A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

Save this PDF as:
Size: px
Start display at page:

Download "A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2."

Transcription

1 A A 1 A 5 A (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U, x 1, x 2,..., x m } 1. R m {x x 1} 2. R 3 g xy = 0 yz xz

2 A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. R m C f a a f 1 (a) m 1 ( ) a f 1 ({a}) f 4. 1 n S L(n, R) n M f M (U, ϕ) f ϕ 1 ϕ(u) C 1.3. C M N M N C C (M, N) R (diffeomorphism) 1956 J.Milnor R n, n 4 R S.Donaldson R m R m p 2.1 ( ). C (R m, R) R v : C (R m, R) R R m p f, g C (R m, R), λ, µ R v v(λ f + µg) = λv( f ) + µv(g) v( f g) = v( f )g(p) + f (p)v(g) v( f ) = v(x k ) f (p) x k k

3 A 3 v v = v(x k ) x k k 2.2. R m p m T p R m x 1, C(t) C(0) = p x 2,..., x m Ċ = DC dt d( f C) ( f ) = (0) dt Ċ C C(0) = p 2. Ċ 2.2 v M 2.3. v : C (M, R) R M p v( f g) = f (p)v(g) + v( f )g(p) p m T p M M U ϕ = (x 1, x 2,, x n ) x 1, U p T p M x 2,..., x m 2.3 M, N m, n Φ M N Φ p : T p M T Φ(p) N N C f Φ p (v)( f ) = v( f Φ) 3. T p M T Φ(p) N Φ p

4 A Φ M N M p Φ p Φ (immersion) Φ (embedding) M N (submanifold) Whitney n R 2n+1 5. S m R m+1 R m T m R T 2 f (t) = (e it, e ait ) a R M C C (M) C (M) X : C (M) C (M) X( f g) = X( f )g + f X(g) p X p : C (M) R, X p ( f ) = X( f )(p) X p T p M U f (x) = g(x), x U U f = g X( f ) f (U, {x 1, x 2,..., x n }) X = X k x k X k = X(x k ) X k U C M X(M) X(M) C (M) 4. Φ : M N X X(M) Φ X : C (N, R) C (N, R) Φ X( f ) = X( f Φ) Φ 1 N Φ 3.2 C : I M C(t) t C (t) T C(t) M, C (t)( f ) = C (t) = X C(t) d( f C) (t) dt

5 A 5 C X C(0) 3.1. (1) X X(M) p M p (2) p (, ) M 5. X M Φ : M N C(t) X p Φ C(t) Φ X Φ(p) 6. c X [ c, c] X X M x X t ϕ t (x) 3.2. ϕ t : M M ϕ t ϕ t ϕ s = ϕ t+s, ϕ 1 t = ϕ t, ϕ 0 = Id M {ϕ t t R} X 1 7. X M Φ : M N {ϕ t t R} X 1 Φ ϕ t Φ 1 Φ X Lie X *1 {ϕ t } 1 Y ϕ t Y 1 L X Y = lim t 0 t (ϕ t Y Y) Y X Lie C f L X Y( f ) = X(Y f ) Y(X f ) L X Y [X, Y] = XY YX 8. L X Y (L X Y) p X, Y p 9. X, Y X(M) [X, Y] X(M) (1) [X, Y] = [Y, X] (2) [αx + βy, Z] = α[x, Z] + β[y, Z] *1 Lie p t ϕ t

6 A 6 (3) Φ Φ [X, Y] = [Φ X, Φ Y] (4) [[X, Y], Z] + [[Y, z], X] + [[Z, X], Y] = 0 S L(n, R) Lie Lie G v T e G X g = L g v X X(G) L g : G G L g (h) = gh X L g X = X g T e G Lie Lie V n V R V V {e 1, e 2,..., e n } V ω j : V R, ω j (e k ) = δ jk ω j V V dim V = dim V = n {ω 1, ω 2,..., ω n } {e 1, e 2,..., e n } α V p α : V } {{ V } R, p V p p V *2 0 V = R, 1 V = V α p V, β q V α β p+q V α β(v 1, v 2,... v p+q ) = 1 sgn(σ)α(v σ(1),..., v σ(p) )β(v σ(p+1),..., v σ(p+q) ) p!q! σ p + q sgn(σ) 4.1. (1) (α β) γ(v 1, v 2,..., v p+q+r ) = 1 sgn(σ)α(v σ(1),..., v σ(p) )β(v σ(p+1),..., v σ(p+q) )γ(v σ(p+q+1),..., v σ(p+q+r) ) p!q!r! (2) p V n C p V {ω 1,... ω n } ω j1 ω j2 ω jp, 1 j 1 < j 2 < < j p n p > n p V = {0} V = n p=0 p V 2 n V *2

7 A (1) α p V, β q V α β = ( 1) pq β α (2) α i V α 1 α 2 α n (v 1, v 2,..., v n ) = det(α i (v j )) 4.2 M p T p M T pm f d f p : T p M R, d f p (v) = v( f ) () f 4.2. (U, {x 1, x 2,..., x m }) a d(x 1 ) p, d(x 2 ) p,..., d(x m ) p T p M x 1, x 2,..., x m a x j U d(x j ) x j 11. d f p d f p = m k=1 f x k d(x k ) p 4.3 M n ω : X(M) X(M) C } {{ } (M), p C (M) p C (M) C ω ω(x σ(1), X σ(2),..., X σ(p) ) = sgn(σ)ω(x 1, X 2,..., X p ) ω( f X 1 + gx 1, X 2,..., X p ) = f ω(x 1, X 2,..., X p ) + gω(x 1, X 2,..., X p ) f, g C (M). ω x M ω(x 1, X 2,..., X p )(x) X j (x) T x M ω x : T x M T x M R } {{ } p

8 A 8 ω x p Tx M {U, (x 1, x 2,..., x n )} ω = ω j1 j 2... j p (x)dx j1 dx j2 dx jp j 1 < j 2 < < j p ω j1 j 2... j p ( = ω,,..., x j1 x j2 x jp ) C M p A p (M) A 0 (M) = C (M) α A p (M), β A q (M) α β A p+q (M) α β(x 1, X 2,..., X p+q ) = 1 sgn(σ)α(x σ(1),..., X σ(p) )β(x σ(p+1),..., X σ(p+q) ) p!q! p q M, N Φ : M N M N C *3 N p β Φ β(x)(v 1,..., v p ) = β(φ(x))(φ (v 1 ),..., Φ (v p )) β Φ (pull back) Φ : A p (N) = A p (M) p = 0 Φ ( f ) = f Φ 12. (1) Φ (α β) = Φ α Φ β (2) p {x 1, x 2,..., x m } Φ(p) {y 1, y 2,..., y n } Φ (dy j1 dy j2 dy jp ) = Ξ j 1 j 2... j p i 1 i 2...i p dx i1 dx i2 dx ip Ξ j 1 j 2... j p i 1 i 2...i p 1 i 1 <i 2 <...i p <m 4.5 p α dα dα(x 1, X 2,..., X p+1 ) = ( 1) j+1 X j α(x 1,..., ˆX j,..., X p+1 ) + ( 1) i+ j α([x i, X j ], X 1,..., ˆX i,..., ˆX j,..., X p+1 ) j dα = d α j1 j 2... j p (x)dx j1 dx j2 dx jp = j 1 < j 2 < < j p = p+1 j 1 < j 2 < < j p+1 k=1 ( 1) k 1 α j 1... ĵ k... j p x jk i< j j 1 < j 2 < < j p dx j1 dx j2 dx jp+1 α j1 j 2... j p dx k dx j1 dx j2 dx jp x k k *3

9 A d : A p (M) A p+1 (M), ddα = 0 R d(α β) = dα β + ( 1) p α dβ dφ β = Φ dβ X X p α Lie 1 L X α = lim t 0 t (ϕ t α α) i X : A p (M) A p 1 (M) (i X α)(x 1, X 2,..., X p 1 ) = α(x, X 1, X 2,..., X p 1 ) Lie L X α = i X (dα) + d(i X α) n V V {e 1, e 2,..., e n } { f 1, f 2,..., f n } f j = n p i j e i, det(p i j ) > 0 i=1 V n M n ω T p M {v 1, v 2,..., v n } ω (v 1, v 2,..., v n ) > n n 1 1 M {U α } C ϕ α : M R, 0 ϕ α (x) 1, Suppϕ α U α, ϕ α 1 α {U α } 1 Suppϕ = {x ϕ(x) 0} ϕ

10 A M n ω ω U M ω = U ω(x 1, x 2,..., x n )dx 1 dx 2 dx n (x 1, x 2,..., x n ) M U R n ω = ω(x 1, x 2,..., x n )dx 1 dx 2 dx n n {U α } 1 {ϕ α } M ω = α M ϕ α ω 5.3 Stokes R n R n x n 0 M R n M M M n 1 M = M M n M M ω A n 1 (M) 5.2 (Stokes ). M dω = M k k M ω 5.4 de Rham p α dα = 0 (closed form) α = dβ (p 1) (exact form) M p Z p (M) p B p (M) A p (M) Z p (M) B p (M) 5.3. Z p (M)/B p (M) p de Rham H p DR (M) de Rham de Rham

11 A M p T p M g p (U, {x 1,..., x m }) ( ) p p M g i j (p) = g p, x i x j U g i j C g = {g p p M} M (M, g) g g = g i j dx i dx j 6. R n g 0 = (dx 1 ) 2 + (dx 2 ) (dx n ) 2 7. R 3 S (U, {u, v}) U x U 2 x(u, v) E = x u x u, F = x u x v, F = x v x v g = Edu du + 2Fdu dv + Gdv dv ds 2 (N, h) Φ : M N g p (u, v) = h(φ p v, Φ p v) g M g = Φ h Φ (induced metric) 8. S n = {x R n+1 x = 1} R n+1 (R n+1, g 0 ) i : S n R n+1 i g 0 S n Φ : (M, g) (N, h) g = Φ h Φ (isometric immersion) Φ (isometry) 6.2 (M, g) C : [a, b] M b ( dc L(C) = g dt, dc ) dt dt C M 2 p, q a d(p, q) = inf { L(C) C p q C } 13. d M

12 A D : X(M) X(M) X(M) D X Y D M D X1 +X 2 Y = D X1 Y + D X2 Y, D X (Y 1 + Y 2 ) = D X Y 1 + D X Y 2, X, Y X(M) D f X Y = f D X Y, D X ( f Y) = X( f )Y + f D X Y, X, Y X(M), f C (M, R) D X Y p (p ) X(p) T p M p Y 14. (U, {x 1, x 2,... x m }) D X = X i, Y = Y i x i x i Y i D X Y = X j + X j Y k D i jk x j x i i j D i jk X, Y U n D = D i jk x x i k i=1 x j C : ( a, a) M X = X i x i dx i DĊX = + D i jk dt X dc k j dt x i i 0 X C C T C(t) M T C(0) M 6.2. D (M, g) jk jk X(g(Y, Z)) = g(d X Y, Z) + g(y, D X Z), D X Y D Y X = [X, Y], X, Y, Z X(M) X, Y X(M) 6.3. (M, g) Γ k i j = 1 ( g kh gih + g jh g ) i j 2 x j x i x h h g kh (g i j ) Γ k i j

13 A (1) R m Γ k i j = 0 (2) (M, g) R m v T p M v X R m v X T p M 6.4 (M, g) p, q 2 C C pq = { C : [0, 1] M C(0) = p, C(1) = q, C } 2 E(C) = 1 0 g ( Ċ, Ċ ) dt, L(C) = 1 0 g ( Ċ, Ċ ) dt Cauchy-Schwarz E(C) L(C) 2, 6.5. (1) inf{e(c) C C pq } = d(p, q) 2 Ċ (2) C E(C) C p, q E(C) C C C pq {C s C pq ϵ < s < ϵ} C 0 = C C : ( ϵ, ϵ) [0, 1] M, C(s, t) = C s (t) C C C *4 C d ds E(C s) = 0 s=0 C * (1) C : [a, b] M ĊĊ = 0. (2) v T p M Ċ(0) = v (1) (2) 9. S m = {x R m+1 x = 1} (2 S m ) π 2 *4 C pq C C *5 [0, 1]

14 A (M, g) X, Y, Z X(M) R(X, Y)Z = X Y Z Y X Z [X,Y] Z (1 3) * (1) R M R : T p M T p M T p M T p M (2) R 15. R R(u, v)w = R(v, u)w R(u, v)w + R(v, w)u + R(w, u)v = 0 g(r(u, v)w, t) = g(w, R(u, v)t) ( R, x j g(r(u, v)w, t) = g(r(w, t)u, v) x k ) x i = l R l i jk x l R l i jk Γa bc 6.8. (1) T p M 2 H K(H) K(H) = g(r(u, v)v, u), u, v H, g(u, u) = g(v, v) = 1, g(u, v) = 0. (2) T p M v Ric(v) v Ric(v) = m g(r(v, e j )e j, v), g(e i, e j ) = δ i j, e 1 = v. j=2 (3) p M S (p) p S (p) = m Ric(e j ), e j T p M, g(e i, e j ) = δ i j j= ( c, c) (0, a) g = dx 2 + f 2 (x)dy 2 f (x) > 0 *6

15 A (M, g) M x M v T x M v γ [0, 1] exp x (v) = γ(1) exp x x 7.1 (Hopf-Rinow). (M, g) (1) (2) M v v R 2 Hopf-Rinow 17. γ : [0, a) M lim t a γ(t) 10. G C Lie T e G g e x G g x (u, v) = g e ((L x 1) u, (L x 1) v) L a (x) = ax L a G = O(n) T e G = {A t A = A} g e (A, B) = Tr( t AB) 7.2 Jacobi exp p : T p M M v T p M v T p M {v + sw s R} exp p s = 0 C : ( ε, ε) [0, 1] M, C(s, t) = exp p (t(v + sw)) exp p (v) = q, γ(t) = C(0, t), Y(t) = C (0, t) s Y p q γ γ γ Y + R(Y, γ) γ = 0 2 Jacobi γ Jacobi Y Y(0) = 0, γ Y(0) = w

16 A 16 (exp p ) v (w) = Y(1) exp p v T p M γ(t) = exp p (tv) Jacobi p q = exp p (v) q p γ q p Y(0) = 0, γ Y 0 Jacobi Y 2 2 T p M R n exp p 7.3 (Cartan-Hadamard). (M g) M R m M S 2 = {(x, y, z) x 2 + y 2 + z 2 = 1} (0, 0, 1) 7.3 (M, g) pq 2 γ : [0, l] M, γ(0) = p, γ(l) = q 2 l γ 0 V V V V(t) T γ(t) M, V(0) = 0, V(l) = 0 V C V I(V, W) = I 7.4. l 0 γ V, γ W + R(V, γ)w, γ dt (1) p q γ W V I(V, W) = 0 V V, V 0 (2) I(V, V) < 0 V V γ. (1) Jacobi V I(V, W) = 0 (2) C(s, t) = exp γ(t) sv(t), γ s (t) = C(s, t) E(γ s ) s = 0 2 * 7 *7

17 A Myers 7.5 (Myers). (M, g) Ric (n 1)H > 0 π/ H M 2 π/ H M M. γ l {E i } γ E 1 = γ W i (t) = sin(πt/l)e i (t), 2 i n I(W i, W i ) = = l 0 l 0 Wi, γ γ W i + R(W i, γ) γ dt (sin πt/l) 2 (π 2 /l 2 R(E i, γ) γ, E i )dt n I(W i, W i ) = i=2 l 0 (sin πt/l) 2 ((n 1)π 2 /l 2 Ric( γ, γ))dt l > π/ H W i I(W i, W i ) γ M T p M π/ H D = {v T p M v π/ H} exp p (D) = M D M M 20. Myers R 3

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) =

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) = 2004 / D : 0,.,., :,.,.,,.,,,.,.,,.. :,,,,,,,., web page.,,. C-613 e-mail tamaru math.sci.hiroshima-u.ac.jp url http://www.math.sci.hiroshima-u.ac.jp/ tamaru/index-j.html 2004 D - 1 - 1 1.1 [ ].,. 1.1.1

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

応力とひずみ.ppt

応力とひずみ.ppt in yukawa@numse.nagoya-u.ac.jp 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

Gmech08.dvi

Gmech08.dvi 63 6 6.1 6.1.1 v = v 0 =v 0x,v 0y, 0) t =0 x 0,y 0, 0) t x x 0 + v 0x t v x v 0x = y = y 0 + v 0y t, v = v y = v 0y 6.1) z 0 0 v z yv z zv y zv x xv z xv y yv x = 0 0 x 0 v 0y y 0 v 0x 6.) 6.) 6.1) 6.)

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

II I Riemann 2003

II I Riemann 2003 II I Remann 2003 Dfferental Geometry II Dfferental Geometry II I Dfferental Geometry I 1 1 1.1.............................. 1 1.2................................. 10 1.3.......................... 16 1.4.........................

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1 No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1 1 (1) 1.1 X Y f, g : X Y { F (x, 0) = f(x) F (x, 1) = g(x) F : X I Y f g f g F f g 1.2 X Y X Y gf id X, fg id Y f : X Y, g : Y X X Y X Y (2) 1.3

More information

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r 2 1 (7a)(7b) λ i( w w ) + [ w + w ] 1 + w w l 2 0 Re(γ) α (7a)(7b) 2 γ 0, ( w) 2 1, w 1 γ (1) l µ, λ j γ l 2 0 Re(γ) α, λ w + w i( w w ) 1 + w w γ γ 1 w 1 r [x2 + y 2 + z 2 ] 1/2 ( w) 2 x2 + y 2 + z 2

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

I

I I 2008 I i 1 1 1.1.............................. 1 1.2................................. 7 1.3......................... 13 2 23 2.1......................... 23 2.2............................... 31 3 37

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

1 Euclid Euclid Euclid

1 Euclid Euclid Euclid II 2000 1 Euclid 1 1.1..................................... 1 1.2..................................... 8 1.3 Euclid............. 19 1.4 3 Euclid............................ 22 2 28 2.1 Lie Lie..................................

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b. 2009 7 9 1 2 2 2 3 6 4 9 5 14 6 18 7 23 8 25 9 26 10 29 11 32 12 35 A 37 1 B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t),

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1) ( ) 1., : ;, ;, ; =. ( ).,.,,,., 2.,.,,.,.,,., y = f(x), f ( ).,,.,.,., U R m, F : U R n, M, f : M R p M, p,, R m,,, R m. 2009 A tamaru math.sci.hiroshima-u.ac.jp 1 ,.,. 2, R 2, ( ).,. 2.1 2.1. I R. c

More information

第1章 微分方程式と近似解法

第1章 微分方程式と近似解法 April 12, 2018 1 / 52 1.1 ( ) 2 / 52 1.2 1.1 1.1: 3 / 52 1.3 Poisson Poisson Poisson 1 d {2, 3} 4 / 52 1 1.3.1 1 u,b b(t,x) u(t,x) x=0 1.1: 1 a x=l 1.1 1 (0, t T ) (0, l) 1 a b : (0, t T ) (0, l) R, u

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3 2 2 1 5 5 Schrödinger i u t + u = λ u 2 u. u = u(t, x 1,..., x d ) : R R d C λ i = 1 := 2 + + 2 x 2 1 x 2 d d Euclid Laplace Schrödinger 3 1 1.1 N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3,... } Q

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

第10章 アイソパラメトリック要素

第10章 アイソパラメトリック要素 June 5, 2019 1 / 26 10.1 ( ) 2 / 26 10.2 8 2 3 4 3 4 6 10.1 4 2 3 4 3 (a) 4 (b) 2 3 (c) 2 4 10.1: 3 / 26 8.3 3 5.1 4 10.4 Gauss 10.1 Ω i 2 3 4 Ξ 3 4 6 Ξ ( ) Ξ 5.1 Gauss ˆx : Ξ Ω i ˆx h u 4 / 26 10.2.1

More information

untitled

untitled 1 n m (ICA = independent component analysis) BSS (= blind source separation) : s(t) =(s 1 (t),...,s n (t)) R n : x(t) =(x 1 (t),...,x n (t)) R m 1 i s i (t) a ji R j 2 (A =(a ji )) x(t) =As(t) (1) n =

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

1 B64653 1 1 3.1....................................... 3.......................... 3..1.............................. 4................................ 4..3.............................. 5..4..............................

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

2014 S hara/lectures/lectures-j.html r 1 S phone: , 14 S1-1+13 http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r 1 S1-1+13 14.4.11. 19 phone: 9-8-4441, e-mail: hara@math.kyushu-u.ac.jp Office hours: 1 4/11 web download. I. 1. ϵ-δ 1. 3.1, 3..

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information