「スウェーデン企業におけるワーク・ライフ・バランス調査 」報告書

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "「スウェーデン企業におけるワーク・ライフ・バランス調査 」報告書"

Transcription

1

2 2 Demoskop Micromediabanken

3 50 50 /CEO /

4

5

6

7 82

8

9 % %

10 46.7% 26.6%25.8% % 25.8%1 3 16%

11 46.9% 36.4% 15.3% , ,000 (3,750,000-5,999,000 ) 400,000 6,000, ,000 3,749, %

12 87

13

14

15 90

16

17 1 2 ( 3-3-8) ( 3-3-9) 92

18 = 70 =

19 43.6% % %

20 95

21 %

22 97

23

24

25

26 % 55.9%

27

28

29

30

31 106

32 107

33 1 108

34 109

35 110

36 111

37 71.3% 64.9% 42.3%

38

39 ( 4 3 )

40

41 116 ICT 42.6% % 776% %

42 117

43 % 21.1% 14.6% ICT

44 119

45 (1)

46 (2) 121

47 122

48

49 100 70%

50

51

52

53

54 ()1 2 ()4 5 ()4 5 ()4 5 ()1 2 ()1 2 ()4 5 ()

55 61.5%

56

57

58 H 0 H1 p 1 p2 H = : p p : p p H Fisher s Exact Test Mantel-Haenszel Test 2 1 Conover (1999) Chapter 4 2 Conover (1999) Chapter 4 133

59 i H 0 : i = 1,,6 p = 1 i p2 i H 0 : i p > 1 i p2 i p < 1 i p2i

60 % (1)

61 5 [ y z, z, z, s, l ] exp( α + α z + α z + α z + β ( s ) l + β s l ) E i 2i 3i 4i i i 1 2 2i 3 3i 4 4i 1 1 i i 2 = (1) i i yi z 2 =1 =0 i z 3 =1 =0 i z 4 =1 =0 i i s =1 =0 l =1,, =5 i α1 α 1 + α 2 α 1 + α 3 α 1 + α 4 α 2 α 3 α 4 β β 1 2 (2)

62

63 21 22 (3) 1 (1) Hurdle model Count data model 0 138

64 0 1 (2.1) (2.2) Pr Pr [ y 0 ] = ( 1+ µ ) 1 i = i 1i [, > 0] x i y i y i x (2.1) µ y i 1 2i x i = µ 2i 1+ µ (2.2) 2i ( z z, z, s, l ) = 2i, 3i 4i i i ( α11 + α12 z2i + α13z3i + α14 z4i + β11li 1sili ) ( α + α + α z + α z + β l s l ) µ + 1i exp γ i z2i 23 3i 24 4i 21 i 2 µ 2 exp + γ i i (1) Cameron and Trivedi (1998) Chapter 4 139

65 5% 3 5% (2.1) (2.1) 0 0 (2.2) [ y i x, y i > 0] = 1+ µ i E i % 6 Cameron and Trivedi (1998) Chapter 4 140

66

67 Cameron A.C. and P.K. Trivedi (1998) Regression Analysis of Count Data, Cambridge: Cambridge University Press. Conover, W.J. (1999) Practical Nonparametric Statistics Third Edition, NY: John Wiley & Sons. 142

68 () () () () 143

69 () TCO 6 144

70 () A+ A- () () %

71 () () ()

72 () () (

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003) 3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

Microsoft Word - News 18 本文.doc

Microsoft Word - News 18 本文.doc Argonauta 18: 17 30 (2010) 2007 1971 Cohen et al. 2003 A, B, C X, Y, Z 17 error error 1 0 1 1 X Y 1981 i) ii) 0 18 iii) iv) Yi = 0 + 1 X1i + 2 X2i + + p Xpi + i Xp pxpi + i i i Xp i Xp i 2 X Y 0 Xi Xi

More information

Mantel-Haenszelの方法

Mantel-Haenszelの方法 Mantel-Haenszel 2008 6 12 ) 2008 6 12 1 / 39 Mantel & Haenzel 1959) Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J. Nat. Cancer Inst. 1959; 224):

More information

DATA BOOK 01

DATA BOOK 01 DATA BOOK 01 DATA BOOK 2015 NAGOYA UNIVERSITY OF ARTS CONTENTS 02 03 chapter 1 P 04 chapter 2 P 20 chapter 3 P 50 chapter 4 P 64 Chapter 1 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 chapter 1 P 04

More information

MacOSX印刷ガイド

MacOSX印刷ガイド 3 CHAPTER 3-1 3-2 3-3 1 2 3 3-4 4 5 6 3-5 1 2 3 4 3-6 5 6 3-7 7 8 3-8 1 2 3 4 3-9 5 6 3-10 7 1 2 3 4 3-11 5 6 3-12 7 8 9 3-13 10 3-14 1 2 3-15 3 4 1 2 3-16 3 4 5 3-17 1 2 3 4 3-18 1 2 3 4 3-19 5 6 7 8

More information

荳也阜轣ス螳ウ蝣ア蜻・indd

荳也阜轣ス螳ウ蝣ア蜻・indd 1 2 3 CHAPTER 1 4 CHAPTER 1 5 6CHAPTER 1 CHAPTER 1 7 8CHAPTER 1 CHAPTER 2 9 10CHAPTER 2 CHAPTER 2 11 12 CHAPTER 2 13 14CHAPTER 3 CHAPTER 3 15 16CHAPTER 3 CHAPTER 3 17 18 CHAPTER 4 19 20CHAPTER 4 CHAPTER

More information

t-co 2 4000 3500 3000 2500 2000 1500 1000 500 0 167 128 116 191 239 183 88 96 87 360 369 360 68 78 3638 64 3676 3509 7 8 8 14 12 10 8 11 3 6 6 6 4 4 3 4 7 7 2 5 1 1 2 1 2 1 1 2 0 0 0 650 638 627

More information

,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ * i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i

,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ * i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i Armitage.? SAS.2 µ, µ 2, µ 3 a, a 2, a 3 a µ + a 2 µ 2 + a 3 µ 3 µ, µ 2, µ 3 µ, µ 2, µ 3 log a, a 2, a 3 a µ + a 2 µ 2 + a 3 µ 3 µ, µ 2, µ 3 * 2 2. y t y y y Poisson y * ,, Poisson 3 3. t t y,, y n Nµ,

More information

Evaluation of a SATOYAMA Forest Using a Voluntary Labor Supply Curve Version: c 2003 Taku Terawaki, Akio Muranaka URL: http

Evaluation of a SATOYAMA Forest Using a Voluntary Labor Supply Curve Version: c 2003 Taku Terawaki, Akio Muranaka URL: http 14 9 27 2003 Evaluation of a SATOYAMA Forest Using a Voluntary Labor Supply Curve 1 1 2 Version: 15 10 1 c 2003 Taku Terawaki, Akio Muranaka URL: http://www.taku-t.com/ 1 [14] 3 [10] 3 2 Andreoni[1] Duncan[7]

More information

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα = 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a + b α (norm) N(α) = a + b = αα = α α (spure) (trace) 1 1. a R aα = aα. α = α 3. α + β = α + β 4. αβ = αβ 5. β 0 6. α = α ( ) α = α

More information

SAS Enterprise Guideによるデータ解析入門

SAS Enterprise Guideによるデータ解析入門 ........ 1 / 70.... SAS Enterprise Guide Kengo NAGASHIMA Laboratory of Biostatistics, Department of Parmaceutical Technochemistry, Josai University 2010 11 16 ........ 2 / 70 (SAS / SAS Enterprise Guide

More information

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4 20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 0 1 2 3 4 5 6 1964 1978 7 0.0015+0.013 8 1 π 2 2 2 1 2 2 ( r 1 + r3 ) + π ( r2 + r3 ) 2 = +1,2100 9 10 11 1.9m 3 0.64m 3 12 13 14 15 16 17 () 0.095% 0.019% 1.29% (0.348%) 0.024% 0.0048% 0.32% (0.0864%)

More information

untitled

untitled ICT ICT 1 ICT 2 ICT 3 ICT 4 ICT 5 ICT 6 ICT 7 ICT 8 ICT 9 ICT 10 ICT 11 ICT 12 ICT 13 ICT 14 ICT 15 ICT 16 ICT 17 ICT 18 ICT 19 ICT 20 ICT 21 ICT 22 ICT 23 ICT 24 ICT 25 ICT 26 ICT 27 ICT 28 ICT 29 ICT

More information

nsg04-28/ky208684356100043077

nsg04-28/ky208684356100043077 δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!

More information

研修コーナー

研修コーナー l l l l l l l Department of Obstetrics and Gynecology, Fukui Medical University, Fukui l l l l l l µ l β β l α l µ µ l l l l Department of Obstetrics and Gynecology, Gifu University School of Medicine,

More information

() [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () ) m/s 4. ) 4. AMEDAS

() [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () ) m/s 4. ) 4. AMEDAS () [REQ] 4. 4. () [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () 0 0 4. 5050 0 ) 00 4 30354045m/s 4. ) 4. AMEDAS ) 4. 0 3 ) 4. 0 4. 4 4.3(3) () [REQ] () [REQ] (3) [POS] () ()() 4.3 P = ρ d AnC DG ()

More information

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2 Takio Kurita Neurosceince Research Institute, National Institute of Advanced Indastrial Science and Technology takio-kurita@aistgojp (Support Vector Machine, SVM) 1 (Support Vector Machine, SVM) ( ) 2

More information

17 17 17 17 11 21 28 1 24 12 36 2,000 2 22 11 3.67 3.38 22 2.97 21 10 1.7 1.12 22 10 13 2.75 11 10 15 24 10 12 14 3 17 17 2006 4 17 10 24 12 17 5 15 17 17 11 40 6 17 40 17 11 7 24 17 24 17 8 40 17 17 9

More information

PowerPoint Presentation

PowerPoint Presentation 2 9/ 3 3 9/ 9 4 5 , PR () 6 ,,, (11) 7 PR 8 9 10 11 TEL. 106 8/131512/291/3 TEL. 107 12/291/3 12 http://www.f-turn.jp/ 13 21 4 21 14 200910 U 200911 U 200911 20102 15 20102 PR 20103 20103 16 20103 20104

More information

untitled

untitled ,337 37 35 0,349,09 35 55 988 3 0 0 3,387 7 90 0,369,46 5 57 5 0 90 38 8,369 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 0 3 4 5 6 8 9 30 3 3 5,400 7,00 9,000 0,800,600 4,400 6,00 8,000 9,800,600 3,400 5,00 7,000 8,800

More information

,877 61,524 33, ,292, ,653 57,601 95,188 2,416 1,767,

,877 61,524 33, ,292, ,653 57,601 95,188 2,416 1,767, 02 02 02 180,771 07 02 01 1,377 07 02 02 1,051,703 07 02 05 220,099 07 03 01 926,597 08 02 04 1,877,566 08 04 02 2,973,603 08 05 03 672,950 10 06 03 778,433 10 06 04 735,789 10 06 06 225,392 10 06 07 365,442

More information

AC-2

AC-2 AC-1 AC-2 AC-3 AC-4 AC-5 AC-6 AC-7 AC-8 AC-9 * * * AC-10 AC-11 AC-12 AC-13 AC-14 AC-15 AC-16 AC-17 AC-18 AC-19 AC-20 AC-21 AC-22 AC-23 AC-24 AC-25 AC-26 AC-27 AC-28 AC-29 AC-30 AC-31 AC-32 * * * * AC-33

More information

エンジョイ北スポーツ

エンジョイ北スポーツ 28 3 20 85132 http://www.kita-city-taikyo.or.jp 85 63 27 27 85132 http://www.kita-city-taikyo.or.jp 2 2 3 4 4 3 6 78 27, http://www.kita-city-taikyo.or.jp 85132 3 35 11 8 52 11 8 2 3 4 1 2 4 4 5 4 6 8

More information

12 1) 20012002 Allison1995 2 3 35 25 20 6 12 1,156 80 2003 2005 2 4-1 1 12 Person-year Data 3 t

12 1) 20012002 Allison1995 2 3 35 25 20 6 12 1,156 80 2003 2005 2 4-1 1 12 Person-year Data 3 t 12 10 Kaplan-Meier Method Discrete-time Logit Model Survival Analysis 2 p t = p t / (1-p t ) Odds Odds Ratio 12 1) 20012002 Allison1995 2 3 35 25 20 6 12 1,156 80 2003 2005 2 4-1 1 12 Person-year Data

More information

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3 13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >

More information

第一勧業銀行の商品・サービス・手数料

第一勧業銀行の商品・サービス・手数料 DKB 137 CHAPTER 3 138 DKB Corporate Data of DKB DKB 139 CHAPTER 3 140 DKB Corporate Data of DKB DKB 141 CHAPTER 3 142 DKB Corporate Data of DKB DKB 143 CHAPTER 3 144 DKB Corporate Data of DKB DKB 145 CHAPTER

More information

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like () 10 9 30 1 Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ)

More information

わが国企業による資金調達方法の選択問題

わが国企業による資金調達方法の選択問題 * takeshi.shimatani@boj.or.jp ** kawai@ml.me.titech.ac.jp *** naohiko.baba@boj.or.jp No.05-J-3 2005 3 103-8660 30 No.05-J-3 2005 3 1990 * E-mailtakeshi.shimatani@boj.or.jp ** E-mailkawai@ml.me.titech.ac.jp

More information

C033** of 7 C034** PEG-IFN-2b + IFN -2b + 78 HCV-RNA PEG-IFN-2b IFN-2b n=250 n=200 n= =10 % % 85 % 74 % %

C033** of 7 C034** PEG-IFN-2b + IFN -2b + 78 HCV-RNA PEG-IFN-2b IFN-2b n=250 n=200 n= =10 % % 85 % 74 % % 2.7.6.9 2.7.6.9.1 Genotype 1 C PEG-IFN-2b+ C033* Genotype 1 C PEG-IFN-2b + IFN-2b + 2.7.6-54 2.7.6-54 C033* 1 of 7 Genotype 1 C PEG-IFN-2b+ Genotype 1 C PEG-IFN-2b + IFN-2b + 24 HCV-RNA 48 24 follow-up

More information

(Jackson model) Ziman) (fluidity) (viscosity) (Free v

(Jackson model) Ziman) (fluidity) (viscosity) (Free v 1) 16 6 10 1) e-mail: nishitani@ksc.kwansei.ac.jp 0. 1 2 0. 1. 1 2 0. 1. 2 3 0. 1. 3 4 0. 1. 4 5 0. 1. 5 6 0. 1. 6 (Jackson model) 8 0. 1. 7 10. 1 10 0. 1 0. 1. 1 Ziman) (fluidity) (viscosity) (Free volume)(

More information

内科96巻3号★/NAI3‐1(第22回試験問題)

内科96巻3号★/NAI3‐1(第22回試験問題) µ µ α µ µ µ µ µ µ β β α γ µ Enterococcus faecalis Escherichia coli Legionella pneumophila Pseudomonas aeruginosa Streptococcus viridans α β 正解表正解記号問題 No. 正解記号問題 No. e(4.5) 26 e 1 a(1.2) 27 a 2

More information

概況

概況 2 4 6 2 2 2 3 2 4 22 5 23 27 34 37 44 45 46 2 78.67 85.77 2.6. 7. 2 2, 65 85,464 93,8 65 85.5 93.2 8 56.2 77.9 2 8.87 88.8 3 () 65 3 6 2 2 2 2 2 22 3 2 2 2 2 2 2 2 2 28.58 28.74 29.9 8.8 8.84 2.63 65 28.3

More information

Microsoft Word - StatsDirectMA Web ver. 2.0.doc

Microsoft Word - StatsDirectMA Web ver. 2.0.doc Web version. 2.0 15 May 2006 StatsDirect ver. 2.0 15 May 2006 2 2 2 Meta-Analysis for Beginners by using the StatsDirect ver. 2.0 15 May 2006 Yukari KAMIJIMA 1), Ataru IGARASHI 2), Kiichiro TSUTANI 2)

More information

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008) ,, 23 4 30 (i) (ii) (i) (ii) Negishi (1960) 2010 (2010) ( ) ( ) (2010) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 16 (2004 ) 2 (A) (B) (C) 3 (1987)

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

3/4/8:9 { } { } β β β α β α β β

3/4/8:9 { } { } β β β α β α β β α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3

More information

001-002_...j.f......_..

001-002_...j.f......_.. 1 2 1 Chapter of Export 1 10 2 12 3 14 4 16 5 18 6 20 7 22 8 24 9 26 10 28 11 30 12 32 13 34 14 36 15 38 16 40 17 42 18 44 19 46 3 20 48 21 50 22 52 23 54 24 56 25 58 26 60 27 62 28 64 29 66 30 68 Chapter

More information

2 Tobin (1958) 2 limited dependent variables: LDV 2 corner solution 2 truncated censored x top coding censor from above censor from below 2 Heck

2 Tobin (1958) 2 limited dependent variables: LDV 2 corner solution 2 truncated censored x top coding censor from above censor from below 2 Heck 10 2 1 2007 4 6 25-44 57% 2017 71% 2 Heckit 6 1 2 Tobin (1958) 2 limited dependent variables: LDV 2 corner solution 2 truncated 50 50 censored x top coding censor from above censor from below 2 Heckit

More information

linguistics

linguistics R @ linguistics 2007/08/24 ( ) R @ linguistics 2007/08/24 1 / 24 1 2 R 3 R 4 5 ( ) R @ linguistics 2007/08/24 2 / 24 R R: ( ) R @ linguistics 2007/08/24 3 / 24 R Life is short. Use the command line. (Crawley

More information

zsj2017 (Toyama) program.pdf

zsj2017 (Toyama) program.pdf 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88

More information

88 th Annual Meeting of the Zoological Society of Japan Abstracts 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88

More information

_170825_<52D5><7269><5B66><4F1A>_<6821><4E86><5F8C><4FEE><6B63>_<518A><5B50><4F53><FF08><5168><9801><FF09>.pdf

_170825_<52D5><7269><5B66><4F1A>_<6821><4E86><5F8C><4FEE><6B63>_<518A><5B50><4F53><FF08><5168><9801><FF09>.pdf 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88

More information

第13回:交差項を含む回帰・弾力性の推定

第13回:交差項を含む回帰・弾力性の推定 13 2018 7 27 1 / 31 1. 2. 2 / 31 y i = β 0 + β X x i + β Z z i + β XZ x i z i + u i, E(u i x i, z i ) = 0, E(u i u j x i, z i ) = 0 (i j), V(u i x i, z i ) = σ 2, i = 1, 2,, n x i z i 1 3 / 31 y i = β

More information

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a φ + 5 2 φ : φ [ ] a [ ] a : b a b b(a + b) b a 2 a 2 b(a + b). b 2 ( a b ) 2 a b + a/b X 2 X 0 a/b > 0 2 a b + 5 2 φ φ : 2 5 5 [ ] [ ] x x x : x : x x : x x : x x 2 x 2 x 0 x ± 5 2 x x φ : φ 2 : φ ( )

More information