スライド 1

Size: px
Start display at page:

Download "スライド 1"

Transcription

1 暫定版修正 加筆の可能性あり ( 付録 ) マクスウェルの応力テンソル () 1. 復習 : 孤立系. マクスウェルの応力テンソル 3. 電磁波 ( 光 ) の運動量密度 4. 運動量の保存則 5. 電磁波 ( 光 ) の運動量 : 進行波 6. 電磁波 ( 光 ) の運動量 : 定在波 7. 電磁波 ( 光 ) の運動量 : 鏡面反射 8. 鏡面反射と定在波 9. マクスウェルの応力テンソル : 静電場 注意 1. 本付録 : マクスウェルの応力テンソル(stress tensor). 簡単のため 個々の電荷が真空中をバラバラに運動する孤立系を考えます 3. 背景は真空とします 真空中の誘電率と透磁率を使用します 4. 参考文献 : 本宮 波動光学の風景 O plus E, 9, 3, p.74 (7) 65-1

2 おことわり 電場でお馴染みの E と D 本付録では 電場 E 電束密度 D と記す 電場 E:electrc feld 電束密度 D:electrc flux densty 電気変位 D:electrc dsplacement feld C: クーロン 単位 V m Cm 磁場でお馴染みの H と B 注意 : 英語では H も B も magnetc feld と呼ばれる 混同しやすい 本付録では 磁場 H 磁場 B と記す 磁場 H:magnetc H feld 磁場の強さ :magnetc feld ntensty 磁場 B:magnetc B feld 磁束密度 :magnetc flux densty T: テスラ Wb: ウェーバー T 単位 Am = Wb m 65-

3 孤立系 ローレンツ力 : 微小領域 ローレンツ力 : 孤立系全体 f dv = ρe dv + J B dv charge ρ charge f dv = EdV + J BdV マクスウェルの方程式 (, t) ρ ( r, t) (, t) (, t) Br Er (, t) = t Dr (, t) H( r, t) = + J r, t Dr = Br = ( t) 孤立系 : 真空中を電荷がバラバラに運動 ρ (, t) = ε Er (, t) (, t) = µ Hr (, t) Dr Br n ( ) ( r, t) = qδ r r ( t) = 1 n ( ) (, t) = q ( t) δ ( t) J r v r r = 1 質問 1: 微小領域内の電荷に作用する内力 外力の両方を含むローレンツ力 は 微小領域に作用する内力 外力の両方を含む全ての力 と考えてよい? 質問 : 真空中を電荷がバラバラに運動しているような孤立系に対して 孤立系全体に作用する力 は 孤立系内全ての電荷に作用するローレンツ力の総和 に等しい? ( 付録 ) マクスウェルの応力テンソル () へ続く ( 参照 :65) 65-3

4 マクスウェルの応力テンソル (1) 微小領域に作用するローレンツ力 : 参照 微小領域内の電荷に作用する内力 外力の両方を含む力の総和 ( ) = ρ ( ) ( ) + ( ) ( ) fcharge r, t dv r, t Er, t dv Jr, t Br, t dv 微小領域に作用する内力 外力の両方を含む力の総和 : 参照 64-9 具体的には ナブラベクトルと応力テンソル ( 行列 ) と dv の積 σxx σ yx σ zx σdv =,,, σ = σxy σ yy σzy x y z σxz σ yz σ zz 仮に 微小領域内の電荷に作用する内力 外力の両方を含むローレンツ力 が 微小領域に作用する内力 外力の両方を含む全ての力 と等しいなら ( ) = = ρ ( ) ( ) + ( ) ( ) fcharge r, t dv σdv r, t Er, t dv Jr, t Br, t dv を満足する応力テンソル σ を見つけることができる ところが 65-4

5 マクスウェルの応力テンソル () 実際に計算すると おまけ ( 右辺第二項 ) がつく 但し 前頁から dv を除く 省略 : 式導出参考文献 : 本宮 波動光学の風景 O plus E, 9, 3, p.74 (7) 広沢克彦 趣味で物理学 p.157 理工図書など多数 E H 1 fcharge = σ, c = t c εµ 真空中の光速 speed of lght n vacuum, この応力テンソルには特別な名前が付いている!: マクスウェルの応力テンソル : Maxwell stress tensor σ = 1 1 Ex E EE x y EE x z Hx H HH x y HH x z 1 1 ε EE y x Ey E EE y z + µ HH y x Hy H HH y z 1 1 EE z x EE z y Ez E HH z x HH z y H z H 65-5

6 マクスウェルの応力テンソル (3) マクスウェルの応力テンソル : Maxwell stress tensor σ = 1 1 Ex E EE x y EE x z Hx H HH x y HH x z 1 1 ε EE y x Ey E EE y z + µ HH y x Hy H HH y z 1 1 EE z x EE z y Ez E HH z x HH z y H z H 別表記 : マクスウェルの応力テンソル 1 1 σ = ε EE- E + µ HH- H EE HH: テンソル積 σxx σ yx σ zx 1 σ = σxy σ yy σzy, σj = ε EE j + µ HH j δj ε E + µ H σxz σ yz σ zz ( ) 65-6

7 電磁波 ( 光 ) の運動量密度 微小領域に作用する内力 外力の両方を含む力の総和の内訳 微小領域 :dv 右辺第一項 : 微小領域内の電荷に作用する内力 外力の両方を含むローレンツ力 右辺第二項 : 電場 E 磁場 H が時間変化する微小領域に作用する力 時間変化する電場 E 磁場 H( 即ち 振動電場 E 振動磁場 H) とは電磁波 ( 光 ) にほかならないから 第二項は微小領域に存在する電磁波 ( 光 ) に作用する力 E H σdv f dv dv t c = charge + 右辺第二項力とは : 運動量の単位時間変化 定義 : 電磁波 ( 光 ) の運動量密度 単位体積当たりの電磁波 ( 光 ) の運動量 ( 背景 : 真空 ) momentum densty G E H S = = c c ポインティング ベクトル Poyntng vector 参照 :63-6 微小領域に作用する力 : 何が言いたいのかな? 微小領域に作用する力は 電荷に作用する内力 外力の両方を含むローレンツ力 と 電磁波 ( 光 ) に作用する力 の総和 電荷が存在しない状況ではローレンツ力は微小領域に作用しない 微小領域内の電磁波 ( 光 ) に作用する力は電磁波 ( 光 ) 運動量の時間変化を伴う 質問 1: 微小領域内の電荷に作用する内力 外力の両方を含むローレンツ力 は 微小領域に作用する内力 外力の両方を含む全ての力 と考えてよい? 解答 : 微小領域内の電磁波 ( 光 ) に作用する力を含める 65-7

8 運動量の保存則 (1) 領域全体で積分 : 孤立系全体に作用する力 σdv f dv GdV t = charge + 孤立系内全ての電荷が受けるローレンツ力の総和 孤立系内の電磁波 ( 光 ) の運動量の総和 注意 : 力の作用とは運動量の単位時間変化を伴う 孤立系内全ての電荷が受けるローレンツ力の総和は 電荷の運動量の単位時間変化 の総和に等しい 書き換えると 電荷の運動量の総和 の単位時間変化に等しい f charge dv = = p t t p 注意 : 孤立系内全ての電荷が対象添字 : 番目の電荷が持つ運動量 重要 : 孤立系に作用する力の総和が零のとき 運動量の保存則 (conservaton of momentum) が成立但し 保存される運動量は電荷の運動量と電磁波 ( 光 ) の運動量の総和 σdv = dv dv const. t p + G = p + G = 65-8

9 運動量の保存則 () 質問 : 真空中を電荷がバラバラに移動しているような孤立系に対して 孤立系全体に作用する力 は 孤立系内全ての電荷に作用するローレンツ力の総和 に等しい? 解答 : 孤立系内の電磁波 ( 光 ) に作用する力を含める 孤立系 : 運動量の保存則が成立 p + GdV = const. σdv = + dv = t p G 何が言いたいのかな?: 真空中を電荷がバラバラに運動しているような孤立系に対して 孤立系で運動量の保存則が成立 = 孤立系に作用する力の総和が零 保存される運動量 : 電荷の運動量と電磁波 ( 光 ) の運動量の総和 孤立系に作用する力 : 電荷が受けるローレンツ力と電磁波 ( 光 ) に作用する力 孤立系の電荷は バラバラに移動 と記述したが 力の総和が零 という制約を受ける 万有引力の法則 ( law of unversal gravtaton ) は ニュートンの第三法則 ( 作用 反作用の法則 ) を満足するので 仮に 電荷間に 万有引力 が働いても 孤立系内の力の総和は零 になる 65-9

10 電磁波 ( 光 ) の運動量 : 進行波 (1) 微小領域に作用する力 : 電磁波 ( 光 ) に作用する力右辺第一項零 : 電荷なしの場合 電磁波 ( 光 ) の運動量変化 E H σdv = fchargedv + dv t c G z ωe = sn + t c η ( ωt kz φ) 簡単のため : 平面 ( 進行 ) 波近似 微小領域に作用する力 : 電磁波 ( 光 ) に作用する力 ( ω φ) ( ω φ) E = E cos t kz + x H = H cos t kz + y H = E η ( σ), = xy ωe c η ( σ) = sn ( ω + φ) t kz z 電磁波 ( 光 ) の運動量密度 振幅一定 赤 : 正実数 微小領域に作用する力 :z 成分のみ E H 1 1 G =, c = ε µ c E E Gz = cos t kz + = 1+ cos t kz + c η c η ( ω φ) ( ω φ) 65-1

11 電磁波 ( 光 ) の運動量 : 進行波 () 微小領域に作用する力 : 電磁波 ( 光 ) に作用する力イメージ : 微小領域が波長より十分に大きい場合 微小領域 :dv x 軸 進行方向 :z 軸 簡単のため : 振動電場 E のみ y 軸 z 軸 E = E ωt kz + φ x cos ( ) 積分 : 微小領域が波長より十分に大きい場合電荷なしの場合 ( σ) ( σ) dx ( σ) = = dy = xy, x y 一辺の長さが波長の整数倍のときは完全に零 ωe σ sn dz z z c η σ ( ) = ( ωt kz + φ) ( ) 波長より十分に大きい微小領域 ( 電荷なし 真空 ) 内の電磁波 ( 進行波 ) 全体は力を受けない 直観的にも納得 : 真空中を伝搬する電磁波 ( 光 ) は速度を変えないで直進する! 65-11

12 電磁波 ( 光 ) の運動量 : 進行波 (3) 微小領域に作用する力 : 電磁波 ( 光 ) の場合イメージ : 微小領域が波長より十分に小さい場合 y 軸 微小領域内 電場 E 磁場 H の位置依存性を無視 一様電場 磁場を仮定 進行方向 :z 軸 簡単のため : 振動電場 E のみ E = E ωt kz + φ x cos ( ) x 軸 z 軸 微小領域 :dv 電荷なしの場合 電磁波 ( 光 ) 周波数の 倍で振動 微小領域に作用する力 ωe c η ( σ) = sn ( ω + φ) t kz z 時間経過 65-1

13 電磁波 ( 光 ) の運動量 : 進行波 (4) 電磁波 ( 光 ): 位置 z= 電気力線 ( 緑点線矢印 ) の間隔は電場 E の大きさに比例 : やや荒っぽい 簡単のため : 振動電場 E のみ初期位相 : 零 時間経過 :+t 方向 z= ( ω ) E cos t kz x cosωt 時間経過 電磁波 ( 光 ) の運動量密度 ( ω ) Gz cos t kz ωt cos cos ωt 微小領域に作用する力 :z 成分のみ 半周期毎に反転 ( σ) = sn z ωt お詫び : 運動量密度変化の大きいところで力が作用していますが 周期時間平均すれば零になります. 周期時間内の細かな動き ( 例えば ω の振動 ) についてはこれ以上深入りしません 65-13

14 電磁波 ( 光 ) の運動量 : 定在波 定在波電場 E 重ね合わせ : 重みは同一 角周波数 ( 周波数 波長 ) も同一 偏光状態も同一 ( 直線偏光 ) ( ) ( ) ( z) E z, t = E cos ωt kz E cos ωt+ k = E snωtsn kz x 定在波磁場 H 前進波後退波注意 : 平面波近似 ( ) ( ) ( z) H z, t = H cos ωt kz + H cos ωt + k = H cosωtcos kz y 定在波の運動量密度 :z 成分のみ 電場 E 振動最大磁場 H 零 後退波 前進波 磁場 H 振動最大電場 E 零 EH x y Gz = c E = sn ωt sn kz c η 微小領域に作用する力 :z 成分のみ 注意 : 緑の濃淡は光強度ではない ωe c η z ( σ) = = z G t cos ωt sn kz 定在波 : 参照 8&9 電場 E 振動最大 : 磁場零 運動量零 力作用なし 磁場 H 振動最大 : 電場零 運動量零 力作用なし 周期時間平均すれば いつでもどこでも 力作用なし 65-14

15 電磁波 ( 光 ) の運動量 : 鏡面反射 (1) 入射電場 E と磁場 H: 初期位相は零 x y (, ) = E cos( ω + ) ( z, t) = H cos( ωt+ kz) E z t t kz H 鏡面 r G z 入射波 反射波 反射電場 E と磁場 H: 全反射 ( 反射率 1%) 境界条件 : 鏡面上で合成電場 E は常に零 r x r y (, ) = E cos( ω ) ( zt, ) = H cos( ωt kz) E z t t kz H G z z = z > z 軸 電磁波 ( 光 ) の運動量密度 運動量密度 : ベクトル表示 E E G t kz t kz G c η c η z = cos + = 1+ cos + =,, ( ω ) ( ω ) G ( z) E E G t kz t kz c η c η r r r z = cos = 1+ cos =,, ( ω ) ( ω ) G ( Gz ) 65-15

16 電磁波 ( 光 ) の運動量 : 鏡面反射 () モデル : 全反射 ( 反射率 1%) 鏡面の位置 :z= 鏡面 :xy 面記号 : 運動量 :P 運動量密度 :G 作用する力 :F 鏡面の応力を求める計算手順 鏡面を含む薄く細長い微小領域を考える 電磁波 ( 光 ) の運動量密度と微小領域との積から鏡面近傍における入射 反射光の運動量を求める 電磁波 ( 光 ) 運動量の時間変化 : 入射光と反射光の運動量の差から求める 但し 入射 反射光の進行方向は z 軸に沿う 鏡面 r G z 薄く細長い微小領域 :dv 入射波 G z z = z > 反射波 入射光と反射光の運動量の差 :ΔG 薄く細長い微小領域 :dv P= GdV = G dv G dv r z= z= 力 : 運動量の時間変化 鏡面上の微小断面積薄く細長い微小領域が鏡面と接する部分 積分 : 鏡面上の断面積 P GdV dxdydz F= lm lm G c Gdxdy t t t t dt dxdy c = dz dt 速度 : 光速度の z 成分に対応入射 反射光の進行方向が z 軸に沿う場合 : 光速度そのもの 65-16

17 電磁波 ( 光 ) の運動量 : 鏡面反射 (3) 応力ベクトル : 参照 64-6 x 軸 鏡面はこちら側 (xy 面 ):z= u 1 薄く細長い微小領域 :dv u 4 z 軸 u 5 y 軸 u 6 u 3 u 6 立方体の微小領域 u 薄く細長い微小領域 :dv 力 : 応力 ( 単位面積 ) と運動量密度変化 F= u dxdy = c G dxdy 6 応力 : マクスウェルの応力テンソル σ ( ) u6 = n6σ n z= 6 =,, 1 整理しましょう! 応力ベクトルを示す微小領域 ( 立方体 ) に 薄く細長い微小領域 は含まれる 薄く細長い微小領域を極限まで薄くすることで鏡面近傍における入射 反射光の運動量を得る これからやりたいこと : 一致確認 入射 反射光の運動量変化から求めた応力 : u = G 6 c マクスウェルの応力テンソルから求める応力 : u = n σ 6 6 z= 65-17

18 電磁波 ( 光 ) の運動量 : 鏡面反射 (4) 入射電場 E と磁場 H: 初期位相は零 計算過程 ( = ) = E ( z = t) = H E z, t cosωt H x y H 鏡面位置, cosωt = E η, η = µ ε ε E + µ H r r ( Ex Ex) ( Hy Hy) = 4 H cos µ ω = 4ε E cos = ε + + µ + ωt t 反射電場 E と磁場 H: 全反射 ( 反射率 1%) ( ) ( ) r E z =, t = E cosωt H x r y z =, t = H cosωt マクスウェルの応力テンソル ( 参照 :65-6): 鏡面位置 行列要素 : マクスウェルの応力テンソル σxx = εe cos ωt σ yy = εe cos ωt σzz = εe cos ωt σ σxx σ yx σ zx = σ σ σ, σ = ε EE σxz σ yz σ zz xy yy zy j j 1 + µ HH j δj ε E ( + H ) µ 65-18

19 電磁波 ( 光 ) の運動量 : 鏡面反射 (5) 省略 : 誘電体面での反射 応力参考文献 : 出口 和達 十河 ゼロからの電磁気学 Ⅱ p.18 岩波書店 マクスウェルの応力 鏡面 反射波 u 6 σ xx = [,, 1 ] σ yy σ zz [ ] E =,, σzz =,, ε cos ωt r G z 入射波 G z z = z > z 軸 運動量密度変化 :z 成分のみ r z= E E E Gz = Gz= Gz= cos ωt cos ωt cos ωt = c η c η c η E ε c Gz = ωt = εµ ωt = ε ωt cη µ cos E cos E cos 確認 : 応力 ( 単位面積 ) と運動量密度変化 u = G 6 c 鏡面の応力 : 衝突のイメージで考えると 鏡面反射 : 電磁波 ( 光 ) が鏡面に衝突すると 鏡面からの応力を受けて進行方向が変化 ( 電磁波 ( 光 ) の運動量が変化 ) 作用 反作用の法則より鏡は応力と大きさが等しく反対向きの力を受ける ( 放射圧 ) 65-19

20 鏡面反射と定在波 (1) マクスウェルの応力 鏡面反射の場合 立方体の微小領域 反射波 u 6 =,, εe cos ωt 赤矢印 u 6 z 軸 注意 : マクスウェルの応力 : 位置 z= 実はマクスウェルの応力を計算すると鏡面反射の場合と定在波の場合で同じ結果になる 鏡面反射の場合 : 反射による光の運動量変化から求めた力とマクスウェルの応力テンソルから求めた力が一致 応力 u6 の作用で光の進行方向が 18 度反転 と解釈した 定在波の場合 : 電場 E は位置 z= で常に零となり運動量も零 定在波を構成する前進波と後退波は そのまま 直進する 定在波の場合 z = z > 立方体の微小領域 入射波 前進波 なんとなく言えること 応力 u6 が教えてくれることは 微小領域内には両方向に進む光が存在することだけ? 応力の有無と鏡面の有無は無関係? 確認したいこと 電磁波 ( 光 ) に対するマクスウェルの応力の作用とは? u 6 z = z > 65- z 軸 後退波

21 鏡面反射と定在波 () 定在波 : 位置 z= 磁力線 ( 緑点線矢印 ) の間隔は磁場 H の大きさに比例 : やや荒っぽい 簡単のため : 定在波磁場 H のみ定在波電場 E: 常に零 時間経過 :+t 方向 H cosωt cos kz y z= cosωt 時間経過 マクスウェルの応力 u6:z 成分のみ ( u ) 6 cos z ωt なんとなく言えること : あまり深入りできませんが マクスウェルの応力 u6 は 磁力線の間隔が短いとき (& 場所で ) 大きく電磁波 ( 光 ) に作用する 磁力線の間隔が短かいとき (& 場所で ) 磁力線の向きに関わらず同じ方向に作用する 応力 u6 は 磁力線の間隔を狭める 圧縮力 と解釈できる 次頁 : 電気力線でも同様のことが言える 簡単のため静電場を例に 圧縮力 について検討する 次頁 : 応力 u3,4,5,6 が 圧縮力 に相当する 定在波 進行波 鏡面反射を問わず 電気力線 磁力線の間隔が短いとき (& 場所で ) 大きく電磁波 ( 光 ) に作用する 質量を持たない電磁波 ( 光 ) に作用する力を理解することは難儀です 65-1

22 マクスウェルの応力テンソル : 静電場 (1) 微小領域に作用する力 : 総和は零右辺第一項零 : 電荷なし右辺第二項零 : 静電場 磁場なし 静電場 :x 成分のみ 電気力線 : lne of electrc force E H σdv = f dv + dv = t c charge ローレンツ力 : 零 電磁波 ( 光 ) の運動量変化 : 零 マクスウェルの応力テンソル 微小領域 :dv 1 E U e 1 E = ( E,,) σ = ε E = Ue U 1 e E 1 Ue ε E 静電場 :x 成分のみ磁場 : 零 静電場のエネルギー密度 65-

23 マクスウェルの応力テンソル : 静電場 () 各面の応力テンソル u U e = nσ = e = U e 1 1 [ 1,,] U [ U,,] e [ U,,], [, U,], [, U,], [,, U ], [,, U ] u = u = u = u = u = e 3 e 4 e 5 e 6 e 何が言いたいのかな?: 静電場の場合 微小領域 :dv z 軸 y 軸 微小領域に作用する力の総和は 常に 零 電気力線の間隔は不変 ( 定常状態 ) 各面に働く応力は非零 ( 静電場が存在する証し ) 応力の内訳 電気力線を引っ張る 張力 (x 軸 ) 電気力線の間隔を狭める 圧縮力 (y z 軸 ) 微小領域内の電気力線は 張力を受けると逆らって縮む 圧縮力を受けると間隔を広げようと反発する性質を持つ と解釈できます 定常磁場 ( 電場なし ) の場合でも同様のことが言えます u u 4 u 5 u 6 u 3 u 1 dv = x 軸 電気力線 dxdydz 65-3

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) マクスウェルの応力テンソル (). ある領域に作用する力 2. 応力テンソル 3. 力の総和と応力テンソル 4. ローレンツ力 5. マクスウェルの方程式 6. 孤立系 注意. 本付録 : マクスウェルの応力テンソル(stress tesor) 2. 簡単のため 個々の電荷が真空中をバラバラに運動する孤立系を考えます 3. 背景は真空とします 真空中の誘電率と透磁率を使用します

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) マクスウェルの方程式 : 真空中 () 1. 電磁波 ( 光波 ) の姿 : 真空中. エネルギー密度 3. ポインティング ベクトル 4. 絵解き : ポインティング ベクトル 5. ポインティング ベクトル : 再確認 6. 両者の関係 7. 付録 : ベクトル解析 注意 1. 本付録 : マクスウェルの方程式: 微分型 を使用. マクスウェルの方程式を数学的に取扱います

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 電磁波 ( 光 ) の角運動量. 復習 : 電磁波 ( 光 ) のエネルギー. 運動量 角運動量 ( 実空間 ) 3. 軌道 スピン角運動量 4. 円偏光状態 5. 螺旋状態 付録 8 のアプローチ. 本付録では電磁波 ( 光 ) の軌道 スピン角運動量ついて古典的に扱う. スピン角運動量は直線偏光状態では零 円偏光状態では非零 右 左回りで大きさは同じ

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) コイルと磁場 () coil and magnetic field part. ソレノイドコイルのエネルギー. エネルギー密度の比較 : 電場と磁場 3. 磁場のエネルギーとベクトルポテンシャル 4. 相互作用エネルギー : 電場と磁場 5. 資料 : 電源について 注意. 電磁波を記述する マクスウェル方程式 の理解に必要を思われるトピックスに限定. 定常電流が作る磁場

More information

スライド 1

スライド 1 光通信工学. 復習. ポインティング ベクトル 3. 光強度 4. 強度反射 ( 透過 率 通常のレンズ フレネルレンズ 光通信工学 3- 光波とは : 式で書いた方が分かりやすいかも! 軸 偏光 : 電場 の振動方向偏波面 : 電場 ベクトルと波数ベクトルからなる平面 方向の直線偏光 軸 + 軸 : 磁場の強さ 平面波 & 進行波 : 簡単 便利 偏波面 :-z 平面右ねじ : 電場 (+ 磁場

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 準備 : 非線形光学効果 (). 絵解き : 第二高調波発生. 基本波の波動方程式 3. 第二高調波の波動方程式 4. 二倍分極振動 : ブランコ 5. 結合波動方程式へ 6. 補足 : 非線形電気感受率 ( 複素数 ) 付録 43 のアプローチ. 分極振動とは振動電場に誘われて伸縮する電気双極子の集団運動. 電気感受率と波動方程式の関係を明らかにする 3.

More information

スライド 1

スライド 1 光通信工学 マクスウェルの方程式. 復習. マクスウェルの方程式 E 3. 誘電率 透磁率と光速 4. 波動インピーダンス D 5. 境界条件 ( 誘電体 ) H D t + i B t ρ B 磁場でお馴染みの H と B 注意 : 英語では H も B も magnetic field と呼ばれる 混同しやすい 本講義では 磁場 H 磁場 B と記す 磁場 H:magnetic H field

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 屈折率と誘電率 : 金属. 復習. 電気伝導度 3. アンペールの法則の修正 4. 表皮効果 表皮深さ 5. 鏡の反射 6. 整理 : 電子振動子模型 注意 : 整理しましょう! 前回 : 付録 (4) のアプローチ. 屈折率と損失について記述するために分極振動 ( 電気双極子の集団運動 ) による電気双極子放射を考慮. 誘電率は 真空中の値 を採用 オリジナル光

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) コイルと磁場 () coil nd mgnetic field prt. 相互インダクタンス : 変圧器. 磁場のエネルギー : 変圧器 3. 直線近似 4. ローレンツ力とアンペールの力 5. 直線定常が作るベクトルポテンシャル 6. ポテンシャルエネルギー 注意. 電磁波を記述する マクスウェル方程式 の理解に必要を思われるトピックスに限定. 定常が作る磁場

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) デルタ関数. ローレンツ関数. ガウス関数 3. Sinc 関数 4. Sinc 関数 5. 指数関数 6. 量子力学 : デルタ関数 7. プレメリの公式 8. 電磁気学 : デルタ関数 9. デルタ関数 : スケール 微分 デルタ関数 (delta function) ( ) δ ( ) ( ), δ ( ), δ ( ), δ ( ) f x x dx

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

スライド 1

スライド 1 光通信工学 1. 復習 2. スネルの法則 3. 屈折率 4. 振幅反射 ( 透過 ) 率 5. フレネルの式 n n 媒質 1:n 1 媒質 2:n 2 nθ n nθ > n θ < θ 1 1 2 2 1 2 1 2 θ 2 n > n 1 2 t 光通信工学 22-1 光波とは : 式で書いた方が分かりやすいかも! 軸 偏光 : 電場 E の振動方向偏波面 : 電場 E ベクトルと波数ベクトルからなる平面

More information

1 B () Ver 2014 0 2014/10 2015/1 http://www-cr.scphys.kyoto-u.ac.jp/member/tsuru/lecture/... 1. ( ) 2. 3. 3 1 7 1.1..................................................... 7 1.2.............................................

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 電磁波工学 第 5 回平面波の媒質への垂直および射入射と透過 柴田幸司 Bounda Plan Rgon ε μ Rgon Mdum ( ガラスなど ε μ z 平面波の反射と透過 垂直入射の場合 左図に示す様に 平面波が境界面に対して垂直に入射する場合を考える この時の入射波を とすると 入射波は境界において 透過波 と とに分解される この時の透過量を 反射量を Γ とおくと 領域 における媒質の誘電率に対して透過量

More information

Microsoft PowerPoint - 第5回電磁気学I 

Microsoft PowerPoint - 第5回電磁気学I  1 年 11 月 8 日 ( 月 ) 1:-1: Y 平成 年度工 系 ( 社会環境工学科 ) 第 5 回電磁気学 Ⅰ 天野浩 項目 電界と電束密度 ガウスの発散定理とガウスの法則の積分形と微分形 * ファラデーの電気力線の使い方をマスターします * 電界と電束密度を定義します * ガウスの発散定理を用いて ガウスの法則の積分形から微分形をガウスの法則の積分形から微分形を導出します * ガウスの法則を用いて

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 電子スピン共鳴 :Electron pin Reonance (ER) 1. 歳差運動 (preceion). スピン角運動量 : 電子 3. ゼーマン効果 : スピン 4. 平行 反平行状態 5. ラーモア歳差運動 6. 電子スピン共鳴 7. 緩和過程 注意 1. 本付録 : 電子スピン共鳴 について 原理 概略を説明. 但し 電子スピン共鳴装置 の特徴や使用法の説明はしません

More information

反射係数

反射係数 平面波の反射と透過 電磁波の性質として, 反射と透過は最も基礎的な現象である. 我々の生活している空間は, 各種の形状を持った媒質で構成されている. 人間から見れば, 空気, 水, 木, 土, 火, 金属, プラスチックなど, 全く異なるものに見えるが, 電磁波からすると誘電率, 透磁率, 導電率が異なるだけである. 磁性体を除く媒質は比透磁率がで, ほとんど媒質に当てはまるので, 実質的に我々の身の回りの媒質で,

More information

応力とひずみ.ppt

応力とひずみ.ppt in yukawa@numse.nagoya-u.ac.jp 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 演習プリント N.15 43. 目的 : 電磁誘導は, 基本を理解すれば問題はそれほど難しくない! ということを学ぶ 問 1 の [ ] に適切な数値または数式を入れ, 問 に答えよ 図 1 のように, 紙面に垂直で一様な磁界が 0 の領域だけにある場合について考える 磁束密度は Wb/m で, 磁界は紙面の表から裏へ向かっている 図のように,1 辺の長さが m の正方形のコイル を,

More information

2. コンデンサー 極板面積 S m 2, 極板間隔 d m で, 極板間の誘電率が ε F/m の平行板コンデンサー 容量 C F は C = ( )(23) 容量 C のコンデンサーの極板間に電圧をかけたとき 蓄えられる電荷 Q C Q = ( )(24) 蓄えられる静電エネルギー U J U

2. コンデンサー 極板面積 S m 2, 極板間隔 d m で, 極板間の誘電率が ε F/m の平行板コンデンサー 容量 C F は C = ( )(23) 容量 C のコンデンサーの極板間に電圧をかけたとき 蓄えられる電荷 Q C Q = ( )(24) 蓄えられる静電エネルギー U J U 折戸の物理 簡単復習プリント 電磁気 1 基本事項の簡単な復習電磁気 1. 電場 クーロンの法則 電気量 q1,q2 C の電荷が距離 r m で置かれているとき働く 静電気力 F N は, クーロンの法則の比例定数を k N m 2 /s 2 として 電場 F = ( )(1) 力の向きは,q1,q2 が, 同符号の時 ( )(2) 異符号の時 ( )(3) 大きさ E V/m の電場に, 電気量

More information

F コンデンサーの静電容量高校物理において コンデンサーは合同な 2 枚の金属板を平行に並べたものである 電池を接続すると 電圧の高い方 (+ 極 ) に接続された金属板には正の電気量 Q(C) が 低い方には負の電気量 -Q(C) が蓄積される 正負の電気量の絶対値は等しい 蓄積された電気量 Q

F コンデンサーの静電容量高校物理において コンデンサーは合同な 2 枚の金属板を平行に並べたものである 電池を接続すると 電圧の高い方 (+ 極 ) に接続された金属板には正の電気量 Q(C) が 低い方には負の電気量 -Q(C) が蓄積される 正負の電気量の絶対値は等しい 蓄積された電気量 Q 電磁気の公式の解説 更新日 :2017 年 5 月 11 日 A 電気量電荷と電気量は何が違うのだろうか? 簡単に言うと 電気を帯びたものを電荷といい その電荷の大きさを数字で表すものが電気量である 電荷と電気量の本来の意味は少し違うが 実際には同じ意味で使われることが多い 電気量は次のように決められる ファラデー定数 9.65 10 4 (C /mol ) より電子 6.02 10 23 個が電気量

More information

Microsoft PowerPoint EM2_15.ppt

Microsoft PowerPoint EM2_15.ppt ( 第 5 回 ) 鹿間信介摂南大学理工学部電気電子工学科 後半部 (4~5 章 ) のまとめ 4. 導体 4.3 誘電体 5. 磁性体 5. 電気抵抗 演習 導体表面の電界強度 () 外部電界があっても導体内部の電界は ( ゼロ ) になる () 導体の電位は一定 () 導体表面は等電位面 (3) 導体表面の電界は導体に垂直 導体表面と平行な成分があると, 導体表面の電子が移動 導体表面の電界は不連続

More information

人間科学部研究年報平成 24 年 (1) (2) (3) (4) 式 (1) は, クーロン (Coulomb) の法則とも呼ばれる.ρは電荷密度を表し,ε 0 は真空の誘電率と呼ばれる定数である. 式 (2) は, 磁荷が存在しないことを表す式である. 式 (3) はファラデー (Faraday)

人間科学部研究年報平成 24 年 (1) (2) (3) (4) 式 (1) は, クーロン (Coulomb) の法則とも呼ばれる.ρは電荷密度を表し,ε 0 は真空の誘電率と呼ばれる定数である. 式 (2) は, 磁荷が存在しないことを表す式である. 式 (3) はファラデー (Faraday) 複素振幅をもつ球面波の人間科学部研究年報 Maxwell 平成 24 方程式年 複素振幅をもつ球面波の Maxwell 方程式 Maxwell Equation of Spherical Wave with Complex Amplitude 戸上良弘 Yoshihiro TOGAMI Abstract 複素振幅をもつ球面波に関して, マクスウェル (Maxwell) 方程式との関係を考察した. 電気的な球面波としてのスカラーポテンシャルが与えられたとき,

More information

平面波

平面波 平面波 図.に示すように, 波源 ( 送信アンテナあるいは散乱点 ) から遠い位置で, 観測点 Pにおける波の状態を考えてみる. 遠いとは, 波長 λ に比べて距離 が十分大きいことを意味しており, 観測点 Pの近くでは, 等位相面が平面とみなせる状態にある. 平面波とは波の等位相面が平面になっている波のことである. 通信や計測を行うとき, 遠方における波の振舞いは平面波で近似できる. したがって平面波の性質を理解することが最も重要である.

More information

木村の物理小ネタ ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に

木村の物理小ネタ   ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に ケプラーの第 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という が単位時間に描く面積を 動点 P の定点 O に関する面積速度の大きさ という 定点 O まわりを回る面積速度の導き方導き方 A ( x( + D, y( + D v ( q r ( A ( x (, y( 動点 P が xy 座標平面上を時刻

More information

スライド 1

スライド 1 電流と磁場 目次 0. はじめにー物質の磁気的性質と磁場ー 1. 磁石と磁場 2. 電流のつくる磁場 (1) 3. 磁場中の運動する荷電粒子に働く磁気力 ( ローレンツ力 ) 4. 磁場中の電流に働く力 ( アンペアの力 ) 5. 平行または反平行電流の間に働く磁気力 6. 電流のつくる磁場 (2)- ビオ サバールの法則 7. アンペアの法則 ( アンペアの回路定理 ) 8. 磁場 に対するガウスの法則付録

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 位相整合 : 第二高調波発生. 位相整合. 擬似位相整合 (QPM: quasi-phase-matching) 3. 周期分極反転 (periodic poling) 4. 反転対象 非対称 付録 43 のアプローチ. 第二高調波発生 増幅に関する位相整合 位相不整合について検討する. 位相不整合を解消する考え方 擬似位相整合 とそれを実現するために必要な

More information

Microsoft Word - EM_EHD_2010.doc

Microsoft Word - EM_EHD_2010.doc H のための電磁気学 機能材料工学科阿部洋 . 電磁気学電磁気学電磁気学電磁気学の基礎基礎基礎基礎 - マクスウェルマクスウェルマクスウェルマクスウェルの応力応力応力応力静電場の条件は e div ρ ( ) ot ( ) である 体積 V で電荷密度 ρ e に働く力はクーロン力から ρ dv F e ( 3) と表せる ( 3) 式に ( ) を代入すると ( ) dv div F ( 4) となる

More information

応用数学A

応用数学A 応用数学 A 米田 戸倉川月 7 限 1930~2100 西 5-109 V を :x 2 + y 2 + z 2 = 4 で囲まれる内部とする F = ye x xe y + ze z FdV = V e x e y e z F = = 2e z 2e z dv = 2e z 3 23 = 64π 3 e z y x z 4π V n Fd = 1 F nd 2 F nd 法線ベクトル n g x,

More information

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録 遠地 波の変位波形の作成 遠地 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに U () t S() t E() t () t で近似的に計算できる は畳み込み積分 (convolution) を表す ( 付録 参照 ) ここで St () は地震の断層運動によって決まる時間関数 1 E() t は地下構造によって生じる種々の波の到着を与える時間関数 ( ここでは 直達 波とともに 震源そばの地表での反射波や変換波を与える時間関数

More information

Quz Quz

Quz Quz http://www.ppl.app.keo.ac.jp/denjk III (1969). (1977). ( ) (1999). (1981). (199). Harry Lass Vector and Tensor Analyss, McGraw-Hll, (195).. Quz Quz II E B / t = Maxwell ρ e E = (1.1) ε E= (1.) B = (1.3)

More information

基礎から学ぶ光物性 第2回 光が物質中を伝わるとき:

基礎から学ぶ光物性  第2回 光が物質中を伝わるとき: 基礎から学ぶ光物性 第 2 回光が物質中を伝わるとき : 東京農工大学特任教授 佐藤勝昭 第 2 回講義で学ぶこと 光が物質中を伝わるとき何がおきるか : 屈折率とは何か? 消光係数とは? 吸収係数 透過率との関係はここでは 屈折率 n 消光係数 κ がどのように定義された量であるかを電磁波の伝わり方をあらわす式を用いて説明します マクスウェルの方程式の固有解を求めることによって 光学定数と光学誘電率の関係を導きます

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 球面波 回折 (. グリーンの定理. キルヒホッフの積分定理 3. ホイヘンスの原理 4. キルヒホッフの回折公式 5. ゾンマーフェルトの放射条件 6. 補足 付録 (90~904 のアプローチ : 回折 (diffaction までの道標. 球面波 (pheical wave のみ対象 : スカラー表示. 虚数単位 i を使用する 3. お詫び : 自己流かつ説明が飛躍する場面があります

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

領域シンポ発表

領域シンポ発表 1 次元の減衰運動の中の強制振動 ) ( f d d d d d e f e ce ) ( si ) ( 1 ) ( cos ω =ω -γ とおくと 一般解は 外力 f()=f siω の場合 f d d d d si f ce f ce si ) cos( cos si ) cos( この一般解は 1 φ は外力と変位との間の位相差で a 時間が経つと 第 1 項は無視できる この場合の振幅を

More information

ニュートン重力理論.pptx

ニュートン重力理論.pptx 3 ニュートン重力理論 1. ニュートン重力理論の基本 : 慣性系とガリレイ変換不変性 2. ニュートン重力理論の定式化 3. 等価原理 4. 流体力学方程式とその基礎 3.1 ニュートン重力理論の基本 u ニュートンの第一法則 = 力がかからなければ 等速直線運動を続ける u 等速直線運動に見える系を 慣性系 と呼ぶ ² 直線とはどんな空間の直線か? ニュートン理論では 3 次元ユークリッド空間

More information

Microsoft Word

Microsoft Word 第 9 回工学基礎ミニマム物理試験問題.. 日立 水戸 正解は各問の選択肢 (,, ) の中からつだけ選び, その番号をマークシートにマークせよ この際,HBまたはBの鉛筆またはシャープペンシルを使うこと ボールペンは不可 正解が数値の場合には, 選択肢の中から最も近い値を選ぶこと 正解が選択肢の中に無い場合には, 番号ゼロを選択せよ 学生番号, 氏名を指定された方法でマークシートの所定の欄に記入せよ

More information

Microsoft PowerPoint _量子力学短大.pptx

Microsoft PowerPoint _量子力学短大.pptx . エネルギーギャップとrllouゾーン ブリルアン領域,t_8.. 周期ポテンシャル中の電子とエネルギーギャップ 簡単のため 次元に間隔 で原子が並んでいる結晶を考える 右方向に進行している電子の波は 間隔 で規則正しく並んでいる原子が作る格子によって散乱され 左向きに進行する波となる 波長 λ が の時 r の反射条件 式を満たし 両者の波が互いに強め合い 定在波を作る つまり 式 式を満たす波は

More information

電磁気学 IV 第 7 回導体内の電磁界 表皮効果 ( 電磁気ノート19 章を参照 ) 工学部電気電子工学科松嶋徹 授業のスケジュール ( 順番変更 ) 6 月 12 日 ( 第 1 回 ) 電磁気学的な量 一般直交座標におけるベクトル演算 6 月 14 日 ( 第 2 回 )

電磁気学 IV 第 7 回導体内の電磁界 表皮効果 ( 電磁気ノート19 章を参照 ) 工学部電気電子工学科松嶋徹 授業のスケジュール ( 順番変更 ) 6 月 12 日 ( 第 1 回 ) 電磁気学的な量 一般直交座標におけるベクトル演算 6 月 14 日 ( 第 2 回 ) 電磁気学 IV 08.07.03 第 7 回導体内の電磁界 表皮効果 ( 電磁気ノート9 章を参照 ) 工学部電気電子工学科松嶋徹 授業のスケジュール ( 順番変更 ) 6 月 日 ( 第 回 ) 電磁気学的な量 一般直交座標におけるベクトル演算 6 月 4 日 ( 第 回 ) 時間的に変化がない場 静電界 静磁界 定常電流界 6 月 9 日 ( 第 3 回 ) 定常的な場のシミュレーション 6 月

More information

第9章

第9章 第 9 章光の量子化これまでは光を古典的電磁波として扱い 原子を量子力学システムとして与え 電磁波と原子に束縛された電子との相互作用ポテンシャルを演算子で表現した この表現の中で電磁波の電場はあくまでも古典的パラメータとして振舞う ここでは この電磁波も量子力学的システム ; 電場と磁場をエルミート演算子で与える として表現する その結果 電磁波のエネルギー密度や運動量密度なども演算子として表せれる

More information

Microsoft Word - 中村工大連携教材(最終 ).doc

Microsoft Word - 中村工大連携教材(最終 ).doc 音速について考えてみよう! 金沢工業大学 中村晃 ねらい 私たちの身の回りにはいろいろな種類の波が存在する. 体感できる波もあれば, できない波もある. その中で音は体感できる最も身近な波である. 遠くで雷が光ってから雷鳴が届くまで数秒間時間がかかることにより, 音の方が光より伝わるのに時間がかかることも経験していると思う. 高校の物理の授業で音の伝わる速さ ( 音速 ) は約 m/s で, 詳しく述べると

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

Chap3.key

Chap3.key 区分求積法. 面積 ( )/ f () > n + n, S 長方形の和集合で近似 n f (n ) リーマン和 f (n ) 区分求積法 リーマン和 S S n n / n n f ()d リーマン積分 ( + ) + S (, f ( )) 微分の心 Zoom In して局所的な性質を調べる 積分の心 Zoom Ou して大域的な性質を調べる 曲線の長さ 領域の面積や体積 ある領域に含まれる物質の質量

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

Microsoft PowerPoint - 第9回電磁気学

Microsoft PowerPoint - 第9回電磁気学 017 年 1 月 04 日 ( 月 ) 13:00-14:30 C13 平成 9 年度工 V 系 ( 社会環境工学科 ) 第 9 回電磁気学 Ⅰ 天野浩 mno@nuee.ngoy-u.c.jp 9 1 月 04 日 第 5 章 電流の間に働く力 磁場 微分形で表したア ンペールの法則 ビオ サバールの法則 第 5 章電流の作る場 http://www.ntt-est.co.jp/business/mgzine/netwok_histoy/0/

More information

物理演習問題

物理演習問題 < 物理 > =0 問 ビルの高さを, ある速さ ( 初速 をとおく,において等加速度運動の公式より (- : -= t - t : -=- t - t (-, 式よりを消去すると t - t =- t - t ( + - ( + ( - =0 0 t t t t t t ( t + t - ( t - =0 t=t t=t t - 地面 ( t - t t +t 0 より, = 3 図 問 が最高点では速度が

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://oritobuturi.co/ NO.5(009..16) 今日の目的 : 1 物理と微分 積分について 微分方程式について学ぶ 3 近似を学ぶ 10. 以下の文を読み,[ ア ]~[ ク ] の空欄に適当な式をいれよ 物体物体に一定の大きさの力を加えたときの, 物体の運動について考え よう 右図のように, なめらかな水平面上で質量 の物体に水平に一定の大きさ

More information

Microsoft PowerPoint EM2_15.ppt

Microsoft PowerPoint EM2_15.ppt ( 第 5 回 ) 鹿間信介摂南大学理工学部電気電子工学科 後半部 (4~5 章 ) のまとめ 4. 導体 4.3 誘電体 5. 磁性体 5. 電気抵抗 演習 静電誘導電界とその重ね合わせ 導体内部の電荷 : 外部電界 誘導電界の重ね合わせ電界を感じる () 内部電荷自身が移動することで作り出した電界にも反応 () さらに移動場所を変える (3) 上記 ()~() の繰り返し 最終的に落ち着く状態

More information

座標変換におけるテンソル成分の変換行列

座標変換におけるテンソル成分の変換行列 座標変換におけるテンソル成分の変換行列 座標変換におけるテンソル成分の変換関係は 次元数によらず階数によって定義される変換行列で整理することができる 位置ベクトルの変換行列を D としてそれを示そう D の行列式を ( = D ) とするとき 鏡映や回映といった pseudo rotation に対しては = -1 である が問題になる基底は 対称操作に含まれる pseudo rotation に依存する

More information

交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし

交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし 交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし 積分定数を 0 とすること 1 f(t) = sin t 2 f(t) = A sin t 3 f(t)

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

Microsoft PowerPoint - 流体力学の基礎02(OpenFOAM 勉強会 for geginner).pptx

Microsoft PowerPoint - 流体力学の基礎02(OpenFOAM 勉強会 for geginner).pptx ~ 流体力学の基礎 ~ 第 2 回 流体静力学 2011 年 10 月 22 日 ( 土 ) 講習会のスケジュール概要 ( あくまでも現時点での予定です ) 流体力学の基礎 第 1 回目 2011.09 流体について 第 2 回目 2011.10 流体静力学 第 3 回目 2011.11/12 流体運動の基礎理論 1 第 4 回目 2012.01 流体運動の基礎理論 2 第 5 回目 2012.02

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information

( 全体 ) 年 1 月 8 日,2017/1/8 戸田昭彦 ( 参考 1G) 温度計の種類 1 次温度計 : 熱力学温度そのものの測定が可能な温度計 どれも熱エネルギー k B T を

( 全体 ) 年 1 月 8 日,2017/1/8 戸田昭彦 ( 参考 1G) 温度計の種類 1 次温度計 : 熱力学温度そのものの測定が可能な温度計 どれも熱エネルギー k B T を ( 全体 htt://home.hiroshima-u.ac.j/atoda/thermodnamics/ 9 年 月 8 日,7//8 戸田昭彦 ( 参考 G 温度計の種類 次温度計 : 熱力学温度そのものの測定が可能な温度計 どれも熱エネルギー k T を単位として決められている 9 年 月 日 ( 世界計量記念日 から, 熱力学温度 T/K の定義も熱エネルギー k T/J に基づく. 定積気体温度計

More information

2018/6/12 表面の電子状態 表面に局在する電子状態 表面電子状態表面準位 1. ショックレー状態 ( 準位 ) 2. タム状態 ( 準位 ) 3. 鏡像状態 ( 準位 ) 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテン

2018/6/12 表面の電子状態 表面に局在する電子状態 表面電子状態表面準位 1. ショックレー状態 ( 準位 ) 2. タム状態 ( 準位 ) 3. 鏡像状態 ( 準位 ) 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテン 表面の電子状態 表面に局在する電子状態 表面電子状態表面準位. ショックレー状態 ( 準位. タム状態 ( 準位 3. 鏡像状態 ( 準位 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテンシャル e F z ( z z e V ( z ( Fz dz 4z e V ( z 4z ( z > ( z < のときの電子の運動を考える

More information

SPring-8ワークショップ_リガク伊藤

SPring-8ワークショップ_リガク伊藤 GI SAXS. X X X X GI-SAXS : Grazing-incidence smallangle X-ray scattering. GI-SAXS GI-SAXS GI-SAXS X X X X X GI-SAXS Q Y : Q Z : Q Y - Q Z CCD Charge-coupled device X X APD Avalanche photo diode - cps 8

More information

重力渦動による反重力推進の可能性 ( 電磁型フォワード エンジンの検討 ) ToM Possibility of Antigravity Propulsion by Gravitational Vortex 1. 序論 R.L. フォワードは Guidelines to Antigravity (1

重力渦動による反重力推進の可能性 ( 電磁型フォワード エンジンの検討 ) ToM Possibility of Antigravity Propulsion by Gravitational Vortex 1. 序論 R.L. フォワードは Guidelines to Antigravity (1 重力渦動による反重力推進の可能性 ( 電磁型フォワード エンジンの検討 ) ToM Possibility of Antigravity Propulsion by Gravitational Vortex 1. 序論 R.L. フォワードは Guidelines to Antigravity (1) で 加速された大質量による非ニュートン的な重力効果を利用した 図 1に示す重力マシンの可能性について検討している

More information

<4D F736F F F696E74202D E94D58B9393AE82F AC82B782E982BD82DF82CC8AEE E707074>

<4D F736F F F696E74202D E94D58B9393AE82F AC82B782E982BD82DF82CC8AEE E707074> 地盤数値解析学特論 防災環境地盤工学研究室村上哲 Mrakam, Satoh. 地盤挙動を把握するための基礎. 変位とひずみ. 力と応力. 地盤の変形と応力. 変位とひずみ 変形勾配テンソルひずみテンソル ひずみテンソル : 材料線素の長さの 乗の変化量の尺度 Green-Lagrange のひずみテンソルと Alman のひずみテンソル 微小変形状態でのひずみテンソル ひずみテンソルの物理的な意味

More information

s ss s ss = ε = = s ss s (3) と表される s の要素における s s = κ = κ, =,, (4) jωε jω s は複素比誘電率に相当する物理量であり ここで PML 媒質定数を次のように定義する すなわち κξ をPML 媒質の等価比誘電率 ξ をPML 媒質の

s ss s ss = ε = = s ss s (3) と表される s の要素における s s = κ = κ, =,, (4) jωε jω s は複素比誘電率に相当する物理量であり ここで PML 媒質定数を次のように定義する すなわち κξ をPML 媒質の等価比誘電率 ξ をPML 媒質の FDTD 解析法 (Matlab 版 2 次元 PML) プログラム解説 v2.11 1. 概要 FDTD 解析における吸収境界である完全整合層 (Perfectl Matched Laer, PML) の定式化とプログラミングを2 次元 TE 波について解説する PMLは異方性の損失をもつ仮想的な物質であり 侵入して来る電磁波を逃さず吸収する 通常の物質と接する界面でインピーダンスが整合しており

More information

テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ]

テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ] Tsor th-ordr tsor by dcl xprsso m m Lm m k m k L mk kk quott rul by symbolc xprsso Lk X thrd-ordr tsor cotrcto j j Copyrght s rsrvd. No prt of ths documt my b rproducd for proft. テンソル ( その ) テンソル ( その

More information

Microsoft PowerPoint - 基礎電気理論 07回目 11月30日

Microsoft PowerPoint - 基礎電気理論 07回目 11月30日 基礎電気理論 7 回目 月 30 日 ( 月 ) 時限 次回授業 時間 : 月 30 日 ( 月 )( 本日 )4 時限 場所 : B-3 L,, インピーダンス教科書 58 ページから 64 ページ http://ir.cs.yamanashi.ac.jp/~ysuzuki/kisodenki/ 授業評価アンケート ( 中間期評価 ) NS の授業のコミュニティに以下の項目について記入してください

More information

Microsoft Word - note02.doc

Microsoft Word - note02.doc 年度 物理化学 Ⅱ 講義ノート. 二原子分子の振動. 調和振動子近似 モデル 分子 = 理想的なバネでつながった原子 r : 核間距離, r e : 平衡核間距離, : 変位 ( = r r e ), k f : 力の定数ポテンシャルエネルギー ( ) k V = f (.) 古典運動方程式 [ 振動数 ] 3.3 d kf (.) dt μ : 換算質量 (m, m : 原子, の質量 ) mm

More information

Microsoft Word - Chap17

Microsoft Word - Chap17 第 7 章化学反応に対する磁場効果における三重項機構 その 7.. 節の訂正 年 7 月 日. 節 章の9ページ の赤枠に記載した説明は間違いであった事に気付いた 以下に訂正する しかし.. 式は 結果的には正しいので安心して下さい 磁場 の存在下でのT 状態のハミルトニアン は ゼーマン項 と時間に依存するスピン-スピン相互作用の項 との和となる..=7.. g S = g S z = S z g

More information

高校電磁気学 ~ 電磁誘導編 ~ 問題演習

高校電磁気学 ~ 電磁誘導編 ~ 問題演習 高校電磁気学 ~ 電磁誘導編 ~ 問題演習 問 1 磁場中を動く導体棒に関する問題 滑車 導体棒の間隔 L m a θ (1) おもりの落下速度が のとき 導体棒 a に生じる誘導起電力の 大きさを求めよ 滑車 導体棒の間隔 L m a θ 導体棒の速度 水平方向の速度 cosθ Δt の時間に回路を貫く磁束の変化 ΔΦ は ΔΦ = ΔS = LcosθΔt ΔΦ ファラデーの法則 V = N より

More information

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63>

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63> 1/1 平成 23 年 3 月 24 日午後 6 時 52 分 6 ガウスの定理 : 面積分と体積分 6 ガウスの定理 : 面積分と体積分 Ⅰ. 直交座標系 ガウスの定理は 微分して すぐに積分すると元に戻るというルールを 3 次元積分に適用した定理になります よく知っているのは 簡単化のため 変数が1つの場合は dj ( d ( ににします全微分 = 偏微分 d = d = J ( + C d です

More information

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30 2.5 (Gauss) 2.5.1 (flux) v(r)( ) n v n v n (1) v n = v n = v, n. n n v v I(2012), ec. 2. 5 p. 1/30 i (2) lim v(r i ) i = v(r) d. i 0 i (flux) I(2012), ec. 2. 5 p. 2/30 2.5.2 ( ) ( ) q 1 r 2 E 2 q r 1 E

More information

<4D F736F F F696E74202D D488A778AEE B4F93B982CC8AEE A2E707074>

<4D F736F F F696E74202D D488A778AEE B4F93B982CC8AEE A2E707074> 宇宙工学基礎 ( 軌道の基礎 松永三郎 機械宇宙学科 機械宇宙システム専攻 ニュートンの法則 第 法則 力が作用作用しないしない限り 質点質点は静止静止ないしはないしは一定速度一定速度で運動するする ( 慣性の法則 慣性空間 慣性座標系慣性座標系の定義第 法則 慣性座標系におけるにおける質点質点の運動 p F ( pɺ t ( F: 全作用力, pmv: 並進運動量 ( 質量と速度速度の積 慣性系を規準規準としてとして時間微分時間微分を行うことにことに注意第

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

Microsoft PowerPoint - 夏の学校(CFD).pptx

Microsoft PowerPoint - 夏の学校(CFD).pptx /9/5 FD( 計算流体力学 ) の基礎理論 性能 運動分野 夏の学校 神戸大学大学院海事科学研究科勝井辰博 流体の質量保存 流体要素内の質量の増加率 [ 単位時間当たりの増加量 ] 単位時間に流体要素に流入する質量 流体要素 Fl lm (orol olm) v ( ) ガウスの定理 v( ) /9/5 = =( ) b=b =(b b b ) b= b = b + b + b アインシュタイン表記

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 慣性モーメント -1/6 テーマ 01: 慣性モーメント (Momet of ietia) コマ回しをすると, 長い時間回転させるには重くて大きなコマを選ぶことや, ひもを早く引くことが重要であることが経験的にわかります. 遊びを通して, 回転の運動エネルギーを増やせば, 回転の勢いが増すことを学習できるので, 機械系の学生にとってコマ回しも大切な体験学習のひとつと言えます.

More information

Microsoft Word - 1.2全反射.doc

Microsoft Word - 1.2全反射.doc . 全反射 φ 吸収があると透過光は減少する ( 吸収は考えない ) 全反射普通に三角関数を理解しているものには不思議な現象 Opia Fibr はこのメカニズムで伝える ブリュ - スター角 全反射 となる すなわち は実数として存在しない角度となる虚数 (or 複素数 ) となる 全反射という そこで r si を考えよう は存在しない角度なので この式から を消去して 実数である だけの表示にしよう

More information

Microsoft PowerPoint - zairiki_3

Microsoft PowerPoint - zairiki_3 材料力学講義 (3) 応力と変形 Ⅲ ( 曲げモーメント, 垂直応力度, 曲率 ) 今回は, 曲げモーメントに関する, 断面力 - 応力度 - 変形 - 変位の関係について学びます 1 曲げモーメント 曲げモーメント M 静定力学で求めた曲げモーメントも, 仮想的に断面を切ることによって現れる内力です 軸方向力は断面に働く力 曲げモーメント M は断面力 曲げモーメントも, 一つのモーメントとして表しますが,

More information

多次元レーザー分光で探る凝縮分子系の超高速動力学

多次元レーザー分光で探る凝縮分子系の超高速動力学 波動方程式と量子力学 谷村吉隆 京都大学理学研究科化学専攻 http:theochem.kuchem.kyoto-u.ac.jp TA: 岩元佑樹 iwamoto.y@kuchem.kyoto-u.ac.jp ベクトルと行列の作法 A 列ベクトル c = c c 行ベクトル A = [ c c c ] 転置ベクトル T A = [ c c c ] AA 内積 c AA = [ c c c ] c =

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

Microsoft Word - 9章(分子物性).doc

Microsoft Word - 9章(分子物性).doc 1/1/6 9 章分子物性 1 節電気双極子モーメント (Electric Dipole Moment) 電子双極子モーメント とは 微小な距離 a だけ離れて点電荷 q が存在する状態 絶対値は aq で 負電荷 q から正電荷 q へ向かうベクトルである 例えば 水分子は下右図のような向きの電気双極子モーメントをもち その大きさは約 1.85D である このように元々から持っている双極子モーメントを

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

: (a) ( ) A (b) B ( ) A B 11.: (a) x,y (b) r,θ (c) A (x) V A B (x + dx) ( ) ( 11.(a)) dv dt = 0 (11.6) r= θ =

: (a) ( ) A (b) B ( ) A B 11.: (a) x,y (b) r,θ (c) A (x) V A B (x + dx) ( ) ( 11.(a)) dv dt = 0 (11.6) r= θ = 1 11 11.1 ψ e iα ψ, ψ ψe iα (11.1) *1) L = ψ(x)(γ µ i µ m)ψ(x) ) ( ) ψ e iα(x) ψ(x), ψ(x) ψ(x)e iα(x) (11.3) µ µ + iqa µ (x) (11.4) A µ (x) A µ(x) = A µ (x) + 1 q µα(x) (11.5) 11.1.1 ( ) ( 11.1 ) * 1)

More information

第1章 様々な運動

第1章 様々な運動 自己誘導と相互誘導 自己誘導 自己誘導起電力 ( 逆起電力 ) 図のように起電力 V V の電池, 抵抗値 R Ω の抵抗, スイッチS, コイルを直列につないだ回路を考える. コイルに電流が流れると, コイル自身が作る磁場による磁束がコイルを貫く. コイルに流れる電流が変化すると, コイルを貫く磁束も変化するのでコイルにはこの変化を妨げる方向に誘導起電力が生じる. この現象を自己誘導という. 自己誘導による起電力は電流変化を妨げる方向に生じるので逆起電力とも呼ばれる.

More information

物性基礎

物性基礎 水素様原子 水素原子 水素様原子 エネルギー固有値 波動関数 主量子数 角運動量 方位量子数 磁気量子数 原子核 + 電子 個 F p F = V = 水素様原子 古典力学 水素様原子 量子力学 角運動量 L p F p L 運動方程式 d dt p = d d d p p = p + dt dt dt = p p = d dt L = 角運動量の保存則 ポテンシャルエネルギー V = 4πε =

More information

<4D F736F F F696E74202D2095A8979D90948A CE394BC A2E707074>

<4D F736F F F696E74202D2095A8979D90948A CE394BC A2E707074> 物理数学 1B( 後半部 ) 担当教員 : 山本貴博 講義内容 : ベクトル場における積分定理 第 1 回目講義 : 平面におけるグリーンの定理 ( 線積分 2 重積分 ) (12 月 11 日 ) 第 2 回目講義 : ガウスの定理 ( 面積分 体積分 ) (12 月 18 日 ) 第 3 回目講義 : ストークスの定理 ( 線積分 面積分 ) (1 月 15 日 ) 第 1 回目講義 : 平面におけるグリーンの定理

More information

7-12.dvi

7-12.dvi 26 12 1 23. xyz ϕ f(x, y, z) Φ F (x, y, z) = F (x, y, z) G(x, y, z) rot(grad ϕ) rot(grad f) H(x, y, z) div(rot Φ) div(rot F ) (x, y, z) rot(grad f) = rot f x f y f z = (f z ) y (f y ) z (f x ) z (f z )

More information

Microsoft PowerPoint - 1章 [互換モード]

Microsoft PowerPoint - 1章 [互換モード] 1. 直線運動 キーワード 速さ ( 等速直線運動, 変位 ) 加速度 ( 等加速度直線運動 ) 重力加速度 ( 自由落下 ) 力学 I 内容 1. 直線運動 2. ベクトル 3. 平面運動 4. 運動の法則 5. 摩擦力と抵抗 6. 振動 7. 仕事とエネルギー 8. 運動量と力積, 衝突 9. 角運動量 3 章以降は, 運動の向きを考えなければならない 1. 直線運動 キーワード 速さ ( 等速直線運動,

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

物性物理学I_2.pptx

物性物理学I_2.pptx The University of Tokyo, Komaba Graduate School of Arts and Sciences I 凝縮系 固体 をデザインする 銅()面上の鉄原子の 量子珊瑚礁 IBM Almaden 許可を得て掲載 www.almaden.ibm.com/vis/stm/imagesstm5.jpg&imgrefurl=http://www.almaden.ibm.com/vis/

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

Microsoft PowerPoint - em01.pptx

Microsoft PowerPoint - em01.pptx No. 基礎 ~ マクスウェルの方程式 ~ t t D H B E d t d d d t d D l H B l E 微分形積分形 電磁気学の知識からマクスウェルの方程式を導く No. ファラデーの法則 V d dt E dl t B d ストークスの定理を使って E d E ファラデー : 近接作用 界の概念を提唱 B t t B d アンペアの法則 I H rh I H dl d r dl V

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

大阪大学物理 8 を解いてみた Ⅱ. 問 ( g cosq a sin q ) m - 台 B 上の観測者から見ると, 小物体は, 斜面からの垂直抗力 N, 小物体の重力 mg, 水平左向きの慣性力 ma を受け, 台 B の斜面と平行な向きに運動する したがって, 小物体は台 B の斜面に垂直な方

大阪大学物理 8 を解いてみた Ⅱ. 問 ( g cosq a sin q ) m - 台 B 上の観測者から見ると, 小物体は, 斜面からの垂直抗力 N, 小物体の重力 mg, 水平左向きの慣性力 ma を受け, 台 B の斜面と平行な向きに運動する したがって, 小物体は台 B の斜面に垂直な方 大阪大学物理 8 を解いてみた Ⅰ. 問 g 最高点の座標を y max とすると, 力学的エネルギー保存則より \ y m mgy 補足 max g max 小物体の運動方向に対する仕事は重力 ( 保存力 ) の斜面に沿った成分のみであり, 垂直抗力 ( 非保存力 ) の仕事は である よって, 力学的エネルギー保存則が成り立つ これを確かめてみよう 小物体は重力の斜面に沿った外力を受けながらその運動エネルギーを失っていく

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為

Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為 Techniques for Nuclear and Particle Physics Experiments.. Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r e = (e mc ) で表される為 質量に大きく依存する Ex) 電子の次に質量の小さいミューオンの制動放射によるエネルギー損失 m e 0.5 MeV, m

More information

Microsoft PowerPoint - elast.ppt [互換モード]

Microsoft PowerPoint - elast.ppt [互換モード] 弾性力学入門 年夏学期 中島研吾 科学技術計算 Ⅰ(48-7) コンピュータ科学特別講義 Ⅰ(48-4) elast 弾性力学 弾性力学の対象 応力 弾性力学の支配方程式 elast 3 弾性力学 連続体力学 (Continuum Mechanics) 固体力学 (Solid Mechanics) の一部 弾性体 (lastic Material) を対象 弾性論 (Theor of lasticit)

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 米田 戸倉川月 7 限 193~21 西 5-19 応用数学 A 積分定理 Gaussの定理 divbd = B nds Stokesの定理 E bds = E dr Green の定理 g x f y dxdy = fdx + gdy = f e i + ge j dr Gauss の発散定理 S n FdS = Fd 1777-1855 ドイツ Johann arl Friedrich Gauss

More information

<4D F736F F F696E74202D E8EA58FEA82C982E682E997CD82C68EA590AB91CC>

<4D F736F F F696E74202D E8EA58FEA82C982E682E997CD82C68EA590AB91CC> 第 25 章磁場による力と磁性体 ローレンツ力 磁界の強さ 磁界と電界の違いは? 電界 単位面積当たりの電気力線の本数に比例 力 = 電荷 電界の強さ F = qe 磁界 単位面積当たりの磁力線の本数に比例 力 = 磁荷? 磁界の強さ F = qvb ( 後述 ) 電界と力の関係から調べてみる 磁界中のコイルと磁束 S B S B S: コイルの断面積 : コイルを貫く磁力線 ( 磁束 ) : コイル面と磁界のなす角

More information

Microsoft PowerPoint - 2_FrontISTRと利用可能なソフトウェア.pptx

Microsoft PowerPoint - 2_FrontISTRと利用可能なソフトウェア.pptx 東京大学本郷キャンパス 工学部8号館2階222中会議室 13:30-14:00 FrontISTRと利用可能なソフトウェア 2017年4月28日 第35回FrontISTR研究会 FrontISTRの並列計算ハンズオン 精度検証から並列性能評価まで 観測された物理現象 物理モデル ( 支配方程式 ) 連続体の運動を支配する偏微分方程式 離散化手法 ( 有限要素法, 差分法など ) 代数的な数理モデル

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

レーザー発振の原理

レーザー発振の原理 第 6 章光と原子との相互作用光の吸収と放出前章では 光と相互作用する原子の束縛電子状態は定常状態とは異なるが 定常状態の状態ベクトルで展開して表現できることが示された 原子 個の微視的双極子モーメントの期待値から 巨視的な物質分極が導かれ 我々の観測できるマクロ的な光学定数が関連付けられた 本章では 状態の変化と それに伴う光の吸収と放出について議論する 6. 量子論に基づく A 係数と B 係数分散理論では

More information