C, Q l ). (3) l = p Fontaine D pst, (cf. [6]). 1:

21 Weil-Deligne (r, N) L L(r, s) := det(1 q s ρ(φ) (KerN) I K ) 1., s., L(ω n, s) = (1 q (s+n) ) 1, L(sp(n), s) = (1 q (s+n 1) ) (r, N) W K Weil-Deligne., r (Frobenius semisimplification) r ss : r(φ), r(φ) T U., g = Φ n σ W K, σ I K, n Z, r ss (g) := T n r(σ). r = r ss, r (1) Weil-Deligne (r, N), N = 0, r, K L, r WL. (2) l Weil-Deligne., l, Weil-Deligne. [7]. 4. K, Σ K K. l ρ v Σ K, P v,ρ (T ) := det(1 ρ(frob v )T ) l ρ (rational), Σ K S, : (i) ρ Σ K \ S (ii) v S ( ), P v,ρ (T ) Q, (ii) P v,ρ (T ) Z, ρ (integral) l, l, ρ : G K Aut Ql (V ) ρ : G K Aut (V Ql ) l, l,., ρ, ρ (compatible) S Σ K, ρ, ρ S P v,ρ (T ) = P v,ρ (T ), v Σ K \ S. 21

22 4-3. l (ρ l ) l (compatible system) 2 l, l, ρ l, ρ l., S Σ K, (ρ l ) l (strictly compatible system) : (i) v Σ K \ S {v Σ K v l}, ρ l v P v,ρl (T ). (ii) l, l, P v,ρl (T ) = P v,ρl (T ), v Σ K \ S {v Σ K v ll } (i),(ii) S (ρ l ) l (exceptional set) (a) l (χ l ) l,. (b) (ρ E,l ) l. E. Neron-Ogg- Shafarevich (cf. [16] 7.1 ).. (c) X Q p. X, SpecZ p X, X (generic fiber) X Spec Zp SpecQ p X, X (special fiber) X Spec Zp SpecF p F p, X l (good reduction). X Q. X p X Qp := X Spec Q SpecQ p. X/Q, SpecZ X/SpecZ X., SpecZ ( ) U X U U (cf. [7] 3.26)., 0 i 2 dim X, V i := H í et (X Q, Q l), G Q Q l., ρ i,l : G Q Aut Ql (V i ),, (ρ i,l ) l. Weil (cf. [7])., SpecZ \ U.. V i GQ p Hí et (X Q p, Q l ) H í et (X F p, Q l ) (cf. [7] 3.25 ) (a) [19]. Weil (A 0 ) G ab K l (A 0 )., Weil, [19] Math.review Weil At this point the author takes a step involving what is perhaps the most original idea of the whole paper; he considers any system (M l ) of l-adic representations of g, all of the same degree (l ranging over all 22

23 primes) satisfying the same set of conditions.. Weil, Weil. (b) l ρ (ρ l ) l., ρ l ρ. l l., Wiles (, ). ( l. 1, 1 ) 4-6. H = = Q 1 + Q i + Q j + Q ij, i 2 = j 2 = 1, ij = ji 2 Q Q 4. H l := H Q Q l l = 2,, M 2 (Q l ). G = {±1, ±i, ±j, ±ij} 4 (quaternion group). K = Q( (2 + 2)(3 + 3)), Gal(K/Q) G. Dedekind., l > 2 ρ l : G Q K Gal(K/Q) G H (H Q Q l ) GL 2 (Q l ) l (. Q l C, ρ l C, Artin., ). 2 ρ 2 : G Q GL 2 (Q 2 ), {ρ l } l. 2 ρ 2, ρ 2 ρ l (l 2). Q 2 C, Q l C, ρ 2, ρ l C ρ 2,C, ρ l,c. Artin. ρ 2 ρ l, ρ 2,C ρ l,c., G,, r : G Imρ 2 GL 2 (Q 2 ). r M 2 (Q 2 ), r Q 2 Q 2 [G] M 2 (Q 2 ) Q 2 r. r Q 2., r H Q Q 2, M 2 (Q 2 ) Q 2, H Q Q 2 M 2 (Q 2 )., H 2. ρ l, l > 2. Artin ( 4-5 (b) ) ([14] I-12 3) 4-6, l ρ l, ρ l l ρ l (l l) ( l. [12] 5.1 ). 23

24 (p.136).. A, A M, End(M) M, End A (M) M A-., B M = {f End(M) fg = gf, g End A (M)} 19. A M A-, A B M. A M,, a A a M A, F i, i I A, (F i F j, i, j I). M = i F i, i, F = F i.,. B M B F, b b F.., well-defined. F M, F p : M M,, p A-., b B M,, bp = pb, b F (F ) = bp(m) = pb(m) p(m) = F, b F End(F ). f End A (F ),g : M M g F = f, 0, x F, b F f(x) = bg(x) = gb(x) = fb F (x)., b F B F., j I, f j : F F j M. b B F, b j = f j b f 1 j,. B Fj., g End A (F j ) g = f i gf 1 j, g End A (F ) b j g = (f j b f 1 j )(f i gf 1 j ) = f j b gf 1 j = f j gb f 1 j = f j gf 1 j f i b f 1 j = g b j, b End(M) b(x) = b j (x), x F j, b., b B M. c End A (M), 1 M End A (M) F j p j, 1 M = p j. j, x F k, x k = f k (y) y k F, cb(x) = cb k (x) = cb k f k (y) = cf k b (y), b = b 1 M = j b j p j, bc(x) = j b j p j cf k (y) = j f j b f 1 j p j cf k (y) 19 B M M. 24

25 ., f 1 j p j cf k End A (F ), b., bc(x) = j p j cf k b (y) = cf k b (y) = cb(x)., x M,, b B M A, M A, b B M., M x 1,..., x n, ax i = b(x i ), i = 1,..., n a A.. i, M M n M n i f i : M M n, M i. b B M, b i := f i bf 1 i B Mi., b End(M n ) b (x) = b i (x), x M i, 5-1, b B M n, M i b i,, b f i = f i b i. M A M n., x := (x i ) i = f i x i M n, Ax i M n , Ax B M n., b (Ax) Ax, a A, ax = b (x), (ax i ) i = ax = b (x) = i b f i x i = i f i bx i = (bx i ) i., ax i = bx i, i = 1,..., n M A, End A (M), M., B M = A M.. b B M. End A (M) M x 1,..., x n, 5-2, a M A M, a M x i = b(x i ), i = 1,..., n., x M x = n i=1 g i(x i ), g i End A (M), a M, b B M, n n n n a M (x) = a M g i (x i ) = g i a M (x i ) = g i b(x i ) = b g i (x i ) = b(x). i=1 i=1, B M A M. i=1 i= M 1,..., M n A,. M = i M i, M i End A (M i )., A n a 1,..., a n, a A, a M Mi = (a i ) Mi , (a i ) Mi A End A (M i ) a i A. 25

26 . M ((a i ) Mi ) i End A (M n ) , A k, M, M k A, k, char(k)> max{dim k (M), dim k (M )}., tr M (a) = tr M (a), a A, M M. S A (S ). S λ, M A λ (λ ) M λ, n λ Z 0. M, M λ, n λ., S H, M = n λ M λ, M = n λm λ λ H λ H. M(resp. M ) A, End A (M) (resp. End A (M ) ). λ H, A N λ., n λ 0 n λ 0, M λ N λ M λ,. c Nµ tr Mλ (a) = tr Nλ (a) = tr M λ (a), a A, 1 A λ H N λ, 5-4, c A c Nλ = 1 = 0, µ λ., tr M (c) = tr M (c), (n λ n λ)tr Nλ (1) = 0., N λ 0,, k 0, tr Nλ (1) = dim k (M λ ) = dim k (M λ ) k., n λ = n λ., k p,, p > d := max{dim k (M), dim k (M )}, tr Nλ (1) k., n λ n λ 0 mod p., 0 n λ n λ d, n λ n λ = , M, M M = L 1 M p 1, M = L 1 M 1 p., L 1, L 1, M 1, M 1 A, A L 1 L p 1. a A M1, M 1 p, F (a, T ) p, F 1(a, T ) p k[t ] 26

27 , F (a, T ) p = F 1(a, T ) p. k p,, F (a, T ) = F 1(a, T ). M 1 0, F (a, T ) = F 1(a, T ), a A, dim k (M 1 ) = dim k (M 1), M, M M = L r M pr r, M = L r M r p r, L r L r., M, M k, r, M r = 0, M r = 0.,. 6.,,.,,,,.. References [1] J. A. Antoniadis, Diedergruppe und Reziprozitatsgesetz, J. Reine Angew. Math. 377 (1987), [2] P. Deligne, Résumé des premiers exposés de A. Grothendieck, Groupes de monodromie en geometrie algebrique. I. Seminaire de Geometrie Algebrique du Bois-Marie (SGA 7 I). pp [3],,,,. [4], II,. [5] P. Deligne and J-P. Serre, Formes modulaires de poids 1. Annales scientifiques de l Ecole Normale Superieure, Ser. 4, 7 no. 4 (1974), p [6] J-M. Fontaine, Représentations l-adiques potentiellement semi-stables, Exposé VIII, Astérisque 1994, 224, périodes p-adiques, seminaire de Bures, [7],,. [8], p-,. [9], - -,. [10],,. [11] A. Ogg, Modular forms and Dirichlet series, 1969, Benjamin New York. [12] A. Pizer, An algorithm for computing modular forms on Γ 0 (N). J. Algebra 64 (1980), no. 2, [13] J-P. Serre, Linear representations of finite groups. Translated from the second French edition by Leonard L. Scott. Graduate Texts in Mathematics, Vol. 42. Springer-Verlag, New York-Heidelberg. [14] J-P. Serre, Abelian l-adic representations and elliptic curves. With the collaboration of Willem Kuyk and John Labute. Second edition. Advanced Book Classics. Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, xxiv+184 pp. [15] J-P. Serre and J. Tate, Good reduction of abelian varieties. Ann. of Math. (2) [16] J. Silverman, Arithmetic of Elliptic curves, GTM 106. [17] 12. [18] P. Sarnak, Maass cusp forms with integer coefficients. A panorama of number theory or the view from Baker s garden (Zurich, 1999), [19] Y. Taniyama, L-functions of number fields and zeta functions of abelian varieties. J. Math. Soc. Japan [20], p,. 27

28 [21],,. [22], 2,,. [23] A. Weil, On a certain type of characters of the idele-class group of an algebraic number-field. Proceedings of the international symposium on algebraic number theory, Tokyo and Nikko, 1955, pp

非可換Lubin-Tate理論の一般化に向けて

非可換Lubin-Tate理論の一般化に向けて Lubin-Tate 2012 9 18 ( ) Lubin-Tate 2012 9 18 1 / 27 ( ) Lubin-Tate 2012 9 18 2 / 27 Lubin-Tate p 1 1 ( ) Lubin-Tate 2012 9 18 2 / 27 Lubin-Tate p 1 1 Lubin-Tate GL n n 1 Lubin-Tate ( ) Lubin-Tate 2012

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv ( ) 1 ([SU] ): F K k Z p - (cf [Iw2] [Iw3] [Iw6]) K F F/K Z p - k /k Weil K K F F p- ( 41) Z p - Weil Weil F F projective smooth C C Jac(C)/F ( ) : 2 3 4 5 Tate Weil 6 7 Z p - 2 [Iw1] 2 21 K k k 1 k K

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

wiles05.dvi

wiles05.dvi Andrew Wiles 1953, 20 Fermat.. Fermat 10,. 1 Wiles. 19 20., Fermat 1. (Fermat). p 3 x p + y p =1 xy 0 x, y 2., n- t n =1 ζ n Q Q(ζ n ). Q F,., F = Q( 5) 6=2 3 = (1 + 5)(1 5) 2. Kummer Q(ζ p ), p Fermat

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2 On the action of the Weil group on the l-adic cohomology of rigid spaces over local fields (Yoichi Mieda) Graduate School of Mathematical Sciences, The University of Tokyo 0 l Galois K F F q l q K, F K,

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara 80 1963 Sp(2, R) p L holomorphic discrete series Eichler Brandt Eichler

More information

( ),, ( [Ka93b],[FK06]).,. p Galois L, Langlands p p Galois (, ) p., Breuil, Colmez([Co10]), Q p Galois G Qp 2 p ( ) GL 2 (Q p ) p Banach ( ) (GL 2 (Q

( ),, ( [Ka93b],[FK06]).,. p Galois L, Langlands p p Galois (, ) p., Breuil, Colmez([Co10]), Q p Galois G Qp 2 p ( ) GL 2 (Q p ) p Banach ( ) (GL 2 (Q 2017 : msjmeeting-2017sep-00f006 p Langlands ( ) 1. Q, Q p Q Galois G Q p (p Galois ). p Galois ( p Galois ), L Selmer Tate-Shafarevich, Galois. Dirichlet ( Dedekind s = 0 ) Birch-Swinnerton-Dyer ( L s

More information

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+ 1 SL 2 (R) γ(z) = az + b cz + d ( ) a b z h, γ = SL c d 2 (R) h 4 N Γ 0 (N) {( ) } a b Γ 0 (N) = SL c d 2 (Z) c 0 mod N θ(z) θ(z) = q n2 q = e 2π 1z, z h n Z Γ 0 (4) j(γ, z) ( ) a b θ(γ(z)) = j(γ, z)θ(z)

More information

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1 *1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

Q p G Qp Q G Q p Ramanujan 12 q- (q) : (q) = q n=1 (1 qn ) 24 S 12 (SL 2 (Z))., p (ordinary) (, q- p a p ( ) p ). p = 11 a p ( ) p. p 11 p a p

Q p G Qp Q G Q p Ramanujan 12 q- (q) : (q) = q n=1 (1 qn ) 24 S 12 (SL 2 (Z))., p (ordinary) (, q- p a p ( ) p ). p = 11 a p ( ) p. p 11 p a p .,.,.,..,, 1.. Contents 1. 1 1.1. 2 1.2. 3 1.3. 4 1.4. Eisenstein 5 1.5. 7 2. 9 2.1. e p 9 2.2. p 11 2.3. 15 2.4. 16 2.5. 18 3. 19 3.1. ( ) 19 3.2. 22 4. 23 1. p., Q Q p Q Q p Q C.,. 1. 1 Q p G Qp Q G

More information

2 Riemann Im(s) > 0 ζ(s) s R(s) = 2 Riemann [Riemann]) ζ(s) ζ(2) = π2 6 *3 Kummer s = 2n, n N ζ( 2) = 2 2, ζ( 4) =.3 2 3, ζ( 6) = ζ( 8)

2 Riemann Im(s) > 0 ζ(s) s R(s) = 2 Riemann [Riemann]) ζ(s) ζ(2) = π2 6 *3 Kummer s = 2n, n N ζ( 2) = 2 2, ζ( 4) =.3 2 3, ζ( 6) = ζ( 8) (Florian Sprung) p 2 p * 9 3 p ζ Mazur Wiles 4 5 6 2 3 5 2006 http://www.icm2006.org/video/ eighth session [ ] Coates [Coates] 2 735 Euler n n 2 = p p 2 p 2 = π2 6 859 Riemann ζ(s) = n n s = p p s s ζ(s)

More information

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo] 2 Hecke ( ) 0 1n J n =, Γ = Γ n = Sp(n, Z) = {γ GL(2n,

More information

On a branched Zp-cover of Q-homology 3-spheres

On a branched Zp-cover of Q-homology 3-spheres Zp 拡大と分岐 Zp 被覆 GL1 表現の変形理論としての岩澤理論 SL2 表現の変形理論 On a branched Zp -cover of Q-homology 3-spheres 植木 潤 九州大学大学院数理学府 D2 December 23, 2014 植木 潤 九州大学大学院数理学府 D2 On a branched Zp -cover of Q-homology 3-spheres

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

.5.1. G K O E, O E T, G K Aut OE (T ) (T, ρ). ρ, (T, ρ) T. Aut OE (T ), En OE (F ) p..5.. G K E, E V, G K GL E (V ) (V, ρ). ρ, (V, ρ) V. GL E (V ), En

.5.1. G K O E, O E T, G K Aut OE (T ) (T, ρ). ρ, (T, ρ) T. Aut OE (T ), En OE (F ) p..5.. G K E, E V, G K GL E (V ) (V, ρ). ρ, (V, ρ) V. GL E (V ), En p 1. 1.1., 01 8 3, 57,,.. 1.., Gal(Q p /Q p ), 1. Wach,,. 1.3. Part I,,. Part II, Part III. 1.4.., Paé. Part 1. p.. p p.1. p Q p p (Q p p )... E Q p, E p Z p E, O E. O E E. E Q p, O E. v p : E Q Q E, v

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

平成 19 年度 ( 第 29 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 19 ~8 年月 72 月日開催 30 日 ) R = T, Fermat Wiles, Taylor-Wiles R = T.,,.,. 1. Fermat Fermat,. Fermat, 17

平成 19 年度 ( 第 29 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 19 ~8 年月 72 月日開催 30 日 ) R = T, Fermat Wiles, Taylor-Wiles R = T.,,.,. 1. Fermat Fermat,. Fermat, 17 R = T, Fermat Wiles, Taylor-Wiles R = T.,,.,. 1. Fermat Fermat,. Fermat, 17, 400.. Descartes ( ) Corneille ( ), Milton ( ), Velázquez ( ), Rembrandt van Rijn ( ),,,. Fermat, Fermat, Fermat, 1995 Wiles

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

17 Θ Hodge Θ Hodge Kummer Hodge Hodge

17 Θ Hodge Θ Hodge Kummer Hodge Hodge Teichmüller ( ) 2015 11 0 3 1 4 2 6 3 Teichmüller 8 4 Diophantus 11 5 13 6 15 7 19 8 21 9 25 10 28 11 31 12 34 13 36 14 41 15 43 16 47 1 17 Θ 50 18 55 19 57 20 Hodge 59 21 63 22 67 23 Θ Hodge 69 24 Kummer

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q p- L- [Iwa] [Iwa2] -Leopoldt [KL] p- L-. Kummer Remann ζ(s Bernoull B n (. ζ( n = B n n, ( n Z p a = Kummer [Kum] ( Kummer p m n 0 ( mod p m n a m n ( mod (p p a ( p m B m m ( pn B n n ( mod pa Z p Kummer

More information

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t e-mail: koyama@math.keio.ac.jp 0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo type: diffeo universal Teichmuller modular I. I-. Weyl

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

Îã³°·¿¤Î¥·¥å¡¼¥Ù¥ë¥È¥«¥êto=1=¡á=1=¥ë¥�¥å¥é¥¹

Îã³°·¿¤Î¥·¥å¡¼¥Ù¥ë¥È¥«¥êto=1=¡á=1=¥ë¥�¥å¥é¥¹ (kaji@math.sci.fukuoka-u.ac.jp) 2009 8 10 R 3 R 3 ( wikipedia ) (Schubert, 19 ) (= )(Ehresmann, 20 ) (Chevalley, 20 ) G/P: ( : ) W : ( : ) X w : W X w W G: B G: Borel P B: G/P: 1 C n ( ) Fl n := {0 V

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ). 1.1. modular symbol., notation. H = z = x iy C y > 0, cusp H = H Q., Γ = PSL 2 (Z), G Γ [Γ : G]

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X 2 E 8 1, E 8, [6], II II, E 8, 2, E 8,,, 2 [14],, X/C, f : X P 1 2 3, f, (O), f X NS(X), (O) T ( 1), NS(X), T [15] : MWG(f) NS(X)/T, MWL(f) 0 (T ) NS(X), MWL(f) MWL(f) 0, : {f λ : X λ P 1 } λ Λ NS(X λ

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15 (Gen KUROKI) 1 1 : Riemann Spec Z 2? 3 : 4 2 Riemann Riemann Riemann 1 C 5 Riemann Riemann R compact R K C ( C(x) ) K C(R) Riemann R 6 (E-mail address: kuroki@math.tohoku.ac.jp) 1 1 ( 5 ) 2 ( Q ) Spec

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

1 G K C 1.1. G K V ρ : G GL(V ) (ρ, V ) G V 1.2. G 2 (ρ, V ), (τ, W ) 2 V, W T : V W τ g T = T ρ g ( g G) V ρ g T W τ g V T W 1.3. G (ρ, V ) V W ρ g W

1 G K C 1.1. G K V ρ : G GL(V ) (ρ, V ) G V 1.2. G 2 (ρ, V ), (τ, W ) 2 V, W T : V W τ g T = T ρ g ( g G) V ρ g T W τ g V T W 1.3. G (ρ, V ) V W ρ g W Naoya Enomoto 2002.9. paper 1 2 2 3 3 6 1 1 G K C 1.1. G K V ρ : G GL(V ) (ρ, V ) G V 1.2. G 2 (ρ, V ), (τ, W ) 2 V, W T : V W τ g T = T ρ g ( g G) V ρ g T W τ g V T W 1.3. G (ρ, V ) V W ρ g W W G- G W

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

等質空間の幾何学入門

等質空間の幾何学入門 2006/12/04 08 tamaru@math.sci.hiroshima-u.ac.jp i, 2006/12/04 08. 2006, 4.,,.,,.,.,.,,.,,,.,.,,.,,,.,. ii 1 1 1.1 :................................... 1 1.2........................................ 2 1.3......................................

More information

( ) (, ) ( )

( ) (, ) ( ) ( ) (, ) ( ) 1 2 2 2 2.1......................... 2 2.2.............................. 3 2.3............................... 4 2.4.............................. 5 2.5.............................. 6 2.6..........................

More information

( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................

More information

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = ( 1 1.1 X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (X 1,..., X n ) ( ) X 1,..., X n f 1,..., f r A T X + XA XBR 1 B T X + C T QC = O X 1.2 X 1,..., X n X i X j X j X i = 0, P i

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h 2011 9 5 1 Lie 1 2 2.1 (category) (object) a, b, c, a b (arrow, morphism) f : a b (2.1) f a b (2.2) ( 1) f : a b g : b c (composite) g f : a c ( 2) f f a b g f g c g h (2.3) a b c d (2.4) h (g f) = (h

More information

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2 2014 6 30. 2014 3 1 6 (Hopf algebra) (group) Andruskiewitsch-Santos [AFS09] 1980 Drinfeld (quantum group) Lie Lie (ribbon Hopf algebra) (ribbon category) Turaev [Tur94] Kassel [Kas95] (PD) x12005i@math.nagoya-u.ac.jp

More information

日本数学会・2011年度年会(早稲田大学)・総合講演

日本数学会・2011年度年会(早稲田大学)・総合講演 日本数学会 2011 年度年会 ( 早稲田大学 ) 総合講演 2011 年度日本数学会春季賞受賞記念講演 MSJMEETING-2011-0 ( ) 1. p>0 p C ( ) p p 0 smooth l (l p ) p p André, Christol, Mebkhout, Kedlaya K 0 O K K k O K k p>0 K K : K R 0 p = p 1 Γ := K k

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu rigidity 2014.9.1-2014.9.2 Fuchs 1 Introduction y + p(x)y + q(x)y = 0, y 2 p(x), q(x) p(x) q(x) Fuchs 19 Fuchs 83 Gauss Fuchs rigid rigid rigid 7 1970 1996 Nicholas Katz Rigid local systems [6] Fuchs Katz

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 8 8 1 9 9 1 10 10 1 E-mail:hsuzuki@icu.ac.jp 0 0 1 1.1 G G1 G a, b,

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

Banach-Tarski Hausdorff May 17, 2014 3 Contents 1 Hausdorff 5 1.1 ( Unlösbarkeit des Inhaltproblems) 5 5 1 Hausdorff Banach-Tarski Hausdorff [H1, H2] Hausdorff Grundzüge der Mangenlehre [H1] Inhalte

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

A Brief Introduction to Modular Forms Computation

A Brief Introduction to Modular Forms Computation A Brief Introduction to Modular Forms Computation Magma Supported by GCOE Program Math-For-Industry Education & Research Hub What s this? Definitions and Properties Demonstration H := H P 1 (Q) some conditions

More information

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) 1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) X α α 1 : I X α 1 (s) = α(1 s) ( )α 1 1.1 X p X Ω(p)

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe 3 del Pezzo (Hirokazu Nasu) 1 [10]. 3 V C C, V Hilbert scheme Hilb V [C]. C V C S V S. C S S V, C V. Hilbert schemes Hilb V Hilb S [S] [C] ( χ(s, N S/V ) χ(c, N C/S )), Hilb V [C] (generically non-reduced)

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id 1 1.1 1.1 R R (1) R = 1 2 Z = 2 n Z (2) R 1.2 R C Z R 1.3 Z 2 = {(a, b) a Z, b Z Z 2 a, b, c, d Z (a, b) + (c, d) = (a + c, b + d), (a, b)(c, d) = (ac, bd) (1) Z 2 (2) Z 2? (3) Z 2 1.4 C Q[ 1] = {a + bi

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

?

? 240-8501 79-2 Email: nakamoto@ynu.ac.jp 1 3 1.1...................................... 3 1.2?................................. 6 1.3..................................... 8 1.4.......................................

More information

Armstrong culture Web

Armstrong culture Web 2004 5 10 M.A. Armstrong, Groups and Symmetry, Springer-Verlag, NewYork, 1988 (2000) (1989) (2001) (2002) 1 Armstrong culture Web 1 3 1.1................................. 3 1.2.................................

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) =

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) = 2018/10/04 IV/ IV 1/12 2018 IV/ IV 10 04 * 1 : ( A 441 ) yanagida[at]math.nagoya-u.ac.jp https://www.math.nagoya-u.ac.jp/~yanagida 1 I: (ring)., A 0 A, 1 A. (ring homomorphism).. 1.1 A (ideal) I, ( ) I

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T 0 2 8 8 6 3 0 0 Young Young [F] 0.. Young λ n λ n λ = (λ,, λ l ) λ λ 2 λ l λ = ( m, 2 m 2, ) λ = n, l(λ) = l {λ n n 0} P λ = (λ, ), µ = (µ, ) n λ µ k k k λ i µ i λ µ λ = µ k i= i= i < k λ i = µ i λ k >

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information