i Γ

Size: px
Start display at page:

Download "i Γ"

Transcription

1

2 i Γ h N van Leeuwen

3 ii N : N : N : N : Planck

4 iii Appendix: ζ

5 1 S W S = k B log W 1) ) 3),, 4) 5) ) 6) 1) 5)

6 1 1.1 x f(x) x x x = i x i f(x i ) (1.1) x x P (x) x x+dx P (x)dx x = xp (x)dx (1.) P (x) 1 P (x) = ( πσ exp (x x ) 0) σ (1.3) x = < (x x ) >= P (x) xp (x)dx = x 0 (1.4) (x x ) P (x)dx = σ (1.5)

7 1 3 P(x) x Problem 1.1 x x 0 σ x 0 + σ 68% x 0 σ x 0 + σ 95% y n 1 n σ iy i = x n 1/n 1. x = i x if(x i ) ϵ { } lim P x 1 + x + + x n x n n > ϵ = 0 (1.6) n S n = n i x i S n = n x var(s n ) def = (S n n x ) n = (x i x ) + (x i x )(x j x ) i i>j = nσ σ = i (x i x ) P (x i ) (1.7) σ (x i x ) P (x i ) t P (x) = t P { x x t} (1.8) x i x t x i x t σ P { x x t} (1.9) t

8 1 4 x S n, x n x, σ nσ t = nϵ nσ t P { S n n x t} (1.10) σ nϵ P { S n x ϵ} (1.11) n n n S n { lim P Sn n x n σ n } β < β = Φ(β) def / = dx e x (1.1) π S n n x nσ S n X P (S n = X) = dx 1 dx dx n P (x 1 )P (x ) P (x n )δ(s n X) (1.13) δ(s n X) = 1 π dke ik(s n X) (1.14) P (X) = 1 π = 1 π ( dke ikx dx 1 P (x 1 )e ikx 1 dke ikx Q n (k) = 1 π Q(k) Q(k) = dxp (x)(1 + ikx k x ) ( ) dx n P (x n )e ikx n ikx+n log Q dke ) = 1 + ik x k x +

9 1 5 ) n log Q = n log (1 + ik x k x + ) = n (ik x k x (ik) x + ) = n (ik x k x + P (X) = 1 ) dk exp (ik(n x X) nk x π ik(n x X) nk x x = σ P (X) = 1 π ( π nσ exp = n x ( k i n x X ) (X n x ) n x n X ) (X n x ) 1 = ( nσ πnσ exp ) (X n x ) nσ (1.15) (1.16) x i P ( ) X n = n πσ exp ( ) (X/n x ) σ /n (1.17) x n X/n x x σ/ n (1.14) πδ(x) = dke ikx = lim e ikx ηk dk η +0 ( ikx ηk = η k i x ) x η 4η π /4η lim η +0 η e x dke ikx (1.18)

10 1 6 x = 0 x > 0, x < 0 0 π π dx lim /4η η +0 η e x = lim 4πη = π η +0 η dke ikx π x = p q (p, q) (p, q) p + dp q + dq P (p, q)dpdq q i p i (p 1,, p N, q 1,, q N ) dγ N dγ = dp 1 dp dp N dq 1 dq dq N (1.19) p, q (Liouville) dpdq Liouville (p, q) (P, Q) dγ = dp 1 dp dp N dq 1 dq dq N = dp 1 dp dp N dq 1 dq dq N (1.0) J J = (P 1, P,, P N, Q 1, Q,, Q N ) (p 1, p,, p N, q 1, q,, q N ) = 1 (1.1)

11 1 7 J = (P 1, P,, P N, Q 1, Q,, Q N ) (P 1, P,, P N, q 1, q,, q N ) J = (Q 1, Q,, Q N ) (q 1, q,, q N ) / (p1, p,, p N, q 1, q,, q N ) (P 1, P,, P N, q 1, q,, q N ) / (p1, p,, p N ) P (P 1, P,, P N ) q F (P 1, P,, P N, q 1, q,, q N ) p i = F q i (1.) Q i = F P i (1.3) (i, k) p i / P k = F/ q i P k (i, k) Q i / q k = F/ q k P i J = :

12 8.1 Γ N Γ (p 1,, p N, q 1,, q N ) Γ i ϵ i E N ϵ i = p i m + mω q i (.1) E N = N ϵ i = E N (p 1, p,, p N, q 1, q,, q N ) (.) i=1 6N Γ N (Principle of equal weight) Γ E N (p 1, p,, p N, q 1, q,, q N ) (p 1, p,, p N, q 1, q,, q N ) 6N 1 ϵ

13 9 ϵ ϵ + ϵ Γ ϵ dγ P (Γ)dΓ P (Γ)dΓ = dγ ϵ<e N <ϵ+ ϵ dγ P (Γ) = 1 ϵ<e N <ϵ+dϵ dγ (.3) P (Γ) A(Γ) = A((p 1, p,, p N, q 1, q,, q N )) A = dγa(γ)p (Γ) (.4).3 h h dpdq p q = h /h f (f, 3 N 3N) i P i 3 1 P i = 1 N cell = P i = 1 N cell = h hn cell = h3 h 3 N cell = dµ ϵ ϵ+δϵ dµ (.5) dµ ϵ ϵ+δϵ dµ (.6) 1 h h

14 10.4 Γ W ϵ<e W = dγ N <ϵ+dϵ (.7) h f f (degrees of freedom) (Boltzmann) 1 N f = N N f = N 3 N f = 3N S def = k B log W (.8) (p 1, p, p 3, q 1, q, q 3 ) (p 1, p 3, p, q 1, q 3, q ), (p 3, p, p 1, q 3, q, q 1 ) W = ϵ<e N <ϵ+dϵ dγ h f N! N! ( ) 1 S T = E V (.9) (.10) N H = N i p i m (.11)

15 11 E N Ω(E) Ω(E) = 1 h 3N N! i p i /m E i N dp i i=1 p i m E N i=1 dq i = V N h 3N N! i p i me me 3N N dp i (.1) n R n C n R n S n (R) nc n R n 1 I n = I n = dx 1 x n exp( x 1 x n) = π n (.13) 0 drs n (r)e r = nc n drr n 1 e r (.14) r = t 0 dtt 1/ t (n 1)/ e t / = Γ(n/)/ I n = nc n Γ(n/) nc ( n n ) Γ = π n, C n = 0 π n i=1 Γ ( (.15) n + 1) Problem.1 n = 1,, 3 Ω = V N π 3N 3N me Γ ( 3N + 1) (.16) N!h 3N E E + E W W = Ω(E + E) Ω(E) = dω de E = Ω3N E E (.17)

16 1 S S = k B log W = k B [ log V N πme 3N h 3N N!Γ ( 3N + 1) + log 3N ] E E (.18) N! Γ (Stirling) Γ(M + 1) = 0 dze z z M = 0 z+m log z dze z = M (Taylor) z + M log z = f(z) = f(m) 1 (z M) M Γ(M + 1) = e M+M log M πm log M! = log Γ(M + 1) = log πm M + M log M (.19) M 10 3 log 10 3 M + M log M 10 3 log M! = M + M log M (.0) S = k B [N log V h 3 + 3N log(πme) + N N log N + 3N 3N log 3N 1 log(π 3N/) + log(3n ] E E ) N, N log N ( S = k B N log V h log(πme) + 1 log N log 3N )

17 13 S = k B N ( 5 + log V h 3 N + 3 ) 4πmE log 3N (.1) 1 T = S E = k BN 3 E, E = 3N k BT (.) T ds = de + P dv P T = S V = k BN 1 V, P V = Nk BT (.3).5. ±ϵ ϵ E M E = Mϵ N + = 1 (N + M) N = 1 (N M) N + +ϵ N ϵ E = Mϵ W M W M = N! ( 1 (N M))! ( 1 (N + M))! ( S = k B log W M = k B N log N 1 N M (N M) log 1 T = S E = 1 S ϵ M = k B ϵ log N M N + M 1 N + M (N + M) log (.4) ) (.5) (.6)

18 14 β def = 1 k B T (.7) e βϵ = N M N + M, M = Ntanhβϵ (.8) E E = N ϵtanhβϵ (.9) S/N M/N = tanhβϵ S N = k B (log N 1 (1 + thβϵ) log N (1 + thβϵ) 1 (1 thβϵ) log N ) (1 thβϵ) = k B (log N 1 (1 + thβϵ) log N 1 (1 thβϵ) log N 1 (1 + thβϵ) log 1 (1 + thβϵ) 1 (1 thβϵ) log 1 ) (1 thβϵ) ( = k B log 1 (1 + thβϵ) log(1 + thβϵ) 1 ) (1 thβϵ) log(1 thβϵ) ( = k B log 1 log(1 th βϵ) 1 ) (1 + thβϵ) thβϵ log (1 thβϵ) S N = k B(log(coshβϵ) βϵthβϵ) (.30) βϵ 1 k B log βϵ 1 0 Problem. (.30) βϵ 1.5.3

19 15 a L = na n W W = N C N/+n = N! ( N + n)! ( N n)! (.31) N 1, n N S = k B log W = k B [log + N log N N ( ) ( )] N N + + n + n = k B [ log + N log N N log ( N ( ) ( ) ( ) ( ) N N N N + n log + n n log n ) 4 n n log ( ) N log 4 n log(n/) 4n N ( ) N + n n log 4n N n N ( )] N + n N n ( ) S = k B log + N log n L = k B (log + N log ) k B N a N ( ) f T df = SdT fdl (.3) L = ( ) S L T = k BL Na (.33) f = c k BL Na T (.34)

20 16.6 E E Ω(E, V, N, ) = dγ N <E h f W = Ω E = Ω(E + E) Ω(E) = D(E) E E D(E) N Ω exp (Nϕ(E/N, V/N, )) (.35) ϕ(e/n, V/N, ) = ϕ(u, v, ), u, v, ϕ > 0, ϕ > 0, ϕ > 0 D N 1 N ϕ u enϕ 1 (.36) ( ) D ϕ E N + ϕ e Nϕ 1 (.37) Ω, D E D(E) E < Ω(E) < D(E)E (.38) log Ω log D(E)E = log ϕ E O(ln N) log(d(e) E) log D(E)E = log E O(ln N) E log W log Ω O(log N) N log N/N log 10 3 / W Ω.7 I II

21 17 I E I D I (E I ) II E II D II (E II ) E D(E) W W = D(E) E = D I (E I )de I D II (E II )de II E<E I +E II <E+ E E+ E EI de I D I (E I )D II (E E I ) de II = E E E I D(E) = de I D I (E I )D II (E E I ) de I D I (E I )D II (E E I ) (.39) E < E I + E II < E + E I E I E I E f(e I ) = D I(E I )D II (E E I ) E D(E) E S I E I + S II(E E I ) E I = 0 1 T I = S I E I = S II E II = 1 T II (.40)

22 18 3 T N N 3.1 A B B A A ν, E ν, P ν A B E tot E tot + E E tot E ν E tot E ν + E A ν B D B D B (E tot E ν ) E D tot E tot E ν E tot E ν + E D tot (E tot ) E P ν = D B(E tot E ν ) E D tot (E tot ) E (3.1) S = k B log D B E D B E = e S/k B

23 3 19 ( ) S(Etot E ν ) P ν exp k B k ( B S(Etot ) exp E ) ν k B T k B e βe ν k B P ν = A exp( βe ν ) (3.) ) E ν ±ϵ P (ϵ) = Ae βϵ P ( ϵ) = Ae βϵ P (ϵ) + P ( ϵ) = 1 A = 1 e βϵ + e βϵ E = ϵp (ϵ) + ( ϵ)p ( ϵ) = ϵ e βϵ e βϵ = ϵtanhβϵ e βϵ + e βϵ C C = d E dt C = ϵ 1 k B T cosh βϵ (3.3) 3. T

24 Ck B T ϵ βϵ P ν = 1/W S = k B log W = k B P ν log(w ) = k B P ν log(1/p ν ) ν S = k B P ν log P ν (3.4) 1 F ν ν F = E T S = ν E ν P ν + k B T ν P ν log P ν = ν (E ν P ν + k B T P ν log P ν ) F P ν P ν ν P ν = 1 F = F + λ( ν P ν 1) F F = 0, > 0 P ν Pν k B T/P ν > 0 F P ν = λ + E ν + k B T (1 + log P ν ) = 0 log P ν = λ + k BT + E ν, P ν = Ae βeν k B T (3.) 1

25 3 1 Problem 3.1 P ν k B ν P ν log P ν E E = E = ν E ν P ν S = S λ( ν E ν P ν E) Λ( ν P ν 1) 0 = S P ν = k B (1 + log P ν ) λe ν Λ k B log P ν = k B + λe ν + Λ P ν = Ae λeν/k B λ = 1/T λ Problem 3. Maxwell ) P (v) = A exp ( β mv (3.5) A v x, v x, v, v, 1/v 3.4 Z Z def = ν e βeν (3.6)

26 3 Z = 1 dγ N! h f e βe(γ) (3.7) 1 = ν P ν = ν Ae βeν = AZ Z Z E = E E = ν E ν P ν = 1 E ν e βeν Z ν = β ( ν e βeν ) / Z β Z = Z E = log Z (3.8) β E = dγ h f E(Γ)e βe(γ) dγ h f e βe(γ) Z β = Z = β log Z 3.4. F = E T S F = ν = ν = ν E ν P ν + k B T ν E ν P ν + k B T ν E ν P ν + k B T ν P ν log P ν ( e βe ν ) P ν log Z P ν ( βe ν log Z) k B T β = 1 F = k B T log Z (3.9)

27 3 3 Z = e βe ν = ded(e)e βe (3.10) ν Z = βe+log D(E) dee f(e) f(e) = βe + log W = βe + S k B E 0 f(e) = f(e 0 ) + f (E 0 ) (E E 0 ) + = βe 0 + S 0 + f (E 0 ) (E E 0 ) + k B f N, E N f N 1 ( ) Z = e βe 0+S 0 /k B f (E 0 ) de exp (E E 0 ) = e βe 0+S 0 /k B π f log Z = βe 0 + S 0 k B + log F = k B T log Z π f = β(e 0 T S 0 ) + O(log N) 3.5 C V C V = δq δt ( ) F S = T V = T V ( ) S T V = T ( k BT log Z) C V = k B T (T log Z) T = k B T ( log Z + T ) T T log Z = k B T T log Z + k BT T log Z = ( k B T ) T T log Z (3.11)

28 3 4 (3.8) T = β T C V = T C V = β = 1 k B T β ( ) β log Z ( ) E T V (3.1) (3.7) Z = 1 N! dγ h f e βe(γ) dγ = dp 1 dp dp N dq 1 dq dq N, E(Γ) = i Z = 1 N!h 3N p i m dp 1 dp dp N dq 1 dq dq N e β 1 m (p 1 +p + ) Z = V N (πmk B T ) 3N/ (3.13) N!h 3N λ T def = h πmk B T (3.14) ( V ) N (3.15) Z = 1 N! λ 3 T F = k B T log Z [ = k B T N log V N log N + N log h 3N + 3N ] log(πmk BT )

29 3 5 = k B T N [ log V N log πmk ] BT h E = β log Z = β log(aβ 3N/ ) = 3N k BT (3.16) S N = 1 F (3.17) N[ T = k B log V N log πmk BT + T 3 ] (3.18) h T [ = k B log V N log πmk ] BT (3.19) h E/ T 3Nk B / Problem 3.3 5Nk B / H = p m + 1 I ( p θ + 1 sin θ p ϕ ) 3.6. H = p m + mω x (3.0) ( ϵ n = n + 1 ) hω (3.1) n N E = N i=1 ( n i + 1 ) hω

30 3 6 { exp β n 1 =0 ( n Z = = = n 1 =0 n =0 { exp ( n 1 =0 1 sinh β hω n N =0 [ β ) N e β N i=1 (n i+1/) hω ( n ) ] } N hω ) } hω = e β hω/ 1 1 e = 1 β hω e β hω/ e = 1 β hω/ sinh β hω Z F = k B T log Z ( F = Nk B T log sinh β hω ) E = log Z/ β E = N log sinhβ hω β = N hω cothβ hω k B T hω k B T hω (3.) (3.3) coth β hω = eβ hω + 1 e β hω 1 { kb T hω (k BT hω) 1 + e β hω, (k B T hω) E { Nk B T, N(e β hω + 1/) hω, (k B T hω) (k B T hω) Z classical Z = 1 { ( )} p N dx dp exp β h N m + mω x = ( kb T hω ) N (3.4) Z k B T hω sinh(β hω/) β hω/ Problem 3.4 Problem 3.5

31 R/ 5R/ E = 1 f c i ξi ξ i A f Z = A dξ i e β f i=1 c iξi / (πk B T ) = A f i c i i=1 E = log Z β ( E = β log A i=1 (πk B T ) f i c i 1 c iξi = A f i=1 dξ ie β f i=1 c iξi / 1c iξi A f i=1 dξ ie β f = 1 i=1 c iξi / k BT ) = f β = k BT f (3.5) k B T/ 3.8 van Leeuwen q A ϕ(r) H = 1 m (p qa) + Qϕ(r) (3.6) Z = A dpdre βh p = p qa A = 0 van Leeuwen

32 3 8 L L = mṙ qϕ(r) + qṙ A(r) (3.7) d dt ( L ẋ d L dt ẋ L x = 0 (3.8) ( ϕ = q x + q ẋ A x x + ẏ A y L x ) = ddt (mẋ + qa x) = m d dt x + q m d dt x + q ϕ x + q ), x + ż A z x ( t A x + ẋ x A x + ẏ y A y + ż z A z [ ( t A Ax x + ẏ y A ) ( y Ax ż x z A )] z = 0 x ) E = gradϕ(r) A, B = rota (3.9) t m d r = q [E + v B] (3.30) dt p def = L ṙ p = mṙ + qa (3.31) H = p ṙ L (3.3) H = (mṙ + qa) ṙ L ( mṙ = mṙ + qṙ A = 1 m (p qa) + qϕ(r) ) qϕ(r) + qṙ A(r)

33 /N! V A N A T V B N B T A m A B m B (3.13) Z A = V N A A (πm Ak B T ) 3N A/ N A!h 3N A Z B = V N B B (πm Bk B T ) 3N B/ N B!h 3N B Z A+B = (V A + V B ) N A+N B (πm A k B T ) 3N A/ (πm B k B T ) 3N B/ N A!N B!h 3(N A+N B ) (3.33) F = k B T (log Z A+B log Z A log Z B ) ( = k B T N A log V A + V B + N B log V A + V B V A V B ) S = F T = k B ( N A log V A + V B V A + N B log V ) A + V B V B (3.34) Z A+B = (V A + V B ) N A+N B (πmk B T ) 3(N A+N B )/ (N A + N B )!h 3(N A+N B ) (3.35) [ ] F = k B T log (V A + V B ) (N A+N B ) log V N A NB A VB log (N A + N B )! N A! N B! = k B T [(N A + N B ) log(v A + V B ) N A log V A N B log V B (N A + N B ) log(n A + N B ) + N A log N A + N B log N B ] [ = k B T N A log V A + V B N A + N A log V A + V B N B V A N A + N B V B N A + N B F = 0, S = 0 ]

34 V 0 x i N V (r 1,, r N ) = i<j V ( r i r j ) (3.36) dr 1 dr N = V N def Q N = dr 1 dr N exp( β V ( r i r j )) i<j = dr 1 dr N (1 + f ij ) i<j f ij = (e βv ( r i r j ) 1) (3.37) f ij Q N = dr 1 dr N (1 + f ij + f ij f kl + ) i<j ijkl dr 1 dr N (1 + f ij ) i<j V N + V N(N 1) N dr 1 dr f 1 r 1 r = r r 1 [ Q N = V N 1 + N 1 ] drf r v v = V/N ( N 1 Q N V N exp v drf r ) (3.38) Z N Z N = V ( N N 1 exp N!λ 3N T v F = F 0 k B T N 1 v drf r ) (3.39) drf r (3.40)

35 3 31 F 0 (3.16) P = F/ V P = Nk BT k BT drf V v r = Nk ( BT 1 1 ) V v 4π drr f r 4π drr f r = 4π 3 (a)3 = 3π 3 a3 P = Nk BT V ( v ) 16πa 3 3 ) P (V N 16πa3 = Nk B T (3.41) 3 N 16πa3 3 4πa3 N 4πa h +0 e βh ρ def = x e βh x (3.4) x >= U ν > Trρ = x x e βh x = ν ν e βh ν = ν e βe ν = Z (3.43) ) ( h H i x, x ϕ ν (x ) = E ν ϕ ν (x ) (3.44) TrU AU = TrAUU = TrA

36 3 3 x e βh x = ν x ν e βeν ν x = ν e βeν ϕ ν (x )ϕ ν(x ) e βh ϕ ν (x ) = e βeν ϕ ν (x ) (3.45) x e βh x = e βh ν ϕ ν (x )ϕ ν(x ) ϕ ν (x )ϕ ν(x ) = δ(x x ) (3.46) ν x e βh x = e βhδ(x x ) (3.47) δ(x) = 1 π dkeikx N ( [ N ( ) x e βh x 1 = exp β m i x i + V (x 1,, x N )]) δ(x 1 x 1) δ(x N x N) = 1 (π) 3N 1 i f( 1 i i dk 1 x (eikx Φ(x)) = e ikx dk N e β[ ] e i N i ( k + 1 i k i (r i r i ) ) Φ(x) (3.48) x ( x )(eikx Φ(x)) = e ikx f k + 1 ) Φ(x) (3.49) i x ( h ) x e βh x 1 = dk (π) 3N 1 dk N ( [ e i N N ( ) i k i (r i r i ) 1 exp β hk i + V (x 1,, x N )]) m i x i hk = p h / x Z = Trρ = dx 1 dx N x e βh x i Z = 1 (π h) 3N dx 1 dx N (3.7) dp 1 dp N exp [ β ( N i p i m + V (x i,, x N ) )] (3.50)

37 S = k B log W k B log Ω W E Ω(E) W = D E = Ω(E + E) Ω(E) E D. S/ E = 1/T 3. T E E/ V = p µ E/ N = µ 1. ν P ν P ν e βϵν. Z Z = ν e βϵν P ν = e βϵν /Z 3. S = k B ν P ν log P ν 4. F = E T S = ν ϵ νp ν + k B T ν P ν log P ν F = k B T log Z E = log Z/ β 5. F/ T = S, F/ V = P, F/ N = µ 1 ( ϵ n = hω n + 1 )

38 3 34 N E = hω N i=1 ( n i + 1 ) 3.1. N : E = hω N i=1 ( ni + 1 ) W W W = M = E N hω hω n 1 =0 n N =0 δ n1 +n + +n N,M (3.51) δ m,m = 1 π dθe i(m m)θ (3.5) π W = n 1 =0 n N =0 π = 1 π = 1 π π π π π 1 π dθe i(m (n 1+n + +n N ))θ π π ( ) N dθ e inθ e imθ ( dθ Taylor ( ) N 1 = 1 + Nx + 1 x S = k B log W n=0 1 1 e iθ N(N + 1) x + +! ) N e imθ W = 1 N(N + 1) (N + M 1) π π M! N(N + 1) (N + m 1) x m + (3.53) m! = (N + M 1)! M!(N 1)! = k B [(N + M 1) log(n + M 1) M log M (N 1) log(n 1)] [ = k B (N 1) log N + M 1 + M log N + M 1 ] N 1 M [ ( k B N log 1 + M ) + MN ( N log 1 + N )] M (3.54)

39 3 35 M = Ē hω N S = k B N [ log M/N = n ( 1 + E ) ( E + N hω N hω 1 ) ( log 1 + S = k B N S/ E = 1/T [ log(1 + n) + n log ( )] n = k B N [(n + 1) log(1 + n) n log n] 1 T = S E = n S E n = k B hω log n + 1 n 1 E N hω 1 )] n + 1 n = e β hω, n = 1 e β hω 1 E = N hω e β hω 1 + N hω ( 1 = N hω e β hω ) (3.55) (3.56) C = E T hω e β hω ( x ) = N hω k B T (e β hω 1) = k 1 BN sinh (x/) (3.57) x = β hω N : Z = = = n 1,n,,n N e βe n 1 =0 e β hω(n 1+1/) ( e β hω/ 1 e β hω e β hω(n +1/) n =0 ) N = ( e β hω/ e β hω 1 ) N

40 3 36 F F = k B T log Z = Nk B T ( log e β hω/ log(e β hω 1) ) ( = N hω ) + k BT log(e β hω 1) F = N ) ( hω + k BT log(1 e β hω ) (3.58) E = β log Z = N [ ] β hω log(e β hω 1) β ] [ hω hωeβ hω = N e β hω 1 [ ] 1 = N hω + 1 e β hω 1 S = F T = β T F β [ N = 1 k B T β log(1 e β hω ) + 1 ] hωe β hω β 1 e β hω ] = Nk B [ log(1 e β hω 1 ) + β hω e β hω 1 n = 1/(e β hω 1) S = k B N [(n + 1) log(1 + n) n log n] Problem N : H = p 1 m + p m + p N m + mω q1 + mω q + + mω q N (3.59)

41 3 37 E Ω(E) Ω = 1 dp h N 1 dp N dq 1 dq N (3.60) x i def = H(p,q)<E mω q def i, y i = 1 m p i (3.61) r N r N π N /N! Ω = = = ( ) N mω 1 1 dx m h N 1 dx N dy 1 dy N x 1 + +y 1 ( ) <E N πe 1 hω N! ( ) N E 1 hω N! S = k B log 1 ( ) N E k B N N! hω [ log E ] hωn + 1 (3.6) 1 T = S E = Nk B E, E = Nk BT (4 ) Problem N : Z Z = 1 h N exp [ β dp 1 dp N dq 1 dq N ( p 1 m + p m + p N m + mω q1 + mω q + + mω q N )] Z = 1 ( ) N πm π = h N β βmω ( kb T hω F = k B T log Z = k B T N log(k B T/ hω) ) N

42 3 38 (3.58) [ hω F = N + k BT log N (1 1 + β hω (β hω) [ hω + k BT log β hω + k B T log(1 β hω/) Nk B T log k BT hω )] + ]

43 T T µ ν N ν E ν B P ν D B(N tot N ν, E tot E ν ) E D tot (N tot, E tot ) E [ ] 1 exp (S(N tot N ν, E tot E ν ) S(N tot, E tot )) k B S(N tot N ν, E tot E ν ) = S(N tot E tot ) de = T ds pdv + µdn S N ν S E ν N tot E tot ds = de + pdv µdn T S(N tot N ν, E tot E ν ) = S + µ T N ν E ν T P ν exp( β(e ν µn ν )) (4.1) N = P ν N ν, E = P ν E ν, 1 = P ν (4.) ν ν ν

44 4 40 S = k B P ν log P ν λ E ( P ν E ν E ) λ N ( P ν N ν N ) λ 0 ( ν ν ν ν S/ P ν = 0 P ν 1) (4.3) k B (log P ν + 1) λ E E ν λ N N ν λ 0 = 0 [ P ν exp 1 ] (λ E E ν + λ N N ν ) k B λ E = 1 T, λ N = µ T P ν e β(e ν µn ν ) (4.4) (4.5) 4. P ν = 1 Ξ e β(eν µnν), P ν = 1 ν Ξ def = ν e β(eν µnν) = N e βµn Z N (4.6) Z N N Z/ β ν β log Ξ = (E ν µn ν )e β(eν µnν) Ξ = ν (E ν µn ν )P ν = E + µ N E = T S P V + G = T S P V + µn P V T S = log Ξ (4.7) β

45 4 41 ν µ log Ξ = β N νe β(e ν µn ν ) Ξ = ν βn ν P ν = β N S = k B ν P ν log(e β(e ν µn ν ) /Ξ) P V = T S E + µ N N = k B T log Ξ (4.8) µ = k B T ν P ν log e β(eν µnν) Ξ E + µ N = k B T ν P ν log Ξ P V = k B T log Ξ (4.9) H( p) = p x + p y + p z m z = V dp h 3 x dp y dp z exp( βh( p)) h. λ T = πmk B T z = V (πmk BT ) 3/ h 3 z = V λ 3 T

46 N Ξ = Z N = zn N! e βµn Z N = N=0 N=0 βµn zn e N! x = e βµ z ( )] Answer: Ξ = exp [e βµ 4. N = k B T µ ( Answer: N = e βµ V λ 3 T V λ 3 T log Ξ N ), (5.69) 5. pv = k B T log Ξ = N k B T

47 N N N 1 H ν >= ϵ ν ν > (5.1) ϵ ϵ < ϵ ν < ϵ + ϵ ρ(ϵ) ϵ ρ(ϵ) ϵ ν < ϵ N(ϵ) 1 Θ(x) 1, x > 0 Θ(x) = 1/, x = 0 0, x < 0 (5.) N(ϵ) = ν Θ(ϵ ϵ ν ) (5.3) 1 N Ω

48 5 44 ρ(ϵ) = dn(ϵ) dϵ δ(x) = dθ(x) dx = ν (5.4) δ(ϵ ϵ ν ) (5.5) N(ϵ) ρ(ϵ) E p L 1 N(E) = 1 h p m < E (5.6) me < p < me (5.7) me me ρ(e) = dpdq = ml π h mel π h (5.8) 1 E (5.9) h m x ψ ν = ϵ ν ψ ν (5.10) ψ ν (x + L) = ψ ν (x) ψ ν = 1 L e ikx, k = πn L (5.11) n ( ) ϵ n = h π n (5.1) m L ϵ n < E n n < me L π h (5.13) n n me L π h (5.8)

49 E p p x + p y m < E (5.14) p 0 = me (5.15) S N(E) = 1 dpdq = Sp 0 h 4π h = SmE π h (5.16) p x+p y<p 0 1 ρ(e) = Sm π h (5.17) E Si-MOS GaAs- AlGaAs p p x + p y + p z m < E (5.18) p 0 = me (5.19) V N(E) = 1 dpdq = V p3 0 h 3 6π h 3 = V me 6π h 1 p x+p y+p z<p 0 3 (5.0) ρ(e) = V m 3 E (5.1) 4π h Problem E 1/, E 0, E 1/ d E (d )/ Problem Z = ν e βϵ ν = 4 (3.13) 0 deρ(e)e βe (5.)

50 He (Pauli) 5.3 N H N = N h i, i=1 h i = h m r i + V (r i ) (5.3) h i i ν > ϵ ν E N ν > n ν E = ϵ ν n ν, N = n ν (5.4) ν ν {n ν } ( ) P ({n ν }) P ({n ν }) = 1 Ξ e β(e({nν}) µn) = 1 Ξ e β ν (ϵν µ)nν (5.5) {n ν } e β ν(ϵν µ)nν = ν ( n ν e β ν (ϵν µ)nν ) (5.6) n ν n ν = 0, 1 n ν = 0, 1,, fm

51 n ν n ν = {nν } P ({n ν })n ν = = {n ν } n νe β ν (ϵ ν µ)n ν {n ν } e β ν (ϵ ν µ)n ν n ν=0,1 n νe β ν (ϵ ν µ)n ν n ν e β ν (ϵ ν µ)n ν = 0 e0 + 1 e β(ϵν µ) 1 + e β(ϵ ν µ) f F (ϵ ν ) def = n ν = 1 e β(ϵ ν µ) + 1 (5.7) f F (ϵ ν ) ϵ ν T = 0 f F (ϵ) = Θ(µ ϵ) ϵ F k B T F = ϵ F p F /m = ϵ F k F = p F / h N 1/ ±1/ N = V h 3 dp x dp y dp z = V 4πp 3 F p <p F h 3 3 = V 3π k3 F (5.8)

52 5 48 n = N/V k F = (3π n) 1/3 (5.9) v F = p F m = h(3π n) 1/3 m p F = h(3π n) 1/3 (5.30) ϵ F = h m (3π n) /3 (5.31) Problem 5.3 n = m 3 1. Fermi Fermi ( m 1, m). Fermi (7.1 ev) 3. Fermi (8. ) Problem 5.4 N k F (5.1) N = ϵf 0 (5.3) ρ(ϵ)dϵ (5.33) 5.5 ( III) ev 1eV = K k B (5.34) E N = dϵρ(ϵ)f F (ϵ) (5.35) E = dϵρ(ϵ)f F (ϵ)ϵ (5.36)

53 [ ( )] 5.1: 1/ cosh β(ϵ µ) ev 5eV, 500K ϵ F µ = ϵ F + AT + BT + 1/(e C/T + 1) (Sommerfeld) dϵg(ϵ)f F (ϵ; µ, T ) = µ dϵg(ϵ) + π 6 (k BT ) g (µ) + O(T 4 ) (5.37) ( dϵg(ϵ) f ) F = G(µ) + π ϵ 6 (k BT ) G (µ) + O(T 4 ) (5.38) G(x) = x dx g(x )G()f F () = G( )f F ( ) = 0 g g(x) = G(x) = 0, x < 0 f F (x) x g f F ϵ f F µ f F ϵ = βeβ(ϵ µ) (e β(ϵ µ) + 1) = β 1 [ ( cosh β(ϵ µ) )] (5.39) ϵ µ 0 0

54 5 50 G(ϵ) ϵ µ G µ ( dϵg(ϵ) f ) ( F = dϵ f ) { } F G(µ) + G (µ)(ϵ µ) + G (µ) (ϵ µ) + ϵ ϵ (5.40) ( dϵ f ) F (ϵ µ) n = (k B T ) n e x dx ϵ (e x + 1) xn = (k B T ) n I n (5.41) I 0 = e x dx (e x + 1) = [ ] 1 = 1 (5.4) e x + 1 I 1, I 3 0 I = π 3 ( dϵg(ϵ) f ) F = G(µ) + G (µ) π ϵ 3 (k BT ) + O(T 4 ) ( ) I J(k) = e ikx dx (e x + 1)(e x + 1) = (ik) m I m (5.43) m! I m = 1 d m J(k) i m dk m (5.44) k=0 I m J(k) J(k) = m=0 πk sinh πk 1 π k 6 I = π /3 ζ(x) = n=1 (5.45) 1 n x (5.46) x =, 4, J(k) Appendix

55 µ(t ) µ(t ) 1 N = dϵρ(ϵ) e β(ϵ µ) + 1 [ µ ] N dϵρ(ϵ) + π 6 (k BT ) ρ (µ) 0 [ ϵf 0 dϵρ(ϵ) + (µ ϵ F )ρ(ϵ F ) + π 6 (k BT ) ρ (ϵ F ) N = ϵ F 0 dϵρ(ϵ) ], (µ ϵ F )ρ(ϵ F ) = π 6 ρ (ϵ F )(k B T ) (5.47) µ = ϵ F π 6 D D (k BT ) (5.48) D D = d log ρ(ϵ F) dϵ F = 1 ϵ F (5.49) µ = ϵ F [ ( 1 π kb T 1 ϵ F ) ] (5.50) Problem 5.5 (5.49) (5.35) E = dϵρ(ϵ) e β(ϵ µ) + 1 ϵ [ µ ] dϵρ(ϵ)ϵ + π 0 6 (k BT ) (ϵρ(ϵ)) µ [ ϵf ] dϵρ(ϵ)ϵ + ϵ F ρ(ϵ F )(µ ϵ F ) + π 6 (k BT ) (ρ(ϵ F ) + ϵ F ρ (ϵ F )) 0

56 5 5 ϵf dϵρ(ϵ)ϵ = E(T = 0) (5.51) 0 (5.47) π ϵ F ρ(ϵ F )(µ ϵ F ) = ϵ F 6 ρ (ϵ F )(k B T ) E(T ) = E(T = 0) + π 3 ρ(ϵ F)(k B T ) (5.5) C = ( ) E T V = π 3 k Bρ(ϵ F )T = γt (5.53) γ = π 3 k B ρ(ϵ F) E(T = 0) ρ(ϵ) = A ϵ N = ϵf 0 dϵρ(ϵ) = A 3 ϵ F 3/ N = 4 3 ϵ Fρ(ϵ F ) (5.54) ϵf ϵf E(T = 0) = dϵρ(ϵ)ϵ = A dϵϵ 3/ = A ϵ F 5/ E(T = 0) = 3 5 Nϵ F (5.55) 3ϵ F /5 T ϵ F ± k B T k B T ρ(ϵ F ) k B T E = E(T ) E(0) B(k B T ) ρ(ϵ F ) B T 3Nk B / (5.54) C fermi = π k B T (5.56) C classical 3 ϵ F k B /ϵ F k B T/ϵ F 10

57 F = G pv G = Nµ, pv = k B T log Ξ F = G pv = Nµ k B T log Ξ = Nµ k B T log ν (1 + e β(ϵ ν µ) ) = Nµ k B T ν log(1 + e β(ϵν µ) ) = Nµ k B T 3 = = = β dϵρ(ϵ) log(1 + e β(ϵ µ) ) dϵρ(ϵ) log(1 + e β(ϵ µ) ) dϵn (ϵ) log(1 + e β(ϵ µ) ) ( dϵn(ϵ) d dϵ dϵf F (ϵ)n(ϵ) ) log(1 + e β(ϵ µ) ) F = Nµ dϵf F (ϵ)n(ϵ) (5.57) µ ϵf 0 dϵf F (ϵ)n(ϵ) dϵn(ϵ) + π 3 (k BT ) N (µ) dϵn(ϵ) + µ ϵ F dϵn(ϵ) + π 3 (k BT ) N (µ) N(ϵ) = Bϵ 3/ N(ϵ F ) = N 1 ϵf dϵn(ϵ) = B 0 5 ϵ F 5/ = 5 Nϵ F 3 [N log(1 + e β(ϵ µ) )] 0 log 0

58 5 54 (µ ϵ F )N(ϵ F ) = N(µ ϵ F ) F = 3 5 Nϵ F π 3 (k BT ) ρ(ϵ F ) (5.58) S = F T = π 3 k Bρ(ϵ F )T (5.59) log T 3 C = T ds/dt = S pv = 5 Nϵ F + µ (5.50) µ ϵ F ϵ F dϵn(ϵ) + π 3 (k BT ) ρ(ϵ F ) dϵn(ϵ) N(µ ϵ F ) = N π (k B T ) 1 ϵ F (5.54) π 3 (k BT ) ρ(ϵ F ) = π 4ϵ F (k B T ) N [ ( ) ] pv = Nϵ F 5 + π kb T 6 ϵ F (5.60) pv = Nk B T Nϵ F B z E ± = p m µ HB (5.61)

59 5 55 µ H µ µ H ±µ H B N = = = = ϵf 0 µ(b) ρ(ϵ)dϵ µ H B µ(b)+µh B 0 µ(b) 0 ρ(ϵ + µ H B)dϵ + ρ(ϵ)dϵ + µ(b) µ H B µ(b) µh B 0 ρ(ϵ)dϵ + O(B ) ρ(ϵ µ H B)dϵ ρ(ϵ)dϵ M = µ Hρ(ϵ F )B (5.54) χ µ(b) = ϵ F + O(B ) (5.6) µ(b) µ(b) M = µ H ρ(ϵ + µ H B)dϵ µ H ρ(ϵ µ H B)dϵ µ H B µ H (µ H B)ρ(ϵ F ) M classical µ H B 3 µ H B M = Nµ H (5.63) ϵ F χ def = M B (5.64) 3 µ H χ = Nµ H (5.65) ϵ F e βµ HB e βµ HB M classical = N(µ H P + µ H P ) = Nµ H e βµ HB + e N µ H B βµ HB k B T (5.66) M fermi = 3 k B T (5.67) M classical ϵ F

60 βµ 1 µ f F e β(ϵ µ) (5.68) 1 ρ(ϵ) = AV ϵ N = AV n = N/V 0 dϵ ϵe β(ϵ µ) = AV e βµ (k B T ) 3/ dx xe x = πav e βµ (k B T ) 3/ 0 n = πae βµ (k B T ) 3/ (5.69) log n = log( πa) + βµ + 3 log(k BT ) µ = k B T [ n log 3 ] πa log(k BT ) (5.70) Problem 5.6 (5.70) (8.17) n ν 1 1 n ν n 1ν 1 n ν = T (5.71) A N = AV ϵf 0 dϵ ϵ = 4 3 AV ϵ F 3/ A [ 4 µ = k B T log 3 π 3 log k ] BT = k B T log ϵ F [ 4 3 π ( TF T ) 3/ ] (5.7) µ 3 T log T (5.73)

61 n ν = {nν } P ({n ν })n ν = = {n ν } n νe β ν (ϵ ν µ)n ν {n ν } e β ν (ϵ ν µ)n ν n ν =0 n νe β(ϵν µ)nν n ν=0 e β(ϵν µ)nν = 0 e0 + 1 e β(ϵν µ) + e β(ϵν µ) e β(ϵ ν µ) + e β(ϵ ν µ) + n ν = 1 β = 1 β ϵ ν log n ν =0 e β(ϵ ν µ)n ν 1 log ϵ ν 1 e β(ϵν µ) f B (ϵ ν ) = n(ϵ ν ) = 1 e β(ϵ ν µ) 1 (5.74) 1. f B < 0 µ minϵ ν µ 0. N N = ν f B(ϵ ν ) µ A = m 3 4π h D = A ϵ 3 A N = AV 0 ϵ dϵ e β(ϵν µ) 1 (5.75) n = N V x = A(k B T ) 3/ dx e x βµ 1 = A(k B T ) 3/ I(βµ) 0 I(y) = 0 x dx e x y 1 (5.76)

62 5 58 ξ def = e βµ I(βµ) = = = = = xe x ξ dx 0 1 e x ξ dx xξ n e nx n=1 0 ξ n dx xe nx n=1 0 π ξ n n=1 π n=1 1 n 3/ ξ n 1 n 3/ def = ϕ(z, ξ) (Appel) ξ = 1 n=1 ξn 1 n z (Riemann) ζ(z) def µ 0 I(βµ) I(0) = = π ζ(3/) = n=1 1 n z Appendix π.61 (5.77) π n = A(k B T ) 3/ I(βµ) A(k B T ) 3/ ζ(3/) (5.78) T T c k B T c = ( ) /3 h n (5.79) πm ζ(3/) T < T c ϵ = 0 ϵ = 0 N 0 ϵ N 0 = N AV dϵ 0 e β(ϵ ν µ) 1 π = AV ζ(3/)((k BT c ) 3/ (k B T ) 3/ ) T = T c N 0 0 [ ( ) ] 3/ T N 0 = N 1 (5.80) T c

63 5 59 Problem He T c T F K K 4 He T c 8.5 (5.70) [ µ = k B T log n 3 ] πa log(k BT ) (5.81) 1 π n = A(k B T c ) 3/ ζ(3/) (5.8) µ = k B T log [ ζ(3/) ( ) ] 3/ Tc T (5.83) µ k B T log T (5.84) f( ω = πf) ϵ = hω (5.85) E({n ν }) = ν ϵ ν n ν (5.86) Z = {n ν } e β ν ϵνnν = = ( ) ( ) e βϵ 1n 1 e βϵ n n 1 =0 n =0 1 1 e 1 βϵ 1 1 e βϵ

64 5 60 n ν n ν = {n ν } n νe β ν ϵ ν n ν = 1 log Z (5.87) {n ν } e β ν ϵ ν n ν β ϵ ν n ν = 1 e βϵν 1 (5.88) (Planck) k N(k) = 4πk3 3 ϵ = hck V (π) 3 (5.89) N(ϵ) = V ( ϵ ) 3 (5.90) 3π hc ρ(ϵ) = d dϵ N(ϵ) = V π ϵ ( hc) 3 (5.91) E = ν n ν ϵ ν = = = 0 dϵρ(ϵ)f B (ϵ)ϵ V dϵϵ 3 1 π ( hc) 3 0 e βϵ 1 V π ( hc) (k BT ) 4 dxx e x dxx 3 1 e x 1 0 dxx 3 1 e x 1 = (Appendix ) 0 dxx 3 e x (1 + e x + e x + ) = 6ζ(4) = π4 15 E = E V = V π 15( hc) 3 (k BT ) 4 (5.9) π 15( hc) 3 (k BT ) 4 (5.93)

65 5 61 u u = E π/ V c cos θ sin θdθ 0 π sin θdθ = c 4 0 E V (5.94) u = π k 4 B 60 h 3 c T 4 (5.95) (Stefan Boltzmann) π k 4 B 60 h 3 c = J/m sec K 4 (5.96) T 4 ϵ = hck ϵ = hvk v 10 3 m/s E = V π 10( hv) 3 (k BT ) 4 (5.97) 10 C V = E T T 3 (5.98) (Debye) γt K T 3 100K 3R 3 3R (Delong-Putit) Planck Planck ϵ 1, ϵ (> ϵ 1 ) hω = ϵ ϵ 1 n ϵ i (i = 1, ) N i dn dt = AnN 1 + A(n + 1)N (5.99)

66 5 6 0 N /N 1 = exp( hω/k B T ) 1 n = exp( hω/k B T ) 1 (5.99) N > N 1 n n + 1 n n exp(a(n N 1 )t)

67 63 6 (1970 ) µ S m = µs H = i B m i = Bµ i S z i (6.1) Z = e βµbsz i = {Si z} N S e βµbsz i=1 Si z= S S e βµbsz i = e βµbs 1 (eβµb ) S+1 1 e βµbs Si z= S = e βµbs e (S+1)βµBS 1 e βµbs sinh βµb(s + 1/) = sinh βµb/ i (6.) ( ) N sinh βµb(s + 1/) Z = (6.3) sinh βµb/ F = k B T N log sinh βµb(s + 1/) sinh βµb/ (6.4)

68 6 64 Problem 6.1 ( z ) M {S zi } i µsz i e βh M = i m i = µ i S z i = {S zi } i e βh (6.5) M = k B T N [ βµ = [ S + 1 NSµ S M = k B T log Z B ( S + 1 ) { ( coth βµb S + 1 )} ] coth S + 1 S x 1 S coth x S βµ coth ( )] βµb (6.6) x = βsµb (Brillouin) B S (x) def = S + 1 S + 1 coth S S x 1 S coth x (6.7) S M = NSµB S (x) (6.8) Sµ S lim S B S (x) coth x 1 x (6.9) (Langevin) Problem 6. S = 1/ B s (x) = coth x coth x = 1 + tanh x tanh x 1 tanh x = tanh x (6.10) M = Nµ tanh βµb coth z 1 z + z 3 (6.11) (6.1)

69 B s (x) = S + 1 ( S 1 S S + 1 x + 1 ) S S x 1 ( S S x + 1 ) x 3 S = (S + 1) 1 x = S + 1 1S 3S βsµb χ M = NSµ S µb k B T = 1 k B T χ def = ( ) M B T χ = Nµ S(S + 1) 1 3k B T S(S + 1) Nµ B (6.13) 3 (6.14) (6.15) (Curie) lim z coth z = 1 ( S + 1 M = NSµ 1 ) = NSµ (6.16) S S 6. M 1.. m i = µs i 1K 1000K 1 coth z = 1/ tanh x 1+z / z+z 3 /6 = 1 z (1 + z /3)

70 6 66 (Heisenberg) Ψ = χ(σ 1, σ )ϕ(r 1, r ) (6.17) χ ϕ(r 1, r ) H = J ij S i S j (6.18) ij (Ising) H = J ij S z i S z j (6.19) 6.3 H = J ij S z i S z j (6.0) ij (nearest neighbor) i h i = JSi z Sj z (6.1) j:n.n.

71 6 67 j:n.n. of i Sz j i Sj z Sz j def = m h MFA i = zjmsi z (6.) H = J ij [(S z i m)(s z j m) m + m(s z i + S z j )] = J ij (S z i m)(s z j m) + JzNm Jm z i S i H MFA = Jzm i S i + JzNm (6.3) Jzm = Bµ 9.1 s = 1/ B s=1/ (x) = tanh x (6.4) M = B s=1/ (SβµB) Nµ = Nµ tanh βzjm M M = Nµ Si z = Nµm (6.5) m m = 1 tanh βzjm (6.6) βzj < 1 m = 0 βzj > 1 m = 0, m = ±m 0 zj k B T c = 1 (6.7) T c T > T c 0 T < T c m = m 0

72 6 68 m 0 T c m 0 = 1 tanh βzjm 0 = 1 ( βzjm ) 3 (βzjm 0) 1 = 1 ( βzj 1 1 ) 3 (βzjm 0) = T c (1 13 ) T (βzjm 0) (6.8) 1 T T c = 1 3 (βzjm 0) = 1 3 m 0 = 3 T T c ( Tc T ) m 0 Tc T T c (6.9) m T < T c m = 0, ±m 0 m m = 0 F = k B T N[log( cosh βzjm) βzjm ] (6.30) F para = k B T N log (6.31) [ F ferro k B T N log + log (1 + (βzjm 0) + (βzjm ) ] 0) 4 βzjm 0 4 log(1 + ax + bx ) = ax + ) (b a x + O(x 3 ) (6.3)

73 6 69 = log (1 + (βzjm 0) + (βzjm ) 0) 4 βzjm 0 4 ( 1 ) ( (βzjm0 ) 1 + βzj 4 1 ) (βzjm 0 ) 4 8 ) (1 TTc (βzjm0 ) 1 1 (βzjm 0) 4 (6.9) F = k B T N βzjm 0 = 3 T c T T c def = 3 t (6.33) [ ( 3 log + t 3 )] 4 t = k B T N [log + 34 t ] (6.34) m = 0 m = m 0 3Nk B T t /4 T < T c T = T c C = T S T = T F T { kb T N log, T > T c F = k B T N [log + 3(Tc T ) 4T c ], T T c (6.35) { 0, T > Tc C = 3Nk B (T +(T T c ))T (6.36), T T Tc c C = 3Nk B (6.37) z, J n n

74 : : 3 : T c x x T T c T c y (6.38) y T c (universality) m 0 ( Tc T m 0 T c ) β, β = 1 (6.39) 1/ ( ) α Tc T C, α = 0 (6.40) T c 0 χ = dm/db H MFA = Jzm i S i + JzNm h i S i = (Jzm + h) i S i + JzNm (6.41) h 3 h, m( h) m = 1 tanh β(zjm + h) (6.4) m 1 β(zjm + h) β, 1/k B T 3 h = gµ B B g g- µ B

75 6 71 ( m 1 T ) c = hβ T m = 1 h k B (T T c ) χ γ χ m h 1 T T c (6.43) χ (T T c ) γ, γ = 1 (6.44) m (6.4) T = T c β c zj/ = 1 m m + β ch 4 ( m + β ) 3 ch (6.45) 3 3β c h = ( m + β ) 3 ch (6.46) m h h 3 h m h δ (6.46) m h 1/δ, δ > 1 (6.47) m h 1/3, δ = 3 (6.48)

76 7 7 N N N 7.1 C V = ( ) E T V = T ( log Z ) β Z = ν exp( βe ν) (4 ) C V = = = = 1 log Z k B T β 1 k B T β 1 Z k B T 1 k B T ( T = 1 k B T β ν exp( βe ν)e ν Z ν exp( βe ν)e ν ( ν exp( βe ν)e ν ) [ ν exp( βe ν)e ν Z Z ) ( ν exp( βe ν)e ν Z ) ] (7.1) ν P ν P ν = exp( βe ν )/Z C V = 1 k B T [ ν P ν E ν ( ν P ν E ν ) ] = 1 k B T ( E E ) (7.) E E =< (E E ) >= E C V = 1 k B T E (7.3) Problem

77 df = df (B = 0) M db (7.4) 1 M = ( ) F B T (9.1 ) = k B T B log Z = k BT Z Z (7.5) χ = M B = k BT ZZ Z Z (7.6) H 0 H(B) = H 0 µb i S i = H 0 MB (7.7) ( z z ) Z = {S i } e β(h 0 µb i S i) (7.8) Z Z = (βµ i S i)e β(h 0 µb i S i) Z {S i } Z Z = (βµ i S i) e β(h 0 µb i S i) Z {S i } = β M (7.9) = β M (7.10) χ = β( M M ) = 1 k B T M (7.11) 1 M M = µ i S i M

78 N 3 3N 3N 6N N N A (= mol 1 ) T P ρ V 6N 8. (thermodynamics): 1) T P ρ V S E F ) 1 de = Q W (8.1) 3)

79 8 75 ds > Q T (8.) Q T ds (8.3) 4) 8.3 E F =E T S G =F + P V H =E + P V S V T P µ N ρ E, F, G, H de = T ds P dv (8.4) df = SdT P dv (8.5) dg = SdT + V dp (8.6)

80 8 76 E, F, G, H E S V F V T G T P H S P 8. dh = ds + V dp (8.7) de + P dv T ds (8.8) 1. Q = 0 0 ds ds = 0. df + SdT = d(e T S) + SdT de Q = P dv dt = 0 df P dv 3. F 4. de = d(g+st P V ) = Q P dv T ds P dv dg+sdt V dp 0 G S F G dn µdn dg = V dp SdT + µ 1 dn 1 + µ dn (8.9) dn 1 + dn = 0 G, P, T µ 1 = µ (8.10)

81 ν 1 A 1 + ν A + + ν m A m ν 1B 1 + ν B + + ν nb n (8.11) H + O H O (8.1) ν 1 =, ν = 1, ν 1 = A 1 = H, A = O, B 1 = H O ν 1 A 1 + ν A + + ν m+1 A m+1 + ν m+ A m+ + = 0 (8.13) ν m+i = ν i, A m+i = B i dg = m+n i=1 N i ν i µ i dn i = 0 (8.14) dn i = ν i (8.15) dg = 0 = m+n i=1 m+n i=1 µ i ν i (8.16) µ i ν i = 0 (8.17)

82 de = ( E T P V = f(t ) (8.18) ( ) E V T = 0 (8.19) de = T ds P dv ds = de T + P dv (8.0) T ) dt V ds = ( ) E T V dt T + f(t ) T dv V (8.1) f(t ) T = const def = R (8.) R (= J/K mol) (Boltzmann) k B k B = R N A = J/K (8.3) R 8.5 G dg = SdT + V dp + µdn (8.9 ) λ G(T, P, λn) = λg(t, P, N) (8.4)

83 8 79 λ G(λN) λ = G(λN) λ=1 (λn) Problem 8.1 G = µn G = µn λg λ = G (λn) λ = µn G = µn (8.5) E(λS, λv, λn) = λe(s, V, N), F (T, λv, λn) = λf (T, V, N) dg = Ndµ + µdn = SdT + V dp + µdn Ndµ = SdT + V dp (8.6) Maxwell ( ) f df(x, y) = dx + x A, B ( A ) y x y = f(x, y) y x ( ) f dy = A(x, y)dx + B(x, y)dy (8.7) y x = f(x, y) x y = ( ) B x y de = T ds P dv ( ) ( ) T P = V S S V (8.8) (8.9) Maxwell C C V C V = Q T = T S T = T F T = ( ) E T V (8.30) C P ( ) ( ) E V C P = + P (8.31) T P T P C P = C V + R C V C P

84 E W S = k B log W E 1 T = S E Stirling N! = πnn N e N N- Ω N Ω N = π N Γ( N + 1) 1 W = dp (π h) f 1 dp dp f dq 1 dq dq f N! (f 3 f = 3N ) E E + de

85 9 81 E 1, E,..., E s,... E s P (E s ) P (E s ) exp ( βe s ), (β = 1 k B T ) E s Maxwell f(v x, v y, vz) exp ( β m v ) S = k B P s ln P s Z Z s Z = s exp ( βe s ) 1 Z = dp (π h) f 1 dp dp f dq 1 dq dq f exp ( βe(p 1,, q 1 )) N! Z F F = k B T log Z E ( E 1, E,, E s, ) E = log Z β C V C V = T S T = T ( F ) V = k B T (T log Z) V T T T

86 9 8 E i, N i i µ P (i) exp ( β(e i µn i )) Ξ Ξ Ξ = i exp ( β(e i µn i )) N Z(N) Ξ = N Z(N) exp (βµn) P V = k B T log Ξ < N > < N >= k B T log Ξ µ E E = µ < N > log Ξ µ N(E) E ϵ ν N(E) = E de δ(e ϵ ν ) N(E) = dx (p x + )/m E dp x (π h) d (d ) D(E) D(E) = dn(e) de

87 9 83 ν < n ν >= 1 exp (β(ϵ ν µ)) + 1 = f F (ϵ ν ; β, µ) (β ) θ(µ ϵ) µ ϵ F ϵ F = µ(t = 0) ϵ F ( µ) ev 1eV 1 ( K) ν < n ν >= 1 exp (β(ϵ ν µ)) 1 = f B(ϵ ν ; β, µ) 0 µ = 0 1 < n ν >= exp (βϵ ν ) 1 = f P (ϵ ν ; β) µ 0 < n ν >= Ae βϵ ν < N > < E > < N >= ν < n ν >= ded(e) < n ν > < E >= ν ϵ ν < n ν >= ded(e)e < n ν > < N > µ < E > T C V f F (E) deg(e)f F (E; β, µ) = µ deg(e) + π 6 (k BT ) g (µ) + O((k B T/µ) 4 )

88 9 84 ( deg(e) f F (E) E ) = G(µ) + π 6 (k BT ) G (µ) + O((k B T/µ) 4 ) < N > g(e) = D(E) < E > g(e) = ED(E) ( ( µ = ϵ F 1 π kb T ) ) 1 ϵ F < E >= 3 5 Nϵ F + π 6 D(ϵ F )(k B T ) < N > µ G = µ < N > pv = k B T log Ξ F = G pv ( ) ( ) n n - M T c M (T c T ) β χ χ (T c T ) γ β, γ < E > < M > C = 1 k B T < E > χ = 1 k B T < M > C χ

89 85 10 Appendix: ζ ζ(s) = s s s + = n=1 1 n s (10.1) n z(s) = s 3 1 s 4 + = ( 1) n 1 s n=1 n s (10.) ζ z z(s) = = 1 (s 1)! 1 (s 1)! ζ(s) = z(s) (10.3) 1 1/s 1 dxx s 1 e x (1 e x + e x e 3x + ) dxx s 1 1 e x + 1 (10.4) z(s) = 0 ( ) x s 1 dx s! e x + 1 = 0 dx xs e x (10.5) s! (e x + 1) s = m(m 0 ) (ik) m (ik) m z(m) = m=0 = 1 m=0 0 m=0 = 1 Re (ikx) m (m)! (ikx) m (m)! e x (e x + 1) dx e x (e x + 1) dx e ikx e x dx (10.6) (e x + 1) J(k) = e ikx e x dx (10.7) (e x + 1)

90 10 Appendix: ζ 86 [, + ] [ + πi, + + πi] J(k)(1 e πk e ikx e x ) = πires (e x + 1) (10.8) x=iπ (x iπ) x x = iπ ike πk J(k) = πk sinh(πk) = 1 π 6 k + 7π4 360 k4 31π k6 + (10.9) (ik) m z(m) = 1 πk sinh(πk) = 1 m=1 ) (1 π 6 + 7π π (10.10) z() = π /1, z(4) = 7π 4 /70, z(6) = 31π6 (10.3) 3040 ζ() = z() = π 6, (10.11) ζ(4) = 1 z(4) 1 1/ = z(4) = π4 90, (10.1) ζ(6) = z(6) 1 3 = z(6) 1 1/5 31 = π6 945 (10.13)

91 H = p m + mω x 1. 1 z ( n + 1 ) hω n 0 n 6. 1 z Z E F C V Z Z = exp( βe ν ) ν (β, ν, E ν 1/k B T, ) E = log Z β 3 Na n =.7 10 cm 3

92

93 Z E Z Z = ν exp( βe ν ) E = log Z β (β, ν, E ν 1/k B T, ) z = 1 h H(x, p) = p m + mω x dx dp exp( βh(x, p)) E n E n = ( n + 1 ) hω n 0 n z = n= z 7. 1 e βen

94 H( p) = p x + p y + p z m z = V dp h 3 x dp y dp z exp( βh( p)) h. λ T = πmk B T z = V (πmk BT ) 3/ h 3 z = V λ 3 T 3. N Ξ = Z N = zn N! e βµn Z N = N=0 N=0 βµn zn e N! x = e βµ z 4. N = k B T log Ξ N µ 5. pv = k B T log Ξ = N k B T

95 11 91, 3 dxe αx = π α ν P ν Z P ν = 1 Z exp( βe ν) Z = ν exp( βe ν ) E F E = log Z β, F = k B T log Z (β, ν, E ν 1/k B T, ) 1. S = F T S = k B P ν log P ν. C = E T E E ν z = 1 h H(x, p) = p m + mω x dx dp exp( βh(x, p))

96 E n E n = ( n + 1 ) hω n 0 n z = n= z e βen 3 N! N! = 0 dxx N e x x N e x = e f(x) f(x) = df(x) dx x 0 = f(x) x 0 = 0 x 0 f(x) 1 (x x 0) N N N! N log N N πne log N N log N!

97 Fermi ev. 3. C V = 1 k B T E 1. E = E E. ±ϵ P (ϵ) = E, E 3. e βϵ e, P ( ϵ) = e βϵ + e βϵ βϵ e βϵ + e βϵ 3 1. Fermi Bose Boltzmann. Bose 4 Planck f(ϵ) = 1 e βϵ 1 1. V D(ϵ) = V ϵ π ( hc) 3. V 3.

98 11 94 SEA Z Z = ν exp( βe ν ) β, ν, E ν 1/k B T, E = log Z β n = m /10 1. Fermi Fermi. Fermi 3. Fermi 4. Sommerfeld 5. Pauli 3 1. Fermi Bose Boltzmann, Planck. Fermi Fermi k B T 3. Bose 4. Planck E/V E V = k (k BT ) x ( hc) y k x, y 5.

99 11 95 SEA Fermi 1eV 1. Fermi kg Pauli 1. Fermi Fermi k B T. Bose 3. Planck E/V E V = k (k BT ) x ( hc) y k x, y E N(E) p = (p x, p y, p z ) p x + p y + p z m < E p p 0 = V N(E) = 1 dpdq = p 3 h 3 0 = p x +p y +p z <p 0 E 1 D(E) D(E) =

100 11 96 SEA n = m /10 1. Fermi Fermi. Fermi 3. Fermi 4. Sommerfeld 5. Pauli 1. Fermi Bose Boltzmann, Planck. Fermi Fermi k B T 3. Bose 4. Planck E/V E V = k (k BT ) x ( hc) y k x, y E N(E) p = (p x, p y ) p x + p y m < E p p 0 = S N(E) = 1 dpdq = p h 0 = p x +p y <p 0 E 1 D(E) D(E) =

101 11 97 dxe αx = π α , 4 1 Z E Z Z = ν exp( βe ν ) E = log Z β (β, ν, E ν 1/k B T, ) z = 1 h H(x, p) = p m + mω x dx dp exp( βh(x, p)) E n E n = ( n + 1 ) hω n 0 n z = n=0 e βen

102 z ±ϵ 1. +ϵ P +, ϵ P N! N! = 0 dxx N e x x N e x = e f(x) f(x) = df(x) dx x 0 = f(x) x 0 = 0 x 0 f(x) 1 (x x 0) N N N! N log N N πne log N N log N!

103 11 99 SEA Na n =.7 10 cm 3 = m 3 = 10 1/10 1. Fermi Fermi. Fermi 3. Fermi 4. Fermi Fermi k B T 5. Sommerfeld 1. Bose Boltzmann, Planck. Bose 3. Planck E/V E V = k (k BT ) x ( hc) y k x, y E N(E) p = (p x, p y, p z ) p x + p y + p z m p p 0 = V N(E) = 1 dpdq = p 3 h 3 0 = p x+p y+p z<p 0 < E E 1 D(E) D(E) =

104 Z E F Z Z = ν exp( βe ν ) (β, ν, E ν 1/k B T, ) 1. ν P ν exp( βe ν )/Z. E = ν E νp ν E = log Z β 3. F = E T S S = k B ν P ν log P ν F k B, T, Z z = 1 h H(x, p) = p m + mω x dxe αx = π α dx dp exp( βh(x, p))

105 E n E n = ( n + 1 ) hω n 0 n z = n= z e βen 3 ±ϵ 1. +ϵ P +, ϵ P

106 11 10 SEA E N(E) p = (p x, p y ) p x + p y m p p 0 = S N(E) = 1 dpdq = p h 0 = p x+p y<p 0 < E E 1 D(E) D(E) = Si-MOS FET cm 10 1/10 1. Fermi Fermi. Fermi Fermi k B T 3. Sommerfeld 3 1. Bose Boltzmann, Planck. Bose 4 Planck E/V k N(k) = ( 4πk 3 V ϵ = hck N(ϵ) = V ϵ ) 3 3 (π) 3 3π hc 1. D(E). E = ν n νϵ ν = 1 dϵd(ϵ) ϵ 0 exp(βϵ) 1 π 4 E/V 15 dxx 3 1 = 0 e x 1

107 Z E F Z = ν exp( βe ν ) E F E = log Z β, F = k B T log Z (β, ν, E ν 1/k B T, ) π dxe αx = α 1 1 H(x, p) = p m + mω x E n E n = ( n + ) 1 hω n 0 n z = e βe n n= z ±ϵ 1. +ϵ P +, ϵ P. 3.

108 H( p) = p x + p y + p z m 1. 1 z = V h 3 dp x dp y dp z exp( βh( p)) z = V (πmk B T ) 3/ h 3. λ T = h πmk B T z = V λ 3 T 3. N Ξ = Z N = zn N! e βµn Z N = N=0 N=0 βµn zn e N! x = e βµ z 4. N = k B T log Ξ N µ 5. pv = k B T log Ξ = N k B T 4 N! N! = 0 dxx N e x x N e x = e f(x) f(x) = df(x) dx x 0 = f(x) x 0 = 0 x 0 f(x) 1 (x x 0) N N N! N log N N πne log N N log N!

109 SEA E N(E) p = (p x, p y ) p x + p y m < E p p 0 = S N(E) = 1 dpdq = p h 0 = p x+p y<p 0 E 1 D(E) D(E) = n m 1. Fermi Fermi. Fermi 3. Fermi 3 f F (ϵ; µ, T ) Sommerfeld dϵg(ϵ)f F (ϵ; µ, T ) = µ dϵg(ϵ) + π 6 (k BT ) g (µ) + O(T 4 ) 4 1. Bose Boltzmann, Planck. Bose

110 Z E F ν P ν P ν = exp( βeν) Z Z = ν exp( βe ν ) E F E = log Z β, F = k B T log Z (β, ν, E ν 1/k B T, ) π dxe αx = α 1 E = log Z β z = 1 h H(x, p) = p m + mω x dx dp exp( βh(x, p))

111 E n E n = ( n + 1 ) hω n 0 n z = n= z e βen 3 3 H( p) = p x + p y + p z m 1. 1 z = V h 3 dp x dp y dp z exp( βh( p)) z = V (πmk B T ) 3/ h 3. λ T = h πmk B T z = V λ 3 T 3. N Ξ = Z N = zn N! e βµn Z N = N=0 N=0 βµn zn e N! x = e βµ z 4. N = k B T log Ξ N µ 5. pv = k B T log Ξ = N k B T

112 SEA n m 1. Fermi Fermi. Fermi 3. Fermi 4. Sommerfeld 5. Pauli Bose Boltzmann, Planck E N(E) p = (p x, p y, p z ) p x + p y + p z m p p 0 = V N(E) = 1 dpdq = p 3 h 3 0 p x+p y+p z<p 0 < E E 1 ρ(e) ρ(e) = 4 1/ ρ(e) = A = n n = A 0 1 exp(β(ε µ)) + 1 dε µ β = 1/k B T, T 1. ε F n, A. exp( β(ε µ)) dx e x e x + 1 = log(e x + 1) µ T, ε F

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

master.dvi

master.dvi 4 Maxwell- Boltzmann N 1 4.1 T R R 5 R (Heat Reservor) S E R 20 E 4.2 E E R E t = E + E R E R Ω R (E R ) S R (E R ) Ω R (E R ) = exp[s R (E R )/k] E, E E, E E t E E t E exps R (E t E) exp S R (E t E )

More information

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 2, S 1 N 1 = S 2 N 2 2 (chemical potential) µ S N

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

all.dvi

all.dvi I 1 Density Matrix 1.1 ( (Observable) Ô :ensemble ensemble average) Ô en =Tr ˆρ en Ô ˆρ en Tr  n, n =, 1,, Tr  = n n  n Tr  I w j j ( j =, 1,, ) ˆρ en j w j j ˆρ en = j w j j j Ô en = j w j j Ô j emsemble

More information

Maxwell

Maxwell I 2018 12 13 0 4 1 6 1.1............................ 6 1.2 Maxwell......................... 8 1.3.......................... 9 1.4..................... 11 1.5..................... 12 2 13 2.1...................

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k 4.6 (E i = ε, ε + ) T Z F Z = e ε + e (ε+ ) = e ε ( + e ) F = kt log Z = kt loge ε ( + e ) = ε kt ln( + e ) (4.8) F (T ) S = T = k = k ln( + e ) + kt e + e kt 2 + e ln( + e ) + kt (4.20) /kt T 0 = /k (4.20)

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

2,200 WEB * Ξ ( ) η ( ) DC 1.5 i

2,200 WEB * Ξ ( ) η ( ) DC 1.5 i mailto: tomita@phys.h.kyoto-u.ac.jp 2002 2003 1.5 2003 2004 2005 2,200 WEB * Ξ ( ) η ( ) DC 1.5 i 1 1 1.1............................. 1 1.2..................................... 2 1.3.................................

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B I ino@hiroshima-u.ac.jp 217 11 14 4 4.1 2 2.4 C el = 3 2 Nk B (2.14) c el = 3k B 2 3 3.15 C el = 3 2 Nk B 3.15 39 2 1925 (Wolfgang Pauli) (Pauli exclusion principle) T E = p2 2m p T N 4 Pauli Sommerfeld

More information

1 s 1 H(s 1 ) N s 1, s,, s N H({s 1,, s N }) = N H(s k ) k=1 Z N =Tr {s1,,s N }e βh({s 1,,s N }) =Tr s1 Tr s Tr sn e β P k H(s k) N = Tr sk e βh(s k)

1 s 1 H(s 1 ) N s 1, s,, s N H({s 1,, s N }) = N H(s k ) k=1 Z N =Tr {s1,,s N }e βh({s 1,,s N }) =Tr s1 Tr s Tr sn e β P k H(s k) N = Tr sk e βh(s k) 19 1 14 007 3 1 1 Ising 4.1................................. 4................................... 5 3 9 3.1........................ 9 3................... 9 3.3........................ 11 4 14 4.1 Legendre..............................

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

2013 25 9 i 1 1 1.1................................... 1 1.2........................... 2 1.3..................................... 3 1.4..................................... 4 2 6 2.1.................................

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

i

i 18 16 i 1 1 1.1....................................... 1 1.................................. 3 1.3............................. 5 1.4........................................... 6 7.1..................................

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K 2 2.1? [ ] L 1 ε(p) = 1 ( p 2 2m x + p 2 y + pz) 2 = h2 ( k 2 2m x + ky 2 + kz) 2 n x, n y, n z (2.1) (2.2) p = hk = h 2π L (n x, n y, n z ) (2.3) n k p 1 i (ε i ε i+1 )1 1 g = 2S + 1 2 1/2 g = 2 ( p F

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R = 1 1 1.1 1827 *1 195 *2 x 2 t x 2 = 2Dt D RT D = RT N A 1 6πaη (1.1) D N A a η 198 *3 ( a =.212µ) *1 Robert Brown (1773-1858. *2 Albert Einstein (1879-1955 *3 Jean Baptiste Perrin (187-1942 2 1 x 2 x 2

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3 4.2 4.2.1 [ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 S i S j (4.39) i, j z 5 2 z = 4 z = 6 3 z = 6 z = 8 zn/2 1 2 N i z nearest neighbors of i j=1

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 ( 3 3. D f(z) D D D D D D D D f(z) D f (z) f (z) f(z) D (i) (ii) (iii) f(z) = ( ) n z n = z + z 2 z 3 + n= z < z < z > f (z) = e t(+z) dt Re z> Re z> [ ] f (z) = e t(+z) = (Rez> ) +z +z t= z < f(z) Taylor

More information

H.Haken Synergetics 2nd (1978)

H.Haken Synergetics 2nd (1978) 27 3 27 ) Ising Landau Synergetics Fokker-Planck F-P Landau F-P Gizburg-Landau G-L G-L Bénard/ Hopfield H.Haken Synergetics 2nd (1978) (1) Ising m T T C 1: m h Hamiltonian H = J ij S i S j h i S

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

( ) (ver )

( ) (ver ) ver.3.1 11 9 1 1. p1, 1.1 ψx, t,, E, p. = E, p ψx, t,. p, 1.8 p4, 1. t = t ρx, t = m [ψ ψ ψ ψ] ρx, t = mi [ψ ψ ψ ψ] p4, 1.1 = p6, 1.38 p6, 1.4 = fxδ ϵ x = fxδϵx = 1 π fxδ ϵ x dx = fxδ ϵ x dx = [ 1 fϵ π

More information