特定のグループがとる大きさの確率分布を考えよう 時点において 第 グループが大きさ x である確率を P (,) x であらわす 時点におけるグループの大きさは から+ cまでの範囲内にある したがって + c x= P(,) x = である ここでつの仮定を設けよう それは Son (955) が

Size: px
Start display at page:

Download "特定のグループがとる大きさの確率分布を考えよう 時点において 第 グループが大きさ x である確率を P (,) x であらわす 時点におけるグループの大きさは から+ cまでの範囲内にある したがって + c x= P(,) x = である ここでつの仮定を設けよう それは Son (955) が"

Transcription

1 論文 ベキ乗則生成に関するサイモン モデルとバラバシ モデル Son Model and Barabas Model on Generang Power Law 鈴木武 ネットワークにおけるベキ乗則の生成について Barabas & Alber (999) から始まる研究が盛んである ここでは それを バラバシ モデル と呼ぶことにする ベキ乗則の研究は 90 年代からみられるが 949 年に Zpf が論文を著してから注目されるようになった その生成メカニズムについて有力なモデルを提示したのは Son (955) である それを サイモン モデル と呼ぶことにする 本稿では サイモン モデルがより一般的であると判断し それを基にバラバシ モデルの解釈と拡張をする Ⅰ では Son (955) が提示し 鈴木武 (007) が精緻化したモデルの要旨を再掲する Ⅱ では バラバシ モデルを記述する () モデルの前提 および() モデルの解 は Barabas & Alber (999) に (3) マスター方程式 は Dorogovsev & Mendes (00) に基づいている Ⅲ では バラバシ モデルをサイモン モデルと同程度に一般化するために 新たに形成されるグループへの要素の配分をα と固定して サイモン モデルと同じ結論を得る Ⅳ では () バラバシ モデルに適応度を加味したモデルを Bancon & Barabas (00a) に基づき記述し サイモン モデルの観点からの解釈を述べる () サイモン モデルの枠組みによる適応度モデルを述べる (3)Bancon & Barabas (00b) は適応度モデルを量子力学のボーズ アインシュタイン短縮に結びつけて ひとり勝ち する状況を説明している 本稿ではそれをエネルギーによる表現ではなく 適応度の表現で記述する Ⅰ サイモン モデル () モデルの前提 あるシステムがベキ乗則を生成するメカニズムを考察する そのために以下の前提をお く システムはいくつかのグループから構成されており 各グループの大きさは要素数で示される グループの大きさ x は 以上の自然数であり x である 初期状態で 以上の大きさをもつグループが a 個存在し 大きさの合計を c とする システムの初期状態において グループは少なくともつ存在し a とする 毎期 要素ずつシステムに参入する 参入にさいし 既存グループのどれかに所属する確率を α とし 既存グループではなく新たに形成されるグループに参入する確率をα とする ただし グループの要素数は 以上であるので 新たなグループは要素数が になるまでシステムには参入しないで待機しているものとする システム外で待機している新たなグループはつとする = の場合には 新たなグループはすぐにシステムに参入することができる

2 特定のグループがとる大きさの確率分布を考えよう 時点において 第 グループが大きさ x である確率を P (,) x であらわす 時点におけるグループの大きさは から+ cまでの範囲内にある したがって + c x= P(,) x = である ここでつの仮定を設けよう それは Son (955) が初めて提示した仮定である 仮定 システムに参入する要素が既存のどのグループに所属するかは 各グループの大きさに誘引されるものとする 仮定 システムに参入する要素が既存グループではなく 新たなグループに所属する確率はα である ただし 0 α 仮定 は 優先的選択 (preferenal aachen) と呼ばれているので このモデルを 優先的選択モデル と呼ぼう 第 グループにおける時間経過による確率の変化をみよう ( ) 時点から 時点にかけて大きさ x がとる確率の変化は x> の場合 仮定 から P( x, ) P( x, ) = K( ){( x ) P( x, ) xp( x, )} (-) である ただし K ( ) は時間に依存する比例定数とする x= の場合 P(, ) P(, ) = δ( ) K ( ) P(, ) (-) ここで δ () は第 グループが 時点でシステムに参入する確率である () モデルの解 (a) 期待度数時間が経過し となったとき システム全体として大きさ x に関する確率分布がどのようになるか (-) 式 (-) 式をもとに算出しよう 時点において大きさ x を固定し 全グループの確率合計を求めると 時点における大きさ x の期待度数 f(,) x になる 時点におけるグループ数を g () としよう 初期状態においてグループは a 個存在しているので すべてのグループの大きさがであるならば グループ数は+ a になる したがって可能なグループ数は a g () + aである それゆえ 時点における大きさ x の期待 度数は f(,) x = P(,) x (-3) = と表現される また 期待度数を合計すると

3 + c + c f(,) x = P(,) x = g () x= = x= であり グループ数に一致する (-) 式を で合計しよう ( ) 時点において 時点のものは実現していないので その 確率は 0 である したがって g( ) g( ) P( x, ) = P( x, ) = = である (-) 式を で合計すると よって g( ) g( ) g( ) P( x, ) P( x, ) = K( ) {( x ) P( x, ) xp( x, )} = = = f( x, ) f( x, ) = K( ){( x ) f( x, ) xf( x, )} (-4) 同様に (-) 式についても である = f(, ) f(, ) = g ( ) K ( ) f(, ) (-5) = g () は 時点においてシステムに新たなグループが参入する確率を意味する 新たな グループがシステムに参入するためには 要素数が 個に達していなければならない 個 に達していない場合はシステム外で待機していると想定している 待機しているケースとしては 要素数が 0 個 個 ( ) 個の 通りの場合があり 各ケースの生じる確率は等しいと考えてよい 時点において要素が新たなグループに所属する確率はα であり ( ) 個の要素がシステム外で待機している場合のみ 新たなグループがシステムに α 参入してくる したがって その確率はとなる それゆえ (-5) 式は α f(, ) f(, ) = K ( ) f(, ) (-6) と書ける (b) 比例定数の計算比例定数 K ( ) を求めよう ( ) 時点における全グループの要素数合計は ( + c) である ただし 新たなグループに所属するためシステムへの参入を待機している要素があるかもしれない その数もここでは含めている グループの大きさは から ( + c) までの可能性がある 該当する大きさがない場合に は その確率を 0 とする K( ) xf ( x, ) は第 要素がシステムに参入するとき すでに x 回生起しているグル

4 ープのどれかに属する確率である すべての x についてその和をとると 第 要素が既存のどれかのグループに属する確率 ( α) になるので + c K( ) xf ( x, ) = α (-7) x= また すべての大きさを合計すると要素数全体の値になるから + c xf ( x, ) = + c (-8) x= したがって (-7) 式 (-8) 式から α K ( ) = (-9) + c である (c) グループ数についての仮定 相対度数を求めるさい 度数の合計が必要である 本モデルではグループ数と度数の合 計が一致するので グループ数の具体的な表現を考察する必要がある そこで グループ数は参入する要素数に比例するという仮定を設けよう すなわち 時点におけるグループ数 g () は初期状態における a 個のグループ数と 要素数 に比例する部分からなると仮定す る 比例定数を k とすると g( ) = k + a (0 < k ) (-0) と表される 時点における大きさ x の期待相対度数 すなわち確率は f(,) x f(,) x Px (,) = = k + a (-) と表現される (-) 式を用いると (-4) 式は a a + Px (, ) + Px (, ) k k a + = ( α) k ( x ) Px (, ) xpx (, ) + c { } (-6) 式は a a + P (, ) + P (, ) k k a + α = ( α) k P (, ) k + c (-) (-3)

5 となる (d) 定常状態における確率 としたとき定常状態になると仮定して 大きさ x の確率を求めよう その準備と して (-) 式 (-3) 式に出てくる a + k + c の値について考えてみよう a k c は定数なので が大きな値をとる場合 この値は と みなしてよい 以上のことを考慮すると x > の場合における (-) 式は a a + Px ( ) + Px ( ) = ( α) ( x ) Px ( ) xpx ( ) k k となる したがって 変形して { + ( α) xpx } ( ) = ( α)( x ) Px ( ) ( α)( x ) x Px ( ) = Px ( ) = Px ( ) + ( α) x x + α となる ここで とすると { } (-4) β = (-5) α x Px ( ) = Px ( ) x + β と表現される β は後述するように分布を特徴づけるパラメータとなる (-6) のとき x= の場合における (-3) 式は a a α + P ( ) + P ( ) = ( α) P ( ) k k k したがって α { + ( α) P } ( ) = k 変形して (-7)

6 α P ( ) = k + ( α) (-8) となる (e) 定数の計算 ここで 定数 である α α = k a α の値について考えてみよう (-0) 式から k 時点までに 個の要素がシステムに参入している そのうち 新たなグループに所属す る要素の期待割合は α である グループを形成するためには 個の要素が必要なので 時 点におけるグループ数の期待値は 初期に存在している a 個を含めて α + a α である したがって g () a= となるので α α = = (-9) k α それゆえ (-8) 式における P ( ) の期待値は となる β P ( ) = = + ( α) + β (-0) (f) 確率分布の計算 (-6) 式 (-0) 式から x Px ( ) = Px ( ) x + β x x = P ( ) x+ β x+ β + β + Γ( x) Γ ( + β + ) β = Γ( ) Γ ( x+ β + ) + β ここで x=, +, +, である (-) 式を大きな値 を単位にして その極限の分布を求めよう (-)

7 とする = h y + x= ( y = 0, h, h, ) h すなわち h 0 の極限分布は (-) 式を計算すればよい y + Γ Py ( ) Γ + β + h h β l = l h 0 h h 0 y + h Γ Γ + β + + β h h h 得られる確率密度関数は (-3) 式である ( 注 ) (-) 0β 0 f( y) = β ( y+ ) ( y > 0) (-3) 変数 x で表現すると となる β β gx ( ) = βx ( x ) (-4) Ⅱ バラバシ モデル () モデルの前提 このモデルは Barabas & Alber (999) で発表されているので ここではバラバシ モデ ルと呼ぶことにする 考察対象は成長するネットワークであり インターネットにおける ウェブページへのリンク数がどのような分布になるかを議論する グラフ理論の用語では 頂点 ( ウェブページ ) への接続する枝 ( リンク ) の次数である Ⅰ で述べたサイモン モデルの用語では グループ ( 頂点 ) における要素数 ( 枝の次数 ) である ( 注 ) 時点 = 0 では a 個の頂点がある 初期状態における全頂点の枝の次数合計は c である 各時点で頂点がずつ追加され 各頂点から枝が 本ずつ連結される 枝 本につきネットワーク全体の頂点次数の合計はだけ増えるので 各時点で頂点次数は ずつ増加する このモデルでは優先的選択を仮定している すなわち Ⅰ で記述した仮定 である 仮定 新しくネットワークに加わる頂点は 元からいる頂点のどれかと結びつくとき 各頂点の次数に比例して接続する Ⅰ で記述した仮定 は このモデルにはない 仮定 を翻訳すれば α = になる () モデルの解 時点における頂点数を g () としよう 初期状態における頂点数は a 個であり それ以降 時点までに追加された頂点数は 個であるので g () = a+ になる 頂点 の大きさ ( 次数 ) を x とする 仮定 から ある新しい枝が頂点 に結びつく確率は

8 x Π ( x ) = ( g ( )) x j= j である 時点でのネットワーク全体の次数合計は = (-) x = c + (-) であり が大きくなると x (-3) = と近似できる と x を連続変数として扱うことにして (-) 式と (-3) 式を用いると x x = Π ( x ) = となる (-4) 式を変形して x x = 不定積分を解くと x () (-4) = A (-5) である 頂点 が出現する時点を とする その時点で頂点 の次数は であるので x ( ) = (-6) したがって A = (-7) (-5) 式と (-7) 式から x () = となる 次数分布を求めよう (-8) 式から 頂点次数が x 以下の確率は P[ x() < x] = P > x (-8) (-9) 時刻 では ( a+ ) 個の頂点がある そのうち > を満たすのは 時点 x

9 +, +,, に加えられた頂点たちで 合計 個ある これらが ( a+ ) 個 x x x の頂点からランダムに選ばれると仮定して ( a+ ) で割ると (-9) 式は P > x = a+ x ( a+ ) (-0) (-0) 式を x で微分すると 確率密度関数は [ () ] P x < x px ( ) = = 3 x x ( a+ ) にすると (-) 3 px ( ) = x ( x ) (-) これはサイモン モデルの (-4) 式に対応しており β = である バラバシ モデルをサイモン モデルで解釈すれば 各時点で新たな頂点が加わるとき 枝が 本加わり 次数 ( 要素数 ) が 追加される その次数が既存の頂点 ( グループ ) に 個 新たな頂点に 個配分される したがって Ⅰ における新たなグループに配分 される確率はα = であり (-5) 式から β = となる (3) マスター方程式サイモン モデルでの記述方式をマスター方程式と呼んでいる Dorogovsev & Mendes (00) はバラバシ モデルをマスター方程式でも記述している これを Ⅰ で用いた記号で記述しよう ( 注 3) 時点に導入された頂点が 時点で次数 x をもつ確率を P (,) x とすると x x P(, x + ) = P( x,) + P(,) x (-3) が成り立つ (-3) 式は (-) 式の特殊なケースであり 時点ではなく ( + ) 時点で記述 α したものである (-9) 式から K () = であるが (-3) 式ではα = とし が大きな + c 値をとっている状態を想定して c を無視している したがって K () = (-4) としている のときの次数分布は

10 Px ( ) = l = P (,) x から得られると期待している これは (-) 式で g () いる (-3) 式を で合計し (-5) 式を用いると x x ( + ) Px ( ) = Px ( ) + Px ( ) が導かれる したがって x Px ( ) = Px ( ) ( x + ) x + P ( ) = ( x= ) + (-5) = とし の極限をとった式になって (-6) (-7) (-8) が得られる (-7) 式は (-6) 式に (-8) 式は (-0) 式に対応する (-7) 式の漸化式を解 き (-8) 式を代入すると ( + ) Px ( ) = xx ( + )( x+ ) が得られる これは (-) 式に対応する (-) 式に β = を代入して したがって Γ( x) Γ ( + 3) Px ( ) = Γ( ) Γ ( x+ 3) + Px ( ) Γ( x) Γ ( + ) = Γ ( x+ 3) Γ( ) ( + ) = xx ( + )( x+ ) (-9) 3 x (-0) Ⅲ バラバシ モデルに α を導入 バラバシ モデルはサイモン モデルの特殊なケースにあたるので バラバシ モデル をサイモン モデルと同じレベルに一般化しよう 各時点で 本の要素が追加され 既存の頂点に ( α) 本 新たな頂点にα 本が配分 されるとする ただし サイモン モデルと同様に頂点の要素数は 本以上とするので 新たな頂点は要素数が 本に達してから初めて参加するものとする 仮定 が成り立つので ある新しい枝が頂点 に結びつく確率は (-) 式と同じである 時点でのネットワーク全体の次数合計は

11 x = c + (3-) = であり が大きくなると x 不定積分をすると x () 時点では x = ( α) Π ( x ) = ( α) x と近似できるので (-4) 式に対応する式は = (3-) α = (3-3) A x ( ) = A = (3-4) α (3-3) 式と (3-4) 式から定数 A を消して α x () = となる (3-5) 式は (-8) 式に対応する 次数分布を求めるために (-9) 式に対応する式は α P[ x() < x] = P > x 時点では ( a + k) 個の頂点がある そのうち > x α (3-5) (3-6) を満たすのは 時点 α α +, +,, x x のうちで 実際に加えられた頂点たちであり 合計 k x α 個ある これらが ( a + k) 個の頂点からランダムに選ばれると仮定して ( a + k) で割る (-0) 式に対応する式は α k α k P > = (3-7) x a + k x a + k (3-7) 式を x で微分すると 確率密度関数は

12 [ ] P x () < x + k α α px ( ) = = x x α a + k にすると (-) 式に対応するのは + α α px ( ) = x ( x ) (3-8) α (3-8) 式で β = とすると サイモン モデルにおける (-4) 式と同じになる α Ⅳ バラバシの適応度モデル () バラバシ モデルのサイモン モデルによる解釈バラバシ モデルの拡張として 次数に比例するだけでなく 各頂点に重みを持った 適応度モデル が Bancon & Barabas (00a) によって提示されている 以下にこれを記述し サイモン モデルの観点から解釈を加える ( 注 4) (-) 式の優先的選択のルールを (4-) 式に拡張する x Π ( x ) = ( g ( )) x j= (-4) 式 (3-) 式に対応するのは x = Π ( x ) = j j x j= x j j 初期条件は (-6) 式 (3-4) 式であるので (-8) 式 (3-5) 式に対応して (4-) (4-) b( ) x () = (4-3) と書ける b( ) は適応度 によってゆらぎが生じるので 集団平均で近似する τ ρ b( ) ax E jxj = d ( ) d 0 j= τ = 0 ax b( ) 0 ρ ( ) d 0 b( ) (4-4) b( ) は新たに追加される枝のうち既存の頂点に配分される割合なので b( ) < である b したがって のとき ( ) 0 となる それゆえ

13 j= C = x j 0 j ax C C ρ ( ) d 0 b( ) である (-4) 式 (3-) 式に対応するのは x x = C となる (4-3) 式との関係から が言える (4-5) (4-6) b( ) = (4-7) C (-9) 式 (3-6) 式から (-) 式 (3-8) 式までと同様の論理展開により C C ax C 0 + ( ) ρ ( ) 0 px = x d (4-8) となる サイモン モデルの観点から b( ) は新たに追加される枝が既存の頂点に配分される割合 を示していると解釈できる 新たな頂点に配分される割合を α ( ) とするならば b( ) = α ( ) である したがって (4-8) 式は 0 ax + d ( ) 0d ( ) ( ) = 0 ρ ( ) 0 px x d (4-9) 0d ( ) と書ける すなわち 適応度モデルは各適応度によって枝の配分割合を変化させ その期 待値としてベキ指数が生じるモデルと言える () サイモン モデルの枠組みによる適応度モデルもしサイモン モデルの枠組みで 新たな頂点への配分割合をα とする仮定 を条件に 適応度モデルを構成したらどうなるだろうか (-) 式に対応する式は P( x, ) P( x, ) = K( ) ( ){( x ) P( x, ) xp( x, )} (4-0) (-) 式に対応するのは P(, ) P(, ) = δ ( ) K ( ) ( ) P(, ) (4-) (-4) 式に対応するのは g( ) g( ) P( x, ) P( x, ) = = g( ) = K( ) ( ){( x ) P( x, ) xp( x, )} = (4-)

14 (4-) 式を期待度数で表現しよう ( ) 時点での適応度の期待値 ( ) を用いて f( x, ) f( x, ) (4-3) = K( ) ( ){( x ) f( x, ) xf( x, )} と書くことができる 同様に (-6) 式に対応するのは α f(, ) f(, ) = K ( ) ( ) f(, ) (4-4) である これ以降は Ⅰ で記述した K ( ) を K ( ) ( ) に置き換えて論理を進めればよい 結論は Ⅰ と同じ結果になる 結論として システムに参入する要素が新たなグループに所属する確率がα で一定であるならば 適応度モデルにおいても優先的選択モデルと同じベキ指数になることが言える (3) ひとり勝ちを説明する適応度モデル Bancon & Barabas (00b) の適応度モデルの特徴は ひとり勝ち する状況を説明したことにある すなわち ネットワークのひとり勝ち現象を量子力学のボーズ アインシュタイン短縮に結びつけた ここでは エネルギーによる表現ではなく 適応度の表現に止めて記述する (4-7) 式を用いて (4-5) 式を変形し ax = ρ ( ) d (4-5) 0 C 0 (4-5) 式の右辺を IC ( ) とおく C であり IC ( ) はC の減少関数になる したがって I() が最大値になる もし I () > ならば (4-5) 式が成り立つ C が存在して 適応度モデルによるベキ乗則になる もし I () < ならば (4-5) 式は成立せず I() の割合がもっとも高い適応度をもつ頂点に吸収される ベキ乗則の場合には 頂点の次数 x は大きいといっても全体の頂点数 g () よりは十分に小さい しかし ボーズ アインシュタイン短縮の場合には x が g () と比較可能なくらいに大きくなっている これがひとり勝ちの状況と言える 注 ( 注 ) この計算過程については鈴木武 (06) を参照 ( 注 ) Ⅱ での記号は Barabas & Alber (999) で用いられたものでなく Ⅰ で記述している記号にあわせて用いている場合がある また この節の (-) 式までは Barabas & Alber (999) と増田直紀 今野紀雄 (005) を参考にしている ( 注 3) Ⅱ の(3) は Dorogovsev & Mendes (00) と増田直紀 今野紀雄 (005) を参考にしている

15 ( 注 4) Ⅳ () での記号は Bancon & Barabas (00a) で用いられたものでなく Ⅰ で記述している記号にあわせて用いている場合がある また 増田直紀 今野紀雄 (005) も 参考にしている 参考文献 H.A.Son (955) "On a Class of Skew Dsrbuon Funcons", Boerka, Vol.4, No.3/4, p A.L.Barabas, R.Alber (999) Eergence of Scalng n Rando Neworks, Scence, Vol.86, p G.Bancon, A.L.Barabas (00a) Copeon and Mulscalng n Evolvng Neworks, Europhyscs Leers, Vol.54, No.4, p G.Bancon, A.L.Barabas (00b) Bose-Ensen Condensaon n Coplex Neworks, Physcal Revew Leers, Vol.86, No.4, p S.N.Dorogovsev, J.F.F.Mendes (00) Evoluon of Neworks, Advanced n Physcs, Vol.5(4), p 増田直紀 今野紀雄 (005) 複雑ネットワークの科学 産業図書 鈴木武 (007) 参入下限値を単位としたべき乗則生成モデル 経営志林 第 44 巻 号 p.-3 鈴木武 (06) 超優先的選択および非定常状態におけるベキ乗則生成モデル 経営志林 第 5 巻 4 号

論文ゼミ ( 修士論文にむけて ) M2 浦田淳司 (Wed)

論文ゼミ ( 修士論文にむけて ) M2 浦田淳司 (Wed) 論文ゼミ 修士論文にむけて M2 浦田淳司 2009.2.02Wed 修士研究 : 全体見取り図 第 章 背景 目的 第 2 章 既往研究 避難行動 ゲーム理論 ネットワーク分析 複雑ネットワーク 第 3 章 調査概要 第 4 章 基礎分析 第 5 章 紐帯生成モデル ミクロモデル 第 6 章 巨視モデルの適用 適応度モデル 第 7 章 ネットワーク評価 2 第 8 章 結論 2 章概要 第 2 章既往研究の整理

More information

微分方程式による現象記述と解きかた

微分方程式による現象記述と解きかた 微分方程式による現象記述と解きかた 土木工学 : 公共諸施設 構造物の有用目的にむけた合理的な実現をはかる方法 ( 技術 ) に関する学 橋梁 トンネル ダム 道路 港湾 治水利水施設 安全化 利便化 快適化 合法則的 経済的 自然および人口素材によって作られた 質量保存則 構造物の自然的な性質 作用 ( 外力による応答 ) エネルギー則 の解明 社会的諸現象のうち マスとしての移動 流通 運動量則

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル 時系列分析 変量時系列モデルとその性質 担当 : 長倉大輔 ( ながくらだいすけ 時系列モデル 時系列モデルとは時系列データを生み出すメカニズムとなるものである これは実際には未知である 私たちにできるのは観測された時系列データからその背後にある時系列モデルを推測 推定するだけである 以下ではいくつかの代表的な時系列モデルを考察する 自己回帰モデル (Auoregressive Model もっとも頻繁に使われる時系列モデルは自己回帰モデル

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり

More information

2011年度 大阪大・理系数学

2011年度 大阪大・理系数学 0 大阪大学 ( 理系 ) 前期日程問題 解答解説のページへ a a を自然数とする O を原点とする座標平面上で行列 A= a の表す 次変換 を f とする cosθ siθ () >0 および0θ

More information

Microsoft Word - Chap17

Microsoft Word - Chap17 第 7 章化学反応に対する磁場効果における三重項機構 その 7.. 節の訂正 年 7 月 日. 節 章の9ページ の赤枠に記載した説明は間違いであった事に気付いた 以下に訂正する しかし.. 式は 結果的には正しいので安心して下さい 磁場 の存在下でのT 状態のハミルトニアン は ゼーマン項 と時間に依存するスピン-スピン相互作用の項 との和となる..=7.. g S = g S z = S z g

More information

Microsoft Word - 補論3.2

Microsoft Word - 補論3.2 補論 3. 多変量 GARC モデル 07//6 新谷元嗣 藪友良 対数尤度関数 3 章 7 節では 変量の対数尤度を求めた ここでは多変量の場合 とくに 変量について対数尤度を求める 誤差項 は平均 0 で 次元の正規分布に従うとする 単純化のため 分散と共分散は時間を通じて一定としよう ( この仮定は後で変更される ) したがって ij から添え字 を除くことができる このとき と の尤度関数は

More information

Microsoft Word - 漸化式の解法NEW.DOCX

Microsoft Word - 漸化式の解法NEW.DOCX 閑話休題 漸化式の解法 基本形 ( 等差数列, 等比数列, 階差数列 ) 等差数列 : d 等比数列 : r の一般項を求めよ () 3, 5 () 3, () 5より数列 は, 初項 3, 公差の等差数列であるので 5 3 5 5 () 数列 は, 初項 3, 公比 の等比数列であるので 3 階差数列 : f の一般項を求めよ 3, より のとき k k 3 3 において, を代入すると 33 となるので,は

More information

喨微勃挹稉弑

喨微勃挹稉弑 == 全微分方程式 == 全微分とは 変数の関数 z=f(, ) について,, の増分を Δ, Δ とするとき, z の増分 Δz は Δz z Δ+ z Δ で表されます. この式において, Δ 0, Δ 0 となる極限を形式的に dz= z d+ z d (1) で表し, dz を z の全微分といいます. z は z の に関する偏導関数で, を定数と見なし て, で微分したものを表し, 方向の傾きに対応します.

More information

データ解析

データ解析 データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第

More information

Microsoft Word - 微分入門.doc

Microsoft Word - 微分入門.doc 基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,

More information

2018年度 2次数学セレクション(微分と積分)

2018年度 2次数学セレクション(微分と積分) 08 次数学セレクション問題 [ 東京大 ] > 0 とし, f = x - x とおく () x で f ( x ) が単調に増加するための, についての条件を求めよ () 次の 条件を満たす点 (, b) の動きうる範囲を求め, 座標平面上に図示せよ 条件 : 方程式 f = bは相異なる 実数解をもつ 条件 : さらに, 方程式 f = bの解を < < とすると > である -- 08 次数学セレクション問題

More information

Microsoft PowerPoint - zairiki_3

Microsoft PowerPoint - zairiki_3 材料力学講義 (3) 応力と変形 Ⅲ ( 曲げモーメント, 垂直応力度, 曲率 ) 今回は, 曲げモーメントに関する, 断面力 - 応力度 - 変形 - 変位の関係について学びます 1 曲げモーメント 曲げモーメント M 静定力学で求めた曲げモーメントも, 仮想的に断面を切ることによって現れる内力です 軸方向力は断面に働く力 曲げモーメント M は断面力 曲げモーメントも, 一つのモーメントとして表しますが,

More information

線積分.indd

線積分.indd 線積分 線積分 ( n, n, n ) (ξ n, η n, ζ n ) ( n-, n-, n- ) (ξ k, η k, ζ k ) ( k, k, k ) ( k-, k-, k- ) 物体に力 を作用させて位置ベクトル A の点 A から位置ベクトル の点 まで曲線 に沿って物体を移動させたときの仕事 W は 次式で計算された A, A, W : d 6 d+ d+ d@,,, d+ d+

More information

Problem P5

Problem P5 問題 P5 メンシュトキン反応 三級アミンとハロゲン化アルキルの間の求核置換反応はメンシュトキン反応として知られている この実験では DABCO(1,4 ジアザビシクロ [2.2.2] オクタン というアミンと臭化ベンジルの間の反応速度式を調べる N N Ph Br N N Br DABCO Ph DABCO 分子に含まれるもう片方の窒素も さらに他の臭化ベンジルと反応する可能性がある しかし この実験では

More information

Microsoft Word - 中村工大連携教材(最終 ).doc

Microsoft Word - 中村工大連携教材(最終 ).doc 音速について考えてみよう! 金沢工業大学 中村晃 ねらい 私たちの身の回りにはいろいろな種類の波が存在する. 体感できる波もあれば, できない波もある. その中で音は体感できる最も身近な波である. 遠くで雷が光ってから雷鳴が届くまで数秒間時間がかかることにより, 音の方が光より伝わるのに時間がかかることも経験していると思う. 高校の物理の授業で音の伝わる速さ ( 音速 ) は約 m/s で, 詳しく述べると

More information

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 =

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 = / 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (.8 より ˆ ( ( ( q -, ( ( c ( H c c ë é ù û - Ü + c ( ( - に限る (. である 一方 フェルミ型は 成分をもち その成分を,,,,

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

横浜市環境科学研究所

横浜市環境科学研究所 周期時系列の統計解析 単回帰分析 io 8 年 3 日 周期時系列に季節調整を行わないで単回帰分析を適用すると, 回帰係数には周期成分の影響が加わる. ここでは, 周期時系列をコサイン関数モデルで近似し単回帰分析によりモデルの回帰係数を求め, 周期成分の影響を検討した. また, その結果を気温時系列に当てはめ, 課題等について考察した. 気温時系列とコサイン関数モデル第 報の結果を利用するので, その一部を再掲する.

More information

相対性理論入門 1 Lorentz 変換 光がどのような座標系に対しても同一の速さ c で進むことから導かれる座標の一次変換である. (x, y, z, t ) の座標系が (x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとする

相対性理論入門 1 Lorentz 変換 光がどのような座標系に対しても同一の速さ c で進むことから導かれる座標の一次変換である. (x, y, z, t ) の座標系が (x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとする 相対性理論入門 Lorentz 変換 光がどのような座標系に対しても同一の速さ で進むことから導かれる座標の一次変換である. x, y, z, t ) の座標系が x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとすると, x A x wt) y y z z t Bx + Dt 弨弱弩弨弲弩弨弳弩弨弴弩 が成立する. 図 : 相対速度

More information

Microsoft PowerPoint slide2forWeb.ppt [互換モード]

Microsoft PowerPoint slide2forWeb.ppt [互換モード] 講義内容 9..4 正規分布 ormal dstrbuto ガウス分布 Gaussa dstrbuto 中心極限定理 サンプルからの母集団統計量の推定 不偏推定量について 確率変数, 確率密度関数 確率密度関数 確率密度関数は積分したら. 平均 : 確率変数 分散 : 例 ある場所, ある日時での気温の確率. : 気温, : 気温 が起こる確率 標本平均とのアナロジー 類推 例 人の身長の分布と平均

More information

Microsoft Word - 【確定版】H27都道府県別生命表作成方法

Microsoft Word - 【確定版】H27都道府県別生命表作成方法 平別生命表の作成方 Ⅰ 平成 7 年都道府県別生命表の作成方法 生命関数の定義 生存率 死亡率ちょうど歳に達した者が + 歳に達するまで生存する確率を歳以上 + 歳未満における生存率といい これをで表し + 歳に達しないで死亡する確率を歳以上 + 歳未満における死亡率といい これをで表す 特に を歳における生存率 死亡率といい これらを で表す 生存数生命表上で一定の出生者人 ( 通常 00,000

More information

Microsoft Word - Time Series Basic - Modeling.doc

Microsoft Word - Time Series Basic - Modeling.doc 時系列解析入門 モデリング. 確率分布と統計的モデル が確率変数 (radom varable のとき すべての実数 R に対して となる確 率 Prob( が定められる これを の関数とみなして G( Prob ( とあらわすとき G( を確率変数 の分布関数 (probablt dstrbuto ucto と呼 ぶ 時系列解析で用いられる確率変数は通常連続型と呼ばれるもので その分布関数は (

More information

様々なミクロ計量モデル†

様々なミクロ計量モデル† 担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル

More information

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63>

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63> - 第 章たわみ角法の基本式 ポイント : たわみ角法の基本式を理解する たわみ角法の基本式を梁の微分方程式より求める 本章では たわみ角法の基本式を導くことにする 基本式の誘導法は各種あるが ここでは 梁の微分方程式を解いて基本式を求める方法を採用する この本で使用する座標系は 右手 右ネジの法則に従った座標を用いる また ひとつの部材では 図 - に示すように部材の左端の 点を原点とし 軸線を

More information

Probit , Mixed logit

Probit , Mixed logit Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,

More information

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63>

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63> 1/1 平成 23 年 3 月 24 日午後 6 時 52 分 6 ガウスの定理 : 面積分と体積分 6 ガウスの定理 : 面積分と体積分 Ⅰ. 直交座標系 ガウスの定理は 微分して すぐに積分すると元に戻るというルールを 3 次元積分に適用した定理になります よく知っているのは 簡単化のため 変数が1つの場合は dj ( d ( ににします全微分 = 偏微分 d = d = J ( + C d です

More information

PowerPoint Presentation

PowerPoint Presentation Non-linea factue mechanics き裂先端付近の塑性変形 塑性域 R 破壊進行領域応カ特異場 Ω R R Hutchinson, Rice and Rosengen 全ひずみ塑性理論に基づいた解析 現段階のひずみは 除荷がないとすると現段階の応力で一義的に決まる 単純引張り時の応カーひずみ関係 ( 構成方程式 ): ( ) ( ) n () y y y ここで α,n 定数, /

More information

2015年度 2次数学セレクション(整数と数列)

2015年度 2次数学セレクション(整数と数列) 05 次数学セレクション問題 [ 千葉大 文 ] k, m, を自然数とする 以下の問いに答えよ () k を 7 で割った余りが 4 であるとする このとき, k を 3 で割った余りは であることを示せ () 4m+ 5が 3 で割り切れるとする このとき, m を 7 で割った余りは 4 ではないことを示せ -- 05 次数学セレクション問題 [ 九州大 理 ] 以下の問いに答えよ () が正の偶数のとき,

More information

Microsoft Word - NumericalComputation.docx

Microsoft Word - NumericalComputation.docx 数値計算入門 武尾英哉. 離散数学と数値計算 数学的解法の中には理論計算では求められないものもある. 例えば, 定積分は, まずは積分 ( 被積分関数の原始関数をみつけること できなければ値を得ることはできない. また, ある関数の所定の値における微分値を得るには, まずその関数の微分ができなければならない. さらに代数方程式の解を得るためには, 解析的に代数方程式を解く必要がある. ところが, これらは必ずしも解析的に導けるとは限らない.

More information

<4D F736F F D208CF68BA48C6F8DCF8A C30342C CFA90B68C6F8DCF8A7782CC8AEE967B92E8979D32288F4390B394C529332E646F63>

<4D F736F F D208CF68BA48C6F8DCF8A C30342C CFA90B68C6F8DCF8A7782CC8AEE967B92E8979D32288F4390B394C529332E646F63> 2. 厚生経済学の ( 第 ) 基本定理 2 203 年 4 月 7 日 ( 水曜 3 限 )/8 本章では 純粋交換経済において厚生経済学の ( 第 ) 基本定理 が成立することを示す なお より一般的な生産技術のケースについては 4.5 補論 2 で議論する 2. 予算集合と最適消費点 ( 完全 ) 競争市場で達成される資源配分がパレート効率的であることを示すための準備として 個人の最適化行動を検討する

More information

Microsoft Word - t30_西_修正__ doc

Microsoft Word - t30_西_修正__ doc 反応速度と化学平衡 金沢工業大学基礎教育部西誠 ねらい 化学反応とは分子を構成している原子が組み換り 新しい分子構造を持つことといえます この化学反応がどのように起こるのか どのような速さでどの程度の分子が組み換るのかは 反応の種類や 濃度 温度などの条件で決まってきます そして このような反応の進行方向や速度を正確に予測するために いろいろな数学 物理的な考え方を取り入れて化学反応の理論体系が作られています

More information

2011年度 東京大・文系数学

2011年度 東京大・文系数学 東京大学 ( 文系 ) 前期日程問題 解答解説のページへ x の 次関数 f( x) = x + x + cx+ d が, つの条件 f () =, f ( ) =, ( x + cx+ d) dx= をすべて満たしているとする このような f( x) の中で定積分 I = { f ( x) } dx を最小にするものを求め, そのときの I の値を求めよ ただし, f ( x) は f ( x)

More information

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ 数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は

More information

(Microsoft Word - 10ta320a_\220U\223\256\212w\223\301\230__6\217\315\221O\224\274\203\214\203W\203\201.docx)

(Microsoft Word - 10ta320a_\220U\223\256\212w\223\301\230__6\217\315\221O\224\274\203\214\203W\203\201.docx) 6 章スペクトルの平滑化 スペクトルの平滑化とはフーリエスペクトルやパワ スペクトルのギザギザを取り除き 滑らかにする操作のことをいう ただし 波のもっている本質的なものをゆがめてはいけない 図 6-7 パワ スペクトルの平滑化 6. 合積のフーリエ変換スペクトルの平滑化を学ぶ前に 合積とそのフーリエ変換について説明する 6. データ ウィンドウデータ ウィンドウの定義と特徴について説明する 6.3

More information

NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, A

NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, A NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, AstraZeneca KK 要旨 : NLMIXEDプロシジャの最尤推定の機能を用いて 指数分布 Weibull

More information

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考 3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x = f x= x t f c x f = [1] c f x= x f x= x 2 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考える まず 初期時刻 t=t に f =R f exp [ik x ] [3] のような波動を与えたとき どのように時間変化するか調べる

More information

Chap2.key

Chap2.key . f( ) V (V V ) V e + V e V V V V ( ) V V ( ) E. - () V (0 ) () V (0 ) () V (0 ) (4) V ( ) E. - () V (0 ) () V (0 ) O r θ ( ) ( ) : (r θ) : { r cos θ r sn θ { r + () V (0 ) (4) V ( ) θ θ arg( ) : π π

More information

チェビシェフ多項式の2変数への拡張と公開鍵暗号(ElGamal暗号)への応用

チェビシェフ多項式の2変数への拡張と公開鍵暗号(ElGamal暗号)への応用 チェビシェフ多項式の 変数への拡張と公開鍵暗号 Ell 暗号 への応用 Ⅰ. チェビシェフ Chbhv Chbhv の多項式 より であるから よって ここで とおくと coθ iθ coθ iθ iθ coθcoθ 4 4 iθ iθ iθ iθ iθ i θ i θ i θ i θ co θ co θ} co θ coθcoθ co θ coθ coθ したがって が成り立つ この漸化式と であることより

More information

untitled

untitled に, 月次モデルの場合でも四半期モデルの場合でも, シミュレーション期間とは無関係に一様に RMSPE を最小にするバンドの設定法は存在しないということである 第 2 は, 表で与えた 2 つの期間及びすべての内生変数を見渡して, 全般的にパフォーマンスのよいバンドの設定法は, 最適固定バンドと最適可変バンドのうちの M 2, Q2 である いずれにしても, 以上述べた 3 つのバンド設定法は若干便宜的なものと言わざるを得ない

More information

航空機の運動方程式

航空機の運動方程式 可制御性 可観測性. 可制御性システムの状態を, 適切な操作によって, 有限時間内に, 任意の状態から別の任意の状態に移動させることができるか否かという特性を可制御性という. 可制御性を有するシステムに対し, システムは可制御である, 可制御なシステム という言い方をする. 状態方程式, 出力方程式が以下で表されるn 次元 m 入力 r 出力線形時不変システム x Ax u y x Du () に対し,

More information

DVIOUT

DVIOUT 第 章 離散フーリエ変換 離散フーリエ変換 これまで 私たちは連続関数に対するフーリエ変換およびフーリエ積分 ( 逆フーリエ変換 ) について学んできました この節では フーリエ変換を離散化した離散フーリエ変換について学びましょう 自然現象 ( 音声 ) などを観測して得られる波 ( 信号値 ; 観測値 ) は 通常 電気信号による連続的な波として観測機器から出力されます しかしながら コンピュータはこの様な連続的な波を直接扱うことができないため

More information

Microsoft Word - 9章(分子物性).doc

Microsoft Word - 9章(分子物性).doc 1/1/6 9 章分子物性 1 節電気双極子モーメント (Electric Dipole Moment) 電子双極子モーメント とは 微小な距離 a だけ離れて点電荷 q が存在する状態 絶対値は aq で 負電荷 q から正電荷 q へ向かうベクトルである 例えば 水分子は下右図のような向きの電気双極子モーメントをもち その大きさは約 1.85D である このように元々から持っている双極子モーメントを

More information

振動学特論火曜 1 限 TA332J 藤井康介 6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫

振動学特論火曜 1 限 TA332J 藤井康介 6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫 6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫りにするために スペクトルを滑らかにする操作のことをいう 6.1 合積のフーリエ変換スペクトルの平滑化を行う際に必要な 合積とそのフーリエ変換について説明する 6.2 データ

More information

Microsoft Word - 11 進化ゲーム

Microsoft Word - 11 進化ゲーム . 進化ゲーム 0. ゲームの理論の分類 これまで授業で取り扱ってきたゲームは 協 ゲームと呼ばれるものである これはプレイヤー同士が独立して意思決定する状況を表すゲームであり ふつう ゲーム理論 といえば 非協力ゲームを表す これに対して プレイヤー同士が協力するという前提のもとに提携形成のパタンや利得配分の在り方を分析するゲームを協 ゲームという もっとも 社会現象への応用可能性も大きいはずなのに

More information

合金の凝固

合金の凝固 合金の一方向凝固 ( 古典論 by T.Koyama (-3 分配係数平衡分配係数は, と定義される 凝固において基本的にベースとなる独立変数は液相の濃度である 状態図の局所平衡を仮定することにより から が決まる つまり は従属変数となり 特に が定数である場合 は上記の式から簡単に計算できる 融点をT とし 液相線の温度 T と固相線の温度 T をそれぞれ m T Tm α, T Tm α とすると

More information

Microsoft PowerPoint - 基礎・経済統計6.ppt

Microsoft PowerPoint - 基礎・経済統計6.ppt . 確率変数 基礎 経済統計 6 確率分布 事象を数値化したもの ( 事象ー > 数値 の関数 自然に数値されている場合 さいころの目 量的尺度 数値化が必要な場合 質的尺度, 順序的尺度 それらの尺度に数値を割り当てる 例えば, コインの表が出たら, 裏なら 0. 離散確率変数と連続確率変数 確率変数の値 連続値をとるもの 身長, 体重, 実質 GDP など とびとびの値 離散値をとるもの 新生児の性別

More information

数学 ⅡB < 公理 > 公理を論拠に定義を用いて定理を証明する 1 大小関係の公理 順序 (a > b, a = b, a > b 1 つ成立 a > b, b > c a > c 成立 ) 順序と演算 (a > b a + c > b + c (a > b, c > 0 ac > bc) 2 図

数学 ⅡB < 公理 > 公理を論拠に定義を用いて定理を証明する 1 大小関係の公理 順序 (a > b, a = b, a > b 1 つ成立 a > b, b > c a > c 成立 ) 順序と演算 (a > b a + c > b + c (a > b, c > 0 ac > bc) 2 図 数学 Ⅱ < 公理 > 公理を論拠に定義を用いて定理を証明する 大小関係の公理 順序 >, =, > つ成立 >, > > 成立 順序と演算 > + > + >, > > 図形の公理 平行線の性質 錯角 同位角 三角形の合同条件 三角形の合同相似 量の公理 角の大きさ 線分の長さ < 空間における座漂とベクトル > ベクトルの演算 和 差 実数倍については 文字の計算と同様 ベクトルの成分表示 平面ベクトル

More information

2017年度 金沢大・理系数学

2017年度 金沢大・理系数学 07 金沢大学 ( 理系 前期日程問題 解答解説のページへ 次の問いに答えよ ( 6 z + 7 = 0 を満たす複素数 z をすべて求め, それらを表す点を複素数平面上に図 示せよ ( ( で求めた複素数 z を偏角が小さい方から順に z, z, とするとき, z, z と 積 zz を表す 点が複素数平面上で一直線上にあることを示せ ただし, 偏角は 0 以上 未満とする -- 07 金沢大学

More information

1 対 1 対応の演習例題を解いてみた 微分法とその応用 例題 1 極限 微分係数の定義 (2) 関数 f ( x) は任意の実数 x について微分可能なのは明らか f ( 1, f ( 1) ) と ( 1 + h, f ( 1 + h)

1 対 1 対応の演習例題を解いてみた   微分法とその応用 例題 1 極限 微分係数の定義 (2) 関数 f ( x) は任意の実数 x について微分可能なのは明らか f ( 1, f ( 1) ) と ( 1 + h, f ( 1 + h) 微分法とその応用 例題 1 極限 微分係数の定義 () 関数 ( x) は任意の実数 x について微分可能なのは明らか ( 1, ( 1) ) と ( 1 + h, ( 1 + h) ) の傾き= ( 1 + h ) - ( 1 ) ( 1 + ) - ( 1) = ( 1 + h) - 1 h ( 1) = lim h ( 1 + h) - ( 1) h ( 1, ( 1) ) と ( 1 - h,

More information

オートマトン 形式言語及び演習 1. 有限オートマトンとは 酒井正彦 形式言語 言語とは : 文字列の集合例 : 偶数個の 1 の後に 0 を持つ列からなる集合 {0, 110, 11110,

オートマトン 形式言語及び演習 1. 有限オートマトンとは 酒井正彦   形式言語 言語とは : 文字列の集合例 : 偶数個の 1 の後に 0 を持つ列からなる集合 {0, 110, 11110, オートマトン 形式言語及び演習 1 有限オートマトンとは 酒井正彦 wwwtrscssinagoya-uacjp/~sakai/lecture/automata/ 形式言語 言語とは : 文字列の集合例 : 偶数個の 1 の後に 0 を持つ列からなる集合 {0, 110, 11110, } 形式言語 : 数学モデルに基づいて定義された言語 認識機械 : 文字列が該当言語に属するか? 文字列 機械 受理

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

2016年度 京都大・文系数学

2016年度 京都大・文系数学 06 京都大学 ( 文系 ) 前期日程問題 解答解説のページへ xy 平面内の領域の面積を求めよ x + y, x で, 曲線 C : y= x + x -xの上側にある部分 -- 06 京都大学 ( 文系 ) 前期日程問題 解答解説のページへ ボタンを押すと あたり か はずれ のいずれかが表示される装置がある あたり の表示される確率は毎回同じであるとする この装置のボタンを 0 回押したとき,

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

社会保険料の賃金への影響について

社会保険料の賃金への影響について 社会保険料の賃金への影響について Borja,G. Labor economic, 3r e McGraw-Hill, Chapter, -3: Policy Application: payroll taxe an ubiie N グレゴリー マンキュー マンキュー経済学 Ⅰミクロ編 足立他訳 東洋経済新報社 2000 年 68-78 ページただし 保険料 ( 税金 ) のかかり方は 教科書のものと以下で扱うものとでは異なっていることに注意.

More information

木村の理論化学小ネタ 緩衝液 緩衝液とは, 酸や塩基を加えても,pH が変化しにくい性質をもつ溶液のことである A. 共役酸と共役塩基 弱酸 HA の水溶液中での電離平衡と共役酸 共役塩基 弱酸 HA の電離平衡 HA + H 3 A にお

木村の理論化学小ネタ   緩衝液 緩衝液とは, 酸や塩基を加えても,pH が変化しにくい性質をもつ溶液のことである A. 共役酸と共役塩基 弱酸 HA の水溶液中での電離平衡と共役酸 共役塩基 弱酸 HA の電離平衡 HA + H 3 A にお 緩衝液 緩衝液とは, 酸や塩基を加えても,pH が変化しにくい性質をもつ溶液のことである A. 酸と塩基 弱酸 HA の水溶液中での電離平衡と酸 塩基 弱酸 HA の電離平衡 HA H 3 A において, O H O ( HA H A ) HA H O H 3O A の反応に注目すれば, HA が放出した H を H O が受け取るから,HA は酸,H O は塩基である HA H O H 3O A

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 慣性モーメント -1/6 テーマ 01: 慣性モーメント (Momet of ietia) コマ回しをすると, 長い時間回転させるには重くて大きなコマを選ぶことや, ひもを早く引くことが重要であることが経験的にわかります. 遊びを通して, 回転の運動エネルギーを増やせば, 回転の勢いが増すことを学習できるので, 機械系の学生にとってコマ回しも大切な体験学習のひとつと言えます.

More information

プランクの公式と量子化

プランクの公式と量子化 Planck の公式と量子化 埼玉大学理学部物理学科 久保宗弘 序論 一般に 量子力学 と表現すると Schrödinger の量子力学などの 後期量子力学 を指すことが多い 本当の量子概念 には どうアプローチ? 何故 エネルギーが量子化されるか という根本的な問いにどうこたえるか? どのように 量子 の扉は叩かれたのか? 序論 統計力学 熱力学 がことの始まり 総括的な動き を表現するための学問である

More information

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 1 分量子力学とクライン ゴルドン方程式 ( 学部 3 年次秋学期向 ) 量子力学とクライン ゴルドン方程式 素粒子の満たす場 y ( x,t) の運動方程式 : クライン ゴルドン方程式 : æ 3 ö ç å è m= 0

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 1 分量子力学とクライン ゴルドン方程式 ( 学部 3 年次秋学期向 ) 量子力学とクライン ゴルドン方程式 素粒子の満たす場 y ( x,t) の運動方程式 : クライン ゴルドン方程式 : æ 3 ö ç å è m= 0 /7 平成 9 年 月 5 日 ( 土 午前 時 分量子力学とクライン ゴルドン方程式 ( 学部 年次秋学期向 量子力学とクライン ゴルドン方程式 素粒子の満たす場 (,t の運動方程式 : クライン ゴルドン方程式 : æ ö ç å è = 0 c + ( t =, 0 (. = 0 ì æ = = = ö æ ö æ ö ç ì =,,,,,,, ç 0 = ç Ñ 0 = ç Ñ 0 Ñ Ñ

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 絶対値の意味を理解し適切な処理することができる 例題 1-3 の絶対値をはずせ 展開公式 ( a + b ) ( a - b ) = a 2 - b 2 を利用して根号を含む分数の分母を有理化することができる 例題 5 5 + 2 の分母を有理化せよ 実数の整数部分と小数部分の表し方を理解している

More information

DVIOUT

DVIOUT 最適レギュレータ 松尾研究室資料 第 最適レギュレータ 節時不変型無限時間最適レギュレータ 状態フィードバックの可能な場合の無限時間問題における最適レギュレータについて確定系について説明する. ここで, レギュレータとは状態量をゼロにするようなコントローラのことである. なぜ, 無限時間問題のみを述べるかという理由は以下のとおりである. 有限時間の最適レギュレータ問題の場合の最適フィードバックゲインは微分方程式の解から構成される時間関数として表現される.

More information

Microsoft PowerPoint - sc7.ppt [互換モード]

Microsoft PowerPoint - sc7.ppt [互換モード] / 社会調査論 本章の概要 本章では クロス集計表を用いた独立性の検定を中心に方法を学ぶ 1) 立命館大学経済学部 寺脇 拓 2 11 1.1 比率の推定 ベルヌーイ分布 (Bernoulli distribution) 浄水器の所有率を推定したいとする 浄水器の所有の有無を表す変数をxで表し 浄水器をもっている を 1 浄水器をもっていない を 0 で表す 母集団の浄水器を持っている人の割合をpで表すとすると

More information

2011年度 筑波大・理系数学

2011年度 筑波大・理系数学 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ

More information

14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手

14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手 14 化学実験法 II( 吉村 ( 洋 014.6.1. 最小 乗法のはなし 014.6.1. 内容 最小 乗法のはなし...1 最小 乗法の考え方...1 最小 乗法によるパラメータの決定... パラメータの信頼区間...3 重みの異なるデータの取扱い...4 相関係数 決定係数 ( 最小 乗法を語るもう一つの立場...5 実験条件の誤差の影響...5 問題...6 最小 乗法の考え方 飲料水中のカルシウム濃度を

More information

Microsoft Word - 1B2011.doc

Microsoft Word - 1B2011.doc 第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を

More information

"éı”ç·ıå½¢ 微勃挹稉弑

"éı”ç·ıå½¢ 微勃挹稉弑 == 1 階線形微分方程式 == 次の形の常微分方程式を1 階線形常微分方程式といいます. '+P()=Q() (1) 方程式 (1) の右辺 : Q() を 0 とおいてできる同次方程式 ( この同次方程式は, 変数分離形になり比較的容易に解けます ) '+P()=0 () の1つの解を とすると, 方程式 (1) の一般解は =( Q() +C) (3) で求められます. 参考書には 上記の の代わりに,

More information

20~22.prt

20~22.prt [ 三クリア W] 辺が等しいことの証明 ( 円周角と弦の関係利用 ) の の二等分線がこの三角形の外接円と交わる点をそれぞれ とするとき 60 ならば であることを証明せよ 60 + + 0 + 0 80-60 60 から ゆえに 等しい長さの弧に対する弦の長さは等しいから [ 三クリア ] 方べきの定理 接線と弦のなす角と円周角を利用 線分 を直径とする円 があり 右の図のように の延長上の点

More information

Microsoft PowerPoint - 卒業論文 pptx

Microsoft PowerPoint - 卒業論文 pptx 時間に依存するポテンシャルによる 量子状態の変化 龍谷大学理工学部数理情報学科 T966 二正寺章指導教員飯田晋司 目次 はじめに 次元のシュレーディンガー方程式 3 井戸型ポテンシャルの固有エネルギーと固有関数 4 4 中央に障壁のある井戸型ポテンシャルの固有エネルギーと固有関数 3 5 障壁が時間によって変化する場合 7 6 まとめ 5 一次元のシュレディンガー方程式量子力学の基本方程式 ψ (

More information

森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て

森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て . 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,0 年に 回の渇水を対象として計画が立てられる. このように, 水利構造物の設計や, 治水や利水の計画などでは, 年に 回起こるような降雨事象 ( 最大降雨強度, 最大連続干天日数など

More information

2013年度 信州大・医系数学

2013年度 信州大・医系数学 03 信州大学 ( 医系 ) 前期日程問題 解答解説のページへ () 式 + + a a a3 を満たす自然数の組 ( a, a, a3) で, a a a3とな るものをすべて求めよ () r を正の有理数とする 式 r + + a a a を満たす自然数の組 ( a, a, a3) で, 3 a a a3となるものは有限個しかないことを証明せよ ただし, そのよう な組が存在しない場合は 0 個とし,

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

DVIOUT

DVIOUT 3 第 2 章フーリエ級数 23 フーリエ級数展開 これまで 関数 f(x) のフーリエ級数展開に関して 関数の定義区間やフーリエ級数の積分区間を断りなく [, ] に取ってきました これは フーリエ級数を構成する三角関数が基本周期 2 を持つためです すなわち フーリエ級数の各項 cos nx および sin nx (n =1, 2, 3, 4, ) の周期は それぞれ 2, 2 2, 2 3,

More information

解析力学B - 第11回: 正準変換

解析力学B - 第11回: 正準変換 解析力学 B 第 11 回 : 正準変換 神戸大 : 陰山聡 ホームページ ( 第 6 回から今回までの講義ノート ) http://tinyurl.com/kage2010 2011.01.27 正準変換 バネ問題 ( あえて下手に座標をとった ) ハミルトニアンを考える q 正準方程式は H = p2 2m + k 2 (q l 0) 2 q = H p = p m ṗ = H q = k(q

More information

学習指導要領

学習指導要領 (1) いろいろな式 学習指導要領紅葉川高校学力スタンダードア式と証明展開の公式を用いて 3 乗に関わる式を展開すること ( ア ) 整式の乗法 除法 分数式の計算ができるようにする 三次の乗法公式及び因数分解の公式を理解し そ 3 次の因数分解の公式を理解し それらを用いて因数れらを用いて式の展開や因数分解をすること また 分解することができるようにする 整式の除法や分数式の四則計算について理解し

More information

数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 ) 1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期

数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 ) 1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期 数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 )1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期 ) (2) 次の関数を微分せよ (ⅰ) を正の定数とする (ⅱ) (ⅳ) (ⅵ) ( 解答 )(1) 年群馬大学

More information

<4D F736F F D2094F795AA95FB92F68EAE82CC89F082AB95FB E646F63>

<4D F736F F D2094F795AA95FB92F68EAE82CC89F082AB95FB E646F63> 力学 A 金曜 限 : 松田 微分方程式の解き方 微分方程式の解き方のところが分からなかったという声が多いので プリントにまとめます 数学的に厳密な話はしていないので 詳しくは数学の常微分方程式を扱っているテキストを参照してください また os s は既知とします. 微分方程式の分類 常微分方程式とは 独立変数 と その関数 その有限次の導関数 がみたす方程式 F,,, = のことです 次までの導関数を含む方程式を

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション - = 4 = 4 = - y = x y = x y = x + 4 y = x 比例は y = ax の形であらわすことができる 4 - 秒後 y = 5 y = 0 (m) 5 秒後 y = 5 5 y = 5 (m) 5 0 = 05 (m) 05 5 = 5 (m/ 秒 ) 4 4 秒後 y = 5 4 y = 80 (m) 5-80 5 4 = 45 (m/ 秒 ) 5 v = 0 5

More information

( 最初の等号は,N =0, 番目は,j= のとき j =0 による ) j>r のときは p =0 から和の上限は r で十分 定義 命題 3 ⑵ 実数 ( 0) に対して, ⑴ =[] []=( 0 または ) =[6]+[] [4] [3] [] =( 0 または ) 実数 に対して, π()

( 最初の等号は,N =0, 番目は,j= のとき j =0 による ) j>r のときは p =0 から和の上限は r で十分 定義 命題 3 ⑵ 実数 ( 0) に対して, ⑴ =[] []=( 0 または ) =[6]+[] [4] [3] [] =( 0 または ) 実数 に対して, π() 伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊 伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊 数研通信 70 号を読んで チェビシェフの定理の精密化 と.5 の間に素数がある 伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊 さい才 の 野 せ瀬 いちろう 一郎 伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊 0. はじめに このたび,

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 テイラー展開 次の図のように関数のグラフをのグラフ ( 積み木のようなものと考えます ) を積み重ねて作ってみましょう ただ単純に足すだけではうまく作れません 色々と削ることが必要になります 次のように半分にしたり, 分のに削らなくてはなりません どうですか? たった枚の積み木を積み重ねただけで, ほぼのグラフに近づきまし たね これから学ぶのがこのテイラー展開のお話です 初等関数の微分 初等関数の微分まずは

More information

数学の世界

数学の世界 東京女子大学文理学部数学の世界 (2002 年度 ) 永島孝 17 6 行列式の基本法則と効率的な計算法 基本法則 三次以上の行列式についても, 二次の場合と同様な法則がなりたつ ここには三次の場合を例示するが, 四次以上でも同様である 1 単位行列の行列式の値は 1 である すなわち 1 0 0 0 1 0 1 0 0 1 2 二つの列を入れ替えると行列式の値は 1 倍になる 例えば a 13 a

More information

周期時系列の統計解析 (3) 移動平均とフーリエ変換 nino 2017 年 12 月 18 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ( ノイズ ) の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分の振幅

周期時系列の統計解析 (3) 移動平均とフーリエ変換 nino 2017 年 12 月 18 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ( ノイズ ) の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分の振幅 周期時系列の統計解析 3 移動平均とフーリエ変換 io 07 年 月 8 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ノイズ の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分のがどのように変化するのか等について検討する. また, 気温の実測値に移動平均を適用した結果についてフーリエ変換も併用して考察する. 単純移動平均の計算式移動平均には,

More information

PowerPoint Presentation

PowerPoint Presentation 付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像

More information

Microsoft Word - 5章摂動法.doc

Microsoft Word - 5章摂動法.doc 5 章摂動法 ( 次の Moller-Plesset (MP) 法のために ) // 水素原子など 電子系を除いては 原子系の Schrödiger 方程式を解析的に解くことはできない 分子系の Schrödiger 方程式の正確な数値解を求めることも困難である そこで Hartree-Fock(H-F) 法を導入した H-F 法は Schrödiger 方程式が与える全エネルギーの 99% を再現することができる優れた近似方法である

More information

OCW-iダランベールの原理

OCW-iダランベールの原理 講義名連続体力学配布資料 OCW- 第 2 回ダランベールの原理 無機材料工学科准教授安田公一 1 はじめに今回の講義では, まず, 前半でダランベールの原理について説明する これを用いると, 動力学の問題を静力学の問題として解くことができ, さらに, 前回の仮想仕事の原理を適用すると動力学問題も簡単に解くことができるようになる また, 後半では, ダランベールの原理の応用として ラグランジュ方程式の導出を示す

More information

Microsoft PowerPoint - 測量学.ppt [互換モード]

Microsoft PowerPoint - 測量学.ppt [互換モード] 8/5/ 誤差理論 測定の分類 性格による分類 独立 ( な ) 測定 : 測定値がある条件を満たさなければならないなどの拘束や制約を持たないで独立して行う測定 条件 ( 付き ) 測定 : 三角形の 3 つの内角の和のように, 個々の測定値間に満たすべき条件式が存在する場合の測定 方法による分類 直接測定 : 距離や角度などを機器を用いて直接行う測定 間接測定 : 求めるべき量を直接測定するのではなく,

More information

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI プロジェクト @ 宮崎県美郷町 熊本大学副島慶人川村諒 1 実験の目的 従来 信号の受信電波強度 (RSSI:RecevedSgnal StrengthIndcator) により 対象の位置を推定する手法として 無線 LAN の AP(AccessPont) から受信する信号の減衰量をもとに位置を推定する手法が多く検討されている

More information

Microsoft PowerPoint - siryo7

Microsoft PowerPoint - siryo7 . 化学反応と溶液 - 遷移状態理論と溶液論 -.. 遷移状態理論 と溶液論 7 年 5 月 5 日 衝突論と遷移状態理論の比較 + 生成物 原子どうしの反応 活性錯体 ( 遷移状態 ) は 3つの並進 つの回転の自由度をもつ (1つの振動モードは分解に相当 ) 3/ [ ( m m) T] 8 IT q q π + π tansqot 3 h h との並進分配関数 [ πmt] 3/ [ ] 3/

More information

Microsoft PowerPoint - H22制御工学I-2回.ppt

Microsoft PowerPoint - H22制御工学I-2回.ppt 制御工学 I 第二回ラプラス変換 平成 年 4 月 9 日 /4/9 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し

More information

memo

memo 数理情報工学特論第一 機械学習とデータマイニング 4 章 : 教師なし学習 3 かしまひさし 鹿島久嗣 ( 数理 6 研 ) kashima@mist.i.~ DEPARTMENT OF MATHEMATICAL INFORMATICS 1 グラフィカルモデルについて学びます グラフィカルモデル グラフィカルラッソ グラフィカルラッソの推定アルゴリズム 2 グラフィカルモデル 3 教師なし学習の主要タスクは

More information

<4D F736F F D F2095A F795AA B B A815B837D839382CC95FB92F68EAE2E646F63>

<4D F736F F D F2095A F795AA B B A815B837D839382CC95FB92F68EAE2E646F63> 1/8 平成 3 年 3 月 4 日午後 6 時 11 分 10 複素微分 : コーシー リーマンの方程式 10 複素微分 : コーシー リーマンの方程式 9 複素微分 : 正則関数 で 正則性は複素数 z の関数 f ( z) の性質として導き出しまし た 複素数 z は つの実数, で表され z i 数 u, v で表され f ( z) u i 複素数 z と つの実数, : z + i + です

More information

Excelによる統計分析検定_知識編_小塚明_5_9章.indd

Excelによる統計分析検定_知識編_小塚明_5_9章.indd 第7章57766 検定と推定 サンプリングによって得られた標本から, 母集団の統計的性質に対して推測を行うことを統計的推測といいます 本章では, 推測統計の根幹をなす仮説検定と推定の基本的な考え方について説明します 前章までの知識を用いて, 具体的な分析を行います 本章以降の知識は操作編での操作に直接関連していますので, 少し聞きなれない言葉ですが, 帰無仮説 有意水準 棄却域 などの意味を理解して,

More information

数学の学び方のヒント

数学の学び方のヒント 数学 Ⅱ における微分単元の 指導法の改善に関する研究 2017 年 10 月北数教旭川大会で発表した内容です 北海道札幌国際情報高等学校和田文興 1 Ⅰ. 研究の動機と背景 高校では極限を厳密に定義できず, 曖昧でわかりにくい. 私自身は, はじめて微分と出会ったとき, 極限の考え方等が納得できなかった. y () a h 接線 a 傾き (a) 2 Ⅰ. 研究の動機と背景 微分の指導改善に関する優れた先行研究がいくつかあるが,

More information

2-1 / 語問題 項書換え系 4.0. 準備 (3.1. 項 代入 等価性 ) 定義 3.1.1: - シグネチャ (signature): 関数記号の集合 (Σ と書く ) - それぞれの関数記号は アリティ (arity) と呼ばれる自然数が定められている - Σ (n) : アリ

2-1 / 語問題 項書換え系 4.0. 準備 (3.1. 項 代入 等価性 ) 定義 3.1.1: - シグネチャ (signature): 関数記号の集合 (Σ と書く ) - それぞれの関数記号は アリティ (arity) と呼ばれる自然数が定められている - Σ (n) : アリ 2-1 / 32 4. 語問題 項書換え系 4.0. 準備 (3.1. 項 代入 等価性 ) 定義 3.1.1: - シグネチャ (signature): 関数記号の集合 (Σ と書く ) - それぞれの関数記号は アリティ (arity) と呼ばれる自然数が定められている - Σ (n) : アリティ n を持つ関数記号からなる Σ の部分集合 例 : 群 Σ G = {e, i, } (e Σ

More information