Microsoft Word - 2_0421

Size: px
Start display at page:

Download "Microsoft Word - 2_0421"

Transcription

1 電気工学講義資料 直流回路計算の基礎 ( オームの法則 抵抗の直並列接続 キルヒホッフの法則 テブナンの定理 ) オームの法則 ( 復習 ) 図 に示すような物体に電圧 V (V) の直流電源を接続すると物体には電流が流れる 物体を流れる電流 (A) は 物体に加えられる電圧の大きさに比例し 次式のように表すことができる V () これをオームの法則 ( 実験式 ) といい このときの は比例定数であり 物体の電気抵抗と呼ぶ 電気抵抗 の単位は () 式より [V/A] だが これをオーム ( ) と定めている l [m] S [m ] 図 なお 物体の電気抵抗は 長さ l(m) に比例して大きくなり 断面積 S (m ) に反比例して小さくなることが分かっており 次式のように表すことができる S () このとき比例定数を物体の抵抗率といい 物質固有の抵抗値である 抵抗率の単位は [ m] で 代表的な物質の抵抗率 (0 ) を 次表に示す 単位 : [ m] 銅 (Cu) アルミニュウム (Al) 銀 (Ag) 鉄 (Fe) ベークライト ~0 0 抵抗の直列 並列接続の合成抵抗 ( 復習 ) (A) 抵抗の直列接続直列接続とは 回路を流れる電流が途中で分岐したり加わったりすることのない回路である 図 に示す回路では 抵抗 と を流れる電流が同一で (A) であるため オームの法則より各抵抗両端の電圧には (3) 式の関係が成り立つ V, V3, V3 V V3 V3 ( ) (3) (3) 式は 直列接続された抵抗 と を一つの抵抗で置き換えれば その値は となることを示している このように複数の抵抗を一つの抵抗で置き換えたとき この一つの抵抗を合成抵抗という 一般に 直列接続の合成抵抗は 各抵抗値の代数和で与えられる (B) 抵抗の並列接続並列接続は 直列接続とは逆に 回路を流れる電流が途中で分岐したり加わったりする回路である 図 3 に示す回路では 抵抗 と に加わる電圧が同一で V(V) であるため オームの法則より 各抵抗を流れる電流 と 及び は 次式のように求めることができる

2 V V,, V (4) (4) 式より 並列接続された抵抗 と の合成抵抗は 抵抗値 と の逆数和の逆数となることを示している 一般に 並列接続の合成抵抗は 各抵抗値の逆数和の逆数で与えられる 3 V [V] [A] V 3 [V] V 3 [V] 3 [A] V [V] 図 直列接続 図 3 並列接続 ( 注 : 起電力と電圧降下 ) 図 4 は ( ) の抵抗に V (V) の直流電源を接続した場合の各部の電圧 ( 電位 ) を太線で示したものである 回路を右回り一巡でたどると 電圧は直流電源で V (V) 上昇し 抵抗 がある端子 で V(V) 降下する このとき 電源の電圧を起電力 抵抗両端の電圧を電圧降下と呼び両者を区別する 電圧降下の極性は 図示のように 電流が流れ込む端子 を とする 起電力 V [V] 電圧降下 図 4 起電力と電圧降下 3 キルヒホッフの法則キルヒホッフ (Gustv oert Kirchhoff 独 84~887) は 初めて複雑な回路の電気計算法を考案した人である 9 世紀半ばは 多重通信が発達し 回路網がますます複雑になっていった これらの複雑な回路の電気計算は それまで オームの法則で一つひとつ具体的に計算する以外になかった キルヒホッフは 847 年に集中定数回路の一般的取り扱いの最初の理論を発表し 回路網の科学的取り扱いに貢献した これをキルヒホッフの法則といい 第 法則と第 法則から成る [] 第 法則 回路網中の任意の接続点において 流入する電流と 流出する電流の代数和は零である 図 5 に 回路網中の接続点の例を示す この接続点に流入する電流は,3 及び 4 であり 流出する電流は,5 及び 6 である いま 流入する電流に正符号 () を 流出する電流に負符号 () を付し 接続点における電流の代数和を計算すると 第 法則より次式が得られる ( ) 3 4 ( 5) ( 6) 0 (5) (5) 式は 接続点に流入する電流の総和と 流出する電流の総和が相等しいことを示している 一般に 接続点の個数を n とすると 第 法則より n 個の独立した方程式が作成できる

3 [] 第 法則 回路網中の任意の閉回路において 電圧降下の総和と起電力の総和は相等しい 図 6に 回路網中の任意の閉回路を示す 各岐路に流れる電流をそれぞれ,,3 及び 4でとし 閉回路で点線の矢印の順に電圧降下の総和 ( ) を求めると 3 (6) ただし 電圧降下の極性は 電流が流れ込む方を正 () 極 電流が流れ出る方を負 () 極とする 次いで この閉回路で点線の矢印の順に起電力の総和 ( ) を求めると 3 4 (7) 従って 第 法則によると (6) 式と (7) 式より 次の関係が得られる ( 起電力の総和を求めるときの方向に注意が必要 ) 接続点 図 5 任意の接続点 図 6 任意の閉回路 (8) 一般に m 個の未知電流があり n 個の接続点がある場合 第 法則により m n 個の独立した方程式が作成できる キルヒホッフの法則を利用して回路を解析するということは 各岐路の電流を未知として 第 法則と第 法則を用いて未知電流の数だけの独立した回路方程式 ( 連立方程式 ) をつくり これを解いて未知の電流を求めることである 例題 : 図 7() に示す回路で 各抵抗, 及び 3 を流れる電流を計算せよ 3 3 Ⅰ Ⅱ Ⅲ () () (c) 図 7 キルヒホッフの法則による解析手順 3

4 手順 : 抵抗, 及び 3 を流れる電流 (, 及び 3) とその方向を自由に定める 図 7() に各電流とその方向を示す この電流の方向により各抵抗の電圧降下の極性が図示のように仮に決定する 接続点を図示のように, とする 手順 : 接続点 と について 第 法則を適用して方程式をつくる 図 7() の回路では 接続点の数 n = なので n = 個の方程式 ( 点 ) が次式のように得られる 3 0 (9) 手順 3: 閉回路を自由に定める ここでは 図 7(c) に示すように 閉回路を Ⅰ Ⅱ 及び Ⅲ とする ( 破線の矢印に注意 ) 手順 4: 閉回路 Ⅰ Ⅱ 及び Ⅲ について 第 法則を適用して次式 ( 左から順に 閉回路 Ⅰ Ⅱ 及び Ⅲ における方程式 ) を作成する 33, 33, (0) 未知電流の数 m = 3 で 接続点の数 n = なので m n = 個の方程式が独立である ここでは (0) 式より第 と第 式を選択する 手順 5: (8) 式と (0) 式の第 式と第 式を次式のように連立させる () 手順 6: () 式を解くと 未知電流, 及び 3 が 次式のように得られる ( ) ( ),, () () 式が求める電流である なお 3 に負符号が付いているが これは実際の電流 3 が手順 で定めた方向とは逆方向であることを示している 4 テブナンの定理テブナンの定理は キルヒホッフの法則と同様に 複雑な回路網を解析するための有効な手段である 図 8() に示すように 起電力を含む回路網中の任意の端子 間に現れる電圧を (V) 端子 から回路網をみた合成抵抗が ( ) であるとき 図 8() に示すように この回路網の端 子 に ( ) の抵抗を接続すると この抵抗には次式の電流 (A) が流れる 任意の回路網 ( 起電力を含む ) () 4 () 図 8 テブナンの定理

5 0 (3) テブナンの定理では 複雑な回路網の内部を図 9() に示すように起電力 と抵抗 0 の直列回路と見なす 起電力の内部抵抗が零 ( 電圧源の内部抵抗はゼロ 電流源の内部抵抗は無限大と見なす ) であるため 端子 から回路網をみた抵抗は 0 となる 一方 端子 が開放状態であるため電流が流れず (0 による電圧降下が零であるため ) 端子 に発生する起電力は となる 従って 図 9() に示すように端子 に抵抗 ( ) を接続すれば オームの法則より抵抗 には (3) 式で示す電流が流れることになる () () 図 9 テブナンの定理による回路内部の等価回路 5 演習問題 抵抗 0Ω をもつ電熱器の発熱体に直流 00V を加えたとき 電熱器に流れる電流を求めよ 抵抗 0Ω 0Ω 50Ω の 3 個の抵抗を直列に接続した回路に 00V の直流電圧を加えたとき 0Ω の抵抗に生じる電圧降下を求めよ 3 最大 50V まで測定できる直流電圧計がある この電圧計の内部抵抗を 8000Ω とすると この電圧計で 00V まで測定できるようにするためには 何 Ω の抵抗を直列に接続すればよいか 4 0mA の直流電流計に並列に抵抗を接続して A までの電流を測定できるようにしたい 何 Ω の抵抗を並列に接続したらよいか ただし 電流計の内部抵抗は Ω とする 6 ある電池に 5A の電流を流すと その端子電圧は 07V になり A を流すと V の端子電圧を示す この電池の内部抵抗を求めよ 7 4V の起電力をもつ電池 3 個を直列に接続して これに 7Ω の抵抗負荷を接続したとき 直列に接続した電池の端子電圧は 54V に降下する この電池を接続した回路を短絡すると 何 A の電流が流れるか 8 右図に示す回路において 抵抗 0Ω を流れる電流の大きさと 方向をキルヒホッフの法則を用いて計算せよ 9 上記 8 の問題を テブナンの定理を利用して計算せよ 5Ω Ω 0Ω Ω 5Ω 0V 5

Microsoft Word - 実験2_p1-12キルヒホッフ(第17-2版)P1-12.doc

Microsoft Word - 実験2_p1-12キルヒホッフ(第17-2版)P1-12.doc 実験. テスターの使用法と直流回路. 目的オームの法則 キルヒホッフの法則について理解する テスターの基本的使用法を学ぶ. 予習課題 テスターで測定できる物理量は何か また =00Ω =400Ω 3=500Ωとしてp3435 の計算をすること オームの法則 キルヒホッフの法則について回路図を書き 説明すること 3. 理論金属のように電気をよく通す物質を導体という 導体に電圧をかけると電流が流れる 流れる電流

More information

電気基礎

電気基礎 電気基礎 Ⅰ 1. 電流 電圧 電力 2. オームの法則 直流回路 3. 抵抗の性質 4. キルヒホッフの法則 5. 電力 6. 磁気の性質 7. 電流の磁気作用 8. 鉄の磁化 9. 磁気と電流の間に働く力 10. 電磁誘導作用とインダクタンス 11. 静電気の性質 12. 静電容量とコンデンサ 参考文献 : 新編電気理論 Ⅰ [ 東京電機大学出版局 ] 1. 電流 電圧 電力. 電荷の電気量電荷の持っている電気の量を電荷量といい

More information

第1章 様々な運動

第1章 様々な運動 自己誘導と相互誘導 自己誘導 自己誘導起電力 ( 逆起電力 ) 図のように起電力 V V の電池, 抵抗値 R Ω の抵抗, スイッチS, コイルを直列につないだ回路を考える. コイルに電流が流れると, コイル自身が作る磁場による磁束がコイルを貫く. コイルに流れる電流が変化すると, コイルを貫く磁束も変化するのでコイルにはこの変化を妨げる方向に誘導起電力が生じる. この現象を自己誘導という. 自己誘導による起電力は電流変化を妨げる方向に生じるので逆起電力とも呼ばれる.

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://orito-buturi.com/ NO.3 今日の目的 : 1 微分方程式をもう一度 三角関数の近似について学ぶ 3 微分の意味を考える 5. 起電力 の電池, 抵抗値 の抵抗, 自己インダクタンス のコイルとスイッチを用いて右図のような回路をつくった 始めスイッチは 開かれている 時刻 t = でスイッチを閉じた 以下の問に答えよ ただし, 電流はコイルに

More information

2. コンデンサー 極板面積 S m 2, 極板間隔 d m で, 極板間の誘電率が ε F/m の平行板コンデンサー 容量 C F は C = ( )(23) 容量 C のコンデンサーの極板間に電圧をかけたとき 蓄えられる電荷 Q C Q = ( )(24) 蓄えられる静電エネルギー U J U

2. コンデンサー 極板面積 S m 2, 極板間隔 d m で, 極板間の誘電率が ε F/m の平行板コンデンサー 容量 C F は C = ( )(23) 容量 C のコンデンサーの極板間に電圧をかけたとき 蓄えられる電荷 Q C Q = ( )(24) 蓄えられる静電エネルギー U J U 折戸の物理 簡単復習プリント 電磁気 1 基本事項の簡単な復習電磁気 1. 電場 クーロンの法則 電気量 q1,q2 C の電荷が距離 r m で置かれているとき働く 静電気力 F N は, クーロンの法則の比例定数を k N m 2 /s 2 として 電場 F = ( )(1) 力の向きは,q1,q2 が, 同符号の時 ( )(2) 異符号の時 ( )(3) 大きさ E V/m の電場に, 電気量

More information

FdText理科1年

FdText理科1年 中学理科 2 年 : オームの法則 [ http://www.fdtext.com/dat/ ] オームの法則 [ 要点 ] 電流: 電圧に比例 ( 電圧を 2 倍にすると電流は 2 倍になる ) ていこう : 抵抗の大きさに反比例 ( 抵抗を 2 倍にすると電流は半分になる ) 公式: 電流 (A)= 電圧 (V) 抵抗 (Ω) 抵抗 (Ω)= 電圧 (V) 電流 (A) 電圧 (V)= 抵抗 (Ω)

More information

Microsoft PowerPoint - MEpractice10.ppt [互換モード]

Microsoft PowerPoint - MEpractice10.ppt [互換モード] 抵抗器の実験 抵抗 CdS 電池 テスターを使って オームの法則 キルヒホッフの法則 ブリッジ回路を理解する 用意するもの ラグ板 電池 配線コード グ 数本 抵抗 1本4円 1kΩ 3本 10kΩ 3本 10kΩ 1本 100kΩ 1本 100kΩ 1本 1本 可変抵抗 20kΩボリューム 100円 CdS 1本 120円 テスター デジタルマルチメータ 9800円 テスターは 電池で作動している

More information

. 素子の定格 (rating) と絶対最大定格 (absolute maximum rating ). 定格値とは定格とは, この値で使ってください という推奨値のことで, それ以外の数値で使うと性能を発揮できなかったり破損する可能性があります. ふつうは示された定格通りの値で使用します.. 絶対

. 素子の定格 (rating) と絶対最大定格 (absolute maximum rating ). 定格値とは定格とは, この値で使ってください という推奨値のことで, それ以外の数値で使うと性能を発揮できなかったり破損する可能性があります. ふつうは示された定格通りの値で使用します.. 絶対 生産システム工学科 年後期必修 単位 : センシング演習基礎第 回 素子の最大定格と分圧回路の計算 講義の必要性 学習意義, 習得していないと困ること 電気回路の理論では, 例えば 5V の電源に Ω の抵抗をつなぐと.5A の電流が流れる. これは 理論 であるから, すべての素子が理想特性を持っている前提である. しなしながら, 実際には簡単に思いつくだけでも, 電源 ( 器 ) が.5A の電流を出力できるかどうか,

More information

(3) E-I 特性の傾きが出力コンダクタンス である 添え字 は utput( 出力 ) を意味する (4) E-BE 特性の傾きが電圧帰還率 r である 添え字 r は rrs( 逆 ) を表す 定数の値は, トランジスタの種類によって異なるばかりでなく, 同一のトランジスタでも,I, E, 周

(3) E-I 特性の傾きが出力コンダクタンス である 添え字 は utput( 出力 ) を意味する (4) E-BE 特性の傾きが電圧帰還率 r である 添え字 r は rrs( 逆 ) を表す 定数の値は, トランジスタの種類によって異なるばかりでなく, 同一のトランジスタでも,I, E, 周 トランジスタ増幅回路設計入門 pyrgt y Km Ksaka 005..06. 等価回路についてトランジスタの動作は図 のように非線形なので, その動作を簡単な数式で表すことができない しかし, アナログ信号を扱う回路では, 特性グラフのの直線部分に動作点を置くので線形のパラメータにより, その動作を簡単な数式 ( 一次式 ) で表すことができる 図. パラメータトランジスタの各静特性の直線部分の傾きを数値として特性を表したものが

More information

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63>

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63> - 第 章たわみ角法の基本式 ポイント : たわみ角法の基本式を理解する たわみ角法の基本式を梁の微分方程式より求める 本章では たわみ角法の基本式を導くことにする 基本式の誘導法は各種あるが ここでは 梁の微分方程式を解いて基本式を求める方法を採用する この本で使用する座標系は 右手 右ネジの法則に従った座標を用いる また ひとつの部材では 図 - に示すように部材の左端の 点を原点とし 軸線を

More information

RLC 共振回路 概要 RLC 回路は, ラジオや通信工学, 発信器などに広く使われる. この回路の目的は, 特定の周波数のときに大きな電流を得ることである. 使い方には, 周波数を設定し外へ発する, 外部からの周波数に合わせて同調する, がある. このように, 周波数を扱うことから, 交流を考える

RLC 共振回路 概要 RLC 回路は, ラジオや通信工学, 発信器などに広く使われる. この回路の目的は, 特定の周波数のときに大きな電流を得ることである. 使い方には, 周波数を設定し外へ発する, 外部からの周波数に合わせて同調する, がある. このように, 周波数を扱うことから, 交流を考える 共振回路 概要 回路は ラジオや通信工学 などに広く使われる この回路の目的は 特定の周波数のときに大きな電流を得ることである 使い方には 周波数を設定し外へ発する 外部からの周波数に合わせて同調する がある このように 周波数を扱うことから 交流を考える 特に ( キャパシタ ) と ( インダクタ ) のそれぞれが 周波数によってインピーダンス *) が変わることが回路解釈の鍵になることに注目する

More information

12.2 電気回路網に関するキルヒホッフの法則による解法 2 多元連立 1 次方程式の工学的応用についての例を 2 つ示す.1 つはブリッジ T 型回路, もう 1 つはホーイストンブリッジ回路である. 示された回路図と与えられた回路定数からキルヒホッフの法則を使って多元連立 1 次方程式を導出する

12.2 電気回路網に関するキルヒホッフの法則による解法 2 多元連立 1 次方程式の工学的応用についての例を 2 つ示す.1 つはブリッジ T 型回路, もう 1 つはホーイストンブリッジ回路である. 示された回路図と与えられた回路定数からキルヒホッフの法則を使って多元連立 1 次方程式を導出する 12.2 電気回路網に関するキルヒホッフの法則による解法 2 多元連立 1 次方程式の工学的応用についての例を 2 つ示す.1 つはブリッジ T 型回路, もう 1 つはホーイストンブリッジ回路である. 示された回路図と与えられた回路定数からキルヒホッフの法則を使って多元連立 1 次方程式を導出する. その式のパラメータを前述のプログラムに反映させてシミュレーションを行う. 12.2.0 キルヒホッフの法則

More information

2年 indd

2年 indd 8 電気とそのエネルギー 3 章 電流とその利用! 電流のはたらきと電気器具 電気がもつエネルギー電流によって, 熱や光, 音などが発生したり, 物体を運動させたりすることができる これは, 電気がエネルギーをもっているためである 熱や光, 音などもエネルギーをもっている 熱を発生させる電気器具電気ストーブ, 電気ポット, ドライヤー, 電子レンジなど 電子レンジ以外は, 電熱線に電流が流れることによって,

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 演習プリント N.15 43. 目的 : 電磁誘導は, 基本を理解すれば問題はそれほど難しくない! ということを学ぶ 問 1 の [ ] に適切な数値または数式を入れ, 問 に答えよ 図 1 のように, 紙面に垂直で一様な磁界が 0 の領域だけにある場合について考える 磁束密度は Wb/m で, 磁界は紙面の表から裏へ向かっている 図のように,1 辺の長さが m の正方形のコイル を,

More information

3.5 トランジスタ基本増幅回路 ベース接地基本増幅回路 C 1 C n n 2 R E p v V 2 v R E p 1 v EE 0 VCC 結合コンデンサ ベース接地基本増幅回路 V EE =0, V CC =0として交流分の回路 (C 1, C 2 により短絡 ) トランジスタ

3.5 トランジスタ基本増幅回路 ベース接地基本増幅回路 C 1 C n n 2 R E p v V 2 v R E p 1 v EE 0 VCC 結合コンデンサ ベース接地基本増幅回路 V EE =0, V CC =0として交流分の回路 (C 1, C 2 により短絡 ) トランジスタ 3.4 の特性を表す諸量 入力 i 2 出力 負荷抵抗 4 端子 (2 端子対 ) 回路としての の動作量 (i) 入力インピーダンス : Z i = (ii) 電圧利得 : A v = (iii) 電流利得 : A i = (iv) 電力利得 : A p = i 2 v2 i 2 i 2 =i 2 (v) 出力インピーダンス : Z o = i 2 = 0 i 2 入力 出力 出力インピーダンスの求め方

More information

Microsoft PowerPoint - 基礎電気理論 07回目 11月30日

Microsoft PowerPoint - 基礎電気理論 07回目 11月30日 基礎電気理論 7 回目 月 30 日 ( 月 ) 時限 次回授業 時間 : 月 30 日 ( 月 )( 本日 )4 時限 場所 : B-3 L,, インピーダンス教科書 58 ページから 64 ページ http://ir.cs.yamanashi.ac.jp/~ysuzuki/kisodenki/ 授業評価アンケート ( 中間期評価 ) NS の授業のコミュニティに以下の項目について記入してください

More information

Microsoft Word -

Microsoft Word - 電池 Fruit Cell 自然系 ( 理科 ) コース高嶋めぐみ佐藤尚子松本絵里子 Ⅰはじめに高校の化学における電池の単元は金属元素のイオン化傾向や酸化還元反応の応用として重要な単元である また 電池は日常においても様々な場面で活用されており 生徒にとっても興味を引きやすい その一方で 通常の電池の構造はブラックボックスとなっており その原理について十分な理解をさせるのが困難な教材である そこで

More information

Microsoft PowerPoint - 04.誘導起電力 [互換モード]

Microsoft PowerPoint - 04.誘導起電力 [互換モード] 第 4 章誘導起電力 Φ 磁界中のコイルと磁束 ( 復習 ) : コイルの断面積 Φ : コイルを貫く磁 力線 ( 磁束 ) B B θ : コイル面と磁界 Φ θ のなす角 B: 磁束密度 a) 磁界に対して垂直 b) 傾きθ の位置図 a) のように, 面積 の1 回巻きコイルをΦ の磁力線が貫くときを考える このような磁力線の数を磁束 (magnetic flux) と呼び,[Wb( ウェーバー

More information

Microsoft PowerPoint pptx

Microsoft PowerPoint pptx 4.2 小信号パラメータ 1 電圧利得をどのように求めるか 電圧ー電流変換 入力信号の変化 dv BE I I e 1 v be の振幅から i b を求めるのは難しい? 電流増幅 電流ー電圧変換 di B di C h FE 電流と電圧の関係が指数関数になっているのが問題 (-RC), ただし RL がない場合 dv CE 出力信号の変化 2 pn 接合の非線形性への対処 I B 直流バイアスに対する抵抗

More information

トランジスタ回路の解析 ( 直流電源 + 交流電源 ) 交流回路 ( 小 ) 信号 直流回路 ( バイアス計算 ) 動作点 ( 増幅度の計算 ) 直流等価回路 ダイオードモデル (pnp/npn) 交流 ( 小信号 ) 等価回路 T 形等価回路 トランジスタには直流等価回路と交流等価回路がある

トランジスタ回路の解析 ( 直流電源 + 交流電源 ) 交流回路 ( 小 ) 信号 直流回路 ( バイアス計算 ) 動作点 ( 増幅度の計算 ) 直流等価回路 ダイオードモデル (pnp/npn) 交流 ( 小信号 ) 等価回路 T 形等価回路 トランジスタには直流等価回路と交流等価回路がある トランジスタ回路の解析 ( 直流電源 + 交流電源 ) 交流回路 ( 小 ) 信号 直流回路 ( バイアス計算 ) 動作点 ( 増幅度の計算 ) 直流等価回路 ダイオードモデル (pnp/npn) 交流 ( 小信号 ) 等価回路 T 形等価回路 トランジスタには直流等価回路と交流等価回路がある 2.6 トランジスタの等価回路 2.6.1 トランジスタの直流等価回路 V I I D 1 D 2 α 0

More information

Taro-denkyu_Q

Taro-denkyu_Q 5 電球の明るさ 回路 電流の流れるひとめぐりの道すじを回路という 回路図右のような記号を使って回路を表した図を回路図 ( 配線図 ) という 豆電球 電池 スイッチ 電流計 + 極 - 極 直列つなぎ 並列つなぎ 電気の通り道が 本になっているつなぎ方を直列つなぎという 電気の通り道が 本以上になっているつなぎ方を並列つなぎという 電流 電気の流れを電流という 電流は+ 極から- 極へ流れる 電球を流れる電流電球を流れる電流は,

More information

Microsoft PowerPoint - 電力回路h ppt

Microsoft PowerPoint - 電力回路h ppt 電力回路 対称座標法 平成 年 6 月 日 単位値から実値への変換 単位値は, 実値をベース値で割って得る 実値は, 単位値にベース値を掛けて求まる 電流 ( A) 電流 ( p. u.) ベース電流 ( A) 電圧 ( ) 電圧 ( p. u.) ベース電圧 ( ) インピーダンス( Ω) インピーダンス( p. u.) ベースインピーダンス( Ω) 三相電力回路 三相一回線送電線の回路 回路図

More information

Microsoft PowerPoint EM2_3.ppt

Microsoft PowerPoint EM2_3.ppt ( 第 3 回 ) 鹿間信介摂南大学工学部電気電子工学科 4.3 オームの法則 4.4 金属の電気抵抗 4.5 ジュール熱 演習 4.3 オームの法則 E 電池 電圧 V 抵抗 電流 I 可変抵抗 抵抗両端の電圧 V [V] と電流 I [A] には比例関係がある V =I (: 電気抵抗 ; 比例定数 ) 大 電流が流れにくい 抵抗の単位 : オーム [Ω] 1[Ω]=1[V/A] 1V の電圧を加えたときに

More information

Microsoft PowerPoint EM2_15.ppt

Microsoft PowerPoint EM2_15.ppt ( 第 5 回 ) 鹿間信介摂南大学理工学部電気電子工学科 後半部 (4~5 章 ) のまとめ 4. 導体 4.3 誘電体 5. 磁性体 5. 電気抵抗 演習 導体表面の電界強度 () 外部電界があっても導体内部の電界は ( ゼロ ) になる () 導体の電位は一定 () 導体表面は等電位面 (3) 導体表面の電界は導体に垂直 導体表面と平行な成分があると, 導体表面の電子が移動 導体表面の電界は不連続

More information

ES_Exp_32_Photovo_Cells_LQ_日本語

ES_Exp_32_Photovo_Cells_LQ_日本語 太陽電池 LabQuest 32 太陽によって生産されるエネルギーは太陽エネルギーと呼ばれる. 太陽全体で起こっている核融合反応によって生産されている. このエネルギーは光の形式で地球に届く. 光電池あるいは太陽電池は, 光エネルギーを電卓や自動車, 人工衛星などで使われる電気エネルギーに変換する. 光電池は普通, シリコンなどの半導体物質から作られる. 電池に光が入ると, 電子を動かし電池に電流を発生させる.

More information

はしがき 三宅唯すべてオリジナルで私が作成した. あえて, 内部抵抗のある電池のパフォーマンス問題, ホイートストンブリッジ回路, 非直線抵抗の特性曲線問題 などの頻出題材を避けた. その手のパターン化学習では得られない, 電気回路の理解を目的としているからだ. 細心の注意をはらい, 設問の考察を通

はしがき 三宅唯すべてオリジナルで私が作成した. あえて, 内部抵抗のある電池のパフォーマンス問題, ホイートストンブリッジ回路, 非直線抵抗の特性曲線問題 などの頻出題材を避けた. その手のパターン化学習では得られない, 電気回路の理解を目的としているからだ. 細心の注意をはらい, 設問の考察を通 電磁気学 ( 電気回路のみ ) Lv.50 70 日間の集中演習で最強の回路力を マスター オブ サーキット パズルゲームのようでシンプルな電気回路演習 集中演習で回路素子の基本的な振る舞いをしっかり把握 回路素子の気持ちになれるオリジナル 題 電気回路が 苦 大得意 へ. 針を振り切るような成 を スイッチを入れてほしいあなたに なぜか豆電球がつかないあなたに そもそも電池が入っていないあなたにも

More information

高校電磁気学 ~ 電磁誘導編 ~ 問題演習

高校電磁気学 ~ 電磁誘導編 ~ 問題演習 高校電磁気学 ~ 電磁誘導編 ~ 問題演習 問 1 磁場中を動く導体棒に関する問題 滑車 導体棒の間隔 L m a θ (1) おもりの落下速度が のとき 導体棒 a に生じる誘導起電力の 大きさを求めよ 滑車 導体棒の間隔 L m a θ 導体棒の速度 水平方向の速度 cosθ Δt の時間に回路を貫く磁束の変化 ΔΦ は ΔΦ = ΔS = LcosθΔt ΔΦ ファラデーの法則 V = N より

More information

第 5 章復調回路 古橋武 5.1 組み立て 5.2 理論 ダイオードの特性と復調波形 バイアス回路と復調波形 復調回路 (II) 5.3 倍電圧検波回路 倍電圧検波回路 (I) バイアス回路付き倍電圧検波回路 本稿の Web ページ ht

第 5 章復調回路 古橋武 5.1 組み立て 5.2 理論 ダイオードの特性と復調波形 バイアス回路と復調波形 復調回路 (II) 5.3 倍電圧検波回路 倍電圧検波回路 (I) バイアス回路付き倍電圧検波回路 本稿の Web ページ ht 第 章復調回路 古橋武.1 組み立て.2 理論.2.1 ダイオードの特性と復調波形.2.2 バイアス回路と復調波形.2.3 復調回路 (II).3 倍電圧検波回路.3.1 倍電圧検波回路 (I).3.2 バイアス回路付き倍電圧検波回路 本稿の Web ページ http://mybook-pub-site.sakura.ne.jp/radio_note/index.html 1 C 4 C 4 C 6

More information

Microsoft PowerPoint - ›žŠpfidŠÍŁÏ−·“H−w5›ñŒÚ.ppt

Microsoft PowerPoint - ›žŠpfidŠÍŁÏ−·“H−w5›ñŒÚ.ppt 応用電力変換工学舟木剛 第 5 回本日のテーマ交流 - 直流変換半端整流回路 平成 6 年 月 7 日 整流器 (cfr) とは 交流を直流に変換する 半波整流器は 交直変換半波整流回路 小電力用途 入力電源側の平均電流が零にならない あんまり使われていない 全波整流回路の基本回路 変圧器が直流偏磁しやすい 変圧器の負荷電流に直流分を含むと その直流分により 鉄心が一方向に磁化する これにより 鉄心の磁束密度の増大

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://oritobuturi.co/ NO.5(009..16) 今日の目的 : 1 物理と微分 積分について 微分方程式について学ぶ 3 近似を学ぶ 10. 以下の文を読み,[ ア ]~[ ク ] の空欄に適当な式をいれよ 物体物体に一定の大きさの力を加えたときの, 物体の運動について考え よう 右図のように, なめらかな水平面上で質量 の物体に水平に一定の大きさ

More information

Microsoft PowerPoint - H22パワエレ第3回.ppt

Microsoft PowerPoint - H22パワエレ第3回.ppt パワーエレトクロニクス ( 舟木担当分 ) 第三回サイリスタ位相制御回路逆変換動作 平成 年 月 日月曜日 限目 誘導負荷 位相制御単相全波整流回路 導通期間 ( 点弧角, 消弧角 β) ~β( 正の半波について ) ~ β( 負の半波について ) β> となる時に連続導通となる» この時, 正の半波の導通期間は~» ダイオードでは常に連続導通 連続導通と不連続導通の境界を求める オン状態の微分方程式

More information

Microsoft PowerPoint - fuseitei_4

Microsoft PowerPoint - fuseitei_4 不静定力学 Ⅱ 固定法 今回から, 固定法について学びます 参考書 教科書 藤本盛久, 和田章監修 建築構造力学入門, 実教育出版 松本慎也著 よくわかる構造力学の基本, 秀和システム 参考書として,3つ挙げておきますが, 固定法に関しては松本慎也さんの書かれた本がわかりやすいと思います この本は, 他の手法についてもわかりやすく書いてあるので, 参考書としては非常に良い本です この授業の例題も,

More information

Microsoft Word - H26mse-bese-exp_no1.docx

Microsoft Word - H26mse-bese-exp_no1.docx 実験 No 電気回路の応答 交流回路とインピーダンスの計測 平成 26 年 4 月 担当教員 : 三宅 T A : 許斐 (M2) 齋藤 (M) 目的 2 世紀の社会において 電気エネルギーの占める割合は増加の一途をたどっている このような電気エネルギーを制御して使いこなすには その基礎となる電気回路をまず理解する必要がある 本実験の目的は 電気回路の基礎特性について 実験 計測を通じて理解を深めることである

More information

Microsoft Word - サイリスタ設計

Microsoft Word - サイリスタ設計 サイリスタのゲート回路設計 サイリスタはパワエレ関係の最初に出てくる素子ですが その駆動用ゲート回路に関する文献が少なく 学 生が使いこなせないでいる ゲート回路の設計例 ( ノイズ対策済み ) をここに記しておく 基本的にサイリス タのゲート信号は電流で ON させるものです 1. ノイズ対策済みゲート回路基本回路の説明 図 1 ノイズ対策済みゲート回路基本回路 1.1 パルストランス パルストランスは

More information

について関心をもって話し合っている 6 身近な電気器具について興味 関心をもっている 電圧の特徴を 結果から見いだしている 6 実験結果から 電流の大きさが加えた電圧の大きさに比例することを見いだしている 7 直列回路と並列回路での抵抗の値がどのようになるか 実験の結果から見いだしている 8 水温の

について関心をもって話し合っている 6 身近な電気器具について興味 関心をもっている 電圧の特徴を 結果から見いだしている 6 実験結果から 電流の大きさが加えた電圧の大きさに比例することを見いだしている 7 直列回路と並列回路での抵抗の値がどのようになるか 実験の結果から見いだしている 8 水温の 中学校第 2 学年理科学習指導案 日時対象授業者 平成 25 年 月 日 ( ) 第 校時第 2 学年 組 名 立 中学校 単元名 電気の世界 2 単元の目標電流と電圧 電流の働き 静電気に関する観察 実験を行い 電流や電圧 磁界や静電気などについての基本的な性質を理解させるとともに 日常生活や社会と関連付けながら電流と磁界についての科学的な見方や考え方を養う 3 単元の評価規準観点ア自然事象への関心

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63> 第 1 章モールの定理による静定梁のたわみ 1-1 第 1 章モールの定理による静定梁のたわみ ポイント : モールの定理を用いて 静定梁のたわみを求める 断面力の釣合と梁の微分方程式は良く似ている 前章では 梁の微分方程式を直接積分する方法で 静定梁の断面力と変形状態を求めた 本章では 梁の微分方程式と断面力による力の釣合式が類似していることを利用して 微分方程式を直接解析的に解くのではなく 力の釣合より梁のたわみを求める方法を学ぶ

More information

RMS(Root Mean Square value 実効値 ) 実効値は AC の電圧と電流両方の値を規定する 最も一般的で便利な値です AC 波形の実効値はその波形から得られる パワーのレベルを示すものであり AC 信号の最も重要な属性となります 実効値の計算は AC の電流波形と それによって

RMS(Root Mean Square value 実効値 ) 実効値は AC の電圧と電流両方の値を規定する 最も一般的で便利な値です AC 波形の実効値はその波形から得られる パワーのレベルを示すものであり AC 信号の最も重要な属性となります 実効値の計算は AC の電流波形と それによって 入門書 最近の数多くの AC 電源アプリケーションに伴う複雑な電流 / 電圧波形のため さまざまな測定上の課題が発生しています このような問題に対処する場合 基本的な測定 使用される用語 それらの関係について理解することが重要になります このアプリケーションノートではパワー測定の基本的な考え方やパワー測定において重要な 以下の用語の明確に定義します RMS(Root Mean Square value

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 と

フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 と フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 となるように半固定抵抗器を調整する ( ゼロ点調整のため ) 図 1 非反転増幅器 2010 年度版物理工学実験法

More information

2 10 10 11 13 14 14 16 18 21 22 23 24 26 4 6 7 8 8 27 28 29 30 32 33 33 36 37 38 38 39 40 41 37 43 44 45 48 49 43 4 62 62 64 65 66 62 10 77 77 78 79 79 82 83 84 77 86 88 89 90 91 92 86 94 95 96 96 98 99

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる

More information

スライド 1

スライド 1 アナログ検定 2014 1 アナログ検定 2014 出題意図 電子回路のアナログ的な振る舞いを原理原則に立ち返って解明できる能力 部品の特性や限界を踏まえた上で部品の性能を最大限に引き出せる能力 記憶した知識や計算でない アナログ技術を使いこなすための基本的な知識 知見 ( ナレッジ ) を問う問題 ボーデ線図などからシステムの特性を理解し 特性改善を行うための基本的な知識を問う問題 CAD や回路シミュレーションツールの限界を知った上で

More information

5.オームの法則、合成抵抗

5.オームの法則、合成抵抗 5. オームの法則 合成抵抗 過去に第 2 種電気工事士の資格を取得された方の中には 計算問題を全て捨てて暗記問題だけに絞って勉強された方もおりました 実のところ 計算問題をすべてやらないと何点失うかというと 10~20 点です これは合成抵抗から始まり オームの法則 電力計算 電力損失 電圧降下 許容電流計算 諸々を含めると 10 問くらいはあるということです さて 参考書などを見られた方は あまりの式の多さにうんざりしているのではないでしょうか?

More information

データ解析

データ解析 データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第

More information

<4D F736F F D B4389F D985F F4B89DB91E88250>

<4D F736F F D B4389F D985F F4B89DB91E88250> 電気回路理論 II 演習課題 H30.0.5. 図 の回路で =0 で SW を on 接続 とする時 >0 での i, 並びに を求め 図示しなさい ただし 0 での i, 並びに を求めなさい ただし 0 とする 3. 図 3の回路で =0 で SW を下向きに瞬時に切り替える時 >0 での i,

More information

Microsoft PowerPoint - パワエレH20第4回.ppt

Microsoft PowerPoint - パワエレH20第4回.ppt パワーエレトクロニクス ( 舟木担当分 ) 第 4 回 サイリスタ変換器 ( 相ブリッジ ) 自励式変換器 平成 年 7 月 7 日月曜日 限目 位相制御単相全波整流回路 転流重なり角 これまでの解析は交流電源の内部インピーダンスを無視 考慮したらどうなるか? 電源インピーダンスを含まない回路図 点弧時に交流電流は瞬時に反転» 概念図 電源インピーダンスを含んだ回路図 点弧時に交流電流は瞬時に反転できない»

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

<4D F736F F D CC93F18E9F91A482F08A4A95FA82CD89BD8CCC8A4A95FA82B582C482CD CC82A982CC98622E646F63>

<4D F736F F D CC93F18E9F91A482F08A4A95FA82CD89BD8CCC8A4A95FA82B582C482CD CC82A982CC98622E646F63> CT の二次側を開放しては何故イケナイのかという話 さて今回のお題は CT に関するものです 配電の実務では CT を沢山使います CT は大電流を計測するのに必要な機器ですが 二次側を開放したまま一次側に電流を流すと とんでもない事になります 何故こんな事になるのかと言う話です この話は電気技術者として確実に理解しておかなければならない事項です 下記の説明 ( 擬き?) をお読み下さい で 毎度の様にいきなり問題を出します

More information

Taro-F25理論 印刷原稿

Taro-F25理論 印刷原稿 第 種理論 A 問題 ( 配点は 問題当たり小問各 点, 計 0 点 ) 問 次の文章は, 真空中の静電界に関する諸法則の微分形に関する記述である 文中の に当てはまるものを解答群の中から選びなさい 図のように, 直交座標系において電界の z 軸成分が零となるような電界について, y 平面の二次元で電位や電界を考える ここで,4 点 (h,0),(0,h), (- h,0),(0,-h) の電位がそれぞれ

More information

スライド 0

スライド 0 熱 学 Ⅲ 講義資料 化学反応のエクセルギー解析 京都 芸繊維 学 学院 芸科学研究科機械システム 学部 耕介准教授 2014/5/13 2014/5/9 1/23 なぜ, 化学反応を伴うエクセルギーを学ぶのか?? 従来までに学んだ熱 学 エンジンやガスタービンの反応器は, 外部加熱過程 ( 外部から熱を加える過程 ) に置き換えていた. 実際には化学反応を伴うため, 現実的. 化学反応 を伴う熱

More information

3 単元の目標 (1) 電流と電圧との関係及び電流の働きに関する事物 現象に進んでかかわり それらを科学的に探究するとともに 事象を日常生活とのかかわりでみようとする 自然事象への関心 意欲 態度 (2) 電流と電圧との関係及び電流の働きに関する事物 現象の中に問題を見いだし 目的意識をもって観察

3 単元の目標 (1) 電流と電圧との関係及び電流の働きに関する事物 現象に進んでかかわり それらを科学的に探究するとともに 事象を日常生活とのかかわりでみようとする 自然事象への関心 意欲 態度 (2) 電流と電圧との関係及び電流の働きに関する事物 現象の中に問題を見いだし 目的意識をもって観察 第 2 学年理科学習指導案 日時 平成 27 年 11 月 11 日 ( 水 ) 授業 1 場所 八幡平市立西根中学校第二理科室 学級 2 年 3 組 ( 男子 17 名女子 18 名計 35 名 ) 授業者兼松孝典 1 単元名 - 第 3 章電気の世界第 1 章電流の性質 2 単元について (1) 生徒観本学級は 理科の学習に対する意識が高く 実験等の活動に対して意欲的に取り組む生徒が多い 学級内での学力差は比較的大きいものの

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

s と Z(s) の関係 2019 年 3 月 22 日目次へ戻る s が虚軸を含む複素平面右半面の値の時 X(s) も虚軸を含む複素平面右半面の値でなけれ ばなりません その訳を探ります 本章では 受動回路をインピーダンス Z(s) にしていま す リアクタンス回路の駆動点リアクタンス X(s)

s と Z(s) の関係 2019 年 3 月 22 日目次へ戻る s が虚軸を含む複素平面右半面の値の時 X(s) も虚軸を含む複素平面右半面の値でなけれ ばなりません その訳を探ります 本章では 受動回路をインピーダンス Z(s) にしていま す リアクタンス回路の駆動点リアクタンス X(s) と Z の関係 9 年 3 月 日目次へ戻る が虚軸を含む複素平面右半面の値の時 X も虚軸を含む複素平面右半面の値でなけれ ばなりません その訳を探ります 本章では 受動回路をインピーダンス Z にしていま す リアクタンス回路の駆動点リアクタンス X も Z に含まれます Z に正弦波電流を入れた時最大値 抵抗 コイル コンデンサーで作られた受動回路の ラプラスの世界でのインピーダンスを Z とします

More information

AK XK109 答案用紙記入上の注意 : 答案用紙のマーク欄には 正答と判断したものを一つだけマークすること 第一級総合無線通信士第一級海上無線通信士 無線工学の基礎 試験問題 25 問 2 時間 30 分 A 1 図に示すように 電界の強さ E V/m が一様な電界中を電荷 Q C が電界の方向

AK XK109 答案用紙記入上の注意 : 答案用紙のマーク欄には 正答と判断したものを一つだけマークすること 第一級総合無線通信士第一級海上無線通信士 無線工学の基礎 試験問題 25 問 2 時間 30 分 A 1 図に示すように 電界の強さ E V/m が一様な電界中を電荷 Q C が電界の方向 K XK9 答案用紙記入上の注意 : 答案用紙のマーク欄には 正答と判断したものを一つだけマークすること 第一級総合無線通信士第一級海上無線通信士 無線工学の基礎 試験問題 25 問 2 時間 3 分 図に示すように 電界の強さ /m が一様な電界中を電荷 Q が電界の方向に対して θ rd の角度を保って点 から点 まで m 移動した このときの電荷の仕事量 W の大きさを表す式として 正しいものを下の番号から選べ

More information

2STB240AA(AM-2S-H-006)_01

2STB240AA(AM-2S-H-006)_01 項目記号定格単位 電源 1 印加電圧電源 2 印加電圧入力電圧 (A1 A2) 出力電圧 ( ) 出力電流 ( ) 許容損失動作周囲温度保存周囲温度 S CC I o Io Pd Topr Tstg 24.0.0 0.3 S+0.3 0.3 CC+0.3 10 0. 20 + 4 +12 (1)S=12 系項目 記号 定格 単位 電源 1(I/F 入力側 ) 電源 2(I/F 出力側 ) I/F 入力負荷抵抗

More information

Microsoft PowerPoint - 4.CMOSLogic.ppt

Microsoft PowerPoint - 4.CMOSLogic.ppt 第 4 章 CMOS 論理回路 (1) CMOS インバータ 2008/11/18 広島大学岩田穆 1 抵抗負荷のインバータ V dd ( 正電源 ) R: 負荷抵抗 In Vin Out Vout n-mos 駆動トランジスタ グランド 2008/11/18 広島大学岩田穆 2 抵抗負荷のインバータ V gs I d Vds n-mos 駆動トランジスタ ドレイン電流 I d (n-mos) n-mosの特性

More information

Microsoft PowerPoint - 第9回電磁気学

Microsoft PowerPoint - 第9回電磁気学 017 年 1 月 04 日 ( 月 ) 13:00-14:30 C13 平成 9 年度工 V 系 ( 社会環境工学科 ) 第 9 回電磁気学 Ⅰ 天野浩 mno@nuee.ngoy-u.c.jp 9 1 月 04 日 第 5 章 電流の間に働く力 磁場 微分形で表したア ンペールの法則 ビオ サバールの法則 第 5 章電流の作る場 http://www.ntt-est.co.jp/business/mgzine/netwok_histoy/0/

More information

オペアンプの容量負荷による発振について

オペアンプの容量負荷による発振について Alicatin Nte オペアンプシリーズ オペアンプの容量負荷による発振について 目次 :. オペアンプの周波数特性について 2. 位相遅れと発振について 3. オペアンプの位相遅れの原因 4. 安定性の確認方法 ( 増幅回路 ) 5. 安定性の確認方法 ( 全帰還回路 / ボルテージフォロア ) 6. 安定性の確認方法まとめ 7. 容量負荷による発振の対策方法 ( 出力分離抵抗 ) 8. 容量負荷による発振の対策方法

More information

トランスの利用率の話 トランスの利用率の話をします この書き込みをお読みの方は トランスの容量が下記の様に示される事はご存じだと思います ( ご存じでない方は 下図を見て納得して下さい ) 単相 2 線式トランスの容量を P[VA] とすれば 単相負荷は P[VA] 接続できます この単相トランスを

トランスの利用率の話 トランスの利用率の話をします この書き込みをお読みの方は トランスの容量が下記の様に示される事はご存じだと思います ( ご存じでない方は 下図を見て納得して下さい ) 単相 2 線式トランスの容量を P[VA] とすれば 単相負荷は P[VA] 接続できます この単相トランスを トランスの利用率の話 トランスの利用率の話をします この書き込みをお読みの方は トランスの容量が下記の様に示される事はご存じだと思います ( ご存じでない方は 下図を見て納得して下さい ) 単相 2 線式トランスの容量を P[VA] とすれば は P[VA] 接続できます この単相トランスを 3 台組み合わせて三相トランスとした場合 当然三相容量は 3P[VA] 接続出来ます この単相トランスを 2

More information

Microsoft PowerPoint EM2_15.ppt

Microsoft PowerPoint EM2_15.ppt ( 第 5 回 ) 鹿間信介摂南大学理工学部電気電子工学科 後半部 (4~5 章 ) のまとめ 4. 導体 4.3 誘電体 5. 磁性体 5. 電気抵抗 演習 静電誘導電界とその重ね合わせ 導体内部の電荷 : 外部電界 誘導電界の重ね合わせ電界を感じる () 内部電荷自身が移動することで作り出した電界にも反応 () さらに移動場所を変える (3) 上記 ()~() の繰り返し 最終的に落ち着く状態

More information

OCW-iダランベールの原理

OCW-iダランベールの原理 講義名連続体力学配布資料 OCW- 第 2 回ダランベールの原理 無機材料工学科准教授安田公一 1 はじめに今回の講義では, まず, 前半でダランベールの原理について説明する これを用いると, 動力学の問題を静力学の問題として解くことができ, さらに, 前回の仮想仕事の原理を適用すると動力学問題も簡単に解くことができるようになる また, 後半では, ダランベールの原理の応用として ラグランジュ方程式の導出を示す

More information

Microsoft Word - 第9章 PID制御.doc

Microsoft Word - 第9章 PID制御.doc NAOSITE: Nagaak Unry' Ac Tl 自動制御の理論と応用 Auhr() 辻, 峰男 Can 自動制御の理論と応用 ; 5 Iu Da 5 URL h://hdl.handl.n/69/35886 Rgh Th dcumn dwnladd h://na.lb.nagaak-u.ac.j 第 9 章 PID 制御 これまで, どのような制御器を用いるかということはあまり触れなかったが,

More information

2STB240PP(AM-2S-G-005)_02

2STB240PP(AM-2S-G-005)_02 項目記号定格単位 電源 1 印加電圧電源 2 印加電圧入力電圧 (1 8) 出力電圧 ( ) 出力電流 ( ) 許容損失動作周囲温度保存周囲温度 S CC I o Io Pd Topr Tstg 24.0 7.0 0.3 S+0.3 0.3 CC+0.3 0.7 +75 45 +5 (1)S= 系項目 記号 定格 単位 電源 1(I/F 入力側 ) 電源 2(I/F 出力側 ) I/F 入力負荷抵抗

More information

交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし

交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし 交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし 積分定数を 0 とすること 1 f(t) = sin t 2 f(t) = A sin t 3 f(t)

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

高校卒程度技術 ( 電気 ) 専門試験問題 問 1 次の各問いに答えなさい なお 解答欄に計算式を記入し解答すること 円周率 π は 3.14 で計算すること (1)40[Ω] の抵抗に 5[A] の電流を流した時の電圧 [V] を求めなさい (2) 下の回路図においてa-b 間の合成抵抗 [Ω]

高校卒程度技術 ( 電気 ) 専門試験問題 問 1 次の各問いに答えなさい なお 解答欄に計算式を記入し解答すること 円周率 π は 3.14 で計算すること (1)40[Ω] の抵抗に 5[A] の電流を流した時の電圧 [V] を求めなさい (2) 下の回路図においてa-b 間の合成抵抗 [Ω] 高校卒程度技術 ( 電気 ) 専門試験問題 問 1 次の各問いに答えなさい なお 解答欄に計算式を記入し解答すること 円周率 π は 3.14 で計算すること (1)40[Ω] の抵抗に 5[A] の電流を流した時の電圧 [V] を求めなさい (2) 下の回路図においてa-b 間の合成抵抗 [Ω] を求めなさい 40[Ω] 26[Ω] a b 60[Ω] (3) ある電線の直径を 3 倍にし 長さを

More information

第1章 単 位

第1章  単  位 H. Hmno 問題解答 問題解答. 力の釣合い [ 問題.] V : sin. H :.cos. 7 V : sin sin H : cos cos cos 上第 式より これと第 式より.. cos V : sin sin H : coscos cos 上第 式より これと第 式より.98. cos [ 問題.] :. V :. : 9 9. V :. : sin V : sin 8.78 H

More information

s とは何か 2011 年 2 月 5 日目次へ戻る 1 正弦波の微分 y=v m sin ωt を時間 t で微分します V m は正弦波の最大値です 合成関数の微分法を用い y=v m sin u u=ωt と置きますと dy dt dy du du dt d du V m sin u d dt

s とは何か 2011 年 2 月 5 日目次へ戻る 1 正弦波の微分 y=v m sin ωt を時間 t で微分します V m は正弦波の最大値です 合成関数の微分法を用い y=v m sin u u=ωt と置きますと dy dt dy du du dt d du V m sin u d dt とは何か 0 年 月 5 日目次へ戻る 正弦波の微分 y= in を時間 で微分します は正弦波の最大値です 合成関数の微分法を用い y= in u u= と置きますと y y in u in u (co u co になります in u の は定数なので 微分後も残ります 合成関数の微分法ですので 最後に u を に戻しています 0[ra] の co 値は [ra] の in 値と同じです その先の角

More information

問 の標準解答 () 遮へい失敗事故 : 雷が電力線を直撃してアークホーンにフラッシオーバが発生する 逆フラッシオーバ事故 : 架空地線あるいは鉄塔への雷撃によって架空地線あるいは鉄塔の電位が上昇し, 架空地線と導体間, 又はアークホーンにフラッシオーバが発生する () 架空地線の弛度を電力線のそれ

問 の標準解答 () 遮へい失敗事故 : 雷が電力線を直撃してアークホーンにフラッシオーバが発生する 逆フラッシオーバ事故 : 架空地線あるいは鉄塔への雷撃によって架空地線あるいは鉄塔の電位が上昇し, 架空地線と導体間, 又はアークホーンにフラッシオーバが発生する () 架空地線の弛度を電力線のそれ 平成 4 年度第二種電気主任技術者二次試験標準解答 配点 : 一題当たり 3 点 電力 管理科目 4 題 3 点 = 点 機械 制御科目 題 3 点 = 6 点 < 電力 管理科目 > 問 の標準解答 () 電動機出力 ( ポンプ入力 )= 電動機入力 電動機効率なので, A P M = P Mi h M B 又はC P Mi = M f M D 又はE P G = G f G 3 () G M なので,

More information

Microsoft PowerPoint - H22制御工学I-10回.ppt

Microsoft PowerPoint - H22制御工学I-10回.ppt 制御工学 I 第 回 安定性 ラウス, フルビッツの安定判別 平成 年 6 月 日 /6/ 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

Microsoft Word - ライントレーサー2018.docx

Microsoft Word - ライントレーサー2018.docx トランジスタとライントレースカー 作成 阪府 学太 正哉改変奈良教育 学薮哲郎最終修正 時 206.5.2 的 ライントレースカーを製作することにより 回路図の読み 各種回路素 の理解 電 作の技術を習得します 2 解説 2. トランジスタ トランジスタはさまざまな電気 電 機器の回路に搭載される最も重要な電 部品のひ とつです トランジスタは電流を増幅する機能を持っています 飽和領域で いると 電

More information

diode_revise

diode_revise 2.3 pn 接合の整流作用 c 大豆生田利章 2015 1 2.3 pn 接合の整流作用 2.2 節では外部から電圧を加えないときの pn 接合について述べた. ここでは, 外部か らバイアス電圧を加えるとどのようにして電流が流れるかを電子の移動を中心に説明す る. 2.2 節では熱エネルギーの存在を考慮していなかったが, 実際には半導体のキャリアは 周囲から熱エネルギーを受け取る その結果 半導体のキャリヤのエネルギーは一定でな

More information

Microsoft Word - 1B2011.doc

Microsoft Word - 1B2011.doc 第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) コイルと磁場 () coil nd mgnetic field prt. 相互インダクタンス : 変圧器. 磁場のエネルギー : 変圧器 3. 直線近似 4. ローレンツ力とアンペールの力 5. 直線定常が作るベクトルポテンシャル 6. ポテンシャルエネルギー 注意. 電磁波を記述する マクスウェル方程式 の理解に必要を思われるトピックスに限定. 定常が作る磁場

More information

<4D F736F F F696E74202D A E90B6979D89C8816B91E63195AA96EC816C82DC82C682DF8D758DC03189BB8A7795CF89BB82C68CB48E AA8E E9197BF2E >

<4D F736F F F696E74202D A E90B6979D89C8816B91E63195AA96EC816C82DC82C682DF8D758DC03189BB8A7795CF89BB82C68CB48E AA8E E9197BF2E > 中学 2 年理科まとめ講座 第 1 分野 1. 化学変化と原子 分子 物質の成り立ち 化学変化 化学変化と物質の質量 基本の解説と問題 講師 : 仲谷のぼる 1 物質の成り立ち 物質のつくり 物質をつくる それ以上分けることができない粒を原子という いくつかの原子が結びついてできたものを分子という いろいろな物質のうち 1 種類の原子からできている物質を単体 2 種類以上の原子からできている物質を化合物という

More information

<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1>

<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1> 3 三次における行列 要旨高校では ほとんど 2 2 の正方行列しか扱ってなく 三次の正方行列について考えてみたかったため 数 C で学んだ定理を三次の正方行列に応用して 自分たちで仮説を立てて求めていったら 空間における回転移動を表す行列 三次のケーリー ハミルトンの定理 三次における逆行列を求めたり 仮説をたてることができた. 目的 数 C で学んだ定理を三次の正方行列に応用する 2. 概要目的の到達点として

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

Microsoft PowerPoint - アナログ電子回路3回目.pptx

Microsoft PowerPoint - アナログ電子回路3回目.pptx アナログ電 回路 3-1 電気回路で考える素 ( 能動素 ) 抵抗 コイル コンデンサ v v v 3-2 理 学部 材料機能 学科岩 素顕 iwaya@meijo-u.ac.jp トランジスタ トランジスタとは? トランジスタの基本的な動作は? バイポーラトランジスタ JFET MOFET ( エンハンスメント型 デプレッション型 ) i R i L i C v Ri di v L dt i C

More information

正転時とは反対に回転する これが逆転である 図 2(d) の様に 4 つのスイッチ全てが OFF の場合 DC モータには電流が流れず 停止する ただし 元々 DC モータが回転していた場合は 惰性でしばらく回転を続ける 図 2(e) の様に SW2 と SW4 を ON SW1 と SW3 を O

正転時とは反対に回転する これが逆転である 図 2(d) の様に 4 つのスイッチ全てが OFF の場合 DC モータには電流が流れず 停止する ただし 元々 DC モータが回転していた場合は 惰性でしばらく回転を続ける 図 2(e) の様に SW2 と SW4 を ON SW1 と SW3 を O コンピュータ工学講義プリント (1 月 29 日 ) 今回は TA7257P というモータ制御 IC を使って DC モータを制御する方法について学ぶ DC モータの仕組み DC モータは直流の電源を接続すると回転するモータである 回転数やトルク ( 回転させる力 ) は 電源電圧で調整でき 電源の極性を入れ替えると 逆回転するなどの特徴がある 図 1 に DC モータの仕組みを示す DC モータは

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx 0. 固有値とその応用 固有値と固有ベクトル 2 行列による写像から固有ベクトルへ m n A : m n n m 行列によって線形写像 f R R A が表せることを見てきた ここでは 2 次元平面の行列による写像を調べる 2 = 2 A 2 2 とし 写像 まず 単位ベクトルの像を求める u 2 x = v 2 y f : R A R を考える u 2 2 u, 2 2 0 = = v 2 0

More information

<8AEE B43979D985F F196DA C8E323893FA>

<8AEE B43979D985F F196DA C8E323893FA> 基礎電気理論 4 回目 月 8 日 ( 月 ) 共振回路, 電力教科書 4 ページから 4 ページ 期末試験の日程, 教室 試験日 : 月 4 日 ( 月 ) 時限 教室 :B-4 試験範囲 : 教科書 4ページまでの予定 http://ir.cs.yamanashi.ac.jp/~ysuzuki/kisodenki/ 特別試験 ( 予定 ) 月 5 日 ( 水 ) 学習日 月 6 日 ( 木 )

More information

5. 変分法 (5. 変分法 汎関数 : 関数の関数 (, (, ( =, = では, の値は変えないで, その間の に対する の値をいろいろと変えるとき, の値が極地をとるような関数 ( はどのような関数形であるかという問題を考える. そのような関数が求められたとし, そのからのずれを変分 δ と

5. 変分法 (5. 変分法 汎関数 : 関数の関数 (, (, ( =, = では, の値は変えないで, その間の に対する の値をいろいろと変えるとき, の値が極地をとるような関数 ( はどのような関数形であるかという問題を考える. そのような関数が求められたとし, そのからのずれを変分 δ と Arl, 6 平成 8 年度学部前期 教科書 : 力学 Ⅱ( 原島鮮著, 裳華房 金用日 :8 限,9 限, 限 (5:35~8: 丸山央峰 htt://www.orootcs.mech.ngo-u.c.j/ Ngo Unverst, Borootcs, Ar L 5. 変分法 (5. 変分法 汎関数 : 関数の関数 (, (, ( =, = では, の値は変えないで, その間の に対する の値をいろいろと変えるとき,

More information

測定器の持つ誤差 と 使い方による誤差

測定器の持つ誤差 と 使い方による誤差 計測展 2007 チュートリアル Part2 Page 1 はじめに 測定器は高機能で便利になっている測定器は複雑化して 原理が見えにくくなっている 測定器が Black Box 化している 最も単純な例を中心に基本的な内容を解説する抵抗 1~2 本の回路をマルチ メータで測定する Page 2 講演の概要 1) 測定器の持つ誤差と使い方による誤差 抵抗とマルチメータを中心として 2) 設計と測定の融合

More information

Microsoft PowerPoint - Inoue-statistics [互換モード]

Microsoft PowerPoint - Inoue-statistics [互換モード] 誤差論 神戸大学大学院農学研究科 井上一哉 (Kazuya INOUE) 誤差論 2011 年度前期火曜クラス 1 講義内容 誤差と有効数字 (Slide No.2~8 Text p.76~78) 誤差の分布と標準偏差 (Slide No.9~18 Text p.78~80) 最確値とその誤差 (Slide No.19~25 Text p.80~81) 誤差の伝播 (Slide No.26~32 Text

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) コイルと磁場 () coil and magnetic field part. ソレノイドコイルのエネルギー. エネルギー密度の比較 : 電場と磁場 3. 磁場のエネルギーとベクトルポテンシャル 4. 相互作用エネルギー : 電場と磁場 5. 資料 : 電源について 注意. 電磁波を記述する マクスウェル方程式 の理解に必要を思われるトピックスに限定. 定常電流が作る磁場

More information

Microsoft PowerPoint プレゼン資料(基礎)Rev.1.ppt [互換モード]

Microsoft PowerPoint プレゼン資料(基礎)Rev.1.ppt [互換モード] プレゼン資料 腐食と電気防食 本資料は当社独自の技術情報を含みますが 公開できる範囲としています より詳細な内容をご希望される場合は お問い合わせ よりご連絡願います 腐食とは何か? 金属材料は金や白金などの一部の貴金属を除き, 自然界にそのままの状態で存在するものではありません 多くは酸化物や硫化物の形で存在する鉱石から製造して得られるものです 鉄の場合は鉄鉱石を原料として精錬することにより製造されます

More information

Matrix and summation convention Kronecker delta δ ij 1 = 0 ( i = j) ( i j) permutation symbol e ijk = (even permutation) (odd permutation) (othe

Matrix and summation convention Kronecker delta δ ij 1 = 0 ( i = j) ( i j) permutation symbol e ijk = (even permutation) (odd permutation) (othe Matr ad summato covto Krockr dlta δ ( ) ( ) prmutato symbol k (v prmutato) (odd prmutato) (othrs) gvalu dtrmat dt 6 k rst r s kt opyrght s rsrvd. No part of ths documt may b rproducd for proft. 行列 行 正方行列

More information

三相の誘導電動機をスターデルタ始動した場合の電流の話です 皆様ご承知の様に スターデルタ始動はよく用いられる始動方法です この始動方式を用いた場合の 始動電流及び始動トルクの関係は次の様に説明されています 説明その 1 始動電流は全電圧始動の 1/3 になり 始動トルクは 1/3 になる 説明その

三相の誘導電動機をスターデルタ始動した場合の電流の話です 皆様ご承知の様に スターデルタ始動はよく用いられる始動方法です この始動方式を用いた場合の 始動電流及び始動トルクの関係は次の様に説明されています 説明その 1 始動電流は全電圧始動の 1/3 になり 始動トルクは 1/3 になる 説明その 三相のをスターデルタ始動した場合の電流の話です 皆様ご承知の様に スターデルタ始動はよく用いられる始動方法です この始動方式を用いた場合の 始動電流及び始動トルクの関係は次の様に説明されています 説明その 1 始動電流は全電圧始動の 1/3 になり 始動トルクは 1/3 になる 説明その 2 始動電流は全電圧始動の 1/ 3 になり 始動トルクは 1/3 になる 一つの事項に対する説明が 2 種類ある場合

More information

Microsoft Word - NumericalComputation.docx

Microsoft Word - NumericalComputation.docx 数値計算入門 武尾英哉. 離散数学と数値計算 数学的解法の中には理論計算では求められないものもある. 例えば, 定積分は, まずは積分 ( 被積分関数の原始関数をみつけること できなければ値を得ることはできない. また, ある関数の所定の値における微分値を得るには, まずその関数の微分ができなければならない. さらに代数方程式の解を得るためには, 解析的に代数方程式を解く必要がある. ところが, これらは必ずしも解析的に導けるとは限らない.

More information

PowerPoint Presentation

PowerPoint Presentation Non-linea factue mechanics き裂先端付近の塑性変形 塑性域 R 破壊進行領域応カ特異場 Ω R R Hutchinson, Rice and Rosengen 全ひずみ塑性理論に基づいた解析 現段階のひずみは 除荷がないとすると現段階の応力で一義的に決まる 単純引張り時の応カーひずみ関係 ( 構成方程式 ): ( ) ( ) n () y y y ここで α,n 定数, /

More information

第 11 回 R, C, L で構成される回路その 3 + SPICE 演習 目標 : SPICE シミュレーションを使ってみる LR 回路の特性 C と L の両方を含む回路 共振回路 今回は講義中に SPICE シミュレーションの演習を併せて行う これまでの RC,CR 回路に加え,L と R

第 11 回 R, C, L で構成される回路その 3 + SPICE 演習 目標 : SPICE シミュレーションを使ってみる LR 回路の特性 C と L の両方を含む回路 共振回路 今回は講義中に SPICE シミュレーションの演習を併せて行う これまでの RC,CR 回路に加え,L と R 第 回,, で構成される回路その + SPIE 演習 目標 : SPIE シミュレーションを使ってみる 回路の特性 と の両方を含む回路 共振回路 今回は講義中に SPIE シミュレーションの演習を併せて行う これまでの, 回路に加え, と を組み合わせた回路, と の両方を含む回路について, 周波数応答の式を導出し, シミュレーションにより動作を確認する 直列回路 演習問題 [] インダクタと抵抗による

More information

スライド タイトルなし

スライド タイトルなし 第 9 回情報伝送工学 情報を持った信号の加工 ( フィルタ ) 高周波フィルタとはフィルタとは ある周波数の電磁波のみを通過させる回路 ( 部品 ) であり アンテナからの微小な信号を選択増幅するために 得に初段の増幅器前のフィルタには低損失な性能が要求される たとえば 下図におけるアンテナ直下に配置されているフィルタは アンテナから入力された信号のうち 必要な周波数帯域のみを受信回路に送り 一方送信回路から送られてきた信号を周波数の違いにより受信回路には入れず

More information

周波数特性解析

周波数特性解析 周波数特性解析 株式会社スマートエナジー研究所 Version 1.0.0, 2018-08-03 目次 1. アナログ / デジタルの周波数特性解析................................... 1 2. 一巡周波数特性 ( 電圧フィードバック )................................... 4 2.1. 部分周波数特性解析..........................................

More information

NJM78L00 3 端子正定電圧電源 概要高利得誤差増幅器, 温度補償回路, 定電圧ダイオードなどにより構成され, さらに内部に電流制限回路, 熱暴走に対する保護回路を有する, 高性能安定化電源用素子で, ツェナーダイオード / 抵抗の組合せ回路に比べ出力インピーダンスが改良され, 無効電流が小さ

NJM78L00 3 端子正定電圧電源 概要高利得誤差増幅器, 温度補償回路, 定電圧ダイオードなどにより構成され, さらに内部に電流制限回路, 熱暴走に対する保護回路を有する, 高性能安定化電源用素子で, ツェナーダイオード / 抵抗の組合せ回路に比べ出力インピーダンスが改良され, 無効電流が小さ 3 端子正定電圧電源 概要高利得誤差増幅器, 温度補償回路, 定電圧ダイオードなどにより構成され, さらに内部に電流制限回路, 熱暴走に対する保護回路を有する, 高性能安定化電源用素子で, ツェナーダイオード / 抵抗の組合せ回路に比べ出力インピーダンスが改良され, 無効電流が小さくなり, さらに雑音特性も改良されています 外形 UA EA (5V,9V,12V のみ ) 特徴 過電流保護回路内蔵

More information

<8D828D5A838A817C A77425F91E6318FCD2E6D6364>

<8D828D5A838A817C A77425F91E6318FCD2E6D6364> 4 1 平面上のベクトル 1 ベクトルとその演算 例題 1 ベクトルの相等 次の問いに答えよ. ⑴ 右の図 1 は平行四辺形 である., と等しいベクトルをいえ. ⑵ 右の図 2 の中で互いに等しいベクトルをいえ. ただし, すべてのマス目は正方形である. 解 ⑴,= より, =,= より, = ⑵ 大きさと向きの等しいものを調べる. a =d, c = f d e f 1 右の図の長方形 において,

More information

2014年度 名古屋大・理系数学

2014年度 名古屋大・理系数学 04 名古屋大学 ( 理系 ) 前期日程問題 解答解説のページへ空間内にある半径 の球 ( 内部を含む ) を B とする 直線 と B が交わっており, その交わりは長さ の線分である () B の中心と との距離を求めよ () のまわりに B を 回転してできる立体の体積を求めよ 04 名古屋大学 ( 理系 ) 前期日程問題 解答解説のページへ 実数 t に対して 点 P( t, t ), Q(

More information

静的弾性問題の有限要素法解析アルゴリズム

静的弾性問題の有限要素法解析アルゴリズム 概要 基礎理論. 応力とひずみおよび平衡方程式. 降伏条件式. 構成式 ( 応力 - ひずみ関係式 ) 有限要素法. 有限要素法の概要. 仮想仕事の原理式と変分原理. 平面ひずみ弾性有限要素法定式化 FEM の基礎方程式平衡方程式. G G G ひずみ - 変位関係式 w w w. kl jkl j D 構成式応力 - ひずみ関係式 ) (. 変位の境界条件力の境界条件境界条件式 t S on V

More information

物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように 2つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右の2つ

物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように 2つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右の2つ 物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右のつの物質の間に電位差を設けて左から右に向かって電流を流すことを行った場合に接点を通って流れる電流を求めるためには

More information

Microsoft Word - 5章摂動法.doc

Microsoft Word - 5章摂動法.doc 5 章摂動法 ( 次の Moller-Plesset (MP) 法のために ) // 水素原子など 電子系を除いては 原子系の Schrödiger 方程式を解析的に解くことはできない 分子系の Schrödiger 方程式の正確な数値解を求めることも困難である そこで Hartree-Fock(H-F) 法を導入した H-F 法は Schrödiger 方程式が与える全エネルギーの 99% を再現することができる優れた近似方法である

More information