C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

Size: px
Start display at page:

Download "C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0"

Transcription

1 ( ) q i (i 1,,N) N [ ] t t 0 q i (t 0 )q 0 i t 1 q i (t 1 )q 1 i t 0 t t 1 t t 0 q 0 i t 1 q 1 i S[q(t)] t1 t 0 L(q(t), q(t),t)dt (1) S[q(t)] L(q(t), q(t),t) q 1.,q N q 1,, q N t C : q i (t) (i 1,,N) 1 1 1

2 C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0 {L(q(t)+δq(t), q(t)+δ q(t),t) L(q(t), q(t),t)} dt i ( L δq i (t)+ L ) δ q i (t) dt (4) q i q i δq i (t) δ q i (t) q i(t) q i (t) d dt (q i(t)+δq i (t)) d dt q i(t) d dt δq i(t). (5) 2

3 (5) (4) t1 ( L δs δq i (t)+ L ) d t 0 q i i q i dt δq i(t) dt t1 { L δq i (t)+ d ( ) ( L d L δq i (t) t 0 q i i dt q i dt q i [ ] t1 L t1 { L δq i (t) d L q i q i dt q i i t 0 + t 0 i ) } δq i (t) dt } δq i (t)dt (6) (3) t1 { L δs d } L δq i (t)dt. (7) q i dt q i t 0 i δq i (t) δs 0 δq i (t) d L L 0 (i 1,,N) (8) dt q i q i 1.2 L(q(t), q(t),t) r (x, y, z) U(r) m m d2 r U(r) (9) dt2 T (ṙ) 1 2 m ( dr dt ) m ( ẋ 2 +ẏ 2 +ż 2) (10) 3

4 (11) d T dt ẋ U x, d T dt ẏ U y, d T dt ż U z (11) q 1 x, q 2 y, q 3 z ( ) d T U (i 1, 2, 3) (12) dt q i q i L(r, ṙ) T (ṙ) U(r) (13) (8) (11) T (ṙ) U(r) (13) (8) T (q i, q i ),U(q i ) L(q, q, t) T (q, q, t) U(q, t) (14) q i 2 [ ] r (x, y) xe x + ye y r, φ x r cos φ, y r sin φ r r(cos φ, sin φ) re r e r e φ φ e r ( sin φ, cos φ) e φ (15) r, φ r ( dr dr r + dφ ) (re r )dre r + rdφ φ φ e r dre r + rdφe φ (16) 2 4

5 e r dr e φ rdφ v dr dt v ṙe r + r φe φ (17) e r e r e φ e φ 1 e r e φ 0 T (r, ṙ, φ) m 2 v2 m 2 (ṙ2 + r 2 φ2 ) (18) U(r, φ) L(r, φ, ṙ, φ) m 2 (ṙ2 + r 2 φ2 ) U(r, φ) (19) L ṙ mṙ, L 2 mr φ r L φ L mr2 φ, φ U φ r, φ m ( r r φ ) 2 d dt U r ( ) mr 2 φ U φ (20) (21) U(r) φ (21) p φ mr 2 φ (22) 5

6 ( ) 1.3 q i p i L q i (1) (1) q i (t) q i (t) q i(t)+εf i (q, t) (2) I i L(q, q, t) f i (q, t) (3) q i (t) ε δq i (t) εf i (q, t) δl(q, q, t) L(q(t)+δq(t), q(t)+δ q(t),t) L(q(t), q(t),t) ( L δq i (t)+ L ) δ q i (t) q i i q i δ δl(q, q, t) ( L δq i (t)+ L ) d q i i q i dt δq i(t) ( ) d L δq i (t) + ( L d ) L δq i (t) (4) dt q i i q i i dt q i 1

7 (2) δl 0 (4) di dt 0, I i L q i f i [ 1] n r i, (i 1,,n) L(ṙ i, r i ) n 1 2 m iṙi 2 U(r i r j ) (5) i>j x, y, z r i r i r i + ɛ (6) P n L ṙ i n m i ṙ i (7) [ 2] L(r, ṙ) 1 2 mṙ2 U(r) (8) U(r) r r n ε r ε εn L ṙ δr ε r (9) (ε r) ε ( r L ) ṙ ε l dl dt 0, l r L ṙ r p (10) 2

8 [ 3] t ε t 0 q i t t t ε (11) q i(t )q i (t) (12) q i (t) q i (t) q i(t + ε) q i (t)+δq i (t), δq i (t) ε q i (t). (13) δ L(t) L (t) L(t + ε) L(t)+δL(t), δl(t) ε dl(t). (14) dt (13) (4) δl(q, q) L(q (t), q (t)) L(q(t), q(t)) ( ) d L δq i (t) dt q i i (15) (14)(15) de dt 0, E i L q i q i L (16) 1 L(r, ṙ) 1 2 mṙ2 U(r) (17) E 1 2 mṙ2 + U(r) (18) (16) 1 E 3

9 ( ) 1.4 q i, (i 1,,N) q 1,,q N k f l (q 1,,q N,t)0, (l 1,,k) (1) (7) N δq i (8) (eqn:constraints) Lagrange Multiplier Method [ ] l m r φ (??) r l U(r, φ) mgl(1 cos φ) L(φ, φ) m 2 l2 φ2 mgl(1 cos φ). (2) g l [ ] δq i k A li δq i (t) 0, ( 1 A li f ) l. (3) q i

10 t λ l (t) t l t1 t 0 k λ l (t)a li (q, t)δq i (t)dt 0. (4) l1 (7) { } t1 L d L k + λ l (t)a li (q, t) δq i (t)dt 0 (5) q i dt q i t 0 l1 δq i (t) (i 1,,N) N k λ l (t) (l 1,,k) i 1,,k L d L + q i dt q i k λ l (t)a li (q, t) 0, (i 1,,k) (6) l1 λ l (t) (l 1,,k) λ l (t) (l 1,,k) (5) { } t1 L d L k + λ l (t)a li (q, t) δq i (t)dt 0 (7) q i dt q i t 0 ik+1 l1 N k δq k+1,,δq N δq i, (i k +1,,N) L d L + q i dt q i k λ l (t)a li (q, t) 0, (i k +1,,N) (8) l1 i 1,,N N d L L dt q i q i k λ l (t)a li (q, t), (i 1,,N) (9) l1 k (1) f l (q 1,,q N,t)0, (l 1,,k) N q i (t) (i 1,,N) k λ l (t) (l 1,,k) (9) k λ l (t)a li (q, t) (10) l1 2

11 (3) (1) L L + k λ l f l (q, t) (11) l1 N q i (t) (i 1,,N) k λ l (t) (l 1,,k) q i (9) (1) 3

12 ( ) Lagrange N N q i (t) (i 1 N) Hamilton q i (t) p i (t) 2N Lagrangian L(q, q, t) q i q i q i p i (Hamiltonian) H(q, p, t) p i q i L(q, q, t) (1) q i p i 2N q i p i q i p i L q i (2) q i Lagrange dl(q, q, t) ( L dq i + L ) d q i + L q i i q i t dt (ṗ i dq i + p i d q i )+ L t dt i dh(q, p, t) i dh(q, p, t) ( dp i q i + p i d q i L dq i L ) d q i L q i q i t dt ( q i dp i ṗ i dq i ) L dt (3) t ( H dq i + H ) dp i + q i p i H(q, p, t) dt (4) t 1

13 dq i dt dp i dt dh(q, p, t) dt i H(q, p, t), p i H(q, p, t) q i (5) ( q i ṗ i ṗ i q i ) L(q, q,t) t L(q, q,t) t 1 q i (t), p i (t) 2N (q 1,,q N,p 1, p N ) (phase space) N (q 1,,q N ) (configuration space) q i (i 1,,N) q i,p i, (i 1,,N) [ ] (6) L(q, q) 1 2 m q2 1 2 mω2 q 2 (7) p (1) L(q, q) q m q (8) H(q, p) p q L(q, q) p2 2m mω2 q 2 (9) (8) q (5) q(t) p m, (10) ṗ(t) mω 2 q (11) p(t) q(t) m q mω 2 q (12) q(0) q o,p(0) p 0 q(t) q 0 cos (ωt)+ p 0 sin ωt ω (13) p(t) q 0 ω sin (ωt)+p 0 cos (ωt). (14) 1 q i (t), p i (t) L 2

14 H(q, p) p2 2m mω2 q 2 E ( ). (15) ((q, p) ) q ( 2 2E ) + p2 1. (16) 2mE mω 2 2E q p 2mE mω 2 m 1 ω 1 H(q, p) 1 2 p q2 (q, p) [ q ṗ ] [ H(q,p) p H(q,p) q ] [ p q ] (17) p 2 1 q t x t + t [ ] [ x q q x + x + p ṗ [ q p ] ] t ( ) x t 0.1 x (q, p) t 0 (1, 0) (0, 1.6) t 0 (q, p) (0, 0) [ ] ( ) V (q) 1 2 mκ2 q 2 m 1 κ 1 H(q, p) 1 2 p2 1 2 q2 (18) 3

15 [ q ṗ ] [ H(q,p) p H(q,p) q ] [ p q ] (19) V(q) q ( ) ( q, p) ( q, ṗ) t t 0.1 ( q, p) (q, p) (19) p q q q (20) A, B q(t) Ae t + Be t, p(t) Ae t Be t (21) q(0) q 0, p(0) p 0 q(t) q 0 2 (et +e t )+ p 0 2 (et e t ), (22) p(t) q 0 2 (et e t )+ p 0 2 (et +e t ) (23) q 0,p 0 (18) E 1 2 p q2 0 (24) a t 0 (2, 2) E a 0 (22) q(t) p(t) 2e t 4

16 b t 0 (2, 1.5) E b < 0 p 0 p>0 c t 0 (1.5, 2) E c > 0 q p 0 a (4) (1) (2) d t 0 (1, 0) (22) q(t) cosh t, p(t) sinh t q p e t 0 (0, 1) q(t) sinh t, p(t) cosh t q p 2 p e (4) 1 (1) d q (2) -1 a b c -2 5

17 ( ) 2.2 (q 1,q 2,,q N ) (q 1,,q N,p 1,,p N ) 2N x x 1 x 2N q 1 : q N p 1 : p N [ [ ] dx dt J H, H(q,p) p H(q,p) q q p ], H H x 1 H x N J [ H q 1 : H q N H p 1 : H p N 0 1 N 1 N 0 ] [ H q H p 1 N N N x (q, p) x + x H(x) H(x + x) H(x) x H(x) x H(x) 0 x H(x) H(q, p) H ] (1) J H (1) v dx dt v H(x) ( H H v H(x) J H H H ) H 0 p i q i q i p i 1

18 v H H 1 Liouville t D x t t + t D x x + ẋ t D D dq 1 dq N dp 1 dp N dq 1 dq N dp 1 dp N (2) D D v(x) J H div v v ( H ) H 0 (3) q i p i p i q i D D Jacobian (x 1,x 2,,x 2N ) (x 1,x 2,,x 2N ) 1+ v t + O( t)2 (4) t 1 t t t dq 1 dq N dp 1 dp N D D D (x 1,x 2,,x 2N ) (x 1,x 2,,x 2N ) dq 1 dq N dp 1 dp N dq 1 dq N dp 1 dp N D

19 S t1 t 0 ( p i q i H(q, p, t))dt (5) 2N C C q, p C S t 0 t t 1 C q i (t), p i (t) q i (t) q i (t) q i(t)+δq i (t) p i (t) p i (t) p i(t)+δp i (t) (6) C C C δs S[C ] S[C] t1 p i q i H(q,p,t))dt t 0 ( t1 t1 t 0 ( p i q i H(q, p, t))dt δ( p i q i H(q, p, t))dt t 0 0 (7) 2 δq i (t 0 )δq i (t 1 )δp i (t 0 )δp i (t 1 )0. (8) (7) q, p (6) δs t1 t 0 ( ) H(q, p, t) H(q, p, t) δp i q i + p i δ q i δq i δp i dt (9) q i p i (6) (9) δ q i (t) q i (t) q i(t) d dt δq i(t) δs (p i (t 1 )δq i (t 1 ) p i (t 0 )δq i (t 0 )) t1 + t 0 {δp i ( q i ) ( H(q, p, t) δq i ṗ i + p i )} H(q, p, t) dt. (10) q i 2 t t 0 t t 1 3

20 (8) q i,p i S δq i,δp i q i H(q, p, t) p i ṗ i H(q, p, t) q i (i 1, 2,,N). 4

21 ( ) 4 q i Q i f i (q 1,q 2,,q N,t) (i 1, 2,,N) (1) q i p i (q i,p i ) q i H(q, p, t) H(q, p, t), ṗ i p i q i Q i (q, p, t), P i (q, p, t) Q i K(Q, P, t), K(Q, P, t) P i P i Q i (q, p) (Q, P ) Q i Q i (q, p, t) (2) P i P i (q, p, t) (q, p) (Q, P ) (q, p) (Q, P ) p i q i H(q, p, t) P i Q i K(Q, P, t)+ df dt (3) { t1 N } p i q i H(q, p, t) dt t 0 t1 t 0 { N } P i Q i K(Q, P, t) dt + F (t 1 ) F (t 0 ) F (t 1 ) t 1, q i (t 1 ), p i (t 1 ) F (t 0 ) t 0, q i (t 0 ), p i (t 0 ) { t1 N } { t1 N } δ p i q i H(q, p, t) dt δ P i Q i K(Q, P, t) dt t 0 t 0 (q, p) (Q, P ) 1

22 (2) (p i dq i P i dq i ) (H(q, p, t) K(Q, P, t))dt df (4) F q i,q i,t F F 1 (q i,q i,t) df (q, Q, t) ( F1 dq i + F ) 1 dq i + F 1 q i Q i t dt (4) dq i,dq i,dt p i F 1(q, Q, t), P i F 1(q, Q, t) (5) q i Q i K(Q, P, t) H(q, p, t)+ F 1(q, Q, t) t 1 F 1 (q, Q) i q iq i q i p i q, Q (5) p i F 1(q, Q, t) Q i, P i F 1(q, Q, t) q i q i Q i Q i p i, P i q i q i p i 1 q i q Q i f i (q 1,,q N,t) q p q i,p i F P i Q i + F 2 (q i,p i,t) (6) 2 df (dp i Q i + P i dq i )+ ( F2 dq i + F ) 2 dp i + F 2 q i P i t dt (4) dq i dq i,dp i,dt p i F 2(q, P, t), Q i F 2(q, P, t) (7) q i P i K(Q, P, t) H(q, p, t)+ F 2(q, P, t) t F 1 F Q i P i Legendre 2

23 2 F 2 (q, P) i q ip i q, P (7) p i F 2(q, P, t) P i, Q i F 2(q, P, t) q i q i P i 3 F 2 (q, P, t) N f i(q 1,,q N,t)P i Q i F 2(q, P, t) f i (q 1,,q N,t) (8) P i p i F 2(q, P, t) f j Q j P j P j (9) q i q i q i (9) P i Q j q i P i j1 q i Q k δ jk j1 j1 q j Q i p j (10) (8) p i q i [ ] 1. p i,q i F i p iq i + F 3 (p i,q i,t) q i F 3(p, Q, t), P i F 3(p, Q, t) (11) p i Q i K(Q, P, t) H(q, p, t)+ F 3(p, Q, t) (12) t 2. p i,p i F i (p iq i P i Q i )+F 4 (p i,p i,t) q i F 4(p, P, t), Q i F 4(p, P, t) (13) p i P i K(Q, P, t) H(q, p, t)+ F 4(p, P, t) (14) t 3. m 1 m 2 U(r 1 r 2 ) L m 1 2 ṙ2 1 + m 2 2 ṙ2 2 U(r 1 r 2 ) (15) V r r r V t (16) 3

24 4.1 ɛ F 2 i q i P i + ɛg(q,p, t) (17) F 2 p i F 2(q, P, t) G(q, P, t) P i + ɛ q i q i Q i F 2(q, P, t) P i q i + ɛ G(q, P, t) P i q i Q i q i, p i P i p i ɛ G(q, p, t) G(q, p, t) q i ɛ, p i ɛ (18) p i q i P p ɛ G(q, p, t) P p G(q, p, t) x ɛj G (19) 1. Q i q i + ɛ, P i p i G(q, p, t) G(q, p, t) Q i q i + ɛ q i + ɛ p i G(q, p, t) P i p i p i ɛ q i G(q, p, t) i p i P total 2. z (θ ε) z X x cos θ y sin θ x ɛy x + ɛ G p x Y x sin θ + y cos θ y + ɛx y + ɛ G p y G(x, y, p x,p y,t) G xp y yp x L z z (20) x, y x, y L x,l y 4

25 ( ) F K dt 0 (q 1,,q N,p 1,,p N ) (Q 1,,Q N,P 1,,P N ) Q i Q i (q, p). (1) P i P i (q, p), (2) (p i dq i P i dq i )df. (3) [ ] Q αq + βp, P γq + δp α, β, γ, δ [ ] PdQ pdq (γq + δp)(αdq + βdp) pdq γαqdq + δβpdp + δαpdq + γβqdp pdq d( 1 2 γαq δβp2 + γβqp)+(δα γβ 1)pdq δα γβ 1 (3) C (p i dq i P i dq i ) 0 (4) C 1

26 C (q, p) (1)(2) C (Q, P ) ( Qi (q, p) P i (q, p) dq j + Q ) i(q, p) dp j P i dq i (5) q j p j C i,j1 (q,p) C D C (Q,P) D C Phase Space (1)(2) C p i dq i P i dq i (6) C (u, v) C 0 D 0 ( Av (A u (u, v)du + A v (u, v)dv) C D u A ) u dudv. (7) v C D C (u, v) C (u, v) C 0 C (u, v) D 0 C 2

27 D (q i,p i ) (u, v) (6) (7) C p i dq i C 0 ( qi p i u du + q ) i v dv (8) A u (u, v) p i q i u, A v(u, v) p i q i v. (9) (7) A v u A u v N ( pi q i u v p ) i q i v u (p i,q i ) p (u, v) i p i u v p i u q i u q i v (p i,q i ) (u, v), (10) q i v p i q i v u. (11) (10) p i dq i C D dp i dq i (12) dp i dq i D D 0 (p i,q i ) dudv (13) (u, v) (1)(2) D D D (Q, P ) (q, p) D (q, p) (u, v) D (Q, P ) (u, v) D D dp i dq i D 0 (P i,q i ) dudv. (14) (u, v) (3) D dp i dq i D dp i dq i (15) D D (1)(2) 3

28 5.2 (15) (13)(14) (p i,q i ) (u, v) dudv D 0 D 0 (P i,q i ) (u, v) dudv. u v {u, v} q,p ( qi p i u v p i u ) q i v (15) (16) {u, v} q,p {u, v} Q,P (17) q, p u, v q i p j [ ] {q i,p j } q,p {q i,q j } 0, {p i,p j } 0, {q i,p j } δ ij (18) k1 ( qk p k p ) k q k q i p j q i p j δ ik δ jk δ ij k1 2N x 1 q 1 X 1 Q 1 : : [ ] x, X 0 1 N, J 1 N 0 x 2N q N p 1 : p N X 2N 1 N N N x T, X T ( qi p i {u, v} q,p u v p ) i q i x T J x (19) u v u v ( Qi P i {u, v} Q,P u v P ) i Q i X T J X (20) u v u v 4 Q N P 1 : P N

29 x i X i X i (x 1,,x 2N ) (21) X i u j X i x j x j u j M ij x j u M M ij X i x j (22) X v M x v, T X u x T M T. (23) u (20) (19) M (21) (21) M T JM J. (24) M det J (det M) 2 1 det M ±1 (Liouville ) dq 1 dq N dp 1 dp N ±dq 1 dq N dp 1 dp N. det M 1 (24) M 1 M T J JM 1 5

30 J J 2 1 (25) JM T M 1 J M MJM T J (26) 5.3 q k,p k (k 1, 2,,N) (Poisson Bracket) ( u v [u, v] v ) u q k p k q k p k k1 (27) [ ] x 1 q 1 X 1 Q 1 : : q N, p 1 Q N P 1 : : (28) x 2N p N X 2N P N [u, v] q,p k1 ( u v v ) u q k p k q k p k 2 i,j1 u v J ij ( u) T J ( v) (29) x i x j i v v x i j v X j X j x i j M ji v X j (30) v M T v (31) ( v) T ( v) T M (32) 6

31 (31) [u, v] q,p ( u) T J ( v) ( u) T MJM T ( v) ( u) T J ( v) [u, v] Q,P (33) M (26) [q i,p j ] [q i,q j ] [p i,p j ] ( qi p j p ) j q i δ ik δ jk δ ij (34) q k p k q k p k k1 ( qi q j q ) j q i 0 (35) q k p k q k p k ( pi p j p ) j p i 0 (36) q k p k q k p k k1 k1 k1 [q i,q j ] 0 [p i,p j ] 0 (37) [q i,p j ] δ ij [u, v] [v,u] (38) [αu + βv,w]α[u, w]+β[v, w] (α, β ) (39) [uv, w] u[v, w]+[u, w]v (40) [q i,f(q, p)] F, [p i,g(q, p)] G p i q i (41) [u, [v, w]] + [v, [w, u]] + [w, [u, v]] 0 (Jacobi ) (42) (38)(39)(41) (40) (uv) q k u q k v + u v q k, (uv) p k u p k v + u v p k 7

32 J ij (31) u x i u, i 2 u x i x j u, ij (43) [v, w] 2 k,l1 [u, [v, w]] + [v, [w, u]] [u, [v, w]] [v, [u, w]] v, k J kl w, l (44) ij ij ij u, i J ij ([v, w]), j v, i J ij ([u, w]), j ij J ij J kl (u, i (v, k w, l ), j v, i (u, k w, l ), j ) kl J ij J kl (u, i v, k v, i u, k )w, lj + ij kl J ij J kl (u, i v, kj v, i u, kj )w, l (45) kl ([v, w]), j kl J kl (v, k w, l ), j kl J kl (v, kj w, l +v, k w, lj ) (45) u, i v, k v, i u, k i k J ij J kl i, k ij kl 1 2 (J ijj kl J kj J il )(u, i v, k v, i u, k )w, lj J ij J kl J kj J il l j w, lj l, j l, j (45) J ij J kl (u, i v, kj v, i u, kj )w, l ij i j J ij J ij J kl (u, i v, kj +v, j u, ki )w, l ij kl ij kl J ij J kl (u, i v, j ), k w, l kl kl J kl [u, v], k w, l [[u, v],w] [w, [u, v]] 8

33 [ 1] L x yp z zp y,l y zp x xp z,l z xp y yp x Poisson Blacket [x, L z ], [y, L z ], [z, L z ] [p x,l z ], [p y,l z ], [p z,l z ] [L x,l y ], [L y,l z ], [L z,l x ] 5.4 (26) (24) q, p Q, P Q Q(q, p), P P (q, p) MJM T J 2N 2N (i, j) 2 k,l1 X i X j J kl x k l J ij (46) i, j 1 N N +1 2N k k 1,,N k N +1,, 2N ( Qi Q j Q ) i Q j 0 q k p k p k q k k1 ( Qi P j Q ) i P j δ ij (47) q k p k p k q k k1 ( Pi P j P ) i P j 0 q k p k p k q k k1 ( Pi Q j P ) i Q j δ ij q k p k p k q k k1 q, p Q, P Q Q(q, p), P P (q, p) [Q i,p j ] 0, (48) [Q i,p j ] δ ij (49) [P i.p j ] 0 (50) (37) 9

34 [ 2] (N1) q, p Q, P Q Q(q, p), P P (q, p) MJM T J M [ Q q P q Q p P p ] [ J [Q, Q] 0, [P, P] 0, [Q, P ]1 ] 5.5 dq i dt dp i dt H (51) p i H q i (41) dq i dt dp i dt [q i,h] (52) [p i,h] q p q i,p i F (q, p) (51) df (q, p) ( F dq i dt q i i dt + F ) dp i p i dt ( F H F ) H q i i p i p i q i [F (q, p),h] (52) df (q, p) dt [F (q, p),h] (53) 10

35 q, p F (q, p) F F F (q, p) G(q, p) [F, G] F (q, p), G(q, p) [F, H] 0, [G, H] 0 (42) [H, [F, G]] [G, [F, H]] [F, [G, H]] 0 [F, G] 5.6 G(q, p, t) (41) G(q, p, t) G(q, p, t) q i ɛ, p i ɛ (54) p i q i q i ɛ [q i,g], p i ɛ [p i,g] (55) q i,p i F (q, p) F (q, p) ( ) F F q i + p i q i i p i ɛ ( G F G ) F p i i q i q i p i ɛ [F, G] (56) G(q, p, t) (56) G (53) H(q, p) ɛ [H, G] (57) dg(q, p) dt [H, G] 0 (58) [G(q, p),h] 0 (59) G [ 3]( ) 11

36 1. (P total i p i) q i ɛ [q i,p total ] p i ɛ [p i,p total ] 2. n (θ ε) x i ɛ [x i, n L] p i ɛ [p i, n L] [ 4]( ) r x 2 + y 2 + z 2 L i (i x, y, z) p 2 p 2 x + p2 y + p2 z L i (i x, y, z) H 1 2m p2 + V (r) L i (i x, y, z) 5.7 A, B Â, ˆB [A, B] 1 i (Â ˆB ˆBÂ). (60) [q i,q j ]0 1 i (ˆq iˆq j ˆq j ˆq i )0, [q i,p j ]δ ij 1 i (ˆq iˆp j ˆp j ˆq i )δ ij, (61) [p i,p j ]0 1 i (ˆp iˆp j ˆp j ˆp i )0. (53) df (ˆq, ˆp) dt 1 (F (ˆq, ˆp)H(ˆq, ˆp) H(ˆq, ˆp)F (ˆq, ˆp)) (62) i (61) (62) 12

37 ( ) t 1 q 1 t 2 q 2 S[C] t2 t 1 C L(q(t), q(t))dt (1) C q 1 t 1 q 2 t 2 S(q 1,t 1,q 2,t 2 ) q 1 q 1 q 1 + q 1, t 1 t 1 t 1 + t 1, (2) q 2 q 2 q 2 + q 2, t 2 t 2 t 2 + t 2. (3) t t 2 C C q q+dq q+dq t 1 q 1 q 2 q 1

38 C C C t q C q q q + q, t t t + t, (4) q(t) q (t ) q(t) δq(t) q (t) q(t) q(t) q (t ) q(t) q (t + t) q(t) q (t)+ t q(t) q(t) δq(t)+ t q(t) (5) t q q S(q 1,t 1,q 2,t 2 ) t2 + t 2 t 1 + t 1 C L(q (t ), q (t ))dt L(q 2, q 2 ) t 2 L(q 1, q 1 ) t 1 + t2 t 1 C t2 t 1 L(q(t), q(t))dt (L(q, q ) L(q, q)) dt t2 [L t] t 2 t 1 + δl(q, q)dt. (6) t 1 d δq(t) δ q(t) dt t2 ( ) S(q 1,t 1,q 2,t 2 ) [L t] t L(q, q) L(q, q) 2 t 1 + δq i + δ q i dt q i q i [L t] t 2 t 1 + t2 + t 1 t 1 [ i i L q i δq i ] t2 t 1 ( L(q, q) d q i dt i ) L(q, q) δq i dt (7) q i (5) S(q 1,t 1,q 2,t 2 ) [ p i q i ( ] t2 p i q i L) t i i t 1 [ ] t2 p i q i H t i i t 1 p 2 i q 2 i H t 2 i p 1 i q 1 i + H t 2 (8) 2

39 p 2 i S, H(q 2 qi 2 i,p 2 i ) S t p 1 i S, H(q 1 qi 1 i,p1 i ) S t (9) t 1, q 1 t 2,q 2 i t, q i (9) (10) (11) S(q i,t) p i S q i (10) H(q i,p i ) S(q i,t) t (11) H(q i, S ) S(q i,t) q i t (12) S S(q i,t) S(q i,t) (10) p(q,t) S(q,t) (13) S(q i,t) S(q i,t) 3

40 6.2 S(Q, t 1,q,t) t q, p t 1 Q, P q, Q (q, p) (Q, P ) p i F 1(q, Q, t), q i (i 1,,N) (14) P i F 1(q, Q, t) Q i (15) K(Q, P, t) H(q, p, t)+ F 1(q, P, t) t (16) K F 1 (q, Q, t) Q, P Q i K 0 P i P i K 0 Q i Q, P (14) (16) (10)(11) S(Q, t 1,q,t) t q, p t 1 Q, P [ 1] [ ] t 1 q 1 t 2 q 2 q q 2 q 1 t 2 t 1 S(q 1,t 1,q 2,t 2 ) t2 t 1 m 2 q2 dt m 2 (q 2 q 1 ) 2 t 2 t 1 (17) S(q 1,t 1,q 2,t 2 ) q 2 m q2 q 1 t 2 t 1 p 2, S(q 1,t 1,q 2,t 2 ) t 2 m 2 (9) ( q2 q 1 t 2 t 1 ) 2 p2 2 2m 4

41 6.3 Q P F 2 (q, P, t) q, P (q, p) (Q, P ) p i F 2(q, P, t), q i (i 1,,N) (18) Q i F 2(q, P, t) P i (19) K(Q, P, t) H(q, p, t)+ F 2(q, P, t) t (20) K F 2 (q, P, t) Q, P Q i K 0 P i P i K 0 Q i ( ) S(q, t) H q i, + q i S(q, t) t 0 (21) α i (i 1,,N) N S (21) S P i (19) β i S(q, t, α) α i β i (22) q i q i 2N α i,β i 2N q i (t) p i (18) S p i S(q, t, α) q i (23) 5

42 [ 2] [ ] N 1 (21) S(q, t) W (q) αt. (24) α W (q) q t (24) (24) ( ) 2 1 dw (q) α 2m dq (24) W (q) 2mαq (25) S(q, α, t) 2mαq αt (26) S α α P Q Q p S(q, α, t) α S(q, α, t) q m 2α q t β (27) 2mα (27) q α, β q 2α (t + β), m p 2mα m ( S q )2 + mω2 2 q2 + S t 0 (28) 1 2m S(q, t) W (q) αt (29) ( W(q) q ) 2 + mω2 2 q2 α (30) 6

43 W (q) W (q) 2m α mω2 2 q2 dq. (31) (29)(31) (22) m 2 1 dq t β. (32) α mω2 2 q2 ( ) 1 mω 2 ω sin 1 2α q t β. q q(t) 2α sin ω(t + β) mω2 α, β p(t) (23) p(t) 2m α mω2 2 q2 2mα cos ω(t + β) (33) α (30) β 6.5 r x ) H 1 2m ( p 2 r + p2 φ r 2 + V (r) (34) S(r, φ, t) W (r, φ) α 1 t (35) W (r, φ) ( ( W(r, ) 2 1 φ) + 1 ( ) ) 2 W(r, φ) + V (r) α 2m r r 2 1 (36) φ 7

44 φ r (38) 1 2m W (r, φ) W 1 (r)+α 2 φ (37) ( (dw1 (r) dr ) 2 + α2 2 r 2 ) + V (r) α 1 (38) (37) W (r, φ, α 1,α 2 ) dr 2m(α 1 V (r)) α2 2 r + α 2φ 2 (39) (22) W(r, φ, α 1,α 2 ) α 1 W(r, φ, α 1,α 2 ) α 2 mdr t + β 1 (40) 2m(α 1 V (r)) α2 2 r 2 α 2 dr r 2 2m(α 1 V (r)) α2 2 r 2 + φ β 2 (41) r, φ 4 r, p r,φ,p φ p r,p φ (23) p r W(r, φ, α 1,α 2 ) r p φ W(r, φ, α 1,α 2 ) φ α 2 2m(α 1 V (r)) α2 2 r 2 (40) (41) 8

C (q, p) (1)(2) C (Q, P ) ( Qi (q, p) P i (q, p) dq j + Q ) i(q, p) dp j P i dq i (5) q j p j C i,j1 (q,p) C D C (Q,P) D C Phase Space (1)(2) C p i dq

C (q, p) (1)(2) C (Q, P ) ( Qi (q, p) P i (q, p) dq j + Q ) i(q, p) dp j P i dq i (5) q j p j C i,j1 (q,p) C D C (Q,P) D C Phase Space (1)(2) C p i dq 7 2003 6 26 ( ) 5 5.1 F K 0 (q 1,,q N,p 1,,p N ) (Q 1,,Q N,P 1,,P N ) Q i Q i (q, p). (1) P i P i (q, p), (2) (p i dq i P i dq i )df. (3) [ ] Q αq + βp, P γq + δp α, β, γ, δ [ ] PdQ pdq (γq + δp)(αdq +

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

1

1 Chapter Fgure.: x x s T = 2 mv2 mgx = 0 (.) s = X 0 x 0 x x v = 2gx + + ( ) 2 2 y x 2 ( ) 2 2 y x 2 /2gx (.2) y(x) 2 . S = L(t, r, ṙ) r(t) ṙ = r L(t, r, ṙ) t, r, ṙ L x t r, ṙ r + δr, ṙ + δṙ δs δs = δr

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

ver F = i f i m r = F r = 0 F = 0 X = Y = Z = 0 (1) δr = (δx, δy, δz) F δw δw = F δr = Xδx + Y δy + Zδz = 0 (2) δr (2) 1 (1) (2 n (X i δx

ver F = i f i m r = F r = 0 F = 0 X = Y = Z = 0 (1) δr = (δx, δy, δz) F δw δw = F δr = Xδx + Y δy + Zδz = 0 (2) δr (2) 1 (1) (2 n (X i δx ver. 1.0 18 6 20 F = f m r = F r = 0 F = 0 X = Y = Z = 0 (1 δr = (δx, δy, δz F δw δw = F δr = Xδx + Y δy + Zδz = 0 (2 δr (2 1 (1 (2 n (X δx + Y δy + Z δz = 0 (3 1 F F = (X, Y, Z δr = (δx, δy, δz S δr δw

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

第10章 アイソパラメトリック要素

第10章 アイソパラメトリック要素 June 5, 2019 1 / 26 10.1 ( ) 2 / 26 10.2 8 2 3 4 3 4 6 10.1 4 2 3 4 3 (a) 4 (b) 2 3 (c) 2 4 10.1: 3 / 26 8.3 3 5.1 4 10.4 Gauss 10.1 Ω i 2 3 4 Ξ 3 4 6 Ξ ( ) Ξ 5.1 Gauss ˆx : Ξ Ω i ˆx h u 4 / 26 10.2.1

More information

note1.dvi

note1.dvi (1) 1996 11 7 1 (1) 1. 1 dx dy d x τ xx x x, stress x + dx x τ xx x+dx dyd x x τ xx x dyd y τ xx x τ xx x+dx d dx y x dy 1. dx dy d x τ xy x τ x ρdxdyd x dx dy d ρdxdyd u x t = τ xx x+dx dyd τ xx x dyd

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

KENZOU

KENZOU KENZOU 2008 8 2 3 2 3 2 2 4 2 4............................................... 2 4.2............................... 3 4.2........................................... 4 4.3..............................

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

Gmech08.dvi

Gmech08.dvi 63 6 6.1 6.1.1 v = v 0 =v 0x,v 0y, 0) t =0 x 0,y 0, 0) t x x 0 + v 0x t v x v 0x = y = y 0 + v 0y t, v = v y = v 0y 6.1) z 0 0 v z yv z zv y zv x xv z xv y yv x = 0 0 x 0 v 0y y 0 v 0x 6.) 6.) 6.1) 6.)

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

i E B Maxwell Maxwell Newton Newton Schrödinger Newton Maxwell Kepler Maxwell Maxwell B H B ii Newton i 1 1.1.......................... 1 1.2 Coulomb.......................... 2 1.3.........................

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

1 3 1.1.......................... 3 1............................... 3 1.3....................... 5 1.4.......................... 6 1.5........................ 7 8.1......................... 8..............................

More information

master.dvi

master.dvi 4 Maxwell- Boltzmann N 1 4.1 T R R 5 R (Heat Reservor) S E R 20 E 4.2 E E R E t = E + E R E R Ω R (E R ) S R (E R ) Ω R (E R ) = exp[s R (E R )/k] E, E E, E E t E E t E exps R (E t E) exp S R (E t E )

More information

~nabe/lecture/index.html 2

~nabe/lecture/index.html 2 2001 12 13 1 http://www.sml.k.u-tokyo.ac.jp/ ~nabe/lecture/index.html nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/11 3. 10/18 1 4. 10/25 2 5. 11/ 1 6. 11/ 8 7. 11/15 8. 11/22 9. 11/29 10. 12/ 6 1 11. 12/13

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

OHP.dvi

OHP.dvi 7 2010 11 22 1 7 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2010 nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/18 3. 10/25 2, 3 4. 11/ 1 5. 11/ 8 6. 11/15 7. 11/22 8. 11/29 9. 12/ 6 skyline 10. 12/13

More information

OHP.dvi

OHP.dvi t 0, X X t x t 0 t u u = x X (1) t t 0 u X x O 1 1 t 0 =0 X X +dx t x(x,t) x(x +dx,t). dx dx = x(x +dx,t) x(x,t) (2) dx, dx = F dx (3). F (deformation gradient tensor) t F t 0 dx dx X x O 2 2 F. (det F

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1 (3.5 3.8) 03032s 2006.7.0 n (n = 0,,...) n n = δ nn n n = I n=0 ψ = n C n n () C n = n ψ α = e 2 α 2 n=0 α, β α n n (2) β α = e 2 α 2 2 β 2 n=0 =0 = e 2 α 2 β n α 2 β 2 n=0 = e 2 α 2 2 β 2 +β α β n α!

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit 6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civita ɛ 123 =1 0 r p = 2 2 = (6.4) Planck h L p = h ( h

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k 4.6 (E i = ε, ε + ) T Z F Z = e ε + e (ε+ ) = e ε ( + e ) F = kt log Z = kt loge ε ( + e ) = ε kt ln( + e ) (4.8) F (T ) S = T = k = k ln( + e ) + kt e + e kt 2 + e ln( + e ) + kt (4.20) /kt T 0 = /k (4.20)

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

i

i 18 16 i 1 1 1.1....................................... 1 1.................................. 3 1.3............................. 5 1.4........................................... 6 7.1..................................

More information

2002 11 21 1 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2002 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture nabe@sml.k.u-tokyo.ac.jp 2 1. 10/10 2. 10/17 3. 10/24 4. 10/31 5. 11/ 7 6. 11/14

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 = #A A A. F, F d F P + F P = d P F, F P F F A. α, 0, α, 0 α > 0, + α +, α + d + α + + α + = d d F, F 0 < α < d + α + = d α + + α + = d d α + + α + d α + = d 4 4d α + = d 4 8d + 6 http://mth.cs.kitmi-it.c.jp/

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 12 12.1? finite deformation infinitesimal deformation large deformation 1 [129] B Bernoulli-Euler [26] 1975 Northwestern Nemat-Nasser Continuum Mechanics 1980 [73] 2 1 2 What is the physical meaning? 583

More information

nosenote3.dvi

nosenote3.dvi i 1 1 2 5 3 Verlet 9 4 18 5 23 6 26 1 1 1 MD t N r 1 (t), r 2 (t),, r N (t) ṙ 1 (t), ṙ 2 (t),, ṙ N (t) MD a 1, a 2, a 3 r i (i =1,,n) 1 2 T =0K r i + m 1 a 1 + m 2 a 2 + m 3 a 3 (m 1,m 2,m 3 =0, ±1, ±2,,

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i i j ij i j ii,, i j ij ij ij (, P P P P θ N θ P P cosθ N F N P cosθ F Psinθ P P F P P θ N P cos θ cos θ cosθ F P sinθ cosθ sinθ cosθ sinθ 5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y 5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =

More information

??

?? () 2014,,,,, - (ISS) Sontag Hamilton-Jacobi H L 2-, Hamilton-Jacobi-Issacs H,, ISS, ISS Strict Feedback Form,, 2014 1/154 2014 2/154 http://stlab.ssi.ist.hokudai.ac.jp/yuhyama/lecture/tokuron/ 3 2014 3/154

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

2

2 III 22 7 4 3....................................... 3.2 Kepler ( ).......................... 2 2 4 2.................................. 4 2.2......................................... 8 3 20 3..........................................

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l 1 1 ϕ ϕ ϕ S F F = ϕ (1) S 1: F 1 1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l : l r δr θ πrδr δf (1) (5) δf = ϕ πrδr

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

III Kepler ( )

III Kepler ( ) III 9 8 3....................................... 3.2 Kepler ( ).......................... 0 2 3 2.................................. 3 2.2......................................... 7 3 9 3..........................................

More information