Size: px
Start display at page:

Download ""

Transcription

1 ( /main.tex) ,

2

3 W. (Political Arithmetic) ( ) Statistik 19 Statistik (Blaise Pascal : ) Pierre de Fermat 1607(1608?)-1665, 19 (Pierre-Simon Laplace, ) Leonhard Euler, ) 3

4 ( ) ( ) ( ) ( ) 19 Biometrics*( ) 19 0 * Biostatistics Biometrika 0 W. ( ) Sir A. ( , ) ( ) K. Abraham Wald, John Wilder Tukey, AT&T Bell Laboratories 1965 The future of data analysis 196 Mathematics of Computation 1965 Cooley Software Bit Statistics

5 ISBN GDP* GDP : Gross Domestic Product GDP (i) ( ) estattopportal.do (ii) 5

6 : : : statistics statisticum ( EBM) (iii)

7 URL(Uniform Resource Locator) Web http(hypertext Transfer Protocol) URL R (Win, Mac, Linux) R on Windows: ~takeshou/r/ Wikipedia

8 .1 (set) n > 0 n 1 a A b A a A a A a A b A b / A U U A B A B d a c b A B (a A, a / B) (1) ; {, 4, 6,, 0} () ; {x x = n, n = 1,,, 10}, {n n = 1,,, 10}, {n n 1 10 } U U A B A B A B A B 8

9 U U A B A B A c A A \ B = A B A,B x A x B A B B A A B A B B A A A A A A,B A B, B A A = B (empty set) {} ϕ ( ) ϕ A A, B A B (intersection) A B A, B A B (union) A B U Ω U (Universe set) U A U A (complement) A c A (empty set).1 ( ) : (1) A B = A B () A B = A B. (1) (A B) C = A (B C) () (A B) C = A (B C) (3) A B = B A (4) A B = B A (5) (A B) C = (A C) (B C) 9

10 .1 n,a 1, A,, A n n A i = A i = A 1 A A n i=1 i n A i = A 1 A A n i=1.1 n {A i, i = 1,,, n}. a, b, c {0, 1} A, B, C (i) 1 a A; (ii) a = 1 (1 a) (A) ; (iii) max{a, b} A B; (iv) max{a, b, c} A B C; (v) min{a, b} A B; (vi) min{a, b, c} A B C..3 x i A i i x A i x i A i i x A i [ ] (exist) (all) x i x i A i x A i, i A i x A i, i.4 n x i {1, 0}, i = 1,,, n (i) max{x 1, x,, x n } = 1 (1 x 1 ) (1 x n ) (ii) min{x 1, x,, x n } = x 1 x x n 10

11 . 5 5 =?.3 n n (n 1) (n )... 1 n (n 1) 1 (exclamation, )! n! n n! = n(n 1)(n ) 3 1 (n 1), 0! = 1 11

12 10 3! = 6, 4! = 4, 5! = 10, 6! = 70, 7! = 5040, 8! = 4030, 9! = 36880, 10! = r n 1. : n r = r {}}{ n n n (.1) (permutation) (n) r = r {}}{ n(n 1)(n ) (n (r 1)) =. : n! (n r)! (.) [n] r r! = r {}}{ n(n + 1)(n + ) (n + (r 1)) = r! ( ) ( ) n + r 1 n + r 1 = r n 1 (.3) (combination) (n) r r! = n(n 1)(n ) (n (r 1)) r! = ( ) ( ) n n = r n r r {}}{ (n) r = n(n 1)(n ) (n r + 1) r {}}{ [n] r = n(n + 1)(n + ) (n + r 1) (a 1, a, a 3,, a r ), {a 1, a, a 3,, a r } r! { } = r! { } (a, b, c) {a, b, c} A_ (.4)

13 (i) (ii) (iii) (iv) (v) 5 (i) 5 5! = (ii) 4 4 4! = 48 (iii) 1, 3, ! = 7 5 (i) (ii) (iii) = 7.6 {0, 1,, 3, 5} 5 (4 ) 0 (i) 5 (ii) 5 (iii) 5 (iv) 5 5 (v) 5 10 (i) ! = 96 (ii) ! = ! = = 4 (iii) (i) (ii) 5 5 1, 3, ! = 54 5 (ii) (i) 96 (iv) ! = ! = = ( ) 5 ( 5 ) = 5 4 = 10 10! ( 5 3 ) = = 10 ( 5 3! ) = (5 3 ).8 6 (i) 3 (ii) 13

14 (iii) (i) 6 3 ( 6 3 ) ( 3 ) (6 3 ) (3 ) (ii) (i) 6 ( 6 ) ( 4 ) (6 )(4 ) (iii) (ii) (ii) 45 n, r ( ) ( ) n n = ( r ) n ( r ) n + 1 n = r r ( ) n + r 1 ( ) n r n r 1 n 1 r 1 n 1 r 1 n, r 1 r ( ) π (0! = 1) n = (π) ( ) 3 π (π 1) (π ) 3 = = (3) 5 = 3 3! 6 5 5! 3 (3 1) (3 ) (3 3) (3 4) = 0 5! O = (0, 0) (North) (East) b a + b a O m, n = 0, 1,, (m, n) N(m, n) = ( m+n n ) = (m+n m ) N(0, 3) = 1, N(, 3) = N(3, ) = 10, N(3, 3) = 0 N(m, n) = k k (m, n) k = 15 (m, n) = (, 4), (4, ) k = 5 14

15 (m, n) = (5, 5) N(m, n) + N(m 1, n + 1) = N(m, n + 1) ( m+n n ) + (m+n n+1 ) = (m+n+1 n+1 ) (x + 1) m+n (x + 1) = (x + 1) m+n+1 x n.9 (m, n) N(m, n) = ( m+n n ) = (m+n m ) : a, b n ;(a + b) n (a + b) n = n {}}{ (a + b) (a + b) (a + b) n (a + b) a b a b a ( ) ( r b ) n r a r a r b b r n n = = (n) r = (n) n r r n r r! (n r)! ( ) ( ) ( ) ( ) ( ) n n n n n (a + b) n = a n b 0 + a n 1 b a n r b r + + a 1 b n 1 + a 0 b n 0 1 r n 1 n.4 (event) (probability). : N A #(A) A P(A) P(A) = #(A) N a A, {a} P({a}) = 1, a N n P({a 1, a,, a n }) = n N, a i A : ,,3,4,5,6 6 : Ω( ) #(Ω) < 15

16 1 A 0 P(A) 1 ( ) ϕ P(ϕ) = 0, 3 Ω P(Ω) = 1. : A,B A B = ϕ A B (mutually exclusive) (mutually disjoint) A B (exclusive event) A B A B A B = ϕ P(A B) = P(A) + P(B) A B = ϕ P(A B) = 0 P(A B) + P(A B) = P(A) + P(B) (.5) a b c = a b c {a i } i a i, Π i a i A 1, A,, A n n i=1 A i = i A i = A 1 A A 3 A ni=1 n A i = i A i = A 1 A A 3 A n = A 1 A A 3 A n ( 5 ) = 10 ( 3 ) = 3 (3 )/(5 ) = 3/ ( 1 3 ) = 0 3 A 3 B P(A) = ( 7 3 )/(1 3 ) = 35/0, P(B) = ( 5 3 )/(1 3 ) = 10/0 3 A B A B, A B = P(A B) = P(A) + P(B) = 35/0 + 10/0 = 45/0 = 9/44. ( ) : A A A A A (complement) A c A A P(A) = 1 P(A) (.6) ( 8 3 ) = 56 1 A P(A) 3 P(A) = ( 5 3 )/(8 3 ) = 10/56 P(A) = 1 P(A) = 1 ( 5 3 )/(8 3 ) = 3/8 16

17 .13 A, B, C (1) P(A B) = P(A) + P(B) P(A B) = P(A) + P(B) {P(A B) () P(A B) = 1 P(A B) = 1 P(A B) = 1 P(A B) (3) P(A B C) = P(A) + P(B) + P(C) {P(A B) + P(B C) + P(C A)} + P(A B C) = P(A) + P(B) + P(C) {P(A B) + P(B C) + P(C A)} + P(A B C) (4) P(A B C) = 1 P(A B C) = 1 P(A B C) = 1 P(A B C).5 (conditional probability); A B A B (conditional probability) P(B A) P(A) = 0 P(B A) = P(A B) P(A) (.7) Ω A B A A B A A B B A A B P(Ω) = 1, P(A B) P(B A) = P(A B) P(A) P(A B) = P(A) P(B A) (.8) P(B A) P(A) A B A B B A (independent), P(B A) = P(B A) P(A B) = P(A) P(B) A P(B A) = P(B) A B 17

18 P(A B) = P(A) P(B) (.9) n {A 1, A,, A n } (i), A i A j (ii) P(A 1 A A n ) = P(A 1 )P(A ) P(A n ) (i) (pairwise independent) A 3 B A = {, 4, 6, 8, 10, 1, 14}, B = {3, 6, 9, 1, 15} 3 p p 7 6 A B = {6, 1}. A B A B P(A B) P(B A) = = P(A) 7 {B 1, B,, B n } Ω (partition), (i) B i B j = ϕ (i = j), (ii) Ω = i B i.3 {B 1, B,, B n } Ω P(A) = P(A B 1 )P(B 1 ) + P(A B )P(B ) + + P(A B n )P(B n ) (.10) : 1 A 3 B 4 C A = {, 4, 6}, B = {3, 6}, C = {4, 5, 6}., P(B A) = P(B) A B P(C A) = P(C) A C A, B A B A B A B P(B A) = P(B) n , =

19 : E p n E r ( n r )pr (1 p) n r, (r = 0, 1,,, n) Binom(n, p) = 1 1 ( ) ( ( 4 ) 1 1 ) 5 4 = % 4% A 50 B P(A) = 60 = 0.6, P(A B) = P(A B) = 0.4. P(B A) = = P(A) a b a b 1 a A b B a 4 P(B A) = 4 = 1. P(A B) = P(A) P(B A) = = (1) a 1 b 1 a b () a 1 b 1 a b a A b B (1) A B A A 1 B PA(B) () A A B.6.4 A Ω {B 1, B,, B n } P(B i ),P(A B i ), (i = 1,,, n) P(B i A) = P(A B i) P(B i ) j P(A B j )P(B j ) 19

20 (belief) 1763 Thomas Bayes( ) ( ) n r θ θ (aleatory) (epistemological) ( ) P(B A) = P(B) P(A B) P(B) P(A B), B = {Y = b} A P(A B) = P(A Y = b) b A L(b) L(b) = ( ) P(A Y = b) 0

21 3 3.1 ( ):{H} {T} {1, 0} (random variable) X H (Head),T (Tail) 1 X 4 X X {0, 1, } (1, ) X (H, H) p (H, T) 1 p(1 p) (T, H) 1 p(1 p) (T, T) 0 (1 p) p X = 0 (1 p) X = 1 p(1 p) X = p X 0 1 (1 p) p(1 p) p 1 X x p X (x) (1 p) if x = 0 ( ) p X (x) = p(1 p) if x = 1 p p X (x) = p x (1 p) x, x = 0, 1, if x = x n ( ) n p X (x) = p x (1 p) n x, x = 0, 1,,, n (3.1) x X Binom(n, p) n, p (Binomial distribution) X x 1, x,, x n p i = P(X = x i ), i = 1,,, n (i) 0 p k, (ii) n p i = 1 x i p i i x x 1 x x n P(X = x) p 1 p p n 1,pdf(probability density function) (discrete density) 1

22 X (probability distribution) {X = x k } p X (x k ) = p k, k = 1,,, n {x 1, x,, x n } {X x}, F X (x) = P(X x), < x < (3.) (distribution function) (i), (ii) 0 1, (iii) f X (x) = d dx F X(x) F X (x) = x f X (t) dt (discrete type) P(a X b) = P(X = x i ) = p X (x i ) a x i b a x i b (continuous type) P(a X b) = f X(x) dx = {x : a x b} b a f X (x) dx 3. c X r x 1, x,, x r n nc X 1 + X + + X n c nc (X 1 + X + + X n ) = 0, c c = 1 n (X 1 + X + + X n ) P(X = x i ) = f X (x i ), i = 1,,, r N n (x) x X 1, X,, X n x N n (x) = i 1 {Xi =x} X 1 + X + + X n = r i=1 x in n (x i ), X 1 + X + + X n n = r N n (x x i ) i n i=1 *1 N n (x)/n n f X (x) = P(X = x) (3.3) *1

23 X x 1 x x r N n (x)/n N n (x 1 )/n N n (x )/n N n (x r )/n 1 f X (x) = P(X = x) f X (x 1 ) f X (x ) f X (x r ) 1 (3.3) µ = r i=1 x i f X (x i ) c µ > c µ = c X µ = i x i P(X = x i ) = x i p X (x i ) (3.4) i f X (x) = d dx F X(x) = d dx P(X x), ( < x < ) µ = x f X (x) dx (3.5) : X :{p X (x i ), i = 1,, }, :{ f X (x), < x < } µ = E(X) (expectation) (mean) average E(X) = x i p X (x i ) : E(X) = i x f X (x) dx : x m (x m) E[(X m) ] X m X m X (variance) V(X) V(X) = E[(X m) ] = i (x i m) p X (x i ) : V(X) = (x m) f X (x) dx : X (standard deviation) σ(x) σ(x) = V(X) V(X) (X m) = X mx + m V(X) = E[(X m) ] = E[X mx + m ] = E[X ] me(x) + m = E[X ] m V(X) = E[X(X 1)] + m m 3

24 3.1 (1) () 1 X X [0, 1] X (Uniform distribution) X Uni f {1,,, 6}, X Uni f [0, 1] P(X 1 + X = a) = P(X 1 = k)p(x = a k) k 3 ( ) X ( ) 3 X 1 P(X 1 + X = 7) = k P(X 1 = k)p(x = 7 k) = P(X 1 = 1)P(X = 7 1) + P(X 1 = )P(X = 7 ) P(X 1 = 6)P(X = 7 6) = (1/6)(5/36) + (1/6)(4/36) + (1/6)(3/36) + (1/6)(/36) + (1/6)(1/36) = 15/16 7 X 1 = 1,,, 6, X =, 3,, 1 X ( ):X 1 ( ) 1 (1/6) (1/6) 3 (1/6) 4 (1/6) 5 (1/6) 6 (1/6) (1/36) (/36) (3/36) (4/36) (5/36) (6/36) (5/36) (4/36) (3/36) (/36) (1/36) [ ] X a,b Y = ax + b Y (i) E(Y) = ae(x) + b (iii) σ(y) = a σ(x) (ii) V(Y) = a V(X) (b ) n X,Y (X, Y) 4

25 {X = a} {Y = b} (X, Y) = (a, b) f X,Y (a, b) = P(X = a, Y = b) f X (a) = b f X,Y (a, b), f Y (b) = a f X,Y (a, b) P(X 1 + X = a) = f X,Y (x, y) (3.6) {(x,y) x+y=a} x + y = a (x, y) E(X) = i x i p X (x i ) x f X (x)dx E[(X a) ] = i (x i a) p X (x i ) = i xi p X(x i ) a i x i p X (x i ) + a E[(X a) ] = (x a) f X (x)dx = x f X (x)dx a x f X (x)dx + a V(X) a = E(X) i xi p X(x i ) {E(X)} V(X) = x f X (x)dx {E(X)} (3.8) (X, Y) h(x, Y) h(x i, y j )p X,Y (x i, y j ) i j E[h(X, Y)] = h(x, y) f X,Y (x, y) dxdy {p X (x i, y j )} (x i, y j ) {p X (x i, y j )} p X,Y (x i, y j ) = p Y (y j ), p X,Y (x i, y j ) = p X (x i ) i j A i = {X = x i }, B j = {Y = y j } (Marginal distribution) (3.7) (3.9) 3.1 F X,Y (x, y) = P({X x} {Y y}) = P(X x, Y y) Y X x y {X x, Y y} (x, y) Y y (0, 0) x X 3. X Y (covariance) cov(x, Y) = E[(X µ X )(Y µ Y )] = E[XY] µ X µ Y 5

26 µ X, µ Y 3.3 : X a Y b {X = a} {Y = b} P({X = a} {Y = b}) = P(X = a, Y = b) P(X = a) P(Y = b) X Y 3.1 X Y F X,Y (x, y) = F X (x)f Y (y), x, y 3. X, Y, E(X + Y) = E(X) + E(Y) (3.9) h(x, y) = x + y 3.3 X, Y, E(X Y) = E(X) E(Y) X Y = X + 3 [ ] P(X = i) = 1 6, i = 1,,, 6. E(X) = 6 i=1 i 1 6 = ( ) 1 6 = 7 ( ) 7 V(X) = E(X ) = ( ) = = 35 1 Y E(Y) = E(X + 3) = E(X) + 3 = = 10, Y V(Y) = V(X) = = X,Y 3.4 (i) V(X + Y) = V(X) + V(Y) (ii) V(X Y) = V(X) + V(Y),cov(X, Y) = 0 V(X + Y) = V(X) + V(Y) + cov(x, Y) V(X Y) = V(X) + V(Y) cov(x, Y) 3. A,B 1 A

27 1 B A,B X,Y E(X + Y) E(XY) X Y X + Y XY {X = 1} 4/6 = /3 {X = 0} /6 = 1/3 {Y = 1} 1/6 {Y = } 3/6 = 1/ {Y = 3} /6 = 1/3 E(X) = 1 / /3 = /3, V(X) = 1 / /3 (/3) = /9 E(Y) = 1 1/6 + 1/ + 3 1/3 = 13/6, V(Y) = 1 1/6 + 1/ + 3 1/3 (13/6) = 17/36 {XY = 0} /6 = 1/3 {X + Y = } /6 = 1/3 {XY = 1} 1/6 {X + Y = 3} 3/6 = 1/ {XY = } /6 = 1/3 {X + Y = 4} 1/6 {XY = 3} 1/6 E(X + Y) = 1/ / + 4 1/6 = 17/6, V(X + Y) = 1/ / + 4 1/6 (17/6) == 17/36. E(XY) = 0 1/ /6 + 1/ /6 = 4/3, V(XY) = 0 1/ /6 + 1/ /6 (4/3) = 3 16/9 = 11/9. cov(x, Y) = E(XY) E(X)E(Y) = 4/3 /3 13/6 = 1/9 V(X) + V(Y) + cov(x, Y) = /9 + 17/36 + ( 1/9) = 17/36 V(X + Y) 3. X, Y X + Y XY X + Y 3.3, X X {0,1,,3} {X = 1} /6 5/6 3 3(1/6)(5/6) X X (5/6) 3 3(1/6)(5/6) 3(5/6) (1/6) (1/6) A p n A X X q = 1 p 7

28 X 0 1 k n ( ) ( ) ( ) ( ) ( ) n n n n n q n p 1 q n 1 p q n p k q n k p n k n (binomial distribution) Binom(n, p) P(X = k) = ( ) n p k q n k, k = 0, 1,,, n (3.10) k X X X q = 1 p ( ) ( ) n n 1 X k = n, k = 1,,, n 1 k k 1 n ( ) n E(X) = k p k q n k n 1 ( ) n 1 = np k p k 1 q n k = np k k=0 k=1 ( ) ( ) n n X X = X(X 1) + X k(k 1) = n(n 1), k =, 3,, n k k 1 X V(X) = n k=0 k(k 1)(n k )pk q n k + np = n(n 1)p n = n(n 1)p + np = npq k= (n k )pk q n k + np 3.5 X q = 1 p X Binom(n, p) = E(X) = np, V(X) = npq ( ) ( ) ( ) Binom(n, p) = ,, 8,, 8, : ( ) n p(k) = p k (1 p) n k, k = 0, 1,,, n k n p 3 (p = 3 10 ), (p = 10 5 = 1 ), (p = 8 10 ) :,p = 1 n = 8, 16, 3 3 B(8, 1 ),B(16, 1 ),B(3, 1 ) 8

29 X X X Binom(n, p), n = 100, p = P(X = k) = ( 100 k ) ( ) 7 k ( 310 ) 100 k, 10 k = 0, 1,,, 100 X E(X) = µx = k k P(X = k) k ( n k ) = n( n 1 k 1 ) µ X = 100 i=0 k (100 k ) ( ) 7 k ( 310 ) 100 k 10 = i=1 ( 99 k 1 ) ( ) 7 k ( 310 ) 100 k ( 10 = ) ( ) 99 = 70. X var(x) var(x) = E(X µ X ) = k (k µ X ) P(X = k) = k k P(X = k) (µ X ) = E(X ) µ X E(X ) = E(X(X 1)) + EX k(k 1) ( n k ) = n(n 1)(n k ) E(X(X 1)) = 100 i=0 k(k 1) (100 k ) ( ) 7 k ( 310 ) 100 k 10 = i= ( 98 k ) ( ) 7 k ( 3 ) 100 k ( = ) ( ) 98 = n(n 1)p = = var(x) = = 1 = np(1 p). : (Poisson) (rare event) p p (n λ p = p n 0, n, np n np n λ e exp(a) = e a = lim n (1 + a n )n a n ( n k )pk (1 p) n k λk k! e λ. Po(λ) X Po(λ) : p X (k) = λk k! e λ, k = 0, 1,, (3.11) np np(1 p) np λ, λ np(1 p) = np (np) p λ λ 0 = λ 3.4 X Po(λ) E(X) = λ, var(x) = E(X ) {E(X)} = λ ; n Z N(0, 1) ϕ(z) = 1 ( exp 1 π z) (3.1) 9

30 Z, f Z (z) ϕ(z) ( ) N(0, 1) 1 X X y = f (x) (1) () y = f (x) x 1 b (3) a x b X f (x)dx a f (x) X X P(X = x) = lim h 0 P(x X x + h) = x+h lim h 0 f (x)dx = 0 P x P(X = a) = P(X = b) = 0 P(a X < b), P(a < X b), P(a < X < b), P(a X b), X µ, σ f X (x) = 1 (x µ) e σ = 1 (x µ) exp{ πσ πσ σ } (3.13) X N(µ, σ ) X µ σ 1 1 πσ πσ µ σ σ X N(µ, σ ) E[X] = x f X (x)dx = µ, var[x] = E(X ) E(X) = x f X (x)dx µ = σ X (1) x = µ y x = µ () x (3) σ x = µ 30

31 X N(µ, σ ) Z = X µ N(0, 1) σ σ Z N(0, 1) ϕ(z) = 1 π e z < z < (standard normal distribution) = π Φ(x) = P(Z x) = x ϕ(z)dz = x 1 π e z dz x Φ(x) X N(µ, σ ) Z = X µ σ X = σz + µ Z N(0, 1) (i) P ( 0.5 Z 0.5) = (ii) P ( 1 Z 1) = (iii) P ( Z 1.645) = (iv) P ( 1.96 Z 1.96) = (v) P ( Z ) = (vi) P ( 3 Z 3) = ( z F(z) = F X (z) =NORMSDIST(z) *F(z) -1 P z X µ ) ( z = F(z) 1. p p = P z σ p/ X µ ) z σ p/ = ) ) P ( z p/ Z z p/ = P ( Z z p/ z p/, =NORMSINVDIST((1+p)/) z p/ (Normal distribution table) : Φ(z) = F Z (z) = P(Z z) = 1 P(Z > z) = 1 P( Z < z) = 1 P(Z z) = 1 F Z ( z) = 1 Φ( z) 3.5 Z, (1) P(Z <.5) () P(1 Z <.5) (3) P( 0.8 < Z) (4) P( 0.8 < Z < 1.5) (1) P(Z <.5) = P(Z.5) = Φ(.5) = () P(1 Z <.5) = P(1 Z.5) = P({Z.5} {1 > Z}) = P(Z.5) P(Z 1) = Φ(.5) Φ(1) = = (3) P( 0.8 < Z) = P(Z > 0.8) = 1 P(Z 0.8) = (4) P( 0.8 < Z < 1.5) = P(Z 1.5) P(Z 0.8) = Φ(1.5) (1 Φ(0.8)) = = X N(3, 4 ) P(1 X 7) 31

32 X N(µ, σ ) Z = X µ N(0, 1) σ σ X N(3, 4 ) Z = X 3 N(0, 1) 4 P(1 X 7) = P( 1 3 Z 7 3 ) = P( 0.5 Z 1) = P(Z 4 4 1) P(Z > 0.5) = Φ(1) (1 Φ(0.5)) = = :central limit theorem CLT... µ σ n N(µ, σ /n). ( ).. µ σ n x n µ σ /n n N(µ, σ ) n N(µ, σ /n) n σ /n x µ : Wikipedia (009/0 4/5 1:17 UTC ) 3

33 .. Abraham De Moivre( ) 1730 Miscellanea Analytica 1733 Document of Chance X Bin(n, p) ( ) n P(X = x) = p x q n x x x = 0, 1,,, n npq ( n x ) 1 ( ) x np p x q n x 1 e npq π q = 1 p π e e π n n n! Bin(5, 1/),Bin(0, 1/) : 二項正規 二項正規 3.6 X 1, X,, µ 0 < σ < n i=1 X i nµ nσ N(0, 1) (n ) t ( n ) P i=1 X i nµ t 1 t e x / dx nσ π

34 X X X Binom(800, 1 ). X Z = X = X Z N(0, 1) P(X 380) = P(Z 10 ) = P(Z ) = P(Z 1.414) = 1 Φ(1.414) = P(0 X 380) = 380 k=0 (800 k ) 800 =

35 3.5 n n (Pierre Simon de Laplace), Polya(190) 3.7 (Central Limit Theorem) X 1, X,, µ σ S n = n i=1 X i, n, S n nµ nσ N(0, 1) X n = 1 n n i=1 X i X n nµ σ/ n N(0, 1) 1730 De Moivre Miscellanea Analytica 1733 The Doctrine of Chances 1738 The Doctrine of Chances Analytical Theory of Probabilities (181) ( ) n, p X Bin(n, p), n P(X = x) = p x (1 p) x x ( ) P(X = x) 1 exp π x np 1 / np(1 p) np(1 p) ( ) ( ) 35

36 0.4 ϕ(x) x ϕ(x) = 1 ( exp 1 ) π x = 1 e 1/x π npqp(x = x) ϕ (u), u = x np npq, q = 1 p n = 10, p = n n = 30, p = m! = πmm m e m log(1 + x) = x x + O(x3 ) ( ) n npq p x q n x 1 u x π e pq pq x/n p = u, (n x)/n q = u n n, log log x/n p (n x)/n q ( ) q q = log 1 + u = u np np u q np ( ) p p = log 1 u = u nq nq u p nq n Pierr Simon Laplace( ) ψ(t) = E(e itx ),n 36

37 1 (n) n 1 1 (Karl Friedrich Gauss), d ϕ(x) = xϕ(x) dx log ϕ(x) = ( x)dx + const. = {x } = cx = 1 x n M i = z + v i, i = 1,, n n M 1 + M + + M n = z ϕ(v)dv n v i = M i z P = ϕ(v 1 )dv 1 ϕ(v )dv ϕ(v n )dv n P log P log ϕ(v 1 ) + log ϕ(v ) + + log ϕ(v n ) ϕ(v) z P z = 1 ϕ(v 1 ) + 1 ϕ(v ) ϕ(v n ) = 0 ϕ(v 1 ) z 1 ϕ(v ) z ϕ(v n ) z n = ϕ (v) v z ϕ (v) = ψ(v) ϕ(v) ψ(v 1 ) v 1 z 1 + ψ(v ) v z + + ψ(v n ) v n z n = 0 i v i = M i z v i z i = 1 ψ(v 1 ) + ψ(v ) + + ψ(v n ) = 0 (a) v 1 + v + + v n = 0 (b) v 1 + v + + v n = (M 1 z) + (M z) + (M n z) = M 1 + M + + M n nz = 0 (a), (b) ψ(x) = cv c ϕ (v) ϕ(v) = cv log ϕ(v) = c v + c (c, c : const) c, c ϕ(v) ϕ(v) = ke h v (k, h : const) k = 1 π, h = 1 37

38 (Law of Large Numbers): p, 1 p X 1, X,, X n Σ i X i X p (Central Limit Theorem): X 1, X,, X n, µ, σ n X n = Σ n i=1 X i X n µ 0 X n µ σ /n X n n a, b ( lim P a X ) n µ b n σ /n b 1 exp( x a π ) dx a, b n(x n µ) ( N(0, σ ) N(µ, σ ) µ σ 1 (x µ) exp( πσ σ ) < x < 1 πσ 1 πσ x = µ x = µ ± σ p 38

39 X n, p np, np(1 p) Y Z ( (k 0.5) np P(X = k) P(k 0.5 < Y < k + 0.5) = P < Z < np(1 p) P(i X j) P(i 0.5 < Y < j + 0.5) = P ) (k + 0.5) np, np(1 p) ( ) (i 0.5) np (j + 0.5) np < Z < np(1 p) np(1 p) Z x Φ(x) = P(Z x) P(Z x) = P(Z < x) x Φ(x) ϕ(x i ) = a i, i = 1, a 1 < α < a c = x x 1 a a 1 (α a 1 ) + x 1 (1)P(0 < Z < 1.) = P(0 < Z 1.) = P(0 Z < 1.) = P(0 Z 1.) ()P( 1. < Z < 0) = P(0 < Z < 1.) (3)P( 1. < Z < 1) = P(0 < Z < 1.) + P(0 < Z < 1) = 0.76 (4)P(Z < 1.) = P(Z < 0) P( 1. < Z < 0) = 0.5 P(0 < Z < 1.) = X 10, 4 (1) P(X 13) () P(X > 11) (3) P(9 < X < 1) (4) P(X < c) = 0.1 c , 0.( 0. = 0.04)mm 0.5mm 39

40 3.11 P(X = k + 1) P(X = k) (k = 0, 1,, )

41 0 面体のサイコロでこれを乱数サイとよんでいます 3 個をころがして その結果を記録するのですが い まはコンピュータのシュミレーションがふつうに行われます 41

42 4 4.1 : kg kg ±1.5kg 3.0kg : : 1 : 0 4

43 ( )Average 1 n {x 1, x,, x n } x r i (i = 1,,, r) a i f i n n = f 1 + f + + f r a a 1 a a r x 1 + x + + x n = a 1 f 1 + a f + + a r f r = i a i f i x f f 1 f f r n (I) (II) X = 1 n n k=1 x k X = 1 n i a i f i c x i c x i y i = x i c c 4.1 X Y 4.. (, ) Median {x 1, x,, x n }, {x (1) x () x (n) } Me n n/ (n + 1)/ Me = x ( n ) + x ( n+1 ) Me = x ( n+1 ) 50% 50% 4..3 ( ) Mode Mo 43

44 L Mo Me X L Box Whisker Chart) 1 (1) (min), () 5% ( :Q 1 ), (3) (average), (4) 50% ( ;Me = Q ), (5) 75% ( :Q 3 ),(6) (max) Range R = max i x i min i x i 5% 50% 5% (box chart) 4.3. Mean Deviation x x i, i = 1,,, n n x i X (MD:mean deviation) X = MD = = i (x i X) = 0 44

45 4.3.3 Variance Standard Deviation [ ]: (x i X), i = 1,,, n (variance) s s = 1 n i = 1 n i x i X = n i x i ( i x i ) n, x 1 + x + + x n = a 1 f 1 + a f + + a r f r = i a i f i s = 1 n i (a i X) f i = 1 n i a i f i X n i (x i X) = 0 n n 1 (unbiased variance) u = 1 n 1 i (x i X) = 1 ( n ) (x i x i ) i<j 1 i<j n {(i, j) ; 1 i < j n} ( n ) (x i x i ), i, j = 1,,, n cm cm u u = u u x (standard deviation) [ ]: u = 1 n 1 n i=1 x i n n 1 X u = u n xi ( x i ) = n(n 1) X AVERAGE( ) :{x 1, x,, x n } ( )Me ( )Mo MEDIAN( ) MODE( ) Q QUARTILE( ) 0: 1: 1 (5%), : (50%)= 3: 3 (75%) 4: u STDEV( ) ( - ) = (n-1) s STDEVP( ) n u VAR( ) (n-1) s VARP( ) n 45

46 4.1 ; X 61.0 s 6.04 (SD) u 5.38 u 8.93 (Me) (Mo) Non available 4 (Q 0 ) (Q 1 ) (Q ) (Q 3 ) (Q 4 ) Score {x 1, x,, x n } x i z i x a, b y = ax + b b = 0 y i = x i X, i = 1,,, n, : a = 1 u u, b = X u (4.1) z i = 10y i % (quantile) 10% 10 (decitile) 100 (percentile) (range) (quantile range) 3/4(75%) 1/4(5%),skewness) (,kurtosis) kg cm x kg y cm 46

47 x, y n {(x i, y i ); i = 1,,, n} x X, y Y x s x = 1 n n i=1 (x i X) = 1 n n i=1 x i X y s y = 1 n n i=1 (y i Y) = 1 n n i=1 y i Y s xy = 1 n n i=1 (x i X)(y i Y) = 1 n n i=1 x iy i XY x y (x i X) (y i Y) x y x y (x, y) x, y ( ) s x,s y x i X, y i Y, i = 1,,, n s X s Y x, y r 4.1 x y r r = s XY s X s Y (4.) r r 1 r 1 r 1 r 0 ( kg cm r = CORREL(, ) = CORREL(, ) = CORREL(, ) =

48 Corrado Gini Wikipedia (Gini coefficient) 100 Gini Index Japan 4.9 United Kingdom 36.0 Sweden 5.0 Iran 43.0 Germany 8.3 United States 46.6 France 3.7 Argentina 5. Pakistan 33.0 Mexico 54.6 Canada 33.1 South Africa 57.8 Switzerland 33.1 Namibia 70.7 ( Bob Sutcliffe (007), Postscript to the article World inequality and globalization (Oxford Review of Economic Policy, Spring 004), Retrieved on The World BANK : Working for a World Free of Poverty Jonhson Kots Balakrishnan, Continuous Univariate Distribution,Vol.1 48

49 4. X, X 1, X F X (t) = P(X t) p X (t) FX 1(t) = inf x{x; F X (x) t} 1. (Gini mean difference); γ(x) = E[ X 1 X ]. (Lorenz curve); L(p) = 1 p F 1 E(X) X 3. (Gini concentration index); C(X) = 0 (t)dt {p L(p)}dp = 1 {L(p)}dp ( ) n 1 (1) g = X i X j γ(x) (i < j ) i<j () L(F X (x)) = E[X X x] F X(x) F E[X] X (x) (3) L(p) p, (0 p 1), L(0) = 0, L(1) = 1. (4) C(X) = 1 E[X 1 X 1 X ] = 1 γ(x) E[X] E[X] (5) γ(x) = E[X 1 X 1 X ] E[X 1 X 1 X ] ( ) E[X X x]f X (x) = E[X ; X x], P(X 1 X ) = P(X 1 X ) = 1 E[X] = E[X X 1 X ]P(X 1 X ) + E[X X 1 X ]P(X 1 X ) = 1 {E[X X 1 X ] + E[X X 1 X ]} γ(x) = E[ X 1 X ] = E[X 1 X X 1 X ]P(X 1 X ) + E[ (X 1 X ) X 1 X ]P(X 1 X ) = 1 E[X 1 X 1 X ] + 1 E[X X 1 X ] 1 E[X 1 X 1 X ] 1 E[X X 1 X ] = E[X 1 X 1 X ] E[X 1 X 1 X ] x = F 1 X 1 0 L(p) dp = 1 1 p dp E(X) X 0 0 = 1 p X (y) dy E(X) = 1 E[X] (t), p X(x)dx = dt, y = FX 1(p), p = F X(y), dp = p X (y)dy 0 0 F 1 y 0 1 (t) dt = E(X) 0 x p X (x) dx = 1 E[X] FX (y) p X (y) dy E[X X y] F X (y) df X (y) = 1 E[X] = 1 E[X] E[X 1 X 1 X ] P(X 1 X ) 0 0 FX 1 (t) dt E[X ; X y] df X (y) { x } t p X (t) dt p X (x)dx (4) E[X 1 X 1 X ] = E[X] 1 γ(x) G = 1 0 L(x) L(x)dx = 1/ 1 0 L(x)dx 1/ or = 1 L(x i ) (i.e.l(x) ) i 49

50 y G y = x L(x)dx y = L(x) (1) i = 1,,, n 0 1 x x i x 1 x x n p i = f (x i ) p 1 p p n F i F 1 = p 1 F = p + F 1 F n = p n + F n 1 = 1 L i = i j=1 x j f (x j ) / L L = i+1 + L i i (F i+1 F i ) L = n j=1 x j f (x j ) (i = 1,,, n) L 0 = 0 L 1 L L n 1 L n = () < x < x f (x) F(x) = x f (t)dt L(x) = x / t f (t)dt L (0 x 1) L = t f (t)dt (i) L(0) = 0 L(x) L(y) L(1) = 1, 0 < x < y < 1 (ii) 0 < L(x) x, 0 < x < n = 3 i = 1 i = i = = = = (L i ) 00/1000 = /1000 = /1000 = = = (F i ) 4/10= /10 = /10=1.0 50

51 (F i, L i )i = 0, 1,,, n (F 0, L 0 ) = (0, 0), (F n, L n ) = (1, 1) (F i ) (L i ) L(F i ) F i = i n 1 i=0 L i+1 + L i (F i+1 F i ) L (1, 1) (0.8, 0.6) (0.4, 0.) (0, 0) F i L(F i ) F i = ( ) + ( ) + ( ) = = 0.36 G = 1 i L(F i ) F i = = 0.8 ( ) Frank Cowell, Gini,Deprivation and Complaints 005, Discussion Paper. (aggregation) (Gini coefficient, Gini s coefficient) p

52 5 10 ( ) OECD ( regression analysis) 1 y ax b Y X (regression line of Y on X) y = ax + b x: y: X X Y 5

53 (1) () coefficient of reversion coefficient of regression 1888 co-relation r (x) (y) (x) (y) a b (x 1 ) (y 1 ) y = ax + b a b ( ) Fitting the Regression Line n (x i, y i ) : i = 1,,, n (x i, y) : y = ax i + b d i = y i y = y i (ax i + b) : i = 1,,, n i d i Galton, F. (1886) x, y 53

54 y = ax + b y (x n, y n ) y = ax + b a n d i (x i, y i ) (x i, ax i + b) (x 3, y 3 ) (x, y ) i (x 1, y 1 ) x (x 1, y 1 ), (x, y ), (x i, y i ),, (x n, y n ) ( ) y = ax + b ( ) a b x y y i (ax i + b) = δ i, i = 1,, δi = (y i ax i b) i δ i δ i i δ i a b a b i δ i 0 a b 0 a (y i ax i b) = ( ) (y i ax i b)x i = 0 b (y i ax i b) = ( ) (y i ax i b) = 0 a b { ( x i )a + ( x i )b = x i y i ( x i )a + nb = y i (4.3) a b a b = n x iy i x i y i n x i ( x i ) = x i y i x i x i y i n x i ( x i ) = σ xy σ x = (σ x + x ) y x (σ xy + xy) σ x = y x σ xy σ x (4.4) y x y y = σ xy (x x) σ x a b x i y i δ i δ i = (y i ax i b) = y i b y i + nb + a x i + ab x i a x i y i 54

55 a b σ a σ b σa = n/(n xi ( x i ) ) δi /(n ) (4.5) σb = x i /(n x i ( x i ) ) δi /(n ) r a r b σ a σ b y x y = y i n x = x i y = ax + b y = ax + b n y σ y = 1 n (y i y) ax + b ŷ i = ax i + b, i = 1,,, n ax + b σ ŷ = 1 n (ŷ i y) = 1 n (ax i + b ax b) = a n (x i x) = a σ x a (x i x) (y i y) a = n x iy i x i y i n x i ( x i ) a (x i x) (y i y) = a n ( ) x i ( x i ) n y i ( y i) = n x i y i x i y i n x i ( x i ) n xi ( x i ) n y i ( y i) = (n x i y i x i y i ) { n x i ( x i ) } { n y i ( y i) } = r r = n x i y i x i y i n x i ( x i ) n y i ( y i) = σ xy σxx σyy = σ xy σ x σ y r r r a r a = σ y σ x r ( ) 55

56 5 Microsoft Excel, OpenOffice calc 5.1 1,,3, A,B,C, C 3 C3 A B C D E A B3 35, [ ] ; SUM [ ] ; {+,-,*,/,%,^} = X1 Y1 =X1+Y1 X1 Y1 =X1-Y1 X1 Y1 =X1*Y1 X1 Y1 =X1/Y1 X1 Y1 =X1%Y1 X1 Y1 =X1^Y1 5. x y 1 X1 X1 56

57 X1 =SQRT(X1) X1 =ABS(X1) X1 =INT(X1) X1 =ROUND(X1) X1 =ROUNDUP(X1) X1 =ROUNDDOWN(X1) X1 X X3 Xn X1 X X3 Xn Y1 Y Y3 Yn (X1:Yn) (X1;Yn) : Excel Openoffice =SUM(X1:Xn) =AVERAGE(X1:Xn) =MEDIANE(X1:Xn) =MODE(X1:Xn) 5.3 =if(, 1, ) =and( 1,,...) =or( 1,,...) =countif(, ) (true) 1 ; =IF(X1>Y1," ","OK") X1 Y1 ( ) (OK) 1 =if(and( 1,,...), 1, ) 1 =if(or( 1,,...), 1, ) =IF(X1>=100,SUM(Y1:Yn),""), X1 100 Y1:Yn ( ) =COUNTIF(X1:Xn," ") COUNTIFS 1 3 (Histgram) (count) (frequency) countif Frequency Ctrl Shift Enter 57

58 (cross tabulation) 3 1 ( ) 1 countifs MS pivot Microsoft Office Excel [ ] [ ] / Microsoft Office Excel 007 [ ] [ ] [ ] [ ] [ ] Tally mark ; ***** ::: *** ; ; ; *************** ; ; :::: ************** ; ::: ******** ; ; :: ************ ::: *** (%) : / : [ ] A1:A10 9 ;{ 150, 00, 50, 30, 330, 360, 380, 40, 480} (1) (4) 58

59 A : (1) 00 () (3) (4) / < [ ] 1. (A1:A10). [ ]-[ ] 3. [Excel ] [ ] [ ] 4. [ ] $A$1:$A$10 [ ] 5. [ ] 6. [ ] [ ] 7. [ ] 8. [ ] 9. [OK] 10. [ ] D1 11. [ ] 1. D -[ ] 13. [ ] [ ] [ ] 100 [OK] frequency [ ] (1) =max{ } =min{ } () =count{ } (3) (4) D13 D17 [ ] (5) ( E13 E17 (6) =frequecy (7) FREQUENCY(, ) help (8) A A10 (9) D13 D17 (10) OK CTRL+SHITFT OK 5.4 [ ][ ] 5.0kg 55.0kg

60 (1) ( ) () D, (3) 1,,3, (4) 1,,3,, OK (5) (6) (0%) OK JPEG A B C D D B C = B * C 3 B11 SUM 60

61 3 E E B B11 = B - B11 4 F G9 F = (B - $B$11)^ * C F3 F8 $ $ 5 6 B1 B13 A B C D E F G A1 A A1 A A1 A 4 A B C D E F G A B C D E F G

62 5.5 pseudorandom numbers (Mersenne twister) [0, 1] U i, i = 1,,, 1 X = i=1 U i 6 X N(0, 1) = rand()

63 6 6.1 [ ] ; [ ] ; Garbage in, garbage out 6. 63

64 6.1 µ σ σ n X i Z = c 1 X 1 + c X + + c n X n? {c i } 1. E(Z) = (c 1 + c + + c n )µ. V(Z) = (c 1 + c + + c n)σ [ ] ; 6. [ ]: X ; 1. E(X) = µ. V(X) = σ n µ σ n X n Z = X µ σ/ n Z N(0, 1) n 6.1 µ = 10 σ = 16 n = 5 X (1) P(X < ), () P( X 10 > 3 5 ) 6. (i) X, Y N(0, σ ) X + Y X Y X (ii) X = i +X j i<j, u = ( n ) 1 (X i X j ) i<j (iii) X i, i = 1,,, n 6.3 m m σ( σ ) ( ) n {X 1, X,, X n } X = 1 n i X i n X N(m, σ n ) Z = X m σ/ n N(0, 1) P( Z c) = P( c Z c) = c 64

65 1.96 { Z c } = { X m c σ } { = X c n m σ n m X + c [ X c σ } n σ n m X + c σ n ] 95% c = 1.96 c.58 95% 99% [ ]: σ n X m 95% X 1.96 σ n m X σ n 99% p.58 σ n p p +.58 σ n σ σ s = 1 n i X i X s = s n > cm 6cm 1 m 95% : A p n A X X X m = np σ = np(1 p) n p = X n Z = { Z c } = X np np(1 p) = p p p(1 p)/n N(0, 1) { } { } X np c np(1 p) = p c p(1 p)/n p p + c p(1 p)/n p 1/n [ ] p(1 p) p(1 p) p c p p + c n n 6.4 ( ) n p p 95% 99% p 1.96 p.58 p(1 p) n p(1 p) n p p p p p(1 p) n p(1 p) n

66 A A 95% 6.4 H 0 H 1 1 ( 1 1 (1) () (3) (4) (5) 1. N(µ, σ ) σ = 15 = x = 38.0 H 0 : µ = 40 H 0 : µ = 40 α =

67 σ = 15 = 5 z = x µ 0 σ /n = x 40 = 1.33, α = /100 α/ = 0.05 =.5%, z α/ = z = z > z = x = 38.0 N(40, 5) 9 o C o C 5% H 0 : µ = 1455 H 1 : µ = 1455 x 1, x,, x 9 n = 9, i x i = 1986, i = ( 1400 α = 0.05, ν = 9 1 t 0.05 (8) =.306 t >.306 (.306 < t <.306) t = x µ = = 1.78 u /n 416.1/9 H 0 ( Kg, 3.Kg 6.8Kg,.5Kg ( 5% 1% µ 1 µ H 0 : µ 1 µ = 0 H 1 : µ 1 µ > 0 n 1 = n = 36 z = x 1 x s 1 + s n 1 n = =.51

68 α = 0.05 ( z 0.05 = {z : z > 1.645} z =.51 > ( 68

69 7, 69

70 1. (i) H 0 : µ = µ 0 H 1 : µ = µ 0 (ii) H 0 : µ = µ 0 H 1 : µ > µ 0 (iii) H 0 : µ = µ 0 N(µ, σ ), σ z = x µ 0 σ/ n (n 30), σ u ( α = 0.05, 0.01 ) N(0, 1) (i) z > z α/ (ii) z > z α/ (iii) z < z α/ H 1 : µ < µ 0 z = x µ 0 u/ n. ( ) (i) H 0 : µ = µ 0 H 1 : µ = µ 0 (ii) H 0 : µ = µ 0 H 1 : µ > µ 0 (iii) H 0 : µ = µ 0 N(µ, σ ), σ t = x µ 0 u/ n t ( ν = n 1 ) (i) t > t α (ν) (ii) t > t α (ν) (iii) t < t α (ν) H 1 : µ < µ 0 3. (i) H 0 : σ = σ0 H 1 : σ = σ0 (ii) H 0 : σ = σ0 H 1 : σ > σ0 N(µ, σ ) ν = n 1 χ = u σ /ν = s σ /n ( ν = n 1 ) (i) χ < χ 1 α (ν), χ > χ α (ν) (ii) χ > χ α(ν) 4. ( (i) H 0 : p = p 0 H 1 : p = p 0 (ii) H 0 : p = p 0 H 1 : p > p 0 B(p), (n > 30) (iii) H 0 : p = p 0 H 1 : p < p 0 np, n(1 p) > 5 z = p p 0 p 0 (1 p 0 ) n p N(0, 1) (i) z > z α/ (ii) z > z α/ (iii) z < z α/ 5. ( ) (i) H 0 : µ 1 = µ H 1 : µ 1 = µ (ii) H 0 : µ 1 = µ N(µ 1, σ1 ), H 1 : µ 1 > µ N(µ, σ ), (iii) H 0 : µ 1 = µ n 1, n H 1 : µ 1 < µ σ1, σ z = x 1 x u u = σ 1 /n 1 + σ /n N(0, 1) (i) z > z α (ii) z > z α (iii) z < z α 70

71 7.1 F Excel ; Uni f [0, 1] ; Binom(n, p) ; N(µ, σ ) ; N(0, 1) ; χ ( f ) ; F( f 1, f ) RAND() 0 1, [a, b], RAND() (b a) + a BINOMDIST(k, n, p, T/F) k:, n:, p:, T/F:TRUE, FALSE NORMDIST(x, µ, σ, T/F) x:, µ:, σ:, T/F: TRUE FALSE NORMINV(p,µ,σ) NORMDIST, p:,µ:,σ:, NORMDIST(x,µ, σ, TRUE) = p x NORMSDIST(z) z:, P(Z z) Z N(0, 1), NORMSINV(p) p:, NORMSDIST CHIDIST(x, f ) x;, f :, ( ) :CHIDIST= P(X > x) CHIINV(p, f ) p:, f :, CHIDIST, p =CHIDIST(x, f ), CHIINV(p, f ) = x FDIST(x, f 1, f ), x:, ( f 1, f ): FINV(p, f 1, f ) FDIST, FDIST(x, f 1, f ) = p, FINV(p, f 1, f ) = x, p:, ( f 1, f ): t ; t( f ) TDIST(x, f, B) x:, f :, B:, 1 TDIST(x, f, 1) = P(X > x) TDIST(x, f, ) = P( X > x) = P(X > x or X < x) x < 0, TDIST( x, f, 1) = 1 TDIST(x, f, 1) = P(X > x) TDIST( x, f, ) =TDIST(x, f, ) = P( X > x) t TINV(p, f ) TDIST, p:, f :, TINV P( X > t) = p t, P( X > t) = P(X < torx > t) t p p = 0.05 f = 10 TINV(0.05, 10) =.8139 TINV( 0.05, 10) =

() Statistik19 Statistik () 19 ( ) (18 ) ()

() Statistik19 Statistik () 19 ( ) (18 ) () 010 4 5 1 8.1.............................................. 8............................................. 11.3............................................. 11.4............................................

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e, ( ) L01 I(2017) 1 / 19

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e,   ( ) L01 I(2017) 1 / 19 I L01(2017-09-20 Wed) : Time-stamp: 2017-09-20 Wed 07:38 JST hig e, http://hig3.net ( ) L01 I(2017) 1 / 19 ? 1? 2? ( ) L01 I(2017) 2 / 19 ?,,.,., 1..,. 1,2,.,.,. ( ) L01 I(2017) 3 / 19 ? I. M (3 ) II,

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

確率論と統計学の資料

確率論と統計学の資料 5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

統計学のポイント整理

統計学のポイント整理 .. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!

More information

statstcs statstcum (EBM) 2 () : ( )GDP () : () : POS STEP 1: STEP 2: STEP 3: STEP 4: 3 2

statstcs statstcum (EBM) 2 () : ( )GDP () : () : POS STEP 1: STEP 2: STEP 3: STEP 4: 3 2 (descrptve statstcs) 2010 9 3 1 1 2 2 3 2 3.1............................................. 3 3.2............................................. 3 4 4 4.1........................................ 5 5 6 6 -pvot

More information

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp ( 28) ( ) ( 28 9 22 ) 0 This ote is c 2016, 2017 by Setsuo Taiguchi. It may be used for persoal or classroom purposes, but ot for commercial purposes. i (http://www.stat.go.jp/teacher/c2epi1.htm ) = statistics

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

( 30 ) 30 4 5 1 4 1.1............................................... 4 1.............................................. 4 1..1.................................. 4 1.......................................

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

renshumondai-kaito.dvi

renshumondai-kaito.dvi 3 1 13 14 1.1 1 44.5 39.5 49.5 2 0.10 2 0.10 54.5 49.5 59.5 5 0.25 7 0.35 64.5 59.5 69.5 8 0.40 15 0.75 74.5 69.5 79.5 3 0.15 18 0.90 84.5 79.5 89.5 2 0.10 20 1.00 20 1.00 2 1.2 1 16.5 20.5 12.5 2 0.10

More information

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 1 21 10 5 1 E-mail: qliu@res.otaru-uc.ac.jp 1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 B 1.1.3 boy W ID 1 2 3 DI DII DIII OL OL 1.1.4 2 1.1.5 1.1.6 1.1.7 1.1.8 1.2 1.2.1 1. 2. 3 1.2.2

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

151021slide.dvi

151021slide.dvi : Mac I 1 ( 5 Windows (Mac Excel : Excel 2007 9 10 1 4 http://asakura.co.jp/ books/isbn/978-4-254-12172-8/ (1 1 9 1/29 (,,... (,,,... (,,, (3 3/29 (, (F7, Ctrl + i, (Shift +, Shift + Ctrl (, a i (, Enter,

More information

June 2016 i (statistics) F Excel Numbers, OpenOffice/LibreOffice Calc ii *1 VAR STDEV 1 SPSS SAS R *2 R R R R *1 Excel, Numbers, Microsoft Office, Apple iwork, *2 R GNU GNU R iii URL http://ruby.kyoto-wu.ac.jp/statistics/training/

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,. 23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

橡Taro13-EXCEL統計学.PDF

橡Taro13-EXCEL統計学.PDF Excel 4.1 4.1.1 1 X n X,X, 1,Xn X=X X X /n 1 n Excel AVERAGE =AVERAGE Excel MEDIAN 3 =MEDIAN Excel MODE =MODE 4.1. 1 Excel MAX MIN =MAX MIN n X,X,,X X 4-1 1 n V X1-X + X-X + + Xn-X V= n 0 0 Excel VARP

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

数理統計学Iノート

数理統計学Iノート I ver. 0/Apr/208 * (inferential statistics) *2 A, B *3 5.9 *4 *5 [6] [],.., 7 2004. [2].., 973. [3]. R (Wonderful R )., 9 206. [4]. ( )., 7 99. [5]. ( )., 8 992. [6],.., 989. [7]. - 30., 0 996. [4] [5]

More information

x y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... x ( ) 2

x y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... x ( ) 2 1 1 1.1 1.1.1 1 168 75 2 170 65 3 156 50... x y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... x ( ) 2 1 1 0 1 0 0 2 1 0 0 1 0 3 0 1 0 0 1...... 1.1.2 x = 1 n x (average, mean) x i s 2 x = 1 n (x i x) 2 3 x (variance)

More information

名称未設定

名称未設定 2007 12 19 i I 1 1 3 1.1.................... 3 1.2................................ 4 1.3.................................... 7 2 9 2.1...................................... 9 2.2....................................

More information

1 2 3 2 2.1 -countif Excel 22 http://software.ssri.co.jp/statweb2/ 1. 111 3 2. 4 4 3 3.E4:E10E4:E10 OK 2/27

1 2 3 2 2.1 -countif Excel 22 http://software.ssri.co.jp/statweb2/ 1. 111 3 2. 4 4 3 3.E4:E10E4:E10 OK 2/27 1....................... 1 2............................... 2 2.1 -countif(2 ) 2.2 (7 ) 2.3 frequency(7 ) 3....................... 8 4 [].................... 10 5................................ 10 5.1

More information

1 1 [1] ( 2,625 [2] ( 2, ( ) /

1 1 [1] ( 2,625 [2] ( 2, ( ) / [] (,65 [] (,3 ( ) 67 84 76 7 8 6 7 65 68 7 75 73 68 7 73 7 7 59 67 68 65 75 56 6 58 /=45 /=45 6 65 63 3 4 3/=36 4/=8 66 7 68 7 7/=38 /=5 7 75 73 8 9 8/=364 9/=864 76 8 78 /=45 /=99 8 85 83 /=9 /= ( )

More information

countif Excel E4:E10E4:E10 OK 2/25

countif Excel E4:E10E4:E10 OK 2/25 1....................... 1 2............................... 2 2.1 -countif(2 ) 2.2 (7 ) 2.3 frequency(7 ) 3 []............ 8 4................................. 8 4.1 (8 ) 4.2 (11 ) 4.3 (12 ) 4.4 (13 )

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

(Nov/2009) 2 / = (,,, ) 1 4 3 3 2/8

(Nov/2009) 2 / = (,,, ) 1 4 3 3 2/8 (Nov/2009) 1 sun open-office calc 2 1 2 3 3 1 3 1 2 3 1 2 3 1/8 (Nov/2009) 2 / = (,,, ) 1 4 3 3 2/8 (Nov/2009) 1 (true) false 1 2 2 A1:A10 A 1 2 150 3 200 4 250 5 320 6 330 7 360 8 380 9 420 10 480 (1)

More information

2 1 Introduction

2 1 Introduction 1 24 11 26 1 E-mail: toyoizumi@waseda.jp 2 1 Introduction 5 1.1...................... 7 2 8 2.1................ 8 2.2....................... 8 2.3............................ 9 3 10 3.1.........................

More information

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/005431 このサンプルページの内容は, 初版 1 刷発行時のものです. Lebesgue 1 2 4 4 1 2 5 6 λ a

More information

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003) 3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

0 (1 ) 0 (1 ) 01 Excel Excel ( ) = Excel Excel =5+ 5 + 7 =5-5 3 =5* 5 10 =5/ 5 5 =5^ 5 5 ( ), 0, Excel, Excel 13E+05 13 10 5 13000 13E-05 13 10 5 0000

0 (1 ) 0 (1 ) 01 Excel Excel ( ) = Excel Excel =5+ 5 + 7 =5-5 3 =5* 5 10 =5/ 5 5 =5^ 5 5 ( ), 0, Excel, Excel 13E+05 13 10 5 13000 13E-05 13 10 5 0000 1 ( S/E) 006 7 30 0 (1 ) 01 Excel 0 7 3 1 (-4 ) 5 11 5 1 6 13 7 (5-7 ) 9 1 1 9 11 3 Simplex 1 4 (shadow price) 14 5 (reduced cost) 14 3 (8-10 ) 17 31 17 3 18 33 19 34 35 36 Excel 3 4 (11-13 ) 5 41 5 4

More information

応用数学III-4.ppt

応用数学III-4.ppt III f x ( ) = 1 f x ( ) = P( X = x) = f ( x) = P( X = x) =! x ( ) b! a, X! U a,b f ( x) =! " e #!x, X! Ex (!) n! ( n! x)!x! " x 1! " x! e"!, X! Po! ( ) n! x, X! B( n;" ) ( ) ! xf ( x) = = n n!! ( n

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

分散分析・2次元正規分布

分散分析・2次元正規分布 2 II L10(2016-06-30 Thu) : Time-stamp: 2016-06-30 Thu 13:55 JST hig F 2.. http://hig3.net ( ) L10 2 II(2016) 1 / 24 F 2 F L09-Q1 Quiz :F 1 α = 0.05, 2 F 3 H 0, : σ 2 1 /σ2 2 = 1., H 1, σ 2 1 /σ2 2 1. 4

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

2011 ( ) ( ) ( ),,.,,.,, ,.. (. ), 1. ( ). ( ) ( ). : obata/,.,. ( )

2011 ( ) ( ) ( ),,.,,.,, ,.. (. ), 1. ( ). ( ) ( ). :   obata/,.,. ( ) 2011 () () (),,.,,.,,. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.,.. (. ), 1. ( ). ()(). : www.math.is.tohoku.ac.jp/ obata/,.,. () obata@math.is.tohoku.ac.jp http://www.dais.is.tohoku.ac.jp/ amf/, (! 22 10.6; 23 10.20;

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 確率的手法による構造安全性の解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/55271 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 25 7 ii Benjamin &Cornell Ang & Tang Schuëller 1973 1974 Ang Mathematica

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

Rによる計量分析:データ解析と可視化 - 第3回 Rの基礎とデータ操作・管理

Rによる計量分析:データ解析と可視化 - 第3回  Rの基礎とデータ操作・管理 R 3 R 2017 Email: gito@eco.u-toyama.ac.jp October 23, 2017 (Toyama/NIHU) R ( 3 ) October 23, 2017 1 / 34 Agenda 1 2 3 4 R 5 RStudio (Toyama/NIHU) R ( 3 ) October 23, 2017 2 / 34 10/30 (Mon.) 12/11 (Mon.)

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

2 () : ( )GDP () : () : POS STEP 1: STEP 2: STEP 3: STEP 4: 3 2

2 () : ( )GDP () : () : POS STEP 1: STEP 2: STEP 3: STEP 4: 3 2 / //descrptvea1-a.tex 1 1 2 2 3 2 3.1............................................. 3 3.2............................................. 3 4 4 5 9 6 12 7 15 8 19 9 22 1 statstcs statstcum (EBM) 1 2 () : (

More information

/02/18

/02/18 3 09/0/8 i III,,,, III,?,,,,,,,,,,,,,,,,,,,,?,?,,,,,,,,,,,,,,!!!,? 3,,,, ii,,,!,,,, OK! :!,,,, :!,,,,,, 3:!,, 4:!,,,, 5:!,,! 7:!,,,,, 8:!,! 9:!,,,,,,,,, ( ),, :, ( ), ( ), 6:!,,, :... : 3 ( )... iii,,

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

populatio sample II, B II?  [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2 (2015 ) 1 NHK 2012 5 28 2013 7 3 2014 9 17 2015 4 8!? New York Times 2009 8 5 For Today s Graduate, Just Oe Word: Statistics Google Hal Varia I keep sayig that the sexy job i the ext 10 years will be statisticias.

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

8 i, III,,,, III,, :!,,,, :!,,,,, 4:!,,,,,,!,,,, OK! 5:!,,,,,,,,,, OK 6:!, 0, 3:!,,,,! 7:!,,,,,, ii,,,,,, ( ),, :, ( ), ( ), :... : 3 ( )...,, () : ( )..., :,,, ( ), (,,, ),, (ϵ δ ), ( ), (ˆ ˆ;),,,,,,!,,,,.,,

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

(

( 2 Web http://mybook-pub-site.sakura.ne.jp/statistics Multivariate/index.html 1 2 1 2.1................................. 1 2.2 (............... 8 2.2.1................... 9 2.2.2.................. 12 2.2.3..............

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A B f : A B 4 (i) f (ii) f (iii) C 2 g, h: C A f g = f h g = h (iv) C 2 g, h: B C g f = h f g = h 4 (1) (i) (iii) (2) (iii) (i) (3) (ii) (iv) (4)

More information

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

(pdf) (cdf) Matlab χ ( ) F t

(pdf) (cdf) Matlab χ ( ) F t (, ) (univariate) (bivariate) (multi-variate) Matlab Octave Matlab Matlab/Octave --...............3. (pdf) (cdf)...3.4....4.5....4.6....7.7. Matlab...8.7.....9.7.. χ ( )...0.7.3.....7.4. F....7.5. t-...3.8....4.8.....4.8.....5.8.3....6.8.4....8.8.5....8.8.6....8.9....9.9.....9.9.....0.9.3....0.9.4.....9.5.....0....3

More information

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x 80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = n λ x i e λ x i! = λ n x i e nλ n x i! n n log l(λ) = log(λ) x i nλ log( x i!) log l(λ) λ = 1 λ n x i n =

More information

i

i i 1 1 1.1..................................... 1 1.2........................................ 3 1.3.................................. 4 1.4..................................... 4 1.5......................................

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

Maxwell

Maxwell I 2018 12 13 0 4 1 6 1.1............................ 6 1.2 Maxwell......................... 8 1.3.......................... 9 1.4..................... 11 1.5..................... 12 2 13 2.1...................

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

untitled

untitled 1 Hitomi s English Tests 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 1 0 1 1 0 1 0 0 0 1 0 0 1 0 2 0 0 1 1 0 0 0 0 0 1 1 1 1 0 3 1 1 0 0 0 0 1 0 1 0 1 0 1 1 4 1 1 0 1 0 1 1 1 1 0 0 0 1 1 5 1 1 0 1 1 1 1 0 0 1 0

More information