Size: px
Start display at page:

Download ""

Transcription

1

2 Maxwell Hartree-Fock Na

3

4 0 Einstein Laser 1960 CD Laser I, II I, II, III I, II III 3

5 -, 000, 1981,

6 e e r m k m r(t) = mω 0r(t) + ( e)e(r, t) + ( e)ṙ(t) B(r, t) ω 0 ω 0 k/m m r(t) = mω 0r(t) + ( e)e(0, t) p a ( e)r p a E(0, t) r E x ẍ(t) + ω0x(t) = e E(t) (1.1) m p a E 5

7 1. E = 0 ẍ(t) + ω 0x(t) = 0 (1.) x(t) = x 0 cos(ω 0 t + θ) x 0, θ x(t) = Re[x 0 e i(ω 0t+θ) ] x (ω 0) e iω 0t + x ( ω 0) e +iω 0t x ( ω0) = x (ω 0), x ( ω0) = x (ω0) = x 0 E a E a = 1 mẋ(t) + 1 kx(t) = 1 mω 0x 0 (1.3) K U K = 1 mẋ(t) = 1 4 mω 0x 0, U = 1 kx(t) = 1 4 mω 0x 0 (1.4) E a = m ω 0 x(t) 1.3 (1.4) 1.3 p a (t) ( e)r(t) = Re [ ( e)x 0 e iω 0t ] ˆx Re [ p 0 e iω 0t ] ˆx ˆx x W rad W rad = ω4 0 1πε 0 c 3 p 0 = ω4 0 1πε 0 c 3 e x 0 E a (1.5) 6

8 E a Ė a (t) = W rad τ 0 E a (t); E a (t) = E 0 e (/τ 0) t (1.6) (1.5) 1 τ 0 ω 0 (1.7) (1.) ẍ(t) + τ 0 ẋ(t) + ω 0x(t) = 0 (1.8) (1.7) (1.6) (1.8) [(1.8) (1.6) ] (1.8) x(t) = x 0 (t)e iω 0t (1.9) x 0 (t) e iω 0t x 0 (t) ẋ 0 (t) ω 0 x 0 (t), ẍ 0 (t) ω 0 ẋ 0 (t) ω 0x 0 (t), (1.10) (1.9) (1.8) ẍ 0 (t) iω 0 ẋ 0 (t) ω0x 0 (t) + ) (ẋ 0 (t) iω 0 x 0 (t) + ω τ 0x 0 (t) = 0 0 x 0 (t) ẋ 0 (t) 1 τ 0 x 0 (t); x 0 (t) e t/τ 0 E a (1.3) Ė a (t) = τ 0 E a (t) 7

9 1.4 (1.8) x(t) = x 0 (t)e iω 0t e t/τ 0 iω 0 t E(t) [ E(t) x(t); E(t) = E 0 exp t ] iω 0 t for (t > 0) τ 0 Fourier E(ω) E(ω) = 0 E(t)e iωt dt = E 0 i(ω 0 ω) + 1/τ 0 I(ω) I(ω) = E(ω) 1 (ω 0 ω) + (1/τ 0 ) ω 0 /τ ω 0 ω (1.8) ẍ(t) + ẋ(t) + ω τ 0x(t) = ( e) E(t); (1.11) 0 m E(t) = E (ω) e iωt + E ( ω) e +iωt, E ( ω) = E (+ω) (1.11) ω ω 0 ω 0, ω (1.1) x(t) = x (ω) 0 e iωt + x ( ω) 0 e +iωt 8

10 e iωt x (ω) 0 = ( e/m)e (ω) (ω 0 ω ) iω/τ 0 (1.13) E (ω) E ( ω) = E (ω) = E (ω) E(t) = E (ω) cos ωt (1.14) x (ω) 0 x (ω) 0 e iθ x (ω) 0 (u + iv); u = cos θ, v = sin θ x(t) x(t) = x (ω) 0 e iωt + x ( ω) 0 e +iωt = Re [ ] = Re x (ω) 0 e i(ωt θ) = x (ω) 0 (u cos ωt + v sin ωt) [ x (ω) 0 e iωt ] = x (ω) 0 cos(ωt θ) (1.14) θ u v 90 θ x (ω) 0 u v x (ω) 0, θ, u, v x (ω) 0 ( e/m)e (ω) = 1 (ω 0 ω ) + (ω/τ 0 ) ( 1 ω 0 ) 1 (ω 0 ω) + (1/τ 0 ) tan θ = ω/τ 0 1/τ 0 ω0 ω ω 0 ω ω0 ω u = cos θ = (ω 0 ω ) + (ω/τ 0 ) ω 0 ω (ω0 ω) + (1/τ 0 ) v = sin θ = ω/τ 0 (ω 0 ω ) + (ω/τ 0 ) 1/τ 0 (ω0 ω) + (1/τ 0 ) (1.1) ω 0 ω = (ω 0 + ω)(ω 0 ω) ω 0 (ω 0 ω) ω(ω 0 ω) (1.15) x τ 0 =10 ω 0 = ω θ τ 0 =10 ω 0 = ω Rex 0, Imx Re x 0 Im x 0 τ 0 =10 ω 0 = ω 1.1: 9

11 1.4 (1.13) p p e r a = p (ω) e iωt + p ( ω) e +iωt r r a (1.13) p (ω) = e r (ω) a = e /m (ω 0 ω ) iω/τ 0 E (ω) (t) n P (r, t) ω P (ω) (r, t) = n e /m (ω 0 ω ) iω/τ 0 E (ω) (r, t) ε 0 χ(ω)e (ω) (r, t) (1.16) χ(ω) χ(ω) = ω p (ω 0 ω ) iω/τ 0 ; ω p ne ε 0 m (1.17) ω p D D ε 0 E + P χ ε ε = ε 0 (1 + χ) (1.18) (1.17) (1.18) ε 1.6. Maxwell Maxwell D = ρ t, B = 0, E = B t, 1 H = j + D t 10

12 ρ t = 0, j = 0 D = ε 0 E + P, B = µ 0 H Maxwell E ( E) + E E µ 0 ε 0 t = µ P 0 (1.19) t ( E) = ( E) E ρ t = j = 0 Maxwell E P x B y z E = E(z, t)ˆx, P = P (z, t)ˆx (1.19) ( z 1 c t c 1/ ε 0 µ 0 ) E(z, t) = 1 ε 0 c P (z, t) t (1.0) ω K E(z, t) = E (ω) (z, t) + E ( ω) (z, t) = E (ω) (z)e i(kz ωt) + E ( ω) (z)e i(kz ωt) (1.1) E ( ω) = E (ω) E (ω) = E ( ω) E ω ω 0, K k ω c ω 0 c E (ω) (z) K (1.10) E (z) KE(z), E (z) KE (z) K E(z), (1.0) E(z, t) (1.1) P (z, t) (1.16) K E(z) + ike (z) + E (z) + ω ω E(z) = c c χ(ω)e(z) 11

13 (K k )E(z) ike (z) = k χ(ω)e(z) K k = k Re[χ(ω)] k ω p ω ω 0 ω (ω 0 ω) + 1/τ 0 KE (z) = k Im[χ(ω)]E(z) k ω p ω 1/τ 0 (ω 0 ω) + 1/τ 0 E(z) (1.15) ω 0, τ 0, ω p 1 K ω E(z) 1.7 (1.17) ω p +e e L x nex +nex E E = nex/ε 0 F = ee mẍ = ne ε 0 x ω p = ne ε 0 m L 1

14 Hartree-Fock Hartree-Fock 1/r 13

15 r V (r) LS ( ) H 0 = p + V (r) (.1) m V (r).1. (.1) L z L z s z s z r r n = 1,, 3, l = 0, 1,,, n 1 m = l, l + 1,, l + l + 1 z E n l m m V 1/r l E n n l l l s p d f g m (l + 1) () Hartree-Fock Slater.1.3 Na Na 11 1s s p 6 3s 14

16 11 p 10 3s 3s 3p l = 1 m = 1, 0, 1 3 LS LS J = l + s J 3/ 1/ Na D LS. Ĥ Ĥ = Ĥ0 + Ĥ Ĥ0 Ĥ 0 n = W n n ; n = 0, 1,, Ĥ ψ t = 0 0 ψ i t ψ = Ĥ ψ = (Ĥ0 + Ĥ ) ψ t ψ(t) Ĥ0 ψ(t) = n a n (t) n a n (t) a n (t) b n (t)e iw nt/ b n (t) i n ḃ n (t)e iw nt/ n = n b n (t)e iw nt/ Ĥ n (.) 15

17 m iḃm(t) = n m Ĥ n e i(w m W n )t/ b n (t) (.3) b 0 = 1, b n = 0 (n 0) for t = 0.1 (.).3 Ĥ0 Ĥ.3.1 Ĥ = Ĥ0 + Ĥ Ĥ0 Ĥ Ĥ Ĥ = ( eˆr a ) E(r, t) = ˆµ a E(r, t) ˆr a r ˆµ ( e)ˆr a E(r, t) = E 0 cos ωt Ĥ = eˆr a E 0 cos ωt = ˆµ a E 0 cos ωt (.4) 16

18 .3. Ĥ0 r a r a l (.4) even odd even Ĥ even = odd Ĥ odd = 0 Ĥ even Ĥ odd, odd Ĥ even 1 m Ĥ n = 0 m n..3 l.3.3 ω 0 1 ω W 1 W 0, ω W n W m for n, m 0, 1 (.5) m Ĥ n = H mn cos ωt (.3) iḃm(t) = n H mn cos ωte i(w m W n )t/ b n (t) H m0 cos ωte i(wm W 0)t/ 1 17

19 t = 0 b 0 (0) = 1, b n (0) = 0(n 0) t 0 b 0 (t) 1, b n (t) 0(n 0) m 0 b m (t) = 1 i t 0 = 1 i H m0 1 i H m0 dt H m0 cos ωt e i(w m W 0 )t / [ e i(ω+(w m W 0 )/)t 1 i(ω + (W m W 0 )/) e i(ω (Wm W0)/)t 1 i(ω (W m W 0 )/) e i(ω (W m W 0 )/)t 1 i(ω (W m W 0 )/) (.5) b m (t) m = 1 b 1 (.5) 0 1 ] 18

20 3 3.1 Ĥ ψ ψ i ψ = Ĥ ψ (3.1) t ψ n ; n = 0, 1,, ψ = n c n n ψ (c 0, c 1, c, ) ˆρ ψ ψ (3.) A ˆρ A = ψ ψ A ρ n,m n ˆρ m = n ψ ψ m = c n c m ψ Ô O ψ Ô ψ O = Tr[ˆρÔ] (3.3) 19

21 Tr[ˆρÔ] = n n ˆρÔ n = n n ψ ψ Ô n = n ψ Ô n n ψ = ψ Ô ψ i ˆρ = [Ĥ, ˆρ] (3.4) t (3.1) 3.1 (3.4) 3. ψ ψ 1 P 1 ψ P ψ 3 P 3 P 1 ψ j ˆρ = ψ j P j ψ ; P j = 1 (3.5) j (3.4) (3.3) j O = j P j ψ j O ψ j = Tr[ˆρÔ] ˆρ Tr[ˆρ] = 1 (3.6) 0

22 (3.) ˆρ = ˆρ (3.7) (3.5) (3.7) 3. (3.6) 3.3 (3.7) Ĥ = Ĥ0 + Ĥ Ĥ0 a b Ĥ 0 a = W a a, Ĥ 0 b = W b b ; W a W b ω 0 Ĥ Ĥ = ˆµ E(r, t); ˆµ eˆr a r ˆµ a Ĥ a = b Ĥ b = 0 Ĥ a Ĥ b = a ˆµ b E p ab E(t) = b Ĥ a t ψ(t) ψ(t) = c a (t) a + c b (t) b c a (t) = e iw at/ c a (0), c b (t) = e iw bt/ c b (0) 1

23 N ˆρ i ψ i ˆρ = 1 ψ i ψ i N i ˆρ ρ aa = 1 N c a,i c a,i, i ρ ab = 1 N c a,i c b,i, i etc. ψ i = c a,i a + c b,i b i ˆρ = [Ĥ, ˆρ] t a b i a ˆρ b = a Ĥ ˆρ b a ˆρĤ b t = H aa ρ ab + H ab ρ bb ρ aa H ab ρ ab H bb = (W a W b )ρ ab p ab E(t)ρ bb + p ab E(t)ρ aa ρ ab = iω 0 ρ ab + i p abe(t) (ρ bb ρ aa ) (3.8) ρ ba = ρ ab = iω 0 ρ ba i p bae(t) (ρ bb ρ aa ) (3.9) ρ aa = i p abe(t) ρ bb = i p bae(t) ρ ba i p bae(t) ρ ab (3.10) ρ ab i p abe(t) ρ ba (3.11) ρ aa + ρ bb = 0 (3.1) ρ aa ρ bb = i p abe(t) ρ ba i p bae(t) ρ ab (3.13) (3.6)

24 3.4 ˆρ E(t) ρ ba (3.8) (3.9) ρ ba = b ˆρ a = c b (t)c a (t) ρ ba ρ ba e iw bt/ e +iwat/ c b (0)c a (0) e iω 0t ρ ba ω 0 E(t) E(t) = E (ω) e iωt + E ( ω) e +iωt ; E ( ω) = E (ω) (ω ω 0 ) ρ ba (3.9) ρ ba = iω 0 ρ ba i p ) ba (E (ω) e iωt + E ( ω) e +iωt (ρ bb ρ aa ) E ( ω) ω ω 0 E ( ω) ω ρ ba (t) ρ (ω) ba (t)e iωt ρ (ω) ba (t) e iωt ρ (ω) ba (t) = i(ω 0 ω)ρ (ω) ba (t) ip ba (E (ω) + E ( ω) e +iωt ) (ρ bb ρ aa ) i(ω 0 ω)ρ (ω) ba (t) ip ba E(ω) (ρ bb ρ aa ) (3.14) E(t) E ( ω) 3.5 ρ ba = 1 N c b,j c a,j (3.15) j c b,j, c a,j 3

25 (3.15) (3.14) γ(3.10) (3.11) Γ ρ (ω) ba (t) = i(ω 0 ω)ρ (ω) ba (t) γρ(ω) ba ρ aa (t) = i p abe ( ω) ρ bb (t) = i p bae (ω) ρ (ω) ba ρ ( ω) ab ip ba E(ω) (ρ bb ρ aa ) (3.16) ip bae (ω) ρ ( ω) ab + Γρ bb (3.17) i p abe ( ω) ρ (ω) ba bb (3.18) (3.17) (3.18) γ Γ 3.6 (3.16) ρ (ω) ba = 1 (ω 0 ω) iγ p ba E (ω) (ρ aa ρ bb ) (3.19) ρ aa 1, ρ bb 0 ρ (ω) 1 p ba E (ω) ab = (ω 0 ω) iγ P ˆµ ˆp P (ω) = P = N V Tr[ˆρˆp] = N V [ρ abp ba + ρ ba p ab ] = N [ ] ρ ( ω) ab p ba e +iωt + ρ (ω) ba V p abe iωt P ( ω) e +iωt + P (ω) e iωt N/V (ω 0 ω) iγ p ba p ab (ρ aa ρ bb )E (ω) ε 0 χ(ω)e (ω) χ(ω) ε 0 χ(ω) = N V 1 (ω 0 ω) iγ p ba (ρ aa ρ bb ) (3.0) 4

26 (1.17) ε 0 χ cl (ω) = N V e /m (ω 0 ω ) iω/τ 0 N V 1 (ω 0 ω) i/τ 0 e ω 0 m ρ aa ρ bb = 1 (3.0) χ(ω) χ (ω) + iχ (ω) = N ω 0 ω p ba V (ω 0 ω) + γ ε 0 + i N V ε(ω) ε(ω) = ε 0 (1 + χ(ω)) c c = 1 εµ 1 ε0 µ χ(ω) c 0 n(ω) γ p ba (ω 0 ω) + γ ε 0 n(ω) χ(ω) n(ω) = 1 + χ(ω) χ (ω) + 1 iχ (ω) n (ω) + iκ(ω) n n k ω k = nω c 0 = ω c 0 (n + iκ) [ ( )] [ ω E (ω) e i(kz ωt) = E (ω) exp i n z ωt exp κ ω ] z c 0 c 0 K(ω) ω c 0 n (ω) κ(ω) ρ bb 0 (3.16) (3.18) ρ (ω) 1 p ba E (ω) ba = (ω 0 ω) iγ ρ bb = [ ] Γ Im p ab E ( ω) ρ (ω) ba 1 = ρ aa + ρ bb (ρ aa ρ bb ), ρ ( ω) ab = ρ (ω) ba 5

27 ρ aa ρ bb = ρ (ω) ba = (ω 0 ω) + γ (ω 0 ω) + γ + γ p ba E (ω) (3.1) Γ ( ) pba E (ω) (ω 0 ω) + iγ (ω 0 ω) + γ + γ p ba E (ω) (3.) Γ ω P (ω) = N V ρ(ω) ba p ab = N V (ω 0 ω) + iγ (ω 0 ω) + γ + γ p ba E (ω) Γ p ba E(ω) χ(ω) = N V (ω 0 ω) + iγ (ω 0 ω) + γ + γ p ba E (ω) Γ p ba ε 0 (3.3) E(t) χ(ω) (1.17) 6

28 4 4.1 Ĥ = Ĥ0 + Ĥ ; Ĥ = ˆµ E(t) Ĥ 0 1 = W 1 1, Ĥ 0 = W ; ω 0 = W W 1 ψ = c 1 (t) 1 + c (t) i ψ = Ĥ ψ t iċ 1 (t) = W 1 c 1 (t) µ 1 E(t)c (t) iċ (t) = µ 1 E(t)c 1 (t) + W c (t) Ĥ µ 1 1 ˆµ c i (t) = b i (t)e iw it/ ; i = 1, iḃ1(t) = µ 1 E(t)b (t)e iω 0t iḃ(t) = µ 1 E(t)b 1 (t)e +iω 0t 7

29 E(t) = E (ω) e iωt + E ( ω) e +iωt ω 0 ω ω 0, ω ḃ 1 (t) = i 1 µ 1 E ( ω) e i t b (t) ixe i t b (t) (4.1) ḃ (t) = i 1 µ 1 E (ω) e +i t b 1 (t) ix e +i t b 1 (t) (4.) t = 0 b 1 (0) = 1, b (0) = 0 t 0 b 1 (t) 1 (4.) b (t) t 0 dt ix e i t = ix e i t/ sin 1 t t b (t) = 4 X sin 1 t (4.3) = ω 0 ω = 0 1/t t δ(ω 0 ω) = π lim sin [ (ω 0 ω) t ]] t (ω 0 ω) t (4.4) (4.3) (4.3) X = 1 µ1 E (ω) 1 = µ 1 E (ω) cos θ (4.5) 1 ε 0E (t) + 1 ( ) µ 0H (t) = ε 0 E (t) = ε 0 E (ω) e iωt + E ( ω) E e +iωt = (ω) ε (4.3) E (ω) ω U(ω)dω E (ω) ε 0 U(ω)dω 8

30 (4.5) cos θ cos θ = 1 dω cos θ = 1 4π 3 b (t) = µ 1 3 ε 0 = π 3 µ 1 ε 0 dωu(ω) sin 1 t ; = ω 0 ω U(ω 0)t ω 1 t (4.4) ω 1 ω 1 = π 3 µ 1 ε 0 U(ω 0) (4.6) U(ω 0 ) (4.1) b 1 = 0, b = 1 ω 1 ω 1 ω 1 = ω (4.4) t ω T W 1 W (W W 1 ω 0 0) N e 1 N e N e N e 1 = exp [ W ] W 1 k B T 9 (4.7)

31 U T (ω) U T (ω) = ω3 π c 3 1 e ω/k BT 1 (4.8) (1) () B 1 U T (ω 0 ) B 1 U T (ω 0 ) A 1 N e 1B 1 U T (ω 0 ) = N e B 1 U T (ω 0 ) + N e A 1 (4.9) T (4.7) (4.8) U T (ω 0 ), N e 1 = N e (4.9) B 1 = B 1 B (4.9) (4.8) A A 1 = ω3 0 π c 3 B BU T (ω 0 ) (4.6) ω 1 A = µ 1 3πε 0 c 3 ω3 0, B = π 3 µ 1 ε 0 (4.10) 30

32 A (4.10) ω BU T (ω 0 ) A = 1 N1/N e e 1 = 1 e ω 0/k BT 1 = n ω 0 A + BU T (ω 0 ) = A(1 + n ω0 ) n ω 1 1eV K n ω 1 31

33 5 5.1 W t W t W E(t) = E 0 exp [ iω 0 t 1 ] γt, for (t > 0) E(ω) = I(ω) 0 I(ω) E(ω) E(t)e iωt dt = E 0 1 i(ω ω 0 ) + γ/ 1 (ω ω 0 ) + (γ/) γ 5. τ c τ p(τ) p(τ) = 1 τ c e τ/τc (5.1) 3

34 [(5.1) ] τ Q(τ) Q(τ) p(τ) Q(τ) = τ p(τ )dτ Q (τ) = p(τ) Q(τ) γ c τ τ + τ γ c τ Q(τ + τ) Q(τ) = γ c τq(τ) = dq(τ) dτ = γ c Q(τ) Q(0) = 1 Q(τ) = e γ cτ p(τ) = Q (τ) = γ c e γcτ τ c τ c =< τ >= 0 τp(τ)dτ = 1 γ c (5.1) j t j E(t) E(t) = E 0 exp( iω 0 t iθ j ) for t j < t < t j+1 θ j ( π, π] τ j t j+1 t j (5.1) E(ω) = E(t)e iωt dt = j tj+1 t j E 0 e i(ω 0 ω)t dt e iθ j E(ω) = j,j j j e iθ j +iθ j θ j 1 π < E(ω) > θ = π π π π π dθ 1 dθ π dθ j j,j j j e iθ j +iθ j = π π j j dθ 1 dθ e iθ j+iθ j j,j π = j,j j j δj,j = j π j 33

35 j = tj +τ j E 0 e i(ω0 ω)t sin(ω 0 ω) dt = E 0 t j (ω 0 ω)/ e i(ω 0 ω)(τ j /+t j ) τ j < E(ω) > θ = j E 0 [ sin(ω0 ω) τ ] j (ω 0 ω)/ τ j < E(ω) > < E(ω) > θ,τ = = 1 τ c (ω 0 ω) /4 0 (ω 0 ω) + 1/τc 0 dτ p(τ) [ sin(ω0 ω) τ (ω 0 ω)/ dτ e τ/τ c sin (ω 0 ω) τ /τ c ] 5.3 v ω 0 z = ω (v/c) ( ) ω ω 0 1 v z /c ω v z c z v z [ ] m P (v z ) = πk B T exp mv z k B T (5.) I(ω) (5.) v z I(ω) P (v z (ω)) dv ] z [ dω exp mc (ω ω 0 ) k B T T ω 0 34

36 5.4 35

37 6 (LASER) Light Amplification by Stimulated Emission of Radiation MASER (Tawnes et al, 1954) 1960 Maiman LASER LASER 6.1 W W = E j = E P t ) = (E (ω) e iωt + E ( ω) e )( iωp +iωt (ω) e iωt + iωp ( ω) e +iωt ] = iωe (ω) P ( ω) iωe ( ω) P (ω) = Im [ωe ( ω) P (ω) P (ω) = ε 0 χ(ω)e (ω) [ W = ε 0 Im ωχ(ω) E (ω) ] = ε 0 ωχ (ω) E (ω) 36

38 W χ (ω) χ (3.0) χ(ω) = n p ab ε 0 (ω 0 ω) + iγ (ω 0 ω) + γ (ρ aa ρ bb ) ρ aa > ρ bb = χ > 0 ρ aa < ρ bb = χ < 0 6. Maxwell divd = ρ, rote = B D, divb = 0, roth = t t + j ; D = ε 0 E + P, B = µ 0 H + M ρ = M = 0, j = σe z z xy E(r, t) = E(z, t) x y E E t c E z + σ ε 0 E t = 1 ε 0 P t (6.1) c 1/ ε 0 µ 0 L k m ω m k m = mπ L, ω m = ck m = mπ L c E(z, t) = [ E (ω) (t)e iωt + E ( ω) (t)e +iωt] sin k m z (6.) P (z, t) = [ P (ω) (t)e iωt + P ( ω) (t)e +iωt] sin k m z E (ω) (t) ω 37

39 (6.1) [ ] Ė (ω) + i (ω m ω) iκ E (ω) = i ω P (ω) (6.3) ε 0 κ (ω m ω ) ω(ω m ω) σ ε 0 E (ω) (t) = E (ω) (t) e iφ(t), ( d Ė (ω) E (ω) (t) (t) = dt + i φ(t) E (ω) (t) ) e iφ(t) (6.3) d E (ω) (t) dt P (ω) = ε 0 χ(ω)e (ω) = ε 0 (χ (ω) + iχ (ω))e (ω) +i φ(t) E (ω) (t) ] E +i [(ω m ω) κ (ω) (t) ω = i (χ (ω)+iχ (ω)) E (ω) (t) d E (ω) (t) [ + κ + ω E (ω)] dt χ (ω) (t) = 0 (6.4) φ(t) + (ω m ω) ω χ (ω) = 0 (6.5) χ < (6.1) (6.3) 6.3 (6.4) (6.5) κ + ω χ (ω) = 0 (6.6) ω + ω χ (ω) = ω m (6.7) 38

40 χ (3.16) (3.18) (3.1) (3.) (3.17) (3.18) ρ (ω) ba (t) = i(ω 0 ω)ρ (ω) ba (t) γρ(ω) ba ρ aa = i p abe(t) ρ bb = i p bae(t) ip ba E(ω) (ρ bb ρ aa ) ρ ba i p bae(t) ρ ab Γ(ρ aa ρ 0 aa) ρ ab i p abe(t) ρ ba Γ(ρ bb ρ 0 bb) ρ 0 aa ρ0 aa a, b ˆρ (6.) ρ (ω) ba (z) = p ba E (ω) (ω 0 ω + iγ) sin k m z (ω 0 ω) + γ + γ p ba E (ω) (ρbb 0 ρ 0 aa) Γ sin k m z sin k m z P ) ( ) P = n (p ab ρ ba + p ba ρ ab = n p ab ρ (ω) ba e iωt + p ba ρ ( ω) ab e +iωt ] [P (ω) (t)e iωt + P ( ω) (t)e +iωt sin k m z (6.8) ρ (ω) ba P (ω) P (ω) = n (ω 0 ω + iγ) p ba (ω 0 ω) + γ γ Γ p ba E (ω) (ρ0 bb ρ 0 aa)e (ω) (6.9) (ω 0 ω + iγ) χ(ω) = n (ω 0 ω) + γ + 3 γ p ba E (ω) 4 Γ p ba ε 0 (ρ0 bb ρ 0 aa) (6.10) 39

41 [(6.9) ] P e iωt sin k m z (6.8) sin k m z 0 L : n p ab L 0 dzρ (ω) L ba (z) sin k mz = P (ω) dz sin k m z L/ 0 L dzρ (ω) 0 L ba (z) sin k c sin k m z mz 0 a + b sin k m z dz c L ( dz sin k m z 1 b ) a 0 a sin k m z = c ( L a b ) 3 a 8 L = c ( 1 b a a c 1 L a 1 + b 3 = c L a + 3 a 4 4 b a, b, c (6.9) ) 3 L (6.6) χ (6.10) : κ = ω n γ (ω 0 ω) + γ γ Γ p ba E (ω) p ba ε 0 (ρ0 bb ρ 0 aa) (6.11) ρ 0 bb ρ0 aa E (ω) (6.11) E (ω) (ρ 0 bb ρ0 aa) (ρ 0 bb ρ0 aa) E (ω) E (ω) N 0 n (ρ 0 bb ρ 0 aa) N 0 N th (ω 0 ω) + γ (6.11) 40 γ ω ε 0 p ba κ (6.1)

42 (6.1) E (ω) = Γω 6κε 0 ( N 0 N th ) (6.13) Γ 6. (6.1) (6.13) (6.11) 6.3. ω 0 ω 0 ω m ω 0 ω m ω (6.7) ω = ω m χ (ω) ω (6.10) χ = ω 0 ω χ γ (6.6) χ = (ω 0 ω) κ ωγ (6.7) ω = γ ω m + κ ω 0 γ + κ (6.14) ω ω 0 ω m γ κ κ γ ω ω m 41

43 6.4 (1) () fs(10 15 s) k m = π L m, ω m = c k m ; m : ω 0 N ω ν = ω 0 + ω ν, k ν = ω ν /c ; ω π [ L c, ν N 1, N 1 ] E(z, t) = (N 1)/ ν= (N 1)/ E ν e i(ωνt+φν)+ikνz φ ν = 0 E ν = E 0 z = 0 4

44 E(0, t) = (N 1)/ ν= (N 1)/ E 0 e i(ω 0+ ω ν) = E 0 e iω 0t sin ( ω N ) t ( sin ω t ) E(0, t) = E 0 ( sin ω N ) t ( sin ω t ) (6.15) t = 0 t T t T t = π N ω, T = L c N ω T L 10cm N (6.15) t T 6.5 (Al O 3 ) Cr 3+ Cr 3+ ( 694.3nm) Nd YAG (Y 3 Al 5 O 1 ) 43

45 Nd 3+ (CW) Nd YAG He Ne He Ne Ne n p p n ( n p ) 44

46 7 7.1 III Maxwell E = B t, H = D, B = 0, D = 0; t D = ε 0 E, B = µ 0 H E = A t, B = A (7.1) A 1 A = 0, A = 0 (7.) c t H H = 1 (ε 0 E + µ 0 H )dr (7.3) A(r, t) = q(t)u(r) 45

47 (7.) q(t) u(r) 1 c u(r) q(t) t = 0 q l (t) t = ω l q l (t), u l (r) = k l u l (r); k l ω l c (7.4) A A(r, t) = 1 q l (t) u l (r) (7.5) ε0 (7.4) q(t) u(r) u l (r) = 1 e ik l rêl ; ê l k l V k l ê l l l = (l x, l y, l y ), l i = 0, ±1, ±, ; k l = π l = (l, σ); L l, σ = 1, ; ê ê (l,1) (l,) u l (r) u l(r) u l (r)dr = δ l,l E(r, t) = B(r, t) = 1 ε0 l l q(t) u l (r) (7.6) 1 q(t) ik l u l (r) (7.7) µ 0 ε0 l (7.3) H = 1 ( ) q l + ωl ql l (7.8) (7.4) q l (t) 7.1. q l p l (7.8) H = H l ; H l 1 ( ) p l + ωl ql l 46

48 q l p l ˆq l ˆp l [ˆq l, ˆp l ] = i δ l,l ˆp l = i q l Ĥ = 1 ( ) ˆp l + ωl ˆq l l etc. â l â l: â l â l ωl ˆq 1 l + i ˆp l ωl ˆq 1 l i ˆp l ωl ωl ( ) ˆq l = â l ω + â l l ωl ( ) ˆp l = i â l â l (7.9) [â l, â l ] = δ l,l, [â l, â l ] = 0, [â l, â l ] = 0 (7.10) Ĥ = ( ω l â lâl + 1 ) l (7.11) 7.1 (7.10) (7.11) ˆn ˆn â â ; [â, â ] = 1 n n > 1. ˆn. ˆn n n 0 3. n > ˆn n â n > n 1 4. ˆn n 47

49 5. n â n n > ˆn 6. 0 > â 0 >= 0 â n 0 > ˆn n 7. â n >= n + 1 n + 1 >, â n >= n n 1 > (7.6) (7.9) Ê(r) = ( ωl i â 1 l e ik l r 1 âl e +ik l r ) ê l ε 0 l V V â Ê â l (t) i dâ l (t) dt = [â l (t), H] = ω lâ l (t) = â l (t) = â l (0)eiω lt â l (0) â l â l (t) = â l eiω lt, â l (t) = â l e iω lt Ê(r, t) = ( ) ωl i â 1 l e i(ω lt k 1 l r) â l e i(ω lt k l r) ê l ε 0 l V V Ĥ(r, t) = l ω l µ 0 ( â l ) 1 e i(ω lt k 1 l r) â l e i(ω lt k l r) V V i k l k l ê l H l n l E = ( ω l n l + 1 ), ψ >= n 1 n n 3 > (7.1) l 48

50 7. (7.1) (7.11) l n l ê l Ê(r, t) = ie l â l e i(ω lt k l r) ie l â l ei(ω lt k l r) ; E l ωl ε 0 V (7.13) n n > < Ê > < n Ê n >= 0 ( < Ê > = < n ie l â l e i(ω lt k l r) ie l â lt k l r)) l e+i(ω n > ( ) = El < n â l â l + â lâl = El (n + 1) < Ê > = E l n + 1 n n cos(ωt k r) (7.13) < Ê(r, t) >= E(+) e i(ω lt k l r) + E ( ) e +i(ω lt k l r) (7.14) â l â l α >= α α > (7.15) (7.15) < α â l =< α α 49

51 Ê < α Ê α > = < α ie l â l e i(ω lt k l r) ie l â l e+i(ω lt k l r) α > = ie l α e i(ω lt k l r) ie l α e +i(ω lt k l r) E (+) = ie l α (7.14) (7.15) â α > â α >= α α > â α α >= c n n > â n > n=0 αc n = n + 1c n+1 = c n = αn n! c 0 c 0 α >= e α / n=0 α n n! n > (7.16) P (n) P (n) = < n α > α n α = e n! m mn e n! ; m α (7.17) m = α 50

52 (7.17) < ˆn >=< α â α >=< α â â α >= α ( ) < ˆn > = < α â â â â α > = < α â â â â + â â α > = α 4 + α < ˆn > < (ˆn < ˆn >) > = < ˆn > < ˆn > = α < ˆn > < ˆn > = α α = 1 α α (7.9) ω ˆq = ω (â + â), ˆp = i (â â) < ˆq > = < α ˆq α > = ω (α + α), < ˆq > = ω < α (â + â) α > = ω (α + α α ) q < ˆq > = < ˆq > < ˆq > = p ω < ˆp > = q p = ω 51

53 < Ê > = < α Ê α > = ie l α e i(ω lt k l r) ie l α e +i(ω lt k l r) ( < Ê > = < α Ê α > = < α [ie l â l e i(ω lt k l r) â lt k l r))] l e+i(ω α > [ ] = El α e i(ω lt k l r) + α + 1 α e +i(ω lt k l r) ) < Ê >=< (Ê < Ê > >=< Ê > < Ê > = El α < Ê > = E l, < Ê > E l α 5

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0 5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â = Tr Âe βĥ Tr e βĥ = dγ e βh (p,q) A(p, q) dγ e βh (p,q) (5.2) e βĥ A(p, q) p q Â(t) = Tr Â(t)e βĥ Tr e βĥ = dγ() e βĥ(p(),q())

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t) Radiation from moving harges# Liénard-Wiehert potential Yuji Chinone Maxwell Maxwell MKS E x, t + B x, t = B x, t = B x, t E x, t = µ j x, t 3 E x, t = ε ρ x, t 4 ε µ ε µ = E B ρ j A x, t φ x, t A x, t

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

高知工科大学電子 光システム工学科

高知工科大学電子 光システム工学科 卒業研究報告 題 目 量子力学に基づいた水素分子の分子軌道法的取り扱いと Hamiltonian 近似法 指導教員 山本哲也 報告者 山中昭徳 平成 14 年 月 5 日 高知工科大学電子 光システム工学科. 3. 4.1 4. 4.3 4.5 6.6 8.7 10.8 11.9 1.10 1 3. 13 3.113 3. 13 3.3 13 3.4 14 3.5 15 3.6 15 3.7 17

More information

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef 4 213 5 8 4.1.1 () f A exp( E/k B ) f E = A [ k B exp E ] = f k B k B = f (2 E /3n). 1 k B /2 σ = e 2 τ(e)d(e) 2E 3nf 3m 2 E de = ne2 τ E m (4.1) E E τ E = τe E = / τ(e)e 3/2 f de E 3/2 f de (4.2) f (3.2)

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

( ) ) AGD 2) 7) 1

( ) ) AGD 2) 7) 1 ( 9 5 6 ) ) AGD ) 7) S. ψ (r, t) ψ(r, t) (r, t) Ĥ ψ(r, t) = e iĥt/ħ ψ(r, )e iĥt/ħ ˆn(r, t) = ψ (r, t)ψ(r, t) () : ψ(r, t)ψ (r, t) ψ (r, t)ψ(r, t) = δ(r r ) () ψ(r, t)ψ(r, t) ψ(r, t)ψ(r, t) = (3) ψ (r,

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b 23 2 2.1 n n r x, y, z ˆx ŷ ẑ 1 a a x ˆx + a y ŷ + a z ẑ 2.1.1 3 a iˆx i. 2.1.2 i1 i j k e x e y e z 3 a b a i b i i 1, 2, 3 x y z ˆx i ˆx j δ ij, 2.1.3 n a b a i b i a i b i a x b x + a y b y + a z b

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

http://www1.doshisha.ac.jp/ bukka/qc.html 1. 107 2. 116 3. 1 119 4. 2 126 5. 132 6. 136 7. 1 140 8. 146 9. 2 150 10. 153 11. 157 12. π Hückel 159 13. 163 A-1. Laguerre 165 A-2. Hermite 167 A-3. 170 A-4.

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

eto-vol1.dvi

eto-vol1.dvi ( 1) 1 ( [1] ) [] ( ) (AC) [3] [4, 5, 6] 3 (i) AC (ii) (iii) 3 AC [3, 7] [4, 5, 6] 1.1 ( e; e>0) Ze r v [ 1(a)] v [ 1(a )] B = μ 0 4π Zer v r 3 = μ 0 4π 1 Ze l m r 3, μ 0 l = mr v ( l s ) s μ s = μ B s

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

OHP.dvi

OHP.dvi 7 2010 11 22 1 7 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2010 nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/18 3. 10/25 2, 3 4. 11/ 1 5. 11/ 8 6. 11/15 7. 11/22 8. 11/29 9. 12/ 6 skyline 10. 12/13

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r) ( : December 27, 215 CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x f (x y f(x x ϕ(r (gradient ϕ(r (gradϕ(r ( ϕ(r r ϕ r xi + yj + zk ϕ(r ϕ(r x i + ϕ(r y j + ϕ(r z k (1.1 ϕ(r ϕ(r i

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

第3章

第3章 5 5.. Maxwell Maxwell-Ampere E H D P J D roth = J+ = J+ E+ P ( ε P = σe+ εe + (5. ( NL P= ε χe+ P NL, J = σe (5. Faraday rot = µ H E (5. (5. (5. ( E ( roth rot rot = µ NL µσ E µε µ P E (5.4 = ( = grad

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4 [2642 ] Yuji Chinone 1 1-1 ρ t + j = 1 1-1 V S ds ds Eq.1 ρ t + j dv = ρ t dv = t V V V ρdv = Q t Q V jdv = j ds V ds V I Q t + j ds = ; S S [ Q t ] + I = Eq.1 2 2 Kroneher Levi-Civita 1 i = j δ i j =

More information