Size: px
Start display at page:

Download ""

Transcription

1

2

3 3 I Newton Galilei Michelson-Morley Lorentz Lorentz Lorentz Lorentz

4 Maxwell Lorentz Lorentz Maxwell B, E Maxwell (II) II

5 5.1.1 ( ) ( ) α Zeeman α Bohr Bohr de Broglie de Broglie

6

7 I

8

9 Maxwell 1 Hertz 2 (aether) Michelson 3 -Morley 4 Lorentz 5 20 Einstein 6 GPS 1 James Clerk Maxwell ( ) ( ) 2 Heinrich Hertz ( ) ( ) 3 Albert Abraham Michelson ( ) Edward Morley ( ) 5 Hendrik Antoon Lorentz ( ) Albert Einstein ( ) 1921

10 Newton Galilei Newton f = m a (1.1) 3. Newton (inertial system) Galilei 8 Newton 2 S S S S x x. t = 0 t = 0 t = 0 2 S S x v S t () x, y, z S x, y, z ( 1.1) x = x vt, y = y, z = z, t = t (1.2) 7 Isaac Newton ( ) ( ) 8 Galileo Galilei ( ) ( )

11 : S S dx dt d 2 x dt 2 = dx dt v, dy dt = dy dt, dz dt = dz dt, (1.3) = d2 x dt, d 2 y 2 dt 2 = d2 y dt, d 2 z 2 dt 2 = d2 z dt 2 (1.4) S Newton m d2 x dt 2 = f (1.5) f S. S f f = f (1.4) (1.5) m d2 x dt 2 = f (1.6) S (1.5) Galilei () R. Hooke 9 9 Robert Hooke ( )

12 12 1 (1660 ) aether 2. A. Newton Opticks (1704) (corpuscular theory of light) 3. C. Huygens 10 (1678) 4. T. Young 11 Young (1805 ) 5. A.J.Fresnel 12 ( ). ( ) Rømer 13 (1676). Bradley 10 Christiaan Huygens( ) 11 Thomas Young( ) 12 Augustin-Jean Fresnel ( ) () 13 Ole Christensen Rømer ( )

13 Bradley 14 (1728) 3. Fizeau 15 (1849) 4. Foucault 16 (1850) 1862 ( 0.6 % ) Cavendish 17 Cavendish Maxwell 2. Coulomb 18 (1780 ) Coulomb Cavendish Cavendish Maxwell 3. Ampère 19 (1820) 2 14 James Bradley ( ) 15 Armand Hippolyte Louis Fizeau ( ) 16 Jean Bernard Léon Foucault ( ) 17 Henry Cavendish ( ) ( ) 18 Charles-Augustin de Coulomb ( ) 19 André-Marie Ampère ( )

14 Ampère (1826) 5. Faraday Maxwell (1864), Faraday 1 7. Hertz ( ) ( ) (aether) Fresnel Maxwell Hertz (Doppler 21 effect). Maxwell ( 1c 2 2 t x y z 2 ) E = 0 (1.7) 20 Michael Faraday ( ) ) 21 Christian Andreas Doppler ( )

15 1.2. Michelson-Morley 15 Galilei. 30 km/s 30km/s. 1.2 Michelson-Morley (A. A. Michelson).. 1. Michelson (1881) ( ) Maxwell () (v/c) 2 2. Michelson-Morley (1887) () m 30cm L M M 2 M 2 M M L M M 1 M 1 M M L 2, L 1 L 1, L 2.

16 : : M. L 1, L 2. MM 1 v. L 1 MM 1 T 1 = l 1 c v + l 1 c + v = 2l 1/c 1 β 2, β = v c L 2 MM 2 (1.8) T 2 = 2 (l 2 ) 2 + (vt 2 /2) 2 c l 2 /c T 2 = 2 1 β 2 (1.9) (1.10) L 1 L 2 ( ) l 1 = c(t 1 T 2 ) = 2 1 β l β 2 (1.11)

17 1.3. Lorentz 17 M 90 L 1 L 2 ( ) = c(t 1 T 2) l 1 = 2 l 2 (1.12) 1 β 2 1 β 2 δ = (l 1 + l 2 )β 2 (1.13) λ φ = 2π δ λ 2π (l 1 + l 2 ) β 2 λ. 1/40 Michleson-Morley 2 (l 1 = l 2 ) Lorentz Michelson-Morley. Galilei. Galilei S S S S 1.1.

18 S 1 S x, y, z, t x, y, z, t 1 2. xy x y xz x z z = 0 z = 0 y = 0 y = 0 x, t y = κ(v)y, z = κ(v)z (1.14) κ x, y, z, t v y, z. v v κ. κ(v) v S S S x v y = κ( v)y, z = κ( v)z (1.15). (1.14), (1.15) (κ( v )) 2 = 1 κ( v ) = ±1 (1.16) v 0 y y, z z κ( v ) = 1 y = y, z = z (1.17) 3.. t = t = 0 S O t O c S P ( (x, y, z)) t s 2 x 2 + y 2 + z 2 (ct) 2 = 0 (1.18) S P S (x, y, z ) P S t s 2 x 2 + y 2 + z 2 (ct ) 2 = 0 (1.19)

19 1.3. Lorentz 19 x, y, z, t x, y, z, t 1 ( ) (1.18) (1.19) ( ) s 2 0 s 2 = α(v)s 2 (1.20) α(v) x, y, z, t v s 2 x 2 + y 2 + z 2 (ct) 2 = x 2 + y 2 + z 2 (ct ) 2 = s 2 (1.21) 4. (x, t) (x, t ) x 2 (ct) 2 = x 2 (ct ) 2 (1.22) x = ax + bt, t = fx + gt (1.23) a, b, f, g v (1.23) (1.22) x, t a 2 c 2 f 2 = 1 ab c 2 fg = 0 (1.24) g 2 b 2 /c 2 = 1 a = ± cosh θ, b = c sinh θ = ca tanh θ, () (1.25) f = ± 1 c sinh θ, g = cosh θ = cf tanh θ θ tanh θ = b ca () (1.26)

20 20 1 θ S O S v x O x = y = z = 0 ax + bt = 0, y = 0, z = 0 (1.27) x = b a t (1.28) b a = v (1.29) tanh θ = v c β = v c (1.30) cosh θ = (1 tanh 2 θ) 1/2 = 1 1 β 2 sinh θ = β 1 β 2 (1.31) x = ± x vt 1 β 2, (1.32) t = ± t (v/c2 )x 1 β 2 (1.33) v 0 x x, t t x = x vt, 1 β 2 t = t (v/c2 )x 1 β 2 (1.34)

21 1.4. Lorentz 21 Lorentz Poincaré 22 Einstein Einstein 2 2 Lorentz (1.34) x = x + vt 1 β 2, t = t + (v/c 2 )x 1 β 2 (1.35). (1.34) v v, (t, x, y, z) (t, x, y, z ). 1.4 Lorentz S S (1.34) Lorentz Lorentz.. Lorentz... (event). 1 (world point). (world line) (1.34). 2.. x y, z. x ct ( 1.3). S x t = 0 (1.34) ct = βx 22 Jules Henri Poincaré ( )

22 22 1. ct x = 0 x = βct. x tan θ = β. P,Q. S. S P,Q (t, x = a) (t, x = b) S (t P, x = a ) (t Q, x = b ). (1.34) P,Q 1.3: : S P,Q S. ct P = ct βa 1 β 2, ct Q = ct βb 1 β 2. (1.36) t Q t P = (a b)β c 1 β 2 (1.37) a > b t Q > t P. S Q P.

23 1.4. Lorentz Lorentz S x. 1.4 A,B. S A,B x x = a, x = b. S l 0 = a b. S x v. S A,B x x A (t) = a, x B (t) = b. S l l = a b. 1.4: :. (1.34) 2 A,B a = a vt, 1 β 2 b = b vt 1 β 2 (1.38) l 0 = a b = a b 1 β 2, (1.39) l = a b = l 0 1 β 2 (1.40) Lorentz.

24 W 1, W 2 S,S O,O. W 1 t W 2 x x = vt. S W 2 (x = 0, t ). t t. (1.34) 1 t = t (v/c2 )vt 1 β 2 = t 1 β 2 < t (1.41).. W 2 x = f(t) x. t t t + t W 2 v(t) = df/dt t = t W 1 0 T W 2 T = T 0 dt = T. f(t) ( ) 2 df (1.42) c 2 dt T T 1 1 c 2 ( df dt ) 2 dt (1.43) A ν λ ( ) 1 A sin 2π n x νt + α λ (1.44)

25 1.4. Lorentz 25 n α S,S 1 λ n x νt = 1 λ n x ν t (1.45) ν, λ, n S k = 1 λ n, k = 1 λ n (1.46) k x νt = k x ν t (1.47) (1.35) x, t ν = ν vk x, 1 β 2 k x = k x (v/c 2 )ν, k y = k y, k z = k z (1.48) 1 β 2 S xy xy x θ S x θ n = (cos θ, sin θ, 0) n = (cos θ, sin θ, 0). νλ = c. ν = ν 1 β cos θ 1 β 2, ν cos θ = ν cos θ β 1 β 2, ν sin θ = ν sin θ (1.49) tan θ = sin θ 1 β 2 cos θ β (1.50) tan θ 2 = tan θ 1 + β 2 1 β (1.51) (1.49) v

26 26 1 v (1.49) S x. (1.49) 2 cos θ = β (1.49) 1 ν = ν 1 β 2 (1.52). (1.50) Galilei... S 1 x = x (t ), y = y (t ), z = z (t ) (1.53). S u x = dx (t ), u dt y = dy (t ), u dt z = dz (t ) (1.54) dt u = (u x) 2 + (u y) 2 + (u z) 2 (1.55). S u x = dx(t), u y = dy(t) dt dt u =.. (1.35), u z = dz(t) dt (1.56) (u x ) 2 + (u y ) 2 + (u z ) 2 (1.57) dx = dx + vdt 1 β 2, dy = dy, dz = dz, dt = dt + (v/c 2 )dx 1 β 2 (1.58)

27 ,2,3 4 u x = u x + v 1 + (u xv/c 2 ), u y = u y 1 β (u xv/c 2 ), u z = u z 1 β (u xv/c 2 ). u (1.59) u 2 = u 2 x + u 2 y + u 2 z = (u x + v) 2 + (u 2 y + u 2 z)(1 v 2 /c 2 ) (1 + (u xv/c 2 )) 2 = c2 (1 + (u xv/c 2 )) 2 c 2 (1 u 2 /c 2 )(1 v 2 /c 2 ) (1 + (u xv/c 2 )) 2 (1.60) 1 u2 c 2 = (1 u 2 /c 2 )(1 v 2 /c 2 ) (1 + (u xv/c 2 )) 2 (1.61) u < c, v < c u u < c.. u, v c u = c. 1.5 Kennedy-Thorndyke Michelson-Morley Fitzgerald-Lorentz. 2 Lorentz. R.J. Kennedy and E.M. Thorndike, Experimental Establishment of the Relativity of Time Phys. Rev (1932) 2 %. 2. H.E. Ives and G.R. Stilwell, An Experimental Study of the Rate of a Moving Atomic Clock J. Opt. Soc. Am (1938)

28 28 1 Michelson-Morley (Brillet- Hall experiment )

29 Lorentz ( ) P S (t, x, y, z) x 0 = ct, x 1 = x, x 2 = y, x 3 = z 4 x µ (µ = 0, 1, 2, 3) (x 0, x 1, x 2, x 3 ) P 4 P S (x 0, x 1, x 2, x 3 ) S S x µ x µ 1 x µ = 3 a µ νx ν + b µ (µ = 0, 1, 2, 3) (2.1) ν=0 a µ ν xµ 16 b µ S S (Einstein ) (2.1) x µ = a µ νx ν + b µ S S b µ = 0 x µ = a µ νx ν (2.2) (2.1) (x 0 ) + 3 (x k ) 2 = (x 0 ) + k=1 3 (x k ) 2 (2.3) k=1

30 (µ ν) η µν = η νµ = 1 (µ = ν = 0) 1 (µ = ν = 1, 2, 3) (2.4) (2.3) η µν x µ x ν = η µν x µ x ν (2.5) (2.5) (2.2) x η µν = η ρσ a ρ µa σ ν (2.6) (2.2) x µ x µ a µ ν (2.6) Lorentz. (2.2) (2.1) (2.6) Lorentz (2.6) µ, ν 10. a µ ν 16 (2.6) = Lorentz a µ ν { 1 (µ = ν) δ µ ν = (2.7) 0 (µ ν) x µ = x µ Lorentz Lorentz x ν = b ν µx µ (2.8) b ν µ Lorentz aµ ν.

31 2.1. Lorentz 31 a µ ν 4 4 A. (A) µν a µ ν (2.9). Y (Y ) µν η µν (2.10). A A T (A T ) µν (A) νµ = a ν µ (2.11) (2.6) (Y ) µν = (A T Y A) µν (2.12) det(y ) = det(a T Y A) = det(a T ) det(y ) det(a) (2.13) det(a T ) = det(a), det(y ) = 1 (2.14) det(a) = ±1 (2.15) A. η µν 0 (µ ν) η µν 1 (µ = ν = 0) 1 (µ = ν = 1, 2, 3) (2.16) Y Y 1 (Y 1 ) µν η µν (2.17) (2.12) 1 = Y 1 A T Y A (2.18)

32 δ µ ν = η µλ a ρ λ η ρσa σ ν (2.19) δ µ ν = b µ σa σ ν (2.20) b µ σ = η µλ a ρ λ η ρσ (2.21) η µλ a ρ λ η ρσ a µ σ (2.22). (2.6). (2.6) µ = ν = = (a 0 0) 2 + (a k 0) 2 (2.23) a 0 0 = ± 1 + k=1 3 (a k 0) 2 (2.24) a a Lorentz det(a) = ±1 a a det(a) = 1 a Lorentz (proper Lorentz transformation). Lorentz Lorentz. k=1 2.2 S S P 4 x µ, x µ x µ = a µ νx ν + b µ (2.25) Lorentz η µν = η ρσ a ρ µa σ ν (2.26)

33 S S C, C C = C (2.27) C (scalar) S S Θ(x) Θ(x 0, x 1, x 2, x 3 ) Θ(x ) Θ(x 0, x 1, x 2, x 3 ) Θ(x) = Θ (x ) (2.28) Θ(x) (x x S,S ) S S A µ, A µ A µ = x µ x ν Aν = a µ νa ν (2.29) (contravariant vector) 2 P,Q x µ = x µ Q xµ P A µ x S S A µ (x), A µ (x ) A µ (x) A µ (x ) = x µ x ν Aν (x) (2.30) S S B µ, B µ B µ = xν x µ B ν (2.31)

34 34 2 (covariant vector) Θ(x) Θ µ (x) Θ(x) x µ (2.32) A µ (x), B µ (x) C µν (x ) C µν (x) C µν (x) A µ (x)b ν (x) (2.33) C µν (x ) A µ (x )B ν (x ) = x µ x ρ x ν x σ Aρ (x)b σ (x) = x µ x ρ x ν x σ Cρσ (x) (2.34) C µν (x ) = x µ x ρ x ν x σ Cρσ (x) (2.35) C 2 (contravariant tensor field of the 2nd rank) T (x) S S T αβ γ δɛ ζ (x), T λµ ν ρσ τ(x ) (2.36) T λµ ν ρσ τ(x ) = x λ x µ x α x x ν x δ x ɛ xζ β x γ x ρ x σ x T αβ γ τ δɛ ζ (x), (2.37) T (x) (tensor field) (λµ ν) r (ρσ τ) s

35 T r s (mixed tensor) r (contravariant tensor of rank r) s (covariant tensor of rank s) 2 F µν F µν = F νµ (2.38) F. F µν = F νµ (2.39) F. 1.. Kronecker δ µ ν η µν 2 δ µ ν = x µ x α x β x ν δα β (2.40) η µν = x µ x α x ν x β ηαβ (2.41) A µν λ, Bµν λ C µν λ = Aµν λ + Bµν λ (2.42) C µν λ Aµν λ, Bµν λ

36 S A µν λ SA µν λ (2.43) A µν λ B αβ C µν λαβ Aµν λ B αβ (2.44) 5 C A, B A µν λ (x) x ρ (2.45) 4 ρ / x ρ A µν λ (x) A αβ γ δɛ ζ 1 0,1,2,3 2 (contraction) B β γ δ ζ = Aαβ γ δα ζ (2.46)

37 A µν λ, B αβ C µν λαβ Aµν λ B αβ (2.47) C µ λα Cµβ λαβ = Aµβ λ B αβ (2.48) D ν λα = A βν λ B αβ, E ν λβ = A αν λb αβ 3 A, B A B C = A µ B µ (2.49) C A, B η µν A µ η µν B ν η µν A µ B ν η µν η µν B ν = η µν η νλ A λ = δ µ λ Aλ = A µ A µ B ν A µ A µ η µν A ν (2.50) T µν = η µα η νβ T αβ (2.51)

38 A µ (A) 2 A µ A µ = η µν A µ A ν = (A 0 ) (A k ) 2 (2.52) A A µ (A) 2 > 0 A µ (space-like vector) (A) 2 < 0 A µ (time-like vector) (A) 2 = 0 (null vector) (A) 2 Lorentz A 3 k= P O x µ. x µ P 3 (x 0 ) 2 + (x k ) 2 = 0 (2.53) k=1. (space-like).. Q O y µ Q. (time-like).. O O. R O z µ R. (light-cone).

39 : η µν x µ x = 1 2 ν c 2 t x y + 2 (2.54) 2 z 2 ( (D Alembertian) c

40

41 Newton Galilei Lorentz Newton Lorentz Newton x k (k = 1, 2, 3) t Lorentz λ x µ (µ = 0, 1, 2, 3) λ 4 x µ x µ + x µ ( x µ ) 4 ( 2 ) s 2 = η µν x µ x ν = c 2 ( t) 2 + ( x) 2 ( λ) 2 3 v = x/ t c x µ s 2 s 2 = c 2 ( τ) 2 Lorentz τ ( ) τ c 2 ( τ) 2 η µν x µ x ν (3.1) τ λ 4 x µ (τ) (3.1) τ = t 1 ( ) 2 v (3.2) c

42 42 3 v = d x/dt 3 τ (proper-time) S x µ (τ) τ x k (τ) = x k (τ + τ) (k = 1, 2, 3) x 0 (τ + τ) x 0 (τ) = x 0 = c t c 2 ( τ) 2 = η µν x µ x ν = c 2 ( t ) 2. τ = t t τ τ Lorentz x µ (τ) u µ dxµ dτ (3.3) x µ 4 (four-velocity) 4 Lorentz S S S x µ (τ) = (x 0, x = 0) S x µ (τ) Lorentz x µ = a µ νx ν, x ν = b ν µx µ = b ν 0x 0 (3.4) 2 τ u ν = b ν 0c dt dτ = cbν 0 (3.5) 4 u µ 3 v (3.2) u k = v k 1 β 2, u0 = c 1 β 2. (3.6) k = 1, 2, 3, β = v /c η µν u µ u ν = c 2 (3.7). (3.1) ( τ) 2.

43 a µ duµ dτ = d2 x µ (3.8) dτ 2 (3.7) a µ u µ η µν u µ a ν = 0 (3.9) 3.2 Lorentz S S c Galilei c Newton S S Newton m d2 x k dt 2 = F k, dx k dt = 0 (k = 1, 2, 3) (3.10) m F k S k m d2 x 0 dt 2 = F 0 (3.11) d 2 (ct )/dt 2 = 0 F 0 = 0 m d2 x µ dt 2 = F µ, (µ = 0, 1, 2, 3) (3.12) t Lorentz S t τ m d2 x µ dτ 2 = F µ, (3.13)

44 44 3 Lorentz F µ. Newton (1.5), Lorentz. S S Lorentz (3.13) S m d2 x µ dτ 2 = F µ (3.14) F µ S F i S S x ν = b ν µx µ F µ = b µ νf ν = 3 b µ k F k k=1 (3.15) F µ 4 4 (four-force) u µ F µ = 0 (3.16) (3.14) u µ mu µ a µ = u µ F µ (3.9) 0 (3.16) 3.3 (3.14 ) d dτ pµ = F µ (3.17) p µ 4 (four-momentum) p µ mu µ = m dxµ dτ (3.18)

45 p µ (F µ = 0) d dτ pµ = 0 (3.19) p µ p 0 p = (p 1, p 2, p 3 ) (3.2) d p dt = F 1 ( ) 2 v c K F 1 ( ) 2 v (3.20) c Newton (3.17) d p dt = K (3.21). (3.17). (3.16) (3.6) ( v ) 2 cf 0 1 = ( v K) (3.22) c. (3.17) ( ) 2 d v dt (cp0 ) = cf 0 1 = ( K c v) (3.23) cp 0 = +

46 46 3. Einstein 0. 4 p µ. Einstein. m v p = 1 ( v/c) = 2 cp 0 mc = 2 = W = (3.24) 1 ( v/c) 2 v = 0 p = 0 W mc 2 m (rest energy) u µ u µ = c 2 (3.25) p µ p µ = (mc) 2 (3.26) W p W = c ( p) 2 + (mc) 2 (3.27) v c W = mc m ( p) Newton

47 Cockroft-Walton (1932) Cockroft 1 Walton 2 2 α ( ) 7 3Li H 4 2 He He α 8.6Mev M = = ( ) Mc 2 = = 17.3(MeV) = 17.2(MeV) Einstein kg 511 kev ( positron ( Dirac 3 (1928) Anderson 4 (1932)) 2 γ 1 John Douglas Cockcroft ( ) Ernest Walton ( ) Paul Adrien Maurice Dirac ( ) Carl David Anderson ( ) 1936

48

49 49 4 Maxwell 4.1 Maxwell Maxwell ρ j Maxwell B = 0 (4.1) B t + E = 0 (4.2) D = ρ (4.3) H D t = j (4.4) D, E. B, H D = ɛ 0 E, B = µ0 H (4.5) ɛ 0, µ 0 c ɛ 0 µ 0 = 1 c 2

50 (4.1),(4.2) B, E A, φ B = A, E A = φ (4.6) t ( V ) = 0 ( V 3 ) ( f) = 0 (f ) (4.6) Maxwell (4.3),(4.4) V = ( V ) 2 V φ = ρ ɛ 0 (4.7) A = µ 0 j (4.8) ( (2.54) ) A + 1 c 2 φ t = 0 (4.9) Lorentz (4.7),(4.8) (4.9) (4.7),(4.8) (4.9) (4.7),(4.8) ( A + 1 ) ( φ = µ c 2 0 j + ρ ) (4.10) t t Maxwell j + ρ t = 0 (4.11)

51 4.1. Maxwell 51 ( A + 1 ) φ = 0 (4.12) c 2 t (4.7),(4.8) (4.9) (4.11) (4.9) Lorentz Lorentz ( ) B, E (4.6) A, φ. A, φ A = A + λ, φ = φ λ t (4.13) A, φ λ( x, t) ( x, t) A, φ (4.6) A = A = B, A t φ = A t φ = E (4.14) B, E A, φ λ A, φ B, E A, φ A, φ (gauge transformation) B, E Lorentz A, φ Lorentz λ A, φ Lorentz 0 = A + 1 φ c 2 t = λ + A + 1 φ (4.15) c 2 t λ Lorentz.

52 Maxwell (4.11) j 1 = j x, j 2 = j y, j 3 = j z, j 0 = cρ (4.16) (4.11) S µ j µ (x) = 0 (4.17) ( µ / x µ ) j µ ( ) S j µ (x ) µj µ (x ) = 0 (4.18) µ j µ j µ 4 (four-current) A 0 = 1 c φ, A1 = A x, A 2 = A y, A 3 = A z, (4.19) (4.7),(4.8) A λ = µ 0 j λ (4.20) (2.54) Lorentz A λ

53 4.2. Maxwell 53 Lorentz (4.9) λ A λ = 0 (4.21) A µ = η µν A ν A µ Āµ + µ λ (4.22) λ λ = 0 Āµ A µ A µ, A µ 4 (four-potential) B, E B, E f µν f µν µ A ν ν A µ = f νµ (4.23) f µν B, E f 00 f 01 f 02 f f 10 f 11 f 12 f E c x 1E c y 1E c z 1 13 f 20 f 21 f 22 f 23 = E c x 0 B z B y 1 E c y B z 0 B x 1 f 30 f 31 f 32 f 33 E c z B y B x 0 (4.24) f µν. f µν f µν = µ Ā ν ν Ā µ = f µν (4.25) f µν B, E f 00 f 01 f 02 f f 10 f 11 f 12 f 13 E 1 c x E 1 c y E c z f 20 f 21 f 22 f 23 = 1 E c x 0 B z B y 1E c y B z 0 B x f 30 f 31 f 32 f 33 1E c z B y B x 0 (4.26)

54 Maxwell (4.20) Lorentz (4.21) 4.3 Maxwell (II) 4 Maxwell f µν = f νµ (4.24) B, E 4 (4.16) Maxwell (4.3), (4.4) (4.1) (4.2) ν f λν = µ 0 j λ (4.27) λ f µν + µ f νλ + ν f λµ = 0 (4.28) (4.28) 64 = (4.28) F λµν λ f µν + µ f νλ + ν f λµ (4.29) f µν F λµν λ, µ, ν 2 F = 0 λ, µ, ν F λµν F 123, F 012, F 023, F F 123 = 0 0 = F 123 = 1 f f f 12 = B (4.30) Maxwell (4.1)

55 4.3. Maxwell (II) (4.27) f λρ (LHS) LHS = f λρ ν f λν = ν (f λρ f λν ) f λν ν f λρ (4.31) 2 f λν = f νλ f λν ν f λρ = 1 2 f λν ( ν f λρ λ f νρ ) = 1 2 f λν ( ν f λρ + λ f ρν + ρ f νλ ) f λν ρ f νλ (4.32) (4.28) f λν ν f λρ = 1 4 ρ(f λν f λν ) (4.33) LHS = ν ( f λν f λρ 1 4 δν ρf αβ f αβ ) (4.34) ν ( f λν f λρ 1 4 δν ρf αβ f αβ ) = µ 0 j λ f λρ (4.35) T ν ρ 1 µ 0 ( f λν f λρ 1 4 δν ρf αβ f αβ ) (4.36) ν T ν ρ = f ρλ j λ (4.37) T νµ = η ρµ T ν ρ = 1 µ 0 ( η λσ f λν f σµ 1 4 ηνµ f αβ f αβ ) = T µν (4.38) T νµ B, E T 00 T 01 T 02 T 03 w cg x cg y cg z T 10 T 11 T 12 T 13 T 20 T 21 T 22 T 23 = 1 S c x M xx M xy M xz 1S c y M yx M yy M yz T 30 T 31 T 32 T 33 1Sz M c zx M zy M zz (4.39)

56 56 4 w = 1 2 ( D E + B H) = g = 1 c 2 ( E H) = S = ( E H) = (4.40) S Poynting vector M Maxwell M ik = ɛ 0 E i E k + µ 0 H i H k 1 2 δ ik( D E + B H) (4.41) T µν (energy momentum tensor) (4.37) (4.39) w t = S + ( E j) (4.42) g k 3 t = l M lk (ρe + j B) k (k = 1, 2, 3) (4.43) l=1 t 3 V Gauss wd 3 x = S d σ + ( E t j)d 3 x (4.44) V F V 3 g k d 3 x = M lk dσ l (ρe t + j B) k d 3 x (k = 1, 2, 3) V l=1 F V (4.45) V F F dσ n d σ ndσ (4.44) 1 F 2 V. V. (4.45) 2

57 4.3. Maxwell (II) 57 V 1 F V V. V. ρ = 0, j = 0 0 V P 0 P k T 00 d 3 x = T 0k d 3 x = c wd 3 x (4.46) g k d 3 x (k = 1, 2, 3) (4.47) P µ 4 (ρ 0, j 0) P µ ( )

58

59 II

60

61 X 19 ( ) ( ) MRI ( ) (Planck 1 ) (1900) E = nhν (5.1) 1 Karl Ernst Ludwig Marx Planck ( ) 1918

62 62 5 (E ν n 0 h ) h ( [ ] [ ] 2 [ ] 1 = [ ] [ ] = [ ] [ ] ) h = J s (5.2) 1. Stefan-Boltzmann J. Stefan (1879) L. Boltzmann 2 (1884) σ Stefan-Boltzmann 2. Wien (1893) j = σt 4 (5.3) W m 2 K 4 W. Wien 3 λ max λ max = b T (5.4) 2 Ludwig Boltzmann ( ) 3 Wilhelm Wien ( ) 1911

63 Wien (1896) Wien ( ) U(ν)dν = 8πk Bβ c 3 exp( βν/t )ν 3 dν (5.5) k B Boltzmann k B = J/K β 4. Rayleigh-Jeans (1900,1905) Rayleigh 4 U(ν)dν = 8πk BT c 3 ν 2 dν (5.6) 5. Planck Planck Wien Rayleigh-Jeans U(ν)dν = 8πh c 3 1 exp(hν/k B T ) 1 ν3 dν (5.7) (1900 ) 4 John William Strutt Rayleigh ( ) 1904

64 Planck Planck ( ) U(ν)dν = 8π ( ν ) c F ν 3 dν (5.8) 3 T F Wien Planck F (x) = k B β exp( βx) F (x) = h = k B β k B β exp(βx) 1 7. Planck Planck ( ) 8. Rayleigh-Jeans Wien Planck 2 (Einstein, 1905) E = 1 2 mv2 = hν W (5.9) :

65 Hertz (1887) 2. Hallwacks (1888) Hallwacks 5 3. J.J.Thomson 6 (1899) (e/m) 4. Lenard (1902) Lenard 7 (a) 1 (b) (c) 1 () ( ) 5. Einstein (1905) 6. Millikan (1916) 5 Wilhelm Ludwig Franz Hallwachs ( ) 6 Joseph John Thomson ( ) Philipp Eduard Anton von Lénárd ( ) 1905

66 66 5 Millikan 8 Einstein Einstein (5.9) h Planck h Einstein p = h/λ (5.10) (p λ ) Compton 9 X X (Compton) (1923) CCD Wilson, Bothe Dulong 10 -Petit 11 (1819) 0 C V = 3R (5.11) 8 Robert Andrews Millikan ( ) Arthur Holly Compton( ) Pierre Louis Dulong ( ) ( ) 11 Alexis Thérèse Petit ( )

67 Einstein (1907) Dulong-Petit 3. Debye 12 (1912) Einstein Balmer 13 (1885) h, h, h, h, h = m λ = n2 h n = 3, 4, 5, 6, (5.12) n 2 4 Rydberg 14 1 λ = 1 R n: (5.13) λ (n + b) 2 12 Peter Joseph William Debye ( ) Johann Jakob Balmer ( ) ( ) 14 Johannes Robert Rydberg ( )

68 68 5 (1888) λ Rydberg R (Rydberg ) R = m 1 Balmer R = 4/h b Rydberg 1 λ = R ( 1 (m + b) 1 2 (n + b) 2 ) n, m: (5.14) Rydberg (1890) Rydberg a = b = 0 ( 1 1 λ = R m 1 ) 2 n 2 (5.15) Balmer m = 2 m = 1 Lyman 15 (1906) m = 3 Paschen (1908), C. H. F. Paschen) m = 4 Blackett (1922) ( ) (de Broglie) (1923) (Davisson, Germer) (Ni )(1927) (1928) p k(= 2π λ ) = p (5.16) k ( λ) ( ) 15 Theodore Lyman ( )

69 (Bonse, 1974) (Zeeman) (1896)( ) (Stern, Gerlach) (1922) : ( ) NMR,MRI:

70

71 Loschmidt 1 (1865) Einstein (1905) Perrin 2 (1908) J. J. Thomson e/m (1897) Millikan Fletcher 3 e ( ) Goldstein 4 (1886) J. J. Thomson Goldstein 1 Johann Josef Loschmidt ( ) 2 Jean Baptiste Perrin ( ) (1926) 3 Harvey Fletcher ( ) 4 Eugen Goldstein ( )

72 72 6 ( ) Wilhelm Wien e/m (1898) Rutherford α α α Rutherford 1898 α β 1899 α β 1902,1903 Rutherford α Chadwick Zeeman Zeeman 6 Zeeman D ( ) H. A. Lorentz Larmor 7 e/m e/m 5 Ernest Rutherford ( ) Pieter Zeeman ( ) Joseph Larmor ( )

73 α Geiger 8 Marsden 9 Rutherford 1909 α (ZnS) α α α Rutherford J = pdq (6.1) ( ) Delaunay 10 1, m F = kq (6.2) H = p2 2m + k 2 q2 (6.3) dq dt = H p = p m, (6.4) dp dt = H = kq q (6.5) 8 Johannes (Hans) Wilhelm Geiger ( ) 9 Ernest Marsden ( ) 10 Charles-Eugène Delaunay ( )

74 74 6 q = A sin(ωt + α), (6.6) p = mωa cos(ωt + α) (6.7) A α ω( 2πν) ω = k m (6.8) E = 1 2 mω2 A 2 (6.9) ( ) pdq = 2πE ω = E ν (6.10) 6.3 Bohr Bohr Bohr 11 (1913) 1. E 1, E 2, E 3, Niels Henrik David Bohr ( ) 1922

75 6.3. Bohr ν hν = E m E n (6.11) (quantum condition) pdq = nh (n = 0, 1, 2, 3, ) (6.12) qp Bohr (6.12) (6.10) E ν = nh (6.13) E = nhν (6.14) h 2π (6.15) E = n ω (6.16) ω

76 76 6 r p q pdq = p 2πr = nh (6.17) e e e 2 4πɛ 0 r 2 (6.18) m v2 r = p = mv 2πpr = nh e2 4πɛ 0 r 2 (6.19) r = 4πɛ 0 2 me 2 n2 (6.20) n = 1 a = 4πɛ 0 2 (6.21) me 2 E p 2 /2m e 2 /4πɛ 0 r r = n 2 a E = p2 2m e2 4πɛ 0 r (6.22) e2 E = (6.23) 8πɛ 0 an 2 m n ν ( hν = e2 1 8πɛ 0 a n 1 ) 2 m 2 Rydberg R = e2 8πhɛ 0 a = me4 8h 3 ɛ 2 0c (6.24) (6.25)

77 6.4. de Broglie de Broglie ν λ) E p E = hν, p = h λ (6.26) ( h = [J s] 0 E = c p (1) ν = E h, λ = h p de Broglie 12 (1924) (6.27) de Broglie Bohr de Broglie r de Broglie λ λ = h/p 2πr = nλ (n = 0, 1, 2, 3, ) (6.28) pr = n (6.29) pr Bohr Bohr Heisenberg 13 (1925) 12 Louis de Broglie ( ) Werner Heisenberg ( ) 1932

78 78 6 de Broglie Schrödinger 14 (1926) (?) Lanczos 15 ( ) Schrödinger,Lanczos,Pauli 16 Schrödinger Heisenberg Heisenberg Feynman Erwin Rudolf Josef Alexander Schrödinger ( ) Cornelius Lanczos ( ) 16 Wolfgang Ernst Pauli ( ) Richard Phillips Feynman ( ) 1965

II

II II 28 5 31 3 I 7 1 9 1.1.......................... 9 1.1.1 ( )................ 9 1.1.2........................ 14 1.1.3................... 15 1.1.4 ( )................. 16 1.1.5................... 17

More information

II

II II 28 5 31 3 I 5 1 7 1.1.......................... 7 1.1.1 ( )................ 7 1.1.2........................ 12 1.1.3................... 13 1.1.4 ( )................. 14 1.1.5................... 15

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

Schrödinger I

Schrödinger I Schrödinger I 2016 7 6 2 1 3 1.1...... 4 1.2......... 6 1.3................ 8 1.4....................... 11 1.4.1............... 11 1.4.2 Bohr........................... 12 1.5.............. 15 2 Schrödinger

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

QMI13a.dvi

QMI13a.dvi I (2013 (MAEDA, Atsutaka) 25 10 15 [ I I [] ( ) 0. (a) (b) Plank Compton de Broglie Bohr 1. (a) Einstein- de Broglie (b) (c) 1 (d) 2. Schrödinger (a) Schrödinger (b) Schrödinger (c) (d) 3. (a) (b) (c)

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

( ) LAN LAN tex ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1

( ) LAN LAN tex ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 ( ) LAN LAN tex ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 4 2 17 3 Coulomb 23 4 43 5 49 6 51 7 53 8 58 9 66 10 74 11 Lienard-Wiechert potential 78 12 86 13 89 14 Laplace 114 15 138 16 152 17 162 18 166 19 191

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) 1888 2.2 1 7 (G. Galilei) 1638 2

A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) 1888 2.2 1 7 (G. Galilei) 1638 2 1 2012.8 e-mail: tatekawa (at) akane.waseda.jp 1 2005-2006 2 2009 1-2 3 x t x t 2 2.1 17 (I. Newton) C. Huygens) 19 (T. Young) 1 A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday)

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

(a) (b) 1: (a) ( ) (b) ( ) : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 2 ) 2 2

(a) (b) 1: (a) ( ) (b) ( ) : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 2 ) 2 2 (2) 1 1 4 ( beresit ) ( ) ( ) ( ) 1 Makio Uwaha. E-mail:uwaha@nagoya-u.jp; http://slab.phys.nagoya-u.ac.jp/uwaha/ 1 (a) (b) 1: (a) ( ) (b) ( ) : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 2 ) 2 2 20 [ ]

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

Planck Bohr

Planck Bohr I 30 7 11 1 1 5 1.1 Planck.............................. 5 1. Bohr.................................... 6 1.3..................................... 7 9.1................................... 9....................................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

06-...t.Q V4.qxd

06-...t.Q V4.qxd 110 301897 3.20 341901 361903) 381905) 391906 401907 46 431910 41915 61917 81919 91920 101921 121923 131924 141925 41929 2 61931 71932 1 91934 111936 131938 141939 151940 161941 181943 191944 201945 211946

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 2, S 1 N 1 = S 2 N 2 2 (chemical potential) µ S N

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

all.dvi

all.dvi I 1 Density Matrix 1.1 ( (Observable) Ô :ensemble ensemble average) Ô en =Tr ˆρ en Ô ˆρ en Tr  n, n =, 1,, Tr  = n n  n Tr  I w j j ( j =, 1,, ) ˆρ en j w j j ˆρ en = j w j j j Ô en = j w j j Ô j emsemble

More information

Einstein ( ) YITP

Einstein ( ) YITP Einstein ( ) 2013 8 21 YITP 0. massivegravity Massive spin 2 field theory Fierz-Pauli (FP ) Kinetic term L (2) EH = 1 2 [ λh µν λ h µν λ h λ h 2 µ h µλ ν h νλ + 2 µ h µλ λ h], (1) Mass term FP L mass =

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R = 1 1 1.1 1827 *1 195 *2 x 2 t x 2 = 2Dt D RT D = RT N A 1 6πaη (1.1) D N A a η 198 *3 ( a =.212µ) *1 Robert Brown (1773-1858. *2 Albert Einstein (1879-1955 *3 Jean Baptiste Perrin (187-1942 2 1 x 2 x 2

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

i E B Maxwell Maxwell Newton Newton Schrödinger Newton Maxwell Kepler Maxwell Maxwell B H B ii Newton i 1 1.1.......................... 1 1.2 Coulomb.......................... 2 1.3.........................

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

25 7 31 i 1 1 1.1......................... 1 1.1.1 Newton..................... 1 1.1.2 Galilei................. 1 1.1.3...................... 3 1.2.......................... 3 1.3..........................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B I ino@hiroshima-u.ac.jp 217 11 14 4 4.1 2 2.4 C el = 3 2 Nk B (2.14) c el = 3k B 2 3 3.15 C el = 3 2 Nk B 3.15 39 2 1925 (Wolfgang Pauli) (Pauli exclusion principle) T E = p2 2m p T N 4 Pauli Sommerfeld

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 高速流体力学 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/067361 このサンプルページの内容は, 第 1 版発行時のものです. i 20 1999 3 2 2010 5 ii 1 1 1.1 1 1.2 4 9 2 10 2.1 10 2.2 12 2.3 13 2.4 13 2.5

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ 1 1 1.1 (Isaac Newton, 1642 1727) 1. : 2. ( ) F = ma 3. ; F a 2 t x(t) v(t) = x (t) v (t) = x (t) F 3 3 3 3 3 3 6 1 2 6 12 1 3 1 2 m 2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t)

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m A f i x i B e e e e 0 e* e e (2.1) e (b) A e = 0 B = 0 (c) (2.1) (d) e

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63) 211 12 1 19 2.9 F 32 32: rot F d = F d l (63) F rot F d = 2.9.1 (63) rot F rot F F (63) 12 2 F F F (63) 33 33: (63) rot 2.9.2 (63) I = [, 1] [, 1] 12 3 34: = 1 2 1 2 1 1 = C 1 + C C 2 2 2 = C 2 + ( C )

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n = JKR 17 9 15 1 Point loading of an elastic half-space Pressure applied to a circular region 4.1 Boussinesq, n = 1.............................. 4. Hertz, n = 1.................................. 6 4 Hertz

More information

1. 1.1....................... 1.2............................ 1.3.................... 1.4.................. 2. 2.1.................... 2.2..................... 2.3.................... 3. 3.1.....................

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0 5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â = Tr Âe βĥ Tr e βĥ = dγ e βh (p,q) A(p, q) dγ e βh (p,q) (5.2) e βĥ A(p, q) p q Â(t) = Tr Â(t)e βĥ Tr e βĥ = dγ() e βĥ(p(),q())

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

β

β β 01 7 1 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 s s s d 10 s p s p s p 3 s p 4 s p 5 s p 6 1 1H He 1.01 4.00 3Li 4Be 5B 6C 7N 8O 9F 10Ne 6.94 9.01 10.81 1.01 14.01 16.00 19.00 0.18 3 11Na 1Mg 13Al 14Si

More information

Fr

Fr 2007 04 02 12 1 2 2 3 2.1............................ 4 3 6 3.1............................. 7 3.2....................... 9 3.3............................. 10 4 Frenet 12 5 14 6 Frenet-Serret 15 6.1 Frenet-Serret.......................

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

(C) Kazutaka Takahashi 2018

(C) Kazutaka Takahashi 2018 2018 9 23 (C) Kazutaka Takahashi 2018 1 1 1 2015 1 2017 2018 2018 9 i 1 1 1.1...................................... 1 1.2................................... 3 1.3..........................................

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information