1 0/1, a/b/c/ {0, 1} S = {s 1, s 2,..., s q } S x = X 1 X 2 X 3 X n S (n = 1, 2, 3,...) n n s i P (X n = s i ) X m (m < n) P (X n = s i X n 1 = s j )

Size: px
Start display at page:

Download "1 0/1, a/b/c/ {0, 1} S = {s 1, s 2,..., s q } S x = X 1 X 2 X 3 X n S (n = 1, 2, 3,...) n n s i P (X n = s i ) X m (m < n) P (X n = s i X n 1 = s j )"

Transcription

1 (Communication and Network) 1

2 1 0/1, a/b/c/ {0, 1} S = {s 1, s 2,..., s q } S x = X 1 X 2 X 3 X n S (n = 1, 2, 3,...) n n s i P (X n = s i ) X m (m < n) P (X n = s i X n 1 = s j ) p i = P (X n = s i ) n p ij = P (X n = s i X n 1 = s j ) n 2

3 p i p ij p i 0 p ij 0 q p i = 1 q p ij = 1 i=1 { } r i=1 T = {t 1,..., t r } 3

4 2 2 T = Z 2 {0, 1} ( ) w w w ϵ 0 ( ) T n n T T + = T {ϵ} T = n 0 T n T + = n 1 T n 4

5 C : S T + (S T + ) w i = C(s i ) w i s i C C = {w 1, w 2,..., w q } C S S C : s = s i1 s i2 s i3 s in t = w i1 w i2 w i3 w in w in = C(s in ) C = {w i1 w i2 w i3 w in w ij C, n 0} l i = w i L(C) C L(C) = q i=1 p i l i 5

6 1.1 t s L(C) i (i = 1, 2, 3, 4, 5, 6) 2 s i = i p i = 1 6 w 1 = 1, w 2 = 10, w 3 = 11, w 4 = 100, w 5 = 101, w 6 = 110 s = s 1 s 2 s 5 t = ( ) = 7 3 ( 110 ) 6

7 1.2 ( u.d. ) C : S T 2 u 1 u m = v 1 v n (u 1,..., u m, v 1,..., v n C) m = n u i = v i C w 1 = 001, w 2 = 010, w 3 = 011, w 4 = 100, w 5 = 101, w 6 = 110 w 1 = 0, w 2 = 01, w 3 = 011, w 4 = 0111, w 5 = 01111, w 6 = t =

8 1.2.1 C 0 = C C n = {w T + uw = v, u C, v C n 1 or u C n 1, v C} C = n 1 C n C 1 = {w T + uw = v, u, v C} C n C = {1, 10, 11, 100, 101, 110} C 1 = {0, 1, 00, 01, 10} C 2 = {0, 1, 00, 01, 10} C = {0, 1, 00, 01, 10} C = {0, 01, 010, 111} C 1 = {0, 1, 10} C 2 = {1, 10, 11} C 3 = {1, 11}, C 4 = {1, 11}, C = {0, 1, 10, 11} 8

9 C = {0, 01, 011, 0111, 01111, } C 1 = {1, 11, 111, 1111, 11111} C 2 = ϕ C 3 = ϕ C = {1, 11, 111, 1111, 11111} C C = ϕ ( 5 ) C = {1, 10, 11, 100, 101, 110} C = {0, 01, 011, 0111, 01111, } 9

10 1.3 w 1 = 0, w 2 = 01, w 3 = 11 C 1 = {1} C 2 = {1} C = {1} s 2 s 3 s s 1 s 3 s 3 s w 1 = 0, w 2 = 10, w 3 = s 1 s 2 s 3 s 3 s 2 s 1 w i1 w i2 w in w i1 w i2 w in ( ) s i1 s i2 s in 10

11 w i w j (j i) ( ) C 1 = ϕ (C 1 = ϕ) 11

12

13 13

14 14

15 r l 1, l 2,..., l q q r l i 1 ( ) i=1 l 1 l 2 l q l = l q (l i ) l l i ( ) r l l i 15

16 l 1 l 2 l q q r l l i r l q i=1 r l i > 1 q r l l i > r l i=1 i=1 16

17 17

18 1.3.2 r l 1, l 2,..., l q q r l i 1 i=1 ( ) ( ) 18

19 l = max(l 1, l 2,... l q ) m = min(l 1, l 2,... l q ) K K = q i=1 r l i K n (K n ) r l i 1 r l i 2 r l in = r j j = l i1 + l i2 + + l in m l i1, l i2,..., l in l mn j ln K n K n = ln j=mn N j,n r j 19

20 N j,n j n n w i1 w i2 w in j j r j N j,n r j K n = ln i=mn N j,n r j ln i=mn r j r j = ln i=mn 1 = (l m)n + 1 n K n 1 K > 1 n K 1 20

21 2 w 1, w 2,..., w q l 1, l 2,..., l q w 1, w 2,..., w q p 1, p 2,..., p q w 1, w 2,..., w q L(C) q L(C) = p i l i i=1 p 1 = 1/2 p 2 = 1/4 p 3 = 1/8 p 4 = 1/8 C 1 w 1 = 00 w 2 = 01 w 3 = 10 w 4 = 11 L(C 1 ) = = 2 C 2 w 1 = 0 w 2 = 10 w 3 = 110 w 4 = 111 L(C 1 ) = =

22 ( ) r p i ( ) S r r ( ) 22

23 T = Z 2 = {0, 1} S s 1, s 2,..., s q 2, s q 1, s q p 1, p 2,..., p q 2, p q 1, p q s s q 1 s q (s = (s q 1 s q )) S s 1, s 2,..., s q 2, s p 1, p 2,..., p q 2, (p q 1 + p q ) S C = {w 1, w 2,..., w q 2, w } S C = {w 1, w 2,..., w q 2, w 0, w 1} C C 23

24 2 1. S (0) = S k = 1 2. k == q 1 C (q) = ϵ goto 5 3. S (k) 2 S (k+1) 4. k = k + 1 goto 2 5. k == 0 6. S (k 1) S (k) C (k) w (k) 2 w (k) 0 w (k) 1 S (k 1) C (k 1) 7. k = k 1 goto 5 ( ) 24

25 2.1.1 L(C) = =

26 p (k) S (k 1) S (k) 2. p (k 1) p (k 1) 2 i j p (k) = p (k 1) i + p (k 1) j 3. L(C (k 1) ) L(C (k) ) w (k 1) 0 1 L(C (k 1) ) L(C (k) ) = p (k) 26

27 w 1 w 2 w w0 w1 S 2 D ( ) ( ) S 2 D (1 ) D σ(d) σ(d) = i l i σ(d) D 0 D 0 1 w w0 w1 2 D 0 D 27

28 w D 0 w0 w1 w D 0 D σ(d 0 ) = σ(d 0) 1 D 0 ( ) 2 ( ) q 1 C = {ϵ} L(C) = 0 q 1 q C s 1,..., s q 2, s q 1, s q ( ) s 1,..., s q 2, (s q 1 s q ) C C L(C) L(C ) = p q 1 + p q 28

29 C D 2 s i s j (i < j) s i s q 1 s j s q D l i D s i s j l i l q 1 l j l q (l i, l j, l q 1, l q D ) p i p q 1, p j p q L(D ) L(D) = p q 1 l q 1 + p q l q + p i l i + p j l j (p q 1 l i + p q l j + p i l q 1 + p j l q ) = (p q 1 p i )(l q 1 l i ) + (p q p j )(l q l j ) 0 L(D) L(D ) L(D) s q 1 s q D s q 1 s q D L(D) L(D ) = p q 1 + p q = L(C) L(C ) C L(C ) L(D ) L(C) L(D) D C 29

30 2.2 r 2 r 1 s s w w 0, w 1,..., w r 1 r 1 r n(r 1) (n ) r = 3, p 1 = 0.4, p 2 = 0.3, p 3 = 0.2, p 4 = s 5 p 5 = 0 w 1 = 0, w 2 = 1, w 3 = 20, w 4 = 21 ( w 4 = 22) w 1 = 0, w 2 = 10, w 3 = 11, w 4 = 12 (2 ) 30

31 3 3.1 I(s i ) s i I(s i ) I(s i ) s i p i p i = 1 I(s i ) = 0 (P (s i s j ) = P (s i )P (s j )) I(s i s j ) = I(s i ) + I(s j ) I r (s i ) = log r (p i ) r r = 2 [bit] r 31

32 q H r (S) = p i I r (s i ) = i=1 q p i log r p i i=1 q q H(S) = p i I(s i ) = p i log p i i=1 p = 0 p log p = 0 H(p) S p 1 p 2 i=1 H(S) = H(p) p log p (1 p) log(1 p) p = 1/2 1 H(p) = H(1 p) 32

33 p log p 33

34 H(p) = p log p (1 p) log(1 p) 34

35 3.2 H r (S) = i p i log r p i H r (S) 0 H r (S) = 0 i p i = 1 x > 0 ln x x 1 x = 1 (ln x = log e x) 35

36 x i 0 y i > 0 i x i = i y i = 1 x i log r x i x i log r y i i i ( ) y x i log i r = 1 x x i i ln r i ln y i 1 x i i ln r i = 1 (y ln r i x i ) = 1 (1 1) = 0 ln r i x i ( yi x i 1 y i /x i = 1 i y i = 0 x i = 0 x i log r y i ) 36

37 ( ) S q H r (S) log r q p 1 = p 1 = = p q = 1/q ( ) x i = p i y i = 1/q H r (S) = p i log r p i i i p i log r (1/q) = log r q 37

38 3.3 C S r ( ) C l 1, l 2,..., l q L(C) H r (S) K = q i=1 r l i y i = r l i/k q i=1 y i = 1 p.36 38

39 K 1 (log r K 0) q H r (S) = p i log r p i = i=1 q p i log r y i = i=1 q p i l i + i=1 L(C) q p i log r (r l i/k) i=1 q p i log r K = L(C) + log r K i=1 39

40 i log r p i ( ) p i = y i log r K = 0 (K = 1) log r p i = l i log r p i l i = log r p i q q r l i = p i = 1 i=1 i=1 η H r(s) L(C) 40

41 S p 1 = 1/2 p 2 = 1/4 p 3 = 1/8 p 4 = 1/8 C w 1 = 0 w 2 = 10 w 3 = 110 w 4 = 111 H 2 (S) = 1 2 log log log log 2 L(C) = = 1.75 η = 1.75/1.75 = = 1.75 S p 1 = 0.3 p 2 = 0.2 p 3 = 0.2 p 4 = 0.2 p 5 = 0.1 C w 1 = 00 w 2 = 10 w 3 = 11 w 4 = 010 w 4 = 011 H 2 (S) = 0.3 log log log log log = L(C) = = 2.3 η = /2.3 =

42 3.4 x x x 2.3 = = 4 0 l i = log r p i log r p i log r p i < log r p i + 1 q q r l i p i = 1 i=1 i=1 H r (S) L(C) < H r (S) H r (S) L(C) H r (S)

43 ( 0 p 0 = 1 p 1 = 0 w 0 = 0 w 1 = 1) H r (S) + 1 H r (S) + 1 S p 1 = 0.3 p 2 = 0.2 p 3 = 0.2 p 4 = 0.2 p 5 = 0.1 log = 1.73 log = log = 3.32 L(C) = = 2.8 η = ( L(C) = ) 43

44 3.5 S {s 1,..., s q } p 1,..., p q T {t 1,..., t q } p 1,..., p q S T S T (s i, t j ) (s i, t j ) p i p j S T ( ) H r (S T ) = q i=1 H r (S T ) = H r (S) + H r (T ) q p i p j log r p i p j = j=1 i = p i log r p i i j = H r (S) + H r (T ) p j j p i p j (log r p i + log r p j ) j p j log r p j i p i 44

45 n S 1, S 2,..., S n S n S 1 S 2 S n = (S 1 S 2 S n 1 ) S n S 1, S 2,..., S n s 1,i1, s 2,i2,..., s n,in p 1,i1, p 2,i2,..., p n,in S 1, S 2,..., S n S 1 S 2 S n (s 1,i1, s 2,i2,, s n,in ) ( 1 ) p 1,i1 p 2,i2 p n,in ( ) S 1, S 2,..., S n H r (S 1 S 2 S n ) = H r (S 1 ) + H r (S 2 ) + + H r (S n ) 45

46 S 1, S 2,..., S n S n S n S 1 S 2 S n H r (S n ) = nh r (S) 46

47 3.6 L n S n H r (S n ) L n H r (S n ) + 1 S n S n S 1 L n /n H r (S n ) = nh r (S) H r (S) L n n H r(s) + 1 n n 1/n 0 n S n S r H r (S) 47

48 p 1 = 3/4 p 2 = 1/4 H 2 (S) = S w 1 = 0, w 2 = 1 L 1 = 1 S 2 w 11 = 0, w 12 = 10, w 21 = 110, w 22 = 111 L 2 /2 = S 3 w 111 = 0, w 112 = 110, w 121 = 100, w 122 = 11100, w 211 = 101, w 212 = 11101, w 221 = 11110, w 222 = L 3 /3 =

49 3.7 p ij j i p i i ( ) p i = j p ij p j j i ( ) log p ij i p ij log r p ij 49

50 j H r (S) = p j p ij log r p ij j i i p ij = 1 p.36 j i p ij log r p ij i p ij log r p i H r (S) = j i p j p ij log r p ij j i p ij p j log r p i = i p i log r p i 50

51 4 ( ZIP, LHA, JPEG ) 51

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w S = 4π dτ dσ gg ij i X µ j X ν η µν η µν g ij g ij = g ij = ( 0 0 ) τ, σ (+, +) τ τ = iτ ds ds = dτ + dσ ds = dτ + dσ δ ij ( ) a =, a = τ b = σ g ij δ ab g g ( +, +,... ) S = 4π S = 4π ( i) = i 4π dτ dσ

More information

BayesfiI‡É“ÅfiK‡È−w‘K‡Ì‡½‡ß‡ÌChow-Liu…A…‰…S…−…Y…•

BayesfiI‡É“ÅfiK‡È−w‘K‡Ì‡½‡ß‡ÌChow-Liu…A…‰…S…−…Y…• 1 / 21 Kruscal V : w i,j R: w i,j = w j,i i j Kruscal (w i,j 0 ) 1 E {{i, j} i, j V, i i} 2 E {} 3 while(e = ϕ) for w i,j {i, j} E 1 E E\{i, j} 2 G = (V, E {i, j}) = E E {i, j} G {i,j} E w i,j 2 / 21 w

More information

1 2 3 4 5 6 X Y ABC A ABC B 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 13 18 30 P331 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 ( ) 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

More information

26 2 3 4 5 8 9 6 7 2 3 4 5 2 6 7 3 8 9 3 0 4 2 4 3 4 4 5 6 5 7 6 2 2 A B C ABC 8 9 6 3 3 4 4 20 2 6 2 2 3 3 4 4 5 5 22 6 6 7 7 23 6 2 2 3 3 4 4 24 2 2 3 3 4 4 25 6 2 2 3 3 4 4 26 2 2 3 3 27 6 4 4 5 5

More information

mogiJugyo_slide_full.dvi

mogiJugyo_slide_full.dvi a 2 + b 2 = c 2 (a, b, c) a 2 a 2 = a a a 1/ 78 2/ 78 3/ 78 4/ 78 180 5/ 78 http://www.kaijo.ed.jp/ 6/ 78 a, b, c ABC C a b B c A C 90 a 2 + b 2 = c 2 7/ 78 C a b a 2 +b 2 = c 2 B c A a 2 a a 2 = a a 8/

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

2

2 ( ) 1 1 2 3000 2500 2000 1500 1000 500 0-500 -1000-1500 18 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 3 3 1980 ( ) 1980 43 87 33 10 10 2001 80 07 58.6

More information

94.7 H22 H22 140,000 120,000 3.31 3.24 3.02 2.85 116,435 122,529 126,317 3.5 3 100,000 80,000 77,498 93,159 105,099 112,878 2.73 2.62 2.51 2.5 2 60,000 40,000 20,000 23,412 28,790 34,786 39,571

More information

untitled

untitled P125(2) ()()()() ()()() ()()()()()()() 1 - - - - - - - - - - - - - - -1 - - - 105 105 105120 105120 105120 105120 105120 90 90 90 90 90 105 105 105 105 105120 105120 105120 105120 90 90 90 90 85 85 85

More information

Taro12-第4回意見募集結果(改訂

Taro12-第4回意見募集結果(改訂 - - - - - - - - - - - - - - HP - - - - - - - - - - - - - - -

More information

2 4 5 6 7 8 9 HP 10 11 12 14 15 , 16 17 18 19 20 21 22 24 25 26 27 28 29 30 31 34 35 36 37 38 39, 40 41 42 43 44 45 46 47 48 49 50 51 52 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 1 70 71 72

More information

平成16年度外務省事後評価実施計画策定について

平成16年度外務省事後評価実施計画策定について 2005 1 HP http://www.mofa.go.jp/mofaj/area/n_korea/index.html http://www.mofa.go.jp/mofaj/area/n_korea/abd/rachi_mondai.html HP http://www.mofa.go.jp/mofaj/area/n_korea/abd/6kaigo3_gh.html http://www.mofa.go.jp/mofaj/press/danwa/17/dga_0414b.html

More information

H15 H2 H25 H26 H H さいたま64.% 49.9% H25 8

H15 H2 H25 H26 H H さいたま64.% 49.9% H25 8 19 26 38 524 476 556 68 647 686 73 779 812 856 15 9 8 7 6 5 4 3 2 1 476 556 8 779 812 73 686 647 68 52 39 39 44 49 36 856 44 2 18 16 14 12 1 8 6 4 2 32 316 286 35.1 33.6 262 31.8 29.1 171 19 1 62 54 57

More information

A R & B A % % z z z z c c z A B c C jc jc LC LC R s A c c & zz % & & A A c c B & % & A R B z z z A B c c c c c c c c A B A B c C c c D A % B z z c j c z z A c B c z A % B c cc cc cc % % z c c z c cc 19

More information

Excelにおける回帰分析(最小二乗法)の手順と出力

Excelにおける回帰分析(最小二乗法)の手順と出力 Microsoft Excel Excel 1 1 x y x y y = a + bx a b a x 1 3 x 0 1 30 31 y b log x α x α x β 4 version.01 008 3 30 Website:http://keijisaito.info, E-mail:master@keijisaito.info 1 Excel Excel.1 Excel Excel

More information

オートマトンと言語理論 テキスト 成蹊大学理工学部情報科学科 山本真基 ii iii 1 1 1.1.................................. 1 1.2................................ 5 1.3............................. 5 2 7 2.1..................................

More information

untitled

untitled 186 17 100160250 1 10.1 55 2 18.5 6.9 100 38 17 3.2 17 8.4 45 3.9 53 1.6 22 7.3 100 2.3 31 3.4 47 OR OR 3 1.20.76 63.4 2.16 4 38,937101,118 17 17 17 5 1,765 1,424 854 794 108 839 628 173 389 339 57 6 18613

More information

untitled

untitled 1. 3 14 2. 1 12 9 7.1 3. 5 10 17 8 5500 4. 6 11 5. 1 12 101977 1 21 45.31982.9.4 79.71996 / 1997 89.21983 41.01902 6. 7 5 10 2004 30 16.8 37.5 3.3 2004 10.0 7.5 37.0 2004 8. 2 7 9. 6 11 46 37 25 55 10.

More information

1

1 1 2 3 4 5 0% 20% 40% 60% 80% 100% 6 7 8 0% 20% 40% 60% 80% 100% 9 0% 20% 40% 60% 80% 100% 10 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 2529 (n=17) 3034 35 (n=21) (n=17) 2529 (n=19) 3034 35 (n=34) (n=64)

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

1-17ミニマル継手.indd

1-17ミニマル継手.indd http://www.pisco.co.jp 266 (mm) ø3 ø4 ø5 ø6 (mm) ø2 ø2.5 ø3 ø4 (mm) M3 0.5 M5 0.8 267 (mm) M3 0.5 M5 0.8 (mm) M3 0.5 M5 0.8 M6 1 R1/8 0.5MPa (UD) 0.4MPa -100kPa 0 50ºC ( ) 1MPa (UD) 0.4MPa -100kPa 0 50ºC

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

AHPを用いた大相撲の新しい番付編成

AHPを用いた大相撲の新しい番付編成 5304050 2008/2/15 1 2008/2/15 2 42 2008/2/15 3 2008/2/15 4 195 2008/2/15 5 2008/2/15 6 i j ij >1 ij ij1/>1 i j i 1 ji 1/ j ij 2008/2/15 7 1 =2.01/=0.5 =1.51/=0.67 2008/2/15 8 1 2008/2/15 9 () u ) i i i

More information

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552 3 3.0 a n a n ( ) () a m a n = a m+n () (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 55 3. (n ) a n n a n a n 3 4 = 8 8 3 ( 3) 4 = 8 3 8 ( ) ( ) 3 = 8 8 ( ) 3 n n 4 n n

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý  (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ) (2016 ) Dept. of Phys., Kyushu Univ. 2017 8 10 1 / 59 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER 2 / 59 ( ) ( ) (Dirac, t Hooft-Polyakov)

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

KAGA City Waterworks Vision 1.00 0.90 0.80 0.98 0.79 0.78 0.70 0.60 0.66 0.67 0.69 0.72 0.67 0.50 H21 H22 H23 H24 H25 14.0 12.0 10.0 8.0 6.0 4.0 11.7 11.8 11.8 11.9 10.0 7.7 6.8 5.2 H21 H22

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp ( 28) ( ) ( 28 9 22 ) 0 This ote is c 2016, 2017 by Setsuo Taiguchi. It may be used for persoal or classroom purposes, but ot for commercial purposes. i (http://www.stat.go.jp/teacher/c2epi1.htm ) = statistics

More information

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0 2010 II 6 10.11.15/ 10.11.11 1 1 5.6 1.1 1. y = e x y = log x = log e x 2. e x ) = e x 3. ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0 log a 1 a 1 log a a a r+s log a M + log a N 1 0 a 1 a r

More information

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m 2009 10 6 23 7.5 7.5.1 7.2.5 φ s i m j1 x j ξ j s i (1)? φ i φ s i f j x j x ji ξ j s i (1) φ 1 φ 2. φ n m j1 f jx j1 m j1 f jx j2. m j1 f jx jn x 11 x 21 x m1 x 12 x 22 x m2...... m j1 x j1f j m j1 x

More information

情報理論 第5回 情報量とエントロピー

情報理論  第5回 情報量とエントロピー 5 () ( ) ( ) ( ) p(a) a I(a) p(a) p(a) I(a) p(a) I(a) (2) (self information) p(a) = I(a) = 0 I(a) = 0 I(a) a I(a) = log 2 p(a) = log 2 p(a) bit 2 (log 2 ) (3) I(a) 7 6 5 4 3 2 0 0.5 p(a) p(a) = /2 I(a)

More information

2012 September 21, 2012, Rev.2.2

2012 September 21, 2012, Rev.2.2 212 September 21, 212, Rev.2.2 4................. 4 1 6 1.1.................. 6 1.2.................... 7 1.3 s................... 8 1.4....................... 9 1.5..................... 11 2 12 2.1.........................

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼  Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ 2016 Kosterlitz-Thouless Haldane Dept. of Phys., Kyushu Univ. 2016 11 29 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER ( ) ( ) (Dirac,

More information

目次

目次 00D80020G 2004 3 ID POS 30 40 0 RFM i ... 2...2 2. ID POS...2 2.2...3 3...5 3....5 3.2...6 4...9 4....9 4.2...9 4.3...0 4.4...4 4.3....4 4.3.2...6 4.3.3...7 4.3.4...9 4.3.5...2 5...23 5....23 5.....23

More information

本組よこ/根間:文11-029_P377‐408

本組よこ/根間:文11-029_P377‐408 377 378 a b c d 379 p M NH p 380 p 381 a pp b T 382 c S pp p 383 p M M 384 a M b M 385 c M d M e M 386 a M b M a M 387 b M 388 p 389 a b c 390 391 a S H p p b S p 392 a T 393 b S p c S 394 A a b c d 395

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

t.dvi

t.dvi T-1 http://adapt.cs.tsukuba.ac.jp/moodle263/course/view.php?id=7 (Keisuke.Kameyama@cs.tsukuba.ac.jp) 29 10 11 1 ( ) (a) (b) (c) (d) SVD Tikhonov 3 (e) 1: ( ) 1 Objective Output s Known system p(s) b =

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

行列代数2010A

行列代数2010A (,) A (,) B C = AB a 11 a 1 a 1 b 11 b 1 b 1 c 11 c 1 c a A = 1 a a, B = b 1 b b, C = AB = c 1 c c a 1 a a b 1 b b c 1 c c i j ij a i1 a i a i b 1j b j b j c ij = a ik b kj b 1j b j AB = a i1 a i a ik

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

,798 14, kg ,560 10, kg ,650 2, kg ,400 19, kg ,

,798 14, kg ,560 10, kg ,650 2, kg ,400 19, kg , / HS / TEL FAX 2007 1 18,000 9,540.00 0.53 kg 2007 1 99,000 38,518.00 0.39 kg 2007 1 30,200 11,778.00 0.39 kg 2007 1 15,000 5,565.00 0.37 kg 2007 1 21,000 7,400.00 0.35 kg 2007 1 40,000 20,579.00 0.51

More information

14 10 15 14 10 15 46.7 14 8 14 3 1 14 8 31 1 14 8 80,956 454,528 2.9 3.4 14,550 2.7 14,227 2.4 13 8 78,658 439,432 14,956 14,571 14 2 153,889 860,441 24,545 23,378 1 ( ) - 1-1 14 8 7,262 6.1 84 28 13 8

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

-2-

-2- -1-2009 3 2 2 HP http://homepage3.nifty.com/office-wada/ -2- -3-1 01 X Y 100 Y Y 02 A B B C A -4- 2 03 X Y Y X XY Y X Y X Y Z XY Z Z X 261 24 14 49 41 77 1 48 6 21 27 6 712 11 1 53 9 14 906 88 X1 X2 X3

More information

2.2.1............... 20 2.2.2................................ 20 2.2.3......... 21 2.3....................................... 21 2.3.1.......... 21 2.

2.2.1............... 20 2.2.2................................ 20 2.2.3......... 21 2.3....................................... 21 2.3.1.......... 21 2. 1 6 1.1.............................................. 6 1.1.1.................... 6 1.1.2................... 6 1.1.3....................... 7 1.2................................................ 8 1.2.1..............

More information

橡HP用.PDF

橡HP用.PDF 1 2 3 ... 1... 2... 2... 3... 4... 12...12...12... 14...14...15...16... 17...17... 17...18...18...20...22... 26... 26 ... 27...27...28 32 1 2 3 8 9 O 1 2 7 C ln 6 O 4 3 C ln m + n = 8 8 9 1 2 7 3 C ln

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

MUFFIN3

MUFFIN3 MUFFIN - MUltiFarious FIeld simulator for Non-equilibrium system - ( ) MUFFIN WG3 - - JCII, - ( ) - ( ) - ( ) - (JSR) - - MUFFIN sec -3 msec -6 sec GOURMET SUSHI MUFFIN -9 nsec PASTA -1 psec -15 fsec COGNAC

More information

4

4 4 5 6 7 + 8 = ++ 9 + + + + ++ 10 + + 11 12 WS LC VA L WS = LC VA = LC L L VA = LC L VA L 13 i LC VA WS WS = LC = VA LC VA VA = VA α WS α = VA VA i WS = LC VA i t t+1 14 WS = α WS + WS α WS = WS WS WS =

More information

釧路市幼児教育振興計画(完成版).doc

釧路市幼児教育振興計画(完成版).doc 17 18 10 17 20 29 10 15 19 9,762 9,151 611 29 19 1,842 20 19 3,980 2,706 68 100 1,841 90 17 10 89 44 19 3,560 2,563 72 19 () () () 29 3,980 2,706 67.99 26 1,855 1,841 99.25 55 5,835 4,547 77.93 15

More information

さくらの個別指導 ( さくら教育研究所 ) a a n n A m n 1 a m a n = a m+n 2 (a m ) n = a mn 3 (ab) n = a n b n a n n = = 3 2, = 3 2+

さくらの個別指導 ( さくら教育研究所 ) a a n n A m n 1 a m a n = a m+n 2 (a m ) n = a mn 3 (ab) n = a n b n a n n = = 3 2, = 3 2+ 5 5. 5.. a a n n A m n a m a n = a m+n (a m ) n = a mn 3 (ab) n = a n b n a n n 0 3 3 0 = 3 +0 = 3, 3 3 = 3 +( ) = 3 0 3 0 3 3 0 = 3 3 =, 3 = 30 3 = 3 0 a 0 a`n a 0 n a 0 = a`n = a n a` = a 83 84 5 5.

More information

() [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () ) m/s 4. ) 4. AMEDAS

() [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () ) m/s 4. ) 4. AMEDAS () [REQ] 4. 4. () [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () 0 0 4. 5050 0 ) 00 4 30354045m/s 4. ) 4. AMEDAS ) 4. 0 3 ) 4. 0 4. 4 4.3(3) () [REQ] () [REQ] (3) [POS] () ()() 4.3 P = ρ d AnC DG ()

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 12 12.1? finite deformation infinitesimal deformation large deformation 1 [129] B Bernoulli-Euler [26] 1975 Northwestern Nemat-Nasser Continuum Mechanics 1980 [73] 2 1 2 What is the physical meaning? 583

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

it-ken_open.key

it-ken_open.key 深層学習技術の進展 ImageNet Classification 画像認識 音声認識 自然言語処理 機械翻訳 深層学習技術は これらの分野において 特に圧倒的な強みを見せている Figure (Left) Eight ILSVRC-2010 test Deep images and the cited4: from: ``ImageNet Classification with Networks et

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

I

I I 2008 I i 1 1 1.1.............................. 1 1.2................................. 7 1.3......................... 13 2 23 2.1......................... 23 2.2............................... 31 3 37

More information

11夏特集号初校.indd

11夏特集号初校.indd 1 2 3 5 50 40 7 6 3 ABC 3 5 A 5% B C 100 3 1 2 3 A 5% 5% 5% B 10% 5% 0% C 20% 10% 15% A 15.8% 15.0% 0.8% B 15.5% 15.0% 0.5% C 12.2% 15.0% 2.8% 2,000 1,500 1,000 500 0 10% 5% 3% 1% 01 5 10 15 20 25 30

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 (4/12) 1 1.. 2. F R C H P n F E n := {((x 0,..., x n ), [v 0 : : v n ]) F n+1 P n F n x i v i = 0 }. i=0 E n P n F P n

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information