(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

Size: px
Start display at page:

Download "(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou"

Transcription

1

2 (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :. (Poisson). ρ = V V =.. t (x, y, z) T (x, y, z, t) T T = κ T κ t.. T/ t = T =.... i

3 z < ν P ν (cos θ) = L p (Ω) ii

4 z A 19 A A A A A iii

5 1 A 1.1 z d f dz + 1 df z dz + ( 1 ν ) f = ν : (1.1) z (Bessel), z = f(z) = z α m= a m z m a a, a 1,... α m= {(α + m)(α + m 1) + (α + m) ν } a m z α+m + a m z α+m = z z α α ν =, α = ±ν z α 1 a 1 =, z α+m {(α + m) ν }a m + a m = a 1 = a 3 = a 5 = =, α = ν m m Γ(z) a m = ( 1)m Γ(ν + 1) a m m! Γ(m + ν + 1) m=, a = { ν Γ(ν + 1)} 1 a m = ( 1) m m+ν m! Γ(m + ν + 1) 1

6 , ( z ν ( 1) f(z) = J ν (z) ) m m! Γ(ν + m + 1) m= ( z ) m (1.) ν z (z/) ν J ν (z) (D Alembert) α = ν J ν (z) ν ν, J ν (z) ν J ν (z) J ν (z), ν = ±1/ ( 1) m ( z 1/+m J 1/ (z) = m! Γ(m + 1/ + 1) ) m= z ) = (1 z π 3! + z4 z 5! sin z = (1.3) π z ) J 1/ (z) = (1 z πz! + z4 4! cos z = (1.4) πz z J 1/ (x) 1 J 1/ (x) 3π π π 4π 1 1.1:, ν n J n (z) J n (z) 1 lim ν n Γ(ν + m + 1) = n + m + 1 J n (z) = lim ν n J ν(z) = ( z ) n m=n ( 1) m z ) m m! Γ(m n + 1)(

7 ( z n ( 1) = ) n ( 1) k z ) k k! Γ(n + k + 1)( k= J n (z) = ( 1) n J n (z) n : ν J ν (z) J ν (z), ν J n (z) J n (z), J n (z) Y ν (z) = J ν(z) cos νπ J ν (z) sin νπ (ν ) (1.5) Y ν (z) J ν (z) Y ν (z) ν (Neumann) ν n (1.5) ν n J ν (z) cos νπ J ν (z) Y n (z) = lim (1.6) ν n sin νπ Y n (z),, Y n (z) J n (z) (1.6) ν Y n (z) = 1 { π sin nπ J n (z) + cos nπ [ J ν (z) π cos nπ ν [ J ν (z) ν ]ν=n ( 1)n π = 1 π ]ν=n [ J ν (z)] } ν ν=n [ J ν (z)] (1.7) ν ν=n J ν (z) ν = ( z ) ν z log m= + ( z ) ν ( 1) m (z ) m m! Γ(ν + m + 1) m= ( 1) m m! [ ν 1 Γ(ν + m + 1) ] ( z ) m, (1.1) ψ(z) = Γ (z) Γ(z) = γ 1 z + z 1 m(m + z), m=1 γ : (Euler) [ J ν (z) ν ]ν=n = m= ( 1) m { m! Γ(n + m + 1) log z ψ(n + m + 1) } ( z ) n+m 3

8 (1.7), ν < n J ν (z) = n 1 m= ( 1) m m! Γ( ν + m + 1) (z ) ν+m ( 1) m + m! Γ( ν + m + 1) m=n (z ) ν+m ν,, (1.7) 1 Γ(ν m) sin(ν m)π = Γ( ν + m + 1) π, m < n [ J ν (z)] ν [ { ( z ) ν+m Γ(ν m) sin(ν m)π }] ν π ν=n = 1 [ ( z ) ν+mγ(ν { m) ψ(ν m) sin(ν m)π π + π cos(ν m)π log z sin(ν m)π}] ν=n = ( z ) n+mγ(n m) cos(n m)π ν=n = n 1 = ( 1) m ( 1) n m Γ(n m) m! m= ( 1) m { + m! (m n)! n 1 m= m=n ( 1) n Γ(n m) m! + k= (z ) n+m ( 1) k+n { (k + n)! k! (z ) n+m log z + ψ(m n + 1) } ( z log z + ψ(k + 1) } ( z ) n+k n Y n (z) = π J n(z) log z 1 π 1 π m= n 1 m= (n m 1)! m! ψ(m + 1) + ψ(n + m + 1) m! (n + m)! (z ) n+m ) n+m ( 1) m( z ) n+m (1.8) Y n (z) (1.5) ν = ±1/ Y 1/ (z) = πz cos z Y 1/(z) = sin z (1.9) πz 4

9 1 Y 1/ (x) 3π π Y 1/ (x) π 4π 1 1.: 1. ν n 1.1 J n (z) J n (z) = 1 π π π e iz cos t e in(t π/) dt n : (1.1) Hanse f(z) = 1 π e iz cos t e in(t π/) dt n : (1.11) π π e iz cos t (iz cos t) m = m! m= = m= (iz) m m! ( e it + e it ) m (1) m (iz) m = m! m= m mc r e irt e i(m r)t r= f(z) = 1 π (1) m (iz) m m! m= m π mc r e in(t π/) e irt e i(m r)t dt r= π { π n + r m e it(n+r m+r) dt = π π n + r m = 5

10 r r = (m n)/ (1) m (iz) m f(z) = e inπ/ mc (m n)/ m! m= (m n)/ = p mc (m n)/ = p+n C p = (p + n)! p! (p + n)! f(z) = p= (z ) p+n (i) p (p + n)! (p + n)! p! (p + n)! = ( z ) n m= ( 1) m m! (m + n)! (z ) m (1.) f(z) = J n (z) J ν (z) J ν (z) = 1 z ) ν 1 Γ(ν + 1/) Γ(1/)( t ν 1/ (1 t) 1/ cos[z(1 t) 1/ ] dt Re(ν + 1/) > (1.1) (1.) ν + 1/ > ( z ν ( 1) ) m z m ( z ) ν ( 1) = m! Γ(ν + m + 1)( ) m Γ(m + 1/) Γ(ν + m + 1) Γ(1/) Γ(m + 1) zm ( z ν ( 1) = ) m z m B(ν + 1/, m + 1/) Γ(ν + 1/) Γ(1/) (m)! ( z ν ( 1) = ) m z m 1 t ν 1/ (1 t) m 1/ dt Γ(ν + 1/) Γ(1/) (m)! t ν 1/ ( 1)m z m (1 t) m 1/ (m)! m= (Lebesgue) (, 1), (, 1), J ν (z) ( z ) ν 1 J ν (z) = Γ(ν + 1/) Γ(1/) 1 m= ( 1) m (m)! zm t ν 1/ (1 t) m 1/ dt Re(ν + 1/) > 6

11 m= J ν (z) = ( 1) m (m)! zm (1 t) m 1/ = (1 t) 1/ cos[z(1 t) 1/ ] 1 z ) ν 1 Γ(ν + 1/) Γ(1/)( t ν 1/ (1 t) 1/ cos[z(1 t) 1/ ] dt Re(ν + 1/) > t = sin θ J ν (z) = z ) ν π/ Γ(ν + 1/) Γ(1/)( 1 cos(z cos θ) sin ν θ dθ, Re(ν + 1/) > (1.13) (Poisson),1 t = ξ t ν 1/ (1 t) 1/ cos[z(1 t) 1/ ] dt = 1 1 (1 ξ ) ν 1/ cos(zξ) dξ 1 z ) ν 1 J ν (z) = (1 ξ Γ(ν + 1/) Γ(1/)( ) ν 1/ e izξ dξ, Re(ν + 1/) > (1.14) 1.3 (1.11) f(x, y) x, y, x, y f(x, y) dx, f(x, y) dy, y f(x, y) f(x, y) = 1 f(ξ, y) e iω(x ξ) dξ dω π ξ f(ξ, y) = 1 π f(ξ, η) e iω (y η) dη dω 7

12 (p83) f(x, y) = 1 (π) f(ξ, η) e iω(x ξ)+iω (y η) dω dω dξ dη x = r cos φ, ξ = ρ cos ψ, ω = σ cos α y = r sin φ, η = ρ sin ψ, ω = σ sin α ωx + ω y = σr cos(α φ), ωξ + ω η = σρ cos(ψ α) dξ dη = ρ dρ dψ, dω dω = σ dσ dα, f(x, y) = g(r)e inφ n : g(r)e inφ = 1 f(ρ cos ψ, ρ cos ψ) e iσr cos(α φ) iσρ cos(ψ α) ρ σ dρ dψ dσ dα (π) { 1 π = σ dσ g(ρ) ρ dρ e iσr cos(α φ) dα 1 π } e inψ e iσρ cos(ψ α) dψ π π (ψ α = t ) = = = σ dσ { 1 π σ dσ σ dσ π π = e inφ σ dσ g(ρ) ρ dρ π π ( 1 )} e iσr cos(α φ) dα e inπ/ e inα e i( σρ) cos t e in(t π/) dt π π { 1 π } g(ρ) e iσr cos(α φ) dα e inα e inπ/ ( 1) n J n (σρ) ρ dρ π π ( ) g(ρ) e inπ/ e inφ J n (σr) e inπ/ ( 1) n J n (σρ) ρ dρ g(ρ) J n (σr) J n (σρ) ρ dρ g(r) = σ dσ g(r) = h(σ) J n (σr) σ dσ h(σ) = π g(ρ) J n (σr) J n (σρ) ρ dρ (1.15) g(ρ) J n (σρ) ρ dρ (1.16), h(σ) g(r) n n ν Re(ν) > 1 8

13 J ν 1 (z) + J ν+1 (z) = ν z J ν(z) (1.17) (1.) J ν 1 (z) + J ν+1 (z) = = 1 Γ(ν)( z ) ν 1 + m=1 ( 1) m z ) ν+m 1 ( 1) + m! Γ(ν + m)( m z ) ν+m+1 m! Γ(ν + m + )( m= { ( 1) m 1 m! Γ(ν + m) 1 z ) ν+m 1 (m 1)! Γ(ν + m + 1)}( ν( 1) m z ) ν+m 1 m! Γ(ν + m + 1)( m= = Γ(ν)( 1 z ) ν 1 + m=1 = ν z m= ( 1) m m! Γ(ν + m + 1)( z ) ν+m = ν z J ν(z) J ν 1 (z) + J ν+1 (z) = ν z J ν(z) 1.4 J ν 1 (z) J ν+1 (z) = J ν (z) (1.18) J ν (z) z dj ν (z) dz = 1 = 1 ( 1) m (ν + m) z ) m+ν 1 m! Γ(ν + m + 1)( ( 1) m z ) m+ν 1 1 ( 1) + m! Γ(ν + m)( m z ) m+ν 1 (m 1)! Γ(ν + m + 1)( m= m= = 1 J ν 1(z) 1 J ν+1(z) m=1 J ν 1 (z) J ν+1 (z) = J ν (z) 9

14 (1.17), (1.18) { zjν (z) + νj ν (z) = zj ν 1 (z) zj ν (z) νj ν (z) = zj ν+1 (z) (1.19) 1.5 Y ν 1 (z) + Y ν+1 (z) = ν z Y ν(z) (1.) Y ν 1 (z) + Y ν+1 (z) = J ν 1(z) cos(ν 1)π J ν+1 (z) + J ν+1(z) cos(ν + 1)π J ν 1 (z) sin(ν 1)π sin(ν + 1)π = 1 [{ } ] J ν 1 (z) + J ν+1 (z) cos νπ + J ν+1 (z) + J ν 1 (z) sin νπ = 1 [ ν { }] J ν (z) cos νπ J ν (z) = ν sin νπ z z Y ν(z) Y ν 1 (z) + Y ν+1 (z) = ν z Y ν(z) Y ν 1 (z) Y ν+1 (z) = Y ν (z) zy ν (z) + νy ν (z) = zy ν 1 (z) (1.1) zy ν (z) νy ν (z) = zy ν+1 (z) 1.5 d u dz + p(z)du + q(z)u = (1.) dz 1

15 { u(z) = U(z) exp 1 } p(z)dz d U dz + G(z) U = (1.3) G(z) = q(z) 1 dp dz 1 4 p (z) (1.3) U V (1.) V v U, V d U dz V U d V dz = V du dz U dv dz = c ( ) (1.4) U, V (Wronsky) U, V c = U(z) = c V (z) (c : ), U, V, (1.4) U(z) U d ( V ) = c dz U V U = c dz U (z) + k (k : ), U, V V = cu U dz + k U c u, v v(z) = c u(z) u (z) exp[ p(z)dz] dz + k u(z) 11

16 (Sturm). 1.1 ( (Sturm) ) x u, v d u d v + h(x)u =, + g(x)v = (1.5) dx dx h(x), g(x) x u(x) x = a, x = b a x b g(x) h(x) [a, b] v(x) [a, b] g(x) h(x) a, b v (a, b) v (1.5) u(a) = u(b) = [ v du ] x=b = dx x=a d [ v du ] dx dx udv + uv [ h(x) g(x) ] = dx b a [ g(x) h(x) ] uvdx (1.6) u(x) > a < x < b, u (a) > > u (b) g(x) h(x) (a x b) v(x) [a, b], v(x) >, a x b = v(b)u (b) v(a)u (a) < g(x) h(x) a, b v (a, b) v v(x) > (1.6) v(a) = v(b) = v(a) = v(b) > v(b) = v(a) > (1.5) d dx [ du] d p(x) + h(x) u =, dx dx, d [ du p(x) v dx dx [ p(x) v du dx [ dv ] p(x) + g(x) v = dx dv ] [ ] p(x) u + h(x) g(x) u v = dx ] x=b x=a = b a [ g(x) h(x) ] u v dx p(x) a x b (1.1) z 1

17 x d ( x df ) ) + (x ν f = dx dx x, p(x) = x (, ) J ν (x) (, ) Y ν (x) J ν (x) Y ν (x) Y ν (x) J ν (x) 1.6 ν J ν (x) 1.6 J ν (x) [, ) α, β J ν (αx) J ν (βx), d J ν (αx) dx + 1 x dj ν (αx) dx + (α ν x )J ν(αx) = d J ν (βx) + 1 dj ν (βx) + (β ν dx x dx x )J ν(βx) = d ( x dj ν(αx) J ν (βx) x dj ) ν(βx) J ν (αx) = (β α ) x J ν (αx) J ν (βx) dx dx dx x b ν > 1 b [ (β α ) x J ν (αx) J ν (βx) dx = x dj ν(αx) J ν (βx) x dj ν(βx) dx dx ] x=b J ν (αx) x= (1.7) x = α J ν (αb) = β α J ν (x) J ν (βb) = = (β α ) b J ν (αx) x dx α ν > 1 J ν (z) J ν (z) [, ) U(x) J ν (x) x, D(x) 1 + 1/4 ν x 13

18 d U dx + D(x) U = V (x) cos ( 1 x) d V dx + 1 V = x D(x) > 1 V (x) [, ) U(x) J ν (x) Y ν (x) Y (z) J ν (z) 1.7 Y (z) Re(z) > ν = Y (z) z = Y (z) = π (log z ) + γ + O(z ) z = zy (z) = /π + o(z) (β α ) b x Y (αx) Y (βx) dx = [ x Y (βx) dy (αx) dx x Y (αx) dy ] (βx) 4 dx x=b π log β α (1.8) Y (z) βb αb β = Ae iθ, α = Ae iθ, A, θ > b Y (αx) 4θ x dx = A π sin θ < θ < π/ Y (z) Re(z) > 14

19 α k (k =, 1,,... ) J n (αb) = (n :, b > ) (1.9) b b r J n (α k r)j n (α l r) dr = α k α l (1.3) r Jn(α k r) dr = b [ Jn (α k b) ] (1.31) n α, β J n (αr), J n (βr) 1.6 (1.7) r = b { α J n (αb)j n (βb) β J n (βb)j n (αb) } = (β α ) α, β J n (αb) = α, α 1, α,... b r J n (αr)j n (βr) dr (1.3) b r J n (α k r)j n (α l r) dr = α k α l J n (α r), J n (α 1 r), J n (α r),... α = α k, β = α k + ε, ε 1, J n (βb) = J n (bα k ) + J n (bα k ) bε + ( ε ) (1.3) b α k ε [ J n (α k b)] + = αk ε b r J n (α k r)j n (α k r + εr) dr 15

20 ε b r Jn(α k r) dr = b [ Jn (α k b) ] (1.33) α (1.9) α J n (αb) + h J n (αb) = (1.34) (1.3) α k (k =, 1,,... ) (1.34) b r J n (α k r)j n (α l r) dr = α k α l b r J n (α k r) dr = 1 (1.35) α (h b + α k b n ) J n (α k b) k (1.9) (1.34) α, α 1, α, b r J n (α k r)j n (α l r) dr = α k α l β = α k + ε (1.3) b { α k J n (α k b)j n (βb) (α k + ε)j n (βb)j n (α k b) } [ = b α k J n = b h ε α k (α k b) { J n (α k b) + J n (α k b) bε + } (α k + ε)j n (α k b) { J n (α k b) + J n (α k b) bε + }] J n (α k b) bε { J n (α k b) + bα k J n (α k b) } J n (α k b) + = ε {b h + (α k b n )} α k J n (α k b) + ε b r J n (α k r) dr = 1 α k (h b + α k b n ) J n (α k b) 16

21 1.8 H (1) ν (z), H () ν (z), { Hν (1) (z) = J ν (z) + iy ν (z) H ν () (z) = J ν (z) iy ν (z) (1.36) J ν (z) = 1 { } H (1) ν (z) + H () ν (z) Y ν (z) = 1 { } H (1) ν (z) H () ν (z) i H (1) ν (z) = J ν (z) + i [ J ν (z) cos νπ J ν (z) ] sin νπ = J ν(z) e iνπ J ν (z) (1.37) i sin νπ H () ν (z) = eνπi J ν (z) J ν (z) i sin νπ, J ν (z), Y ν (z) (1.36) H (1) ν 1 (z) + H (1) ν+1 (z) = ν z H ν (1) (z) (1.38) H () ν 1 (z) + H () ν+1 (z) = ν z H ν () (z) H (1) ν 1 (z) H (1) (1) ν+1 (z) = H ν (z) H () ν 1 (z) H () () ν+1 (z) = H ν (z) (1.39) z iz d f dz + 1 z df ( ) dz 1 + ν f = (1.4) z J ν (z), Y ν (z) J ν (iz) J ν (iz) = e νπi/ ( z ) ν m= 1 z ) m m! Γ(ν + m + 1)( I ν (z) ( z ν 1 z ) m I ν (z) = (1.41) ) m! Γ(ν + m + 1)( m= 17

22 K ν (z) K ν (z) = π I ν (z) I ν (z) (1.4) sin νπ ν I ν (z) K ν (z), ν n ( ) I n (z) = I n (z) K n (z) = lim K ν (z) ν n, Y n (z) ( z ψ(m + 1) ( z ) m K (z) = log I (z) + (1.43) ) (m!) K n (z) = 1 n 1 m= + ( 1) n+1 ( 1) m (n m 1)! m! m= 1 m! (n + m)! ( z m= ) m n ( z n+m { ( z log ) ) 1 ψ(m + 1) 1 } ψ(n + m + 1) (1.44) J ν (iz) = e νπi/ I ν (z), I ν (z) = e νπi/ J ν ( iz) (1.45) } I ν 1 (z) + I ν+1 (z) = i e {J νπi/ ν 1 (iz) J ν+1 (iz) = i e νπi/ d d(iz) J ν(iz) I ν 1 (z) + I ν+1 (z) = I ν (z) I ν 1 (z) I ν+1 (z) = ν z I ν(z) K ν 1 (z) K ν+1 (z) = ν z K ν(z) K ν 1 (z) + K ν+1 (z) = K ν (z) H ν (1) (iz) = J ν(iz) e iνπ J ν (iz) i sin νπ = e νπi/ I ν (z) e νπi/ I ν (z) i sin νπ = πi e νπi/ K ν (z) 18

23 K ν (z) = (πi/) e νπi/ H ν (1) (iz), K ν (z) = K ν (z) K ν (z) = (πi/) e νπi/ H ν (1) (iz) (1.46), (1.13) Re(ν + 1/) > ( z ) ν I ν (z) = e νπi/ 1 1 J ν (iz) = (1 ξ ) ν 1/ e zξ dξ π Γ(ν + 1/) 1 1 ( z ) ν { 1 1 } = (1 ξ ) ν 1/ e zξ dξ + (1 ξ ) ν 1/ e zξ dξ π Γ(ν + 1/) ( z ) ν 1 = (1 ξ ) ν 1/ cosh(zξ) dξ π Γ(ν + 1/) ( z ) ν 1 I ν (z) = (1 ξ ) ν 1/ cosh(zξ) dξ, Re(ν + 1/) > (1.47) π Γ(ν + 1/) sin νπ J ν (z)j ν 1 (z) J ν (z)j ν+1 (z) = πz J n (z)y n (z) J n (z)y n (z) = πz (1.48) (1.49) d ( z df ) + dz dz ) (z ν f = z, u, v d [ z (uv u v) ] = dz 19

24 u(z) v (z) u (z) v(z) = c z u(z), v(z) c, ν J ν J ν J ν (z)j ν (z) J ν (z)j ν (z) = c z (1.19) J ν (z) = ν z J ν(z) J ν+1 (z), J ν (z) = ν z J ν(z) + J ν 1 (z) J ν (z)j ν (z) J ν (z)j ν (z) = J ν (z)j ν 1 (z) J ν (z)j ν+1 (z) = c z, z 1 z 1 { } c = lim z J ν (z)j ν 1 (z) J ν (z)j ν+1 (z) z J ν (z) ( z ν { J ν (z) = ) 1 } Γ(ν + 1) +, z ( z 1 { 1 } J ν (z)j ν 1 (z) J ν (z)j ν+1 (z) = + ) Γ(ν + 1)Γ( ν) Γ(ν + 1)Γ( ν) = π/ sin π(ν + 1) sin νπ c = π J ν (z)j ν 1 (z) J ν (z)j ν+1 (z) = ν ν J ν 1 (z)j ν (z) J ν (z)j ν+1 (z) = sin νπ πz sin νπ πz (1.5) ν n, J n (z) Y n (z) (1.1) J n (z)y n (z) J n (z)y n (z) = πz

25 1.1 J ν (z) Re(ν) > / b w(z) = z ν e izt T (t) dt (1.51) a T (t) a b a, b d w dz = ν(ν 1) zν dw dz = νzν 1 b a b a b e izt T (t) dt + z ν it e izt T (t) dt a b b e izt T (t) dt + νz ν 1 it e izt T (t) dt z ν e izt t T (t) dt a d w dz + 1 z b = z ν a dw ( ) dz + 1 ν w z e izt (1 t ) T dt + z ν 1 (ν + 1)i a b a t e izt T dt b { = i z ν 1 (ν + 1) t T d [ (t 1)T ]} [ ] b e izt dt i z ν 1 (1 t ) T e izt dt a d [ (t 1) T ] = (ν + 1) t T (1.5) dt [ ] b (1 t ) T e izt = (1.53) a T (t) a b w(z) (1.5) T (t) = (t 1) ν 1/ (1.53) [ ] b [ ] b (t 1) T e izt = e izt (t 1) ν+1/ = a a a b t e izt (t 1) ν+1/ a b t = a, t = b e izt (t 1) ν+1/ a b (t 1) ν+1/ ν + 1/ t t = 1 t = 1 Riemann a 1

26 t : (1+,-1-) 1 1 i t 1 arg(t 1) = nπ S n S n 1 < t < 1 arg(t 1) = (n 1)π S n S n+1 S t = 1 t = 1 Riemann 1.3 t = 1, 1 e izt (t 1) ν+1/ t = 1 t 1 = e iθ, π < θ < π θ π π (t 1) ν+1/ π(ν + 1/) (t + 1) ν+1/ = ( + e iθ ) ν+1/ θ π π (t 1) ν+1/ π(ν + 1/) t = 1 t (t 1) ν+1/ π(ν + 1/) e izt e izt (t 1) ν+1/ (1+, 1 ) w(z) = z ν e izt (t 1) ν 1/ dt (1.54) a = b = C θ { 1 + e iθ ( π < θ π) C : [ π, 3π] θ t(θ) = 1 + e i(θ π) (π < θ 3π) t 1 = r(θ)e iϕ(θ) ϕ [ π, 3π] { θ + arg( + e iθ ) ( π < θ π) ϕ(θ) = (θ π) + arg( + e i(θ π) ) (π < θ 3π)

27 ϕ( π) = π, ϕ(3π) = π (1.54) 3π w(z) = z ν e izt(θ) r(θ) ν+1/ e iϕ(θ)(ν+1/) t (θ) dθ π [e izt(θ) r(θ) ν+1/ e iϕ(θ)(ν+1/) ] 3π J ν (z) π = 1.11 J ν (z) J ν (z) = Γ(1/ ν) ( z ) ν (1+, 1 ) πi e izt (t 1) ν 1/ dt, Re(ν) + 1/ > (1.55) π ν + 1/ (1.54) t = ±1 t 1.3 e izt i m z m t m = m! m= (1+, 1 ) e izt (t 1) ν 1/ dt = i m z m (1+, 1 ) t m (t 1) ν 1/ dt m! m= (t = ) ( 1) m z m (1+, ) = t m (t 1) ν 1/ dt (m)! m= (u = t ) ( 1) m z m (1+, ) = u m 1/ (u 1) ν 1/ du (m)! m= (1+, ) 1.4 Re(ν) > 1/ u =, u = 1 u u 1 = re iθ θ = π 3

28 T u u = u = 1 U 1.4: (1+,-) θ = π 1 u m 1/ (u 1) ν 1/ du = e iπ(ν+1/) (1 r) m 1/ r ν 1/ dr u m 1/ (u 1) ν 1/ du = e iπ(ν+1/) (1 r) m 1/ r ν 1/ dr (1+, ) ] u m 1/ (u 1) ν 1/ du = [e 1 iπ(ν+1/) e iπ(ν+1/) (1 r) m 1/ r ν 1/ dr = i sin π(ν + 1/) z ν (1+, 1 ) e izt (t 1) ν 1/ dt = i sin π(ν + 1/) Γ(ν + 1/) 1 ( 1) m z m+ν m= (m)! Γ(m + 1/)Γ(ν + 1/) Γ(m + ν + 1) Γ(m + 1/) Γ(m + ν + 1/) (1.4) Γ(m + 1/) π Γ(m) π = (m)! Γ(m) (m)! = m 1 m m! z ν (1+, 1 ) e izt (t 1) ν 1/ dt = i sin π(ν + 1/) Γ(ν + 1/) ( z ) ν π ν ( 1) m z ) m m! Γ(m + ν + 1)( m= = i π Γ(1/ ν) ν J ν (z) Γ(1/ ν) ( z ) ν (1+, 1 ) J ν (z) = πi e izt (t 1) ν 1/ dt, Re(ν) + 1/ > π ν + 1/ 4

29 1.11 a b (t 1) ν+1/ e izt = 1.1 J ν (z) Γ(1/ ν) ( z ) ν J ν (z) = πi e νπi e izt (t 1) ν 1/ dt, Re(z) > (1.56) π C ν + 1/ Re(z) > (t 1) ν+1/ e izt t i 1.5 C i 1 +1 i Re(z) > w(z) C S D 1 1 D 1 1 C L 1.5: C t > 1 (1.18) (t 1) ν 1/ = t ν 1 ( 1 1 t ) ν 1/ = m= Γ(1/ ν + m) m! Γ(1/ ν) tν 1 m 5

30 w(z) = z ν = m= C e izt (t 1) ν 1/ dt z ν Γ(1/ ν + m) m! Γ(1/ ν) C e izt t ν 1 m dt t = ±1 t = t = C 1.5 D D arg z i e i arg z Re(z) > (t 1) ν+1/ e izt D zt = ue 3πi/ e izt t ν 1 m dt = e izt t ν 1 m dt C D = e izt t ν 1 m dt D = z m ν ( 1) m+1 e νπi L e u ( u) ν 1 m du L 1.5 (1.6) (1.7) e u ( u) ν 1 m du = i sin π(ν m) Γ(ν m) L = πi Γ(m + 1 ν) (1.4) w(z) = πi e νπi m= = πi e νπi m= = πi π e νπi Γ(1/ ν) ν ( z J ν (z) = Γ(1/ ν) πi π ( 1) m z m ν Γ(1/ ν + m) m! Γ(1/ ν)γ(m + 1 ν) ( 1) m z m ν m! Γ(1/ ν) e νπi ( z ) ν ) ν C m= π m ν Γ(m ν + 1) ( 1) m m! Γ(m ν + 1) ( z ) m e izt (t 1) ν 1/ dt, Re(z) > ν + 1/ 6

31 1.1 Re(z) > (1.55) (1.56) 1.6 Γ(1/ ν) ( z ν { J ν (z) = πi π ) } + C 1 C Γ(1/ ν) ( z ) ν { } J ν (z) = πi e νπi π C 1 D 1 S C D Riemann S 1 S Riemann S n 1.9 t D 1 + S (t 1) ν 1/ = S 1 (t 1) ν 1/ e πi(ν 1/) e izt (t 1) ν 1/ dt = e πi(ν 1/) D D C e izt (t 1) ν 1/ dt = e πνi C e izt (t 1) ν 1/ dt J ν (z) = Γ(1/ ν) πi π ( z ν {e ) νπi C 1 +e νπi C } (1.38), (1.38) H ν (1) (z) = J ν(z) e νπi J ν (z) i sin νπ H ν () (z) = eνπi J ν (z) J ν (z) i sin νπ J ν J ν C C 1 D D 1 1.6: 7

32 H ν (1) (z) = H () ν (z) = Γ(1/ ν) πi π Γ(1/ ν) πi π ( z ) ν ( z ) ν C 1 e izt (t 1) ν 1/ dt C e izt (t 1) ν 1/ dt (1.57) Re(z) >, Re(ν) + 1/ > ν + 1/ H (1) ν (z) S H () ν (z) S f(z), φ(z) f < A φ, z > δ A, δ ɛ f = O(φ) f < ɛ φ, z > δ δ f = o(φ) z f/φ f O(φ) f/φ f o(φ) g(s) = e sf(z) φ(z) dz L s f(z), φ(z) z s f(z) f(z) s f(z) f(z) = u(x, y) + i v(x, y), z = x + iy f(z) u(x, y) u x + u y = f (z ) = z = z u/ x =, u/ y = u(x, y) 8

33 u(x, y) s f(z) s 1.13 f(z), φ(z) z s g(s) g(s) = e sf(z) φ(z) dz (1.58) L s [ φ(z ) e sf(z ) π ] 1/ (1.59) s f (z ) f(z) f(z) = f(z ) + a (z z ) + a 3 (z z ) 3 +, z z = R f(z) M a n M R n f(z) = f(z ) + a (z z ) + F (z) { F (z) z z 3 M + z z 4 } + = M z z 3 R R 3 R 4 R 3 {R z z }, z z < R ɛ > z z s ɛ R/ s F (z) M R 3 s 3ɛ e sf(z) = exp{s f(z ) + s a (z z ) } {1 + O(s 1 3ɛ )} ɛ > 1/3 s φ(z) φ(z) = φ(z ) + Φ(z) 9

34 Φ(z) M R 1 s ɛ 1/3 < ɛ < 1/ φ(z) = φ(z ) + O(s ɛ ) = φ(z ) + o(s 1 3ɛ ) z z < R { } φ(z ) e sf(z ) e sa (z z ) 1 + O(s 1 3ɛ ) dz (1.6) L a = A e iα, A > ; z z = r e iθ, s ɛ < r < s ɛ a (z z ) = A r e i(α+θ) α + θ = π θ s ɛ φ(z ) e sf(z )+i(π α)/ e Asr s ɛ dr t = A s r, T = (A s 1 ɛ ) 1/ = O(s 1/ ɛ ) s ɛ s ɛ e Asr dr = (As) 1/ T T e t dt = (As) 1/ { π T } e t dt e t dt T T ] [ e t e t dt = t T e T T T e t t dt < e T T O(s 3ɛ 3/ ) (1.6) φ(z ) e sf(z )+i(π α)/ (As) 1/{ π + O(s 3ɛ 3/ ) }{ 1 + O(s 1 3ɛ ) } z = z (1.58) s [ φ(z ) e sf(z ) π ] 1/ s f (z ) 3

35 arg(z) < π Γ(z) = e t t z 1 dt t t z exp{ i arg(z)} Γ(z) = z z e z(log t t) t 1 dt t = 1 (1.59) Γ(z) π z z 1/ e z, z, arg(z) < π (1.61) (Stirling) 1.14 (Darboux) 1.1 ( (Darboux) ) f(z) a a + h f(a + h) f(a) = n 1 m=1 h m m! f (m) (a) + hn (n 1)! 1 f (n) (a + th) (1 t) n 1 dt (1.6) n 1 h m m! (1 t)m f (m) (a + th) t m=1 d n 1 h m dt m! (1 t)m f (m) (a + th) m=1 n 1 { h m = (m 1)! (1 t)m 1 f (m) (a + th) + hm+1 m! m=1 ( m 1 = p ) n = = p= h p+1 p! (1 t) p f (p+1) (a + th) + n 1 m=1 h m+1 m! h n (n 1)! (1 t)m 1 f (n) (a + th) h f (1) (a + th) } (1 t) m f (m+1) (a + th) (1 t) m f (m+1) (a + th) 31

36 t 1 f(a + h) f(a) = n 1 m=1 h m m! f (m) (a) + hn (n 1)! 1 f (n) (a + th) (1 t) n 1 dt 1 C 1 (+) 1.7: 1. π < arg(z) < π, Re(ν) + 1/ > ν + 1/ H ν (1) (z) = { n 1 Γ(ν + m + 1/) πz ei(z π/4 νπ/) m! Γ(ν m + 1/) m= ( i ) m } + Rn z (1.63) R n sin(ν + 1/)π = ( i ) n (+) z i (n 1)! Γ(ν n + 1) 1 ( e u ( u) ν 1/ u n (1 t) n iut ) ν n 1/ dt du z (+) 1.7 (1.57) H ν (1) (z) = Γ(1/ ν) πi π (z ) (1+) ν 1+ i e izt (t 1) ν 1/ dt 3

37 t 1 = i u z 1 H ν (1) (z) = = Γ(1/ ν) (+) π πz i Γ(1/ ν) (+) π e i(z π/4 νπ/) πz e iz e u ( i) ν 1/ ( u) ( ν 1/ 1 + iu ) ν 1/ du z e u ( u) ν 1/ ( 1 + iu z ) ν 1/ du (1.64) f(z) = (1 + z) ν 1/, a =, h = iu/z ( iu ) ν 1/ 1 + f() z n 1 1 = m! m=1 ( iu ) m f (m) () + z f (m) () = ( ν 1 ( iu 1 + z n 1 = + m= ) ν 1/ 1 m! 1 (n 1)! 1 (n 1)! ( iu z ) n 1 f (n) ( iut z ) (1 t)n 1 dt )( 3) ( 1) Γ(ν + 1/) ν ν m + = Γ(ν m + 1/) ( iu ) m Γ(ν + 1/) z Γ(ν m + 1/) ( iu ) 1 n z Γ(ν + 1/) Γ(ν n + 1/) H ν (1) (z) = + i Γ(1/ ν) (+) e i(z π/4 νπ/) π πz { n 1 e u ( u) ν 1/ m= Γ(ν + 1/) (n 1)! Γ(ν n + 1/) ( 1 + iut z ) ν n 1/(1 t) n 1 dt Γ(ν + 1/) ( iu ) m m! Γ(ν m + 1/) z ( iu ) 1 ( n 1 + iut ) ν n 1/ (1 t) dt} n 1 du z z (1.6) (+) e u ( u) ν 1/ u m du = ( 1) m ( i) sin π(ν + m + 1/) H ν (1) (z) e u u ν+m 1/ du = i ( 1) m Γ(ν + m + 1/) sin π(ν + m + 1/) 33

38 Γ(1/ ν)γ(ν + 1/) = π e i(z π/4 νπ/) πz { n 1 Γ(ν + m + 1/) ( i ) m m! Γ(ν m + 1/) sin π(ν + m + 1/) z m= i ( i ) n (+) + e u ( u) ν 1/ u n (n 1)! Γ(ν n + 1) z 1 ( (1 t) n iut ) ν n 1/ } dt du z Γ(1/ ν)γ(ν + 1/) = π/ sin π(ν + 1/) R n sin(ν + 1/)π i = (n 1)! Γ(ν n + 1) ( i ) n (+) 1 ( e u ( u) ν 1/ u n (1 t) n iut ) ν n 1/ dt du z z H ν (1) (z) = { n 1 Γ(ν + m + 1/) πz ei(z π/4 νπ/) m! Γ(ν m + 1/) m= ( i ) m } + Rn z (1.57) Re(z) > H (1) ν Re(izt) < z = re iθ, t = ρe iα Re(izt) = r ρ sin(θ + α) < < θ+α < π. α 1 π < α < π π < θ < π (1.64) (1.63) π < arg(z) < π H ν () (z) = { n 1 Γ(ν + m + 1/) πz e i(z π/4 νπ/) m! Γ(ν m + 1/) m= ( i ) m } + R n z (1.65) (1.65) π < arg(z) < π 34

39 1.14 π < arg(z) < π, Re(ν) > 1/ J ν (z) = Y ν (z) = πz {cos(z π 4 νπ [n/] ) sin(z π 4 νπ [(n 1)/] ) πz k= k= {sin(z π 4 νπ [n/] ) + cos(z π 4 νπ [(n 1)/] ) k= ( 1) k Γ(ν + k + 1/) (k)! Γ(ν k + 1/) ( 1) k Γ(ν + k + 3/) (k + 1)! Γ(ν k 1/) k= ( 1) k Γ(ν + k + 1/) (k)! Γ(ν k + 1/) ( 1) k Γ(ν + k + 3/) (k + 1)! Γ(ν k 1/) lim R n (k) z n 1 = (k = 1, ) z ( 1 ) k z ( 1 ) k+1 + Rn (1)} z ( 1 ) k z (1.66) ( 1 ) k+1 + Rn ()} z (1.67) Re(ν) 1/ (1.17) (1.36) J ν (z) = 1 ν 1/ l J ν (z) = Y ν (z) = πz { } H (1) ν (z) + H () ν (z), Y ν (z) = i { } H (1) ν (z) H () ν (z) (l =, 1,,... ) (1.63), (1.65) {cos(z π 4 νπ [n/] ) sin(z π 4 νπ [(n 1)/] ) πz k= k= {sin(z π 4 νπ [n/] ) + cos(z π 4 νπ [(n 1)/] ) k= ( 1) k Γ(ν + k + 1/) (k)! Γ(ν k + 1/) ( 1) k Γ(ν + k + 3/) (k + 1)! Γ(ν k 1/) k= ( 1) k Γ(ν + k + 1/) (k)! Γ(ν k + 1/) ( 1) k Γ(ν + k + 3/) (k + 1)! Γ(ν k 1/) (1.63) R n lim R n (k) z n = (k = 1, ) z ( 1 ) k z ( 1 ) k+1 + Rn (1)} z ( 1 ) k z ( 1 ) k+1 + Rn ()} z ν 1/ = l (l =, 1,,... ) J ν (z) (1.3), (1.4) (1.17) 35

40 Y ν (z) (1.9) (1.) n l R n (z) = 36

41 .1 3 P (x, y, z), Q(x, y, z ) V (x, y, z) V (x, y, z) = ( ) 1 { P Q = (x x ) + (y y ) + (z z ) } 1/ V x + V y (.1) + V z = (.) (Laplace) (r, θ, ϕ) x = r sin θ cos ϕ y = r sin θ sin ϕ (.3) z = r cos θ r θ ϕ Q (,, r ) P Q = x + y + (z r ) = r rr cos θ + r V V = { r rr cos θ + r } { 1/ = r 1 1 r cos θ + ( r ) } 1/ r r (.4) r > r V (r/r ) { 1 r 1 r cos θ + ( r ) } 1/ 1 = r r r n= P n (cos θ) ( r r ) n r < r (.5) 37

42 .1 (.5) P n (cos θ) ζ = cos θ ζ n n (Legendre) ζ = cos θ, r/r = α (.5) ( ) 1 αζ + α 1/ = α n P n (ζ) α < 1 (.6) n= ζ = 1 (1 α + α ) 1/ = (1 α) 1 = ζ = 1 α = P n (1) = 1 n =, 1,,... P n ( 1) = ( 1) n P (ζ) = 1 (.6) α ζ α 1 αζ + α = n= nαn 1 P n (ζ) n= αn P n (ζ) n= n= (ζ α) α n P n (ζ) = (1 αζ + α ) nα n 1 P n (ζ) α n n = 1, (n + 1)P n+1 (ζ) np n 1 (ζ) = (n + 1)ζP n (ζ) (.7) n= P 1 (ζ) = ζ, P (ζ) = (3ζ 1)/ P 1, P, P 3,... P n (ζ) ζ (.7) (.6) ζ d [ ] P n+1 (ζ) P n 1 (ζ) = (n + 1)P n (ζ) (.8) dζ α n 38

43 1 P P 1 P P 3 P 4 P 5 x.1: P n (ζ) (.6) P n (cos θ). P n (cos θ) k 1 (s)!(4k s)! ((k)!) P k (cos θ) = cos[(k s)θ] + 4k 1 (s!) ((k s)!) 4k (k!) 4 s= k (s)!(4k + s)! P k+1 (cos θ) = cos[(k + 1 s)θ] 4k+1 (s!) ((k + 1 s)!) s= (.9) (1 α cos θ + α ) = (1 αe iθ )(1 αe iθ ) z < z = (.6) r= Γ(r + 1/) r!γ(1/) zr α n P n (cos θ) = n= r= s= Γ(r + 1/)Γ(s + 1/) α r+s e i(r s)θ r!s!γ(1/)γ(1/) 39

44 α n P n (cos θ) = n r= Γ(r + 1/)Γ(n r + 1/) e i(r n)θ πr!(n r)! (1.4) z = n r + 1/ z = r + 1/ e i(r n)θ Γ(n r + 1/) = (n r)! π (n r) (n r)! Γ(r + 1/) = (r)! π r (r)! Γ(r + 1/)Γ(n r + 1/) πr!(n r)! = (r)!(n r)! n (r!) ((n r)!) P n (cos θ) = n r= (r)!(n r)! n (r!) ((n r)!) ei(r n)θ (.1) r = s r = n s (s)!(n s)! cos[(n s)θ] n 1 (s!) ((n s)!) n k + 1 k k P k (cos θ) = P k+1 (cos θ) = k 1 s= (s)!(4k s)! ((k)!) cos[(k s)θ] + 4k 1 (s!) ((k s)!) 4k (k!) 4 k s= (s)!(4k + s)! cos[(k + 1 s)θ] 4k+1 (s!) ((k + 1 s)!) (.1) P n (cos θ) = θ = P n (1) = n c r e i(r n)θ r= n r= c r 4

45 P n (1) = 1 n c r = 1 r= P n (cos θ) n c r = 1 (.11) r=. (.) (r, θ, ϕ) V r + r V r + 1 ( V r θ V (.5) V + cot θ θ + 1 V ) sin = (.1) θ ϕ V = 1 r n= P n (cos θ) ( r r ) n r < r V r = 1 r V r = 1 r 3 n= n= np n (cos θ) ( r r ) n 1 n(n 1)P n (cos θ) ( r r ) n r < r P n (cos θ) 1 (.1) ( r ) n { n(n + 1)P n + d P n r dθ n= + cot θ dp } n = dθ r P n d P n dθ + cot θ dp n dθ + n(n + 1)P n = (.13) θ ζ = cos θ d { (1 ζ ) dp } n + n(n + 1)P n = (.14) dζ dζ 41

46 P n (ζ) ζ.3 P n (ζ) P n (ζ) = σ s= ( 1) s (n s)! n s!(n s)!(n s)! ζn s (.15) σ n n/ (n 1)/ P n (ζ) = (.14) m k(k 1)a k ζ k + k= m a k ζ k k= m a k ζ k{ n(n + 1) k(k + 1) } = k= ζ ζ m n(n + 1) = m(m + 1) (.16) m = n, n 1 m = n 1 P n (ζ) ζ m = n ζ k ( k < n) a k+ (k + )(k + 1) = a k (k n)(k + n + 1) a k = (k + )(k + 1) (k n)(k + n + 1) a k+ (.17) a n s = ( 1)s (n!) (n s)! (n s)!s!(n s)!(n)! a n a n = (n)!/ n (n!) a n s = ( 1)s (n s)! n s!(n s)!(n s)! σ ( 1) s (n s)! P n (ζ) = n s!(n s)!(n s)! ζn s s= σ n n/ (n 1)/ 4

47 (Rodrigues).4 ( (Rodrigues) ) P n (ζ) = 1 n n! d n [ ] (ζ 1) n dζ n (.18) (Rodrigues) d n dζ n [ζn s ] = (n s)! (n s)! (.15) σ ( 1) s P n (ζ) = n s!(n s)! s= n (ζ 1) n = nc s ζ n s ( 1) s = s= n 1 d n σ n! dζ n [(ζ 1) n ] = P n (ζ) = 1 n n! s= d n ζ n s dζ n [ζn s ] n s= ( 1) s (n s)!s! d n [ ] (ζ 1) n dζ n ( 1) s n! (n s)!s! ζn s d n dζ n [ζn s ].3 f(ζ) 1 ζ 1 I = (.18) f(ζ)p n (ζ) dζ I = 1 f(ζ) dn n n! 1 dζ n [(ζ 1) n ] dζ = 1 [ d n 1 ] 1 n n! dζ n 1 [(ζ 1) n ]f(ζ) 1 1 f (ζ) dn 1 1 n n! 1 dζ n 1 [(ζ 1) n ] dζ 43

48 f(ζ) ζ = ±1 n 1 1 f(ζ)p n (ζ) dζ = ( 1)n n n! 1 1 (ζ 1) n f (n) (ζ) dζ (.19) f(ζ) = ζ m m : f (n) (ζ) = { Γ(m + 1)ζ m n /Γ(m n + 1) m n m < n m n 1 1 P n (ζ)ζ m dζ = Γ(m + 1) n n!γ(m n + 1) 1 1 (1 ζ ) n ζ m n dζ m n m n m n 1 1 (1 ζ ) n ζ m n dζ = B ( n + 1, m n + 1 ) Γ(n + 1)Γ(m/ n/ + 1/) = Γ(m/ + n/ + 3/) m < n 1 P n (ζ)ζ m m! Γ(m/ n/ + 1/) dζ = m n : ( ) 1 n (m n)! Γ(m/ + n/ + 3/) m n : ( ) (.19) f(ζ) = P m (ζ).5 P n (ζ) P n (ζ)p m (ζ) dζ = m n (.) P n (ζ) dζ = n + 1 (.1) P m (ζ) m d n P m (ζ) dζ n = n > m 44

49 1 1 P n (ζ)p m (ζ) dζ = n > m m, n 1 1 P n (ζ)p m (ζ) dζ = m n P n (ζ) P m (ζ) m = n (.18) d n P n (ζ) dζ n (.19) 1 1 P n (ζ) dζ = (n)! ( n n!) 1 1 = (n)! n n! = (n)! Γ(1/)Γ(n + 1) ( n n!) Γ(n + 3/) = n + 1 (1 ζ ) n dζ = (n)! B(n + 1, 1/) ( n n!) = (n)! (n!) n+1 ( n n!) (n + 1)!.4 ν d { (1 z ) df } + ν(ν + 1)f = (.) dz dz.6 P ν (z) = Γ(ν + m + 1) ( z 1 ) m, z 1 < (.3) (m!) Γ(ν + 1 m) m= z 1 < ν z = 1 t (.) t(1 t) d f + (1 t)df + ν(ν + 1)f = dt dt 45

50 f(t) = t α m= a m t m t a α = a m+1 (m + α + 1) + a m { ν(ν + 1) (m + α)(m + α + 1) } = α = (ν m)(ν + m + 1) a m+1 = a (m + 1) m a 1, a,... a a = 1 ν(ν + 1)(ν 1)(ν + ) f(t) = 1 ν(ν + 1) t + t 1 ν(ν + 1)(ν + )(ν + 3)(ν 1)(ν ) t a m a m = ( 1)m ν(ν + 1) (ν + m)(ν 1) (ν m + 1) (.4) (m!) = ( 1)m Γ(ν + m + 1) Γ(ν 1) (m!) Γ(ν 1) Γ(ν m + 1) = ( 1)m Γ(ν + m + 1) (m!) Γ(ν m + 1) t = 1 z Γ(ν + m + 1) ( z 1 P ν (z) = (m!) Γ(ν + 1 m) m= lim a m (m + 1) = lim = 1 m a m+1 m (ν + m + 1)(m ν ) P ν (z) z 1 < z = 1 (.3) ν u(x) u(1) = f() = 1 P n (1) = 1 f P n a m (.4) a m = 1 Γ(m + ν + 1) (m!) Γ(ν + 1) Γ(m ν) Γ( ν) ) m 46

51 P ν (z) = P ν 1 (z) (.5).7 ν P ν (z) z = 1 z = 1 (.) z = t 1.6 ν(ν + 1)(ν 1)(ν + ) f(t) = 1 ν(ν + 1) t + t 1 ν(ν + 1)(ν + )(ν + 3)(ν 1)(ν ) t α 1, α f 1 (t) f(t) f 1 (t) = f(t) log t + g(t), g(t) = b m t m m=1 ( z < 1 ) (p1) [ ] f 1 ( z + 1 ) z 1 z + 1 < (.3) z 1 < { } z : z 1 <, z + 1 < Pν (z) f f 1 P ν (z) = A f( z + 1 ) + B f 1( z + 1 ) A, B (.3) z + 1 < P ν (z) = A P ν ( z) + B { P ν ( z) log 1 + z + g( z + 1 } ), z + 1 < (.6) ν B z = 1 f(1) = m= Γ(ν + m + 1) (m!) Γ(ν m + 1) = m= Γ(m + ν + 1)Γ(m ν) (m!) Γ(ν + 1)Γ( ν) (p339) [ ] < M ν Γ(ν + m + 1)Γ(m ν), m 1 m (m!) M ν f(1) P ν (z) z = 1 B (.6) ν z = 1 47

52 ν n P n (z) B = (.15) P n (z) = ( 1) n P n ( z).5 z C f(z) n f (n) (z) z C f (n) (z) = n! f(t) dt n =, 1,,... (.7) πi (t z) n+1 f(z) = (z 1) n n n! P n (z) = 1 n πi C C (t 1) n dt n =, 1,,... (.8) (t z) n+1 (Schläfli) (.7) n ν P ν (z) F (z) = 1 ν πi C (t 1) ν dt (.9) (t z) ν+1 df dz = (ν + 1) ν πi C (t 1) ν (t z) dt, d F (ν + 1)(ν + ) = ν+ dz ν πi C (t 1) ν dt (t z) ν+3 (1 z ) d F df z + ν(ν + 1)F dz dz (ν + 1) (t 1) ν = ν πi (t z) ν+3 (νt νtz + ν + tz) dt = C (ν + 1) ν πi C d [ (t 1) ν+1 ] dt dt (t z) ν+ (t 1) ν+1 C (t z) ν+ (.3) (t 1) ν+1 ν t (t z) ν+ (t 1) ν+1 ν t (t z) ν+ 48

53 z C 1 1 S.: t (.9) Riemann ν Riemann t t = z, 1, t arg t 1 = nπ t z S n. z 1 1 S n S n+1 S z 1 1 C Riemann F (z). C P ν (z) = 1 (t 1) ν dt (, 1] ν πi (t z) (.3) ν+1 C P ν (z) (.3) P ν (z) (.3).8 z 1 < 1 ν πi C (t 1) ν (t z) dt = ν+1 m= Γ(ν + m + 1) (m!) Γ(ν + 1 m) ( z 1 ) m (.31) C.. C R < t = 1 t 1 = Re iθ, θ < π z 1 < R ( (t z) ν 1 = (t 1) ν 1 1 z 1 t 1 ) ν 1 49

54 = (t 1) ν 1 {1 + m=1 Γ(ν + m + 1) m! Γ(ν + 1) ( z 1 ) m } t 1 (t 1) ν (t z) ν+1 = (t + 1)ν (t 1) ν (t z) ν 1 = (t + 1) ν (t 1) 1 = (t + 1) ν m 1 Γ(ν + m + 1) (t 1) (z 1)m m!γ(ν + 1) m= ( (t + 1) ν = ν 1 + t 1 ) ν = ν r= C (t + 1) ν (t 1) m 1 dt = ν 1 ν πi C (t 1) ν (t z) dt = ν+1 m= r= ( z 1 ) m Γ(ν + m + 1) t 1 m! Γ(ν + 1) m= Γ(ν + 1) ( t 1 r r! Γ(ν + 1 r) ) r Γ(ν + 1) (t 1) r m 1 dt r r! Γ(ν + 1 r) C = πi ν m Γ(ν + 1) m! Γ(ν + 1 m) Γ(ν + m + 1) (m!) Γ(ν + 1 m) ( z 1 ) m, z 1 < R <.6 (.16) m = n 1 (.17) a n 3 = (n + 1)(n + ) (n + 3) a n 1, a n 5 = (n + 3)(n + 4) (n + 5)4 a n 3,... a n (k+1) = (n + 1)(n + ) (n + k) (n + 3)(n + 5) (n + k + 1) k k! a n 1 n 1 n 5

55 n ν π Γ(ν + 1) a n (k+1) z n (k+1) a ν 1 = ν+1 Γ(ν + 3/) k= Q ν (z) = π Γ(ν + 1)z ν 1 ν+1 Γ(ν + 3/) { 1 + k=1 (ν + 1)(ν + ) (ν + k) } k k! (ν + 3)(ν + 5) (ν + k + 1) z k (.3) z > 1 (.3) T (z) = 1 (t 1) ν dt (.33) ν+ i sin νπ D (z t) ν+1 D P ν (z) D C.3 D (t 1) ν (z t) ν t = 1 t = 1 t = z (.34) P arg(t 1) = z D 1 D.3: 1 P arg(z t) = arg(z) t +1 z D.3 1 (t 1) ν Q ν (z) = dt (, 1] ν+ i sin νπ (z t) (.34) ν+1 D Q ν (z) P ν (z) (.34) Q ν (z) z > 1 (.3) 51

56 .9 z > 1 1 ν+ i sin νπ D = (t 1) ν dt (z t) ν+1 1 { ν+1 z ν+1 k= Γ(ν + k + 1)Γ(k + 1/) (k)! Γ(ν + k + 3/) D.3 z k } (.35) Re(ν + 1/) >.3 t = t = 1 t = 1 t = 1 t = t = t = 1 t = 1 t = 1 t = 1 e iνπ (1 t ) ν (z t) ν+1 1 e iνπ (1 t ) ν (z t) ν+1 1 e iνπ (1 t ) ν (z t) ν+1 1 e iνπ (1 t ) ν 1 ν+ i sin νπ (z t) ν+1 Re(ν + 1/) > ±1 { 1 Q ν (z) = (e iνπ e iνπ ) 1 + ν+ i sin νπ (eiνπ e iνπ ) 1 1 = {e iνπ ν+ i sin νπ 1 1 (1 t ) ν dt (z t) ν+1 (1 t ) ν } (z t) dt ν+1 (1 t ) ν dt eiνπ (z t) ν = ν 1 (1 t ) ν (z t) ν 1 dt Re(ν + 1/) > 1 z > 1 (z t) ν 1 = z {1 ν 1 Γ(ν + k + 1) ( t ) k } + k! Γ(ν + 1) z k=1 1 (1 t ) ν } (z t) dt ν+1 1 t 1 1 { 1 Q ν (z) = (1 t ) ν Γ(ν + k + 1) 1 } dt + t k (1 t ) ν dt ν+1 z ν+1 k! Γ(ν + 1)z k 1 k=1 1 5

57 k (, 1) 1 1 Q ν (z) = 1 { ν+1 z ν+1 t k (1 t ) ν dt = k= Γ(k + 1/)Γ(ν + 1) Γ(ν + k + 3/) Γ(ν + k + 1)Γ(k + 1/) (k)! Γ(ν + k + 3/) z k } z > 1 (.3) ν z > 1 ν ν.7 z < 1 (.3).4.1 (.3) P ν (z) = e νπi (z+,1+,z,1 ) (t 1) ν dt (.36) 4π ν sin νπ (t z) ν+1.4 c z b a d 1 1.4: (z+,1+,z-,1-) d a πν c b πν 53

58 1 < Re(ν) < t = z, t = = (1 e πνi ) +(1 e πνi ) a b c d a b = (1 e πνi ) a+b = e πνi (t 1) ν i sin νπ dt (t z) ν+1 P ν (z) = 1 ν πi a+b a+b (t 1) ν dt (t z) ν+1 e νπi (t 1) ν P ν (z) = dt 4π ν sin νπ a+b+c+d (t z) ν+1 P ν (z) ν 1 < Re(ν) <.4 z 1 z 1 (z+, 1+, z, 1 ) P ν (z) = e νπi 4π ν sin νπ (z+,1+,z,1 ) (t 1) ν dt (t z) ν+1.4 (t 1) ν.5 (t z) ν+1.11 z + 1 < (z+, 1+,z, 1 ) = e ±νπi ν m= (t 1) ν dt (t z) ν+1 ( 1) m Γ(ν + 1) m!γ(ν + 1 m) ( z + 1 ) m (1+,+,1, ) u ν (u 1) ν 1 u m du (.37).5 A ( 1, 1) t 1 A π A t = 1, t = 1, t = z L, M, N (z+, 1+, z, 1 ), (z+, 1+, z, 1 ) L, M, N 54

59 z 1 A 1.5: (z+,1+,z,1 ) (t 1) ν (t z) dt = N + ν+1 Me π(ν+1)i Ne πνi M (z+, 1+,z, 1 ) (t 1) ν (t z) dt = N + ν+1 Le π(ν+1)i Ne πνi L (.38) ( 1+,1 ) (t 1) ν dt (t z), (.34) Q ν+1 ν(z) Im(z) > (L M)e πνi Im(z) < L M ( 1+,1 ) (t 1) ν dt (t z) ν+1 = e πνi 1 e πνi ( (z+,1+,z,1 ) (z+, 1+,z, 1 )) (t 1) ν dt, Im(z) > (.39) (t z) ν+1 ( 1+,1 ) = (t 1) ν dt (t z) ν+1 1 ( (z+,1+,z,1 ) 1 e πνi (z+, 1+,z, 1 )) (t 1) ν dt, Im(z) < (.4) (t z) ν+1 (.36) P ν (z) (z+, 1+,z, 1 ) (t 1) ν dt t + 1 = (z + 1)u (t z) ν (1+, +, 1, ) ν (1+,+,1, ) u ν ( z + 1 Im(z) z + 1 u 1) ν(u 1) ν 1 du u 1 = e ±πi ( 1 z + 1 ) u 55

60 1 (z + 1)u/ u = (1 (z + 1)u/) ν (z + 1)/ < 1 (z+, 1+,z, 1 ) = e ±νπi ν m= (t 1) ν dt (t z) ν+1 ( 1) m Γ(ν + 1) m!γ(ν + 1 m) ( z + 1 ) m (1+,+,1, ) u ν (u 1) ν 1 u m du W T V U 1.6: (1+,+,1-,-).1 (1+,+,1, ) u ν (u 1) ν 1 u m du = ( 1) sin πνi Γ(ν + m + 1)Γ( ν) νπ e m! (.41).6 u 1 = xe iθ 1 < Re(ν) < u = 1 u = θ = π π(ν + 1) ) u ν+m (u 1) ν 1 du = (e 1 π(ν+1)i e π(ν+1)i (1 x) ν+m x ν 1 dx + = i sin νπ Γ(ν + m + 1)Γ( ν) m! π(ν + m) π(ν + m) u ν+m (u 1) ν 1 du = i e πνi Γ(ν + m + 1)Γ( ν) sin νπ m! + u ν+m (u 1) ν 1 du = ( 1) sin πνi Γ(ν + m + 1)Γ( ν) νπ e m!

61 z < 1.13 z 1 <, z + 1 < Q ν (z) = π {e νπi sin νπ m= m= ( 1) m Γ(ν + m + 1) (m!) Γ(ν + 1 m) ( 1) m Γ(ν + m + 1) (m!) Γ(ν + 1 m) ( 1 z ( 1 + z ) m } Im(z) >, Im(z) < + (.4) ) m (z+, 1+,z, 1 ) (t 1) ν (t z) ν 1 dt (1+,+,1, ) ( z + 1 ) ν(u = ν u ν u 1 1) ν 1 du = e ±νπi ν ( 1) m Γ(ν + 1) ( z + 1 ) m (1+,+,1, ) u ν (u 1) ν 1 u m du m!γ(ν + 1 m) m= = ν+ πe νπi sin νπ m= ( 1) m Γ(ν + m + 1) (m!) Γ(ν + 1 m) ( z + 1 ) m (Im(z) < e νπi 1 ) ν ν ν (.34) Q ν (z) z 1 <, z + 1 < 1 (t 1) ν Q ν (z) = dt ν+ i sin νπ D (z t) ν+1 e νπi ( 1+,1 ) = (t 1) ν (t z) ν 1 dt ν+ i sin νπ e 3νπi { = e νπi 4π ν sin νπp ν+ i sin νπ(1 e νπi ν (z) ) ν+ πe νπi ( 1) m Γ(ν + m + 1) ( z + 1 ) m } sin νπ (m!) Γ(ν + 1 m) m= (Im(z) < e νπi 1 ) 57

62 = π {e νπi sin νπ m= ( 1) m Γ(ν + m + 1) ( 1 z ) m (m!) Γ(ν + 1 m) ( 1) m Γ(ν + m + 1) ( 1 + z ) m } (m!) Γ(ν + 1 m) m= Im(z) >, Im(z) < + ν ν 1 P ν 1 (z), Q ν 1 (z) P ν (z), Q ν (z), P ν 1 (z), Q ν 1 (z).14 (, 1] P ν (z) = 1 π tan νπ{ Q ν (z) Q ν 1 (z) } (.43) (.3) ν ν 1 z 1 < P ν 1 (z) = P ν (z) (.44) P ν (z) (.3) z 1 < P ν (z) z (.44) P ν (z) z (.4) ν ν 1 P ν (z) ν ν 1 Q ν 1 (z) = π {e (ν+1)πi sin νπ m= m= ( 1) m Γ(ν + m + 1) (m!) Γ(ν + 1 m) ( 1) m Γ(ν + m + 1) (m!) Γ(ν + 1 m) ( 1 z ( 1 + z ) m } (.4) π cos νπp ν (z) = sin νπ { Q ν (z) Q ν 1 (z) } ) m 58

63 (, 1] ν Q ν (z) = Q ν 1 (z) ν P ν (z) = 1 π tan νπ{ Q ν (z) Q ν 1 (z) } Q ν (z) z > 1 (.3), z > 1 P ν (z) P ν (z) = { tan νπ Γ(ν + 1) π(z) ν+1 Γ(ν + 3/) (ν + 1)(ν + ) (ν + k) 1 ) k } k k!(ν + 3) (ν + k + 1)( z k=1 Γ(ν + { 1/)(z)ν Γ(ν + 1) 1 + π k=1 ( ν)( ν + 1) ( ν + k 1 ) k } k k!( ν + 1) ( ν + k 1)( z z > 1 (.45).8.15 P ν (z)q ν (z) P ν (z)q ν (z) = 1 1 z (.46) d { (1 z ) df } + ν(ν + 1)f = dz dz P ν (z), Q ν (z) d { } (1 z )P ν Q ν d { } (1 z )Q ν P ν = dz dz d { } P ν (z)q dz ν (z) P ν (z)q ν (z) = z { } P 1 z ν (z)q ν (z) P ν (z)q ν (z) 59

64 P ν (z)q ν (z) P ν (z)q ν (z) = c 1 z c : z z c (.45) P ν (z) (.34) Q ν (z) Γ(ν + 1/) Γ(ν + 1) π (z)ν z 1 π Γ(ν + 1) Γ(ν + 3/) (z) ν+1 z 1 (ν + 1/)Γ(ν + 1/) P ν (z)q ν (z) P ν (z)q ν (z) Γ(ν + 3/) c 1 P ν (z)q ν (z) P ν (z)q ν (z) = 1 1 z z.16 (ν + 1)Q ν+1 (z) + νq ν 1 (z) = (ν + 1)zQ ν (z) (.47) (.35) z > 1 Q ν (z) ν ν +1 (ν +1) (ν + 1)Q ν+1 (z) = (ν + 1) ν z ν = (ν + 1) ν z ν k=1 k= Γ(ν + k + )Γ(k + 1/) (k)! Γ(ν + k + 5/) Γ(ν + k)γ(k 1/) 4(k )! Γ(ν + k + 3/) z k ν ν 1 ν νq ν 1 (z) = ν ν z nu k= Γ(ν + k)γ(k + 1/) (k)! Γ(ν + k + 1/) z k z k 6

65 { Γ(ν)Γ(1/) ν (ν + 1)Q ν+1 (z) + νq ν 1 (z) = ν z ν Γ(ν + 1/) νγ(ν + k)γ(k + 1/) (ν + 1)Γ(ν + k)γ(k 1/) + (k)! Γ(ν + k + 1/) z k + 4(k )! Γ(ν + k + 3/) k=1 k=1 z k } νγ(ν + k)γ(k + 1/) (ν + 1)Γ(ν + k)γ(k 1/) + (k)! Γ(ν + k + 1/) 4(k )! Γ(ν + k + 3/) Γ(ν + k)γ(k 1/) (ν + k)(ν + 1/) = Γ(ν + k + 1/)(k )! 4k(ν + k + 1/) (ν + 1/)Γ(ν + k + 1)Γ(k + 1/) = (k)! Γ(ν + k + 3/) (ν + 1)Q ν+1 (z) + νq ν 1 (z) = (ν + 1)zQ ν (z) z > 1 (.34) z < 1.17 Q ν+1 (z) zq ν = (ν + 1)Q ν (z) (.48) zq ν (z) Q ν 1 (z) = νq ν (z) (.49).17 ν 1 (ν + 1)Γ(ν + 1)Γ(1/) Q ν+1 (z) zq ν (z) = z ν 1 Γ(ν + 3/) { (k + ν + 1)Γ(k + ν + 1)Γ(k + 1/) + ν 1 (k)! Γ(ν + k + 3/) k=1 (ν + k)γ(ν + k)γ(k 1/) (k )! Γ(ν + k + 3/) ν 1 (ν + 1)Γ(ν + 1)Γ(1/) = Γ(ν + 3/) + ν 1 k=1 } z k ν 1 z ν 1 (ν + 1)Γ(ν + k + 1)Γ(k + 1/) (k)! Γ(ν + k + 3/) z k ν 1 61

66 = (ν + 1) { ν 1 z ν 1 k= Γ(ν + k + 1)Γ(k + 1/) (k)! Γ(ν + k + 3/) z k } Q ν+1 (z) zq ν = (ν + 1)Q ν (z) (.47) (.48) zq ν (z) Q ν 1 (z) = νq ν (z) P ν (z).18 (ν + 1)P ν+1 (z) + νp ν 1 (z) = (ν + 1)zP ν (z) (.5) (.43) (ν + 1)P ν+1 (z) + νp ν 1 (z) = ν + 1 tan νπ { Q ν+1 (z) Q ν (z) } + ν π π tan νπ{ Q ν 1 (z) Q ν (z) } (ν + 1) (ν + 1) = tan(νπ) zq ν (z) tan(νπ) zq ν 1 (z) π π (ν + 1)P ν+1 (z) + νp ν 1 (z) = (ν + 1)zP ν (z) {zpν (z) P ν 1 (z) = νp ν (z) P ν+1 (z) zp ν (z) = (ν + 1)P ν (z) (.51) (.3) ν = { Q (z) = z z + 1 5z + 1 } 4 7z + z > log z + 1 z 1 = 1 z + 1 3z z + z > 1 5 6

67 Q (z) = 1 log z + 1 z 1 ν = 1 z > 1 Q 1 (z) = 1 3z + 1 5z z 6 +, z > 1 Q 1 (z) = z log z + 1 z 1 1 (.47) z > 1 Q (z) = 1 P (z) log z + 1 z 1 3 z z > 1 1 Q Q Q 1 1 x.7:.9 m 1 < x < 1 P ν m (x) = (1 x ) m/ dm P ν (x) dx m, Q ν m (x) = (1 x ) m/ dm Q ν (x) dx m (.5) ν v = dm f dx m (1 x ) d f df x + ν(ν + 1)f = dx dx 63

68 m (1 x ) d v (m + 1)xdv + (ν m)(ν + m + 1)v = dx dx w = (1 x ) m/ v (1 x ) d w { } dx xdw dx + ν(ν + 1) m w = (.53) 1 x P m ν (x), Q m ν (x).19 P m n (x), P m r (x) 1 1 P n m (x)p r m (x)dx = r n (.54) P m n (x), P m r (x) d [ { (1 x ) P m r (x) dp n m (x) dx dx P m n (x) dp r m (x) }] dx + { n(n + 1) r(r + 1) } P m n (x)p m r (x) = x [ { (1 x ) P m r (x) dp n m (x) dx P m n (x) dp r m (x) }] x=1 dx x= 1 = { r(r + 1) n(n + 1) } 1 1 P n m (x)p r m (x)dx P m n (x), P m r (x) x = ±1 r n 1 1 P n m (x)p r m (x)dx = r n. (ν + 1)xP ν m (x) = (ν m + 1)P ν+1 m (x) + (ν + m)p ν 1 m (x) (.55) 64

69 (.51) P ν+1 (z) P ν 1 (z) = (ν + 1)P ν (z) { d (ν + 1)xP m ν (x) = (ν + 1)(1 x ) m/ m dx (xp ν) m dm 1 P } ν m dx { m 1 d = (1 x ) m/ m [ ] d m 1 [ ] } (ν + 1)Pν+1 + νp dx m ν 1 m Pν+1 P dx m 1 ν 1 { = (1 x ) m/ (ν m + 1) dm P ν+1 dx + (ν + P } ν 1 m m)dm dx m (ν + 1)xP ν m (x) = (ν m + 1)P ν+1 m (x) + (ν + m)p ν 1 m (x) P m ν 1 (x) = xp m ν (x) (ν m + 1) 1 x P m 1 ν (x) P m ν+1 (x) = xp m ν (x) + (ν + m) 1 x P m 1 ν (x) 1 x P m+1 ν (x) = mxp m ν (x) (ν + m)(ν m + 1) 1 x P m 1 ν (x) (.56).1 P m n (x) 1 1 [ m Pn (x) ] dx = n + 1 (n + m)! (n m)! ( m n) (.57) (.55) ν = n + 1 P m n (x) (n + m + 1) = (n + 3) = (n + 3)(n m + 1) (n + 1) [ m Pn (x) ] 1 dx = (n + 3) xp m n+1 (x)p m n (x) dx [ P m 1 n+1 (x) (n + 1) 1 [ dx P m n+1 (x)] 1 1 { (n m + 1)P n+1 m (x) + (n + m)p n 1 m (x) 1 [ ] dx (n + 3) P m (n + m + 1) 1 [ n+1 (x) = (n + 1) m Pn (x) ] dx 1 (n m + 1) 1 }] dx 65

70 (n + m + 1) (n + m) = (n 1) (n m + 1) (n m) = 1 (n + m + 1)(n + m) (m + 1) (n m + 1)! 1 [ Pn 1 m (x) ] dx (m + 1) 1 1 [ Pm m (x) ] dx d m P m (x) = (m)! dx m m m! 1 1 [ Pm m (x) ] dx = [ (m)! ] = m (m!) [ ] (m)! (n + 3) m (m!) m (1 x ) m dx [ Γ(m + 1) ] Γ(m + ) = (m)! m + 1 [ m Pn+1 (x) ] (n + m + 1)! dx = (n m + 1)! 1 [ m Pn (x) ] dx = n (n + m)! (n m)!.1 P m n (x) P n (x) = 1 (t 1) n dt n πi (t x) n+1 C P m n (x) = (1 x m/ (n + m)! (t 1) n ) dt n πi n! C (t x) n+m+1 C x (1 x ) x C x 1 1 C C t x = 1 x e iφ φ < π P n m (x) = (n + m)! π n! π (x + 1 x i sin φ) n e imφ dφ 66

71 φ, π π/, 5π/ P n m (x) = (n + m)! e mπi/ π n! π (x + 1 x i cos φ) n e imφ dφ (.58) (Laplace) 1 x 1 x = cos θ x θ 1 1 P n m (cos θ) = (n + m)! e mπi/ π n! π (cos θ + i sin θ cos φ) n e imφ dφ (.59) (.58) t = e iφ D π (cos θ + i sin θ cos φ) n e imφ dφ = 1 [cos θ + i ( i D sin θ t + 1 )] nt m 1 dt t = 1 e nφ(t) dt i D n φ(t) = log [{cos θ + i ( sin θ t + 1 )} nt (m+1)] t n dφ dt = i sin θ (1 1 t ) cos θ + i sin θ (1 + 1 m + 1 t ) n m n t = ±1 (1.59) 1 [ π ] 1/ 1 [ π ] 1/ i enφ(1) + nφ (1) i enφ( 1) nφ ( 1) = 1 [ π(cos θ + i sin θ) ] 1/ i (cos θ + i sin θ)n ni sin θ + 1 [ π(cos θ i sin θ) ] 1/e i (cos θ i sin θ)n πi(m+1) ni sin θ ( π ) 1/ [ = cos (n + 1 mπ )θ n sin θ π ] e mπi/ 4 m n (m + n)! n! n m ( P m n (cos θ) n m ) 1/ [ cos (n + 1 mπ )θ nπ sin θ π ], n (.6) 4 1 t.11 ν P ν (cos θ) = (.3) P 1/+iσ (cos θ) = 1 + 1/4 + σ (1!) sin θ + (1/4 + σ )(9/4 + σ 4 ) (!) sin 4 θ + (.61) 67

72 P 1/+iσ (cos θ) (σ : ) σ = ix (x : ) P 1/ x (cos θ) = 1 + 1/4 x (1!) sin θ + (1/4 x )(9/4 x 4 ) (!) sin 4 θ + x 1/4 P 1/ x (cos θ) P s (cos θ) = 1 s. θ π θ ν P ν (cos θ) = (.14) d { ( (1 ζ dp ν ) P dζ ν dζ P dp )} { } ν ν = ν (ν + 1) ν(ν + 1) P dζ ν P ν, ζ = cos θ ζ = 1 1 (ν ν)(ν + ν + 1) P ν (ζ)p ν (ζ) dζ cos θ { } = sin θ P ν (cos θ)p ν (cos θ) P ν (cos θ)p ν (cos θ) (.6) P ν (cos θ) = ν (.3) P ν (cos θ) = P ν (cos θ) ν ν P ν (cos θ) = (.6) ν + ν + 1 = 1 cos θ P ν (ζ)p ν (ζ) dζ = ν ν P ν (ζ)p ν (ζ) 1 cos θ P ν (ζ)p ν (ζ) dζ > ν + ν + 1 = ν ν Re(ν) = 1/ (.61) σ P 1/+iσ (cos θ) ν P ν (cos θ) = ν P ν m (cos θ) = m : (.6) n( ) P ν m (cos θ) Γ(ν + m + 1) Γ(ν + 1) ( νπ sin θ ) 1/ [ (ν 1) mπ cos + θ π 4 ] 68

73 arg(ν) π ɛ, ɛ > (.63) ν (, ) P m ν (cos θ) = 69

74 3 3.1 L p (Ω) p 1 p < R n Ω u ( 1/p u L p u(x) dx) p < (3.1) Ω L p (Ω) u = v (a.e.) u v L p (Ω) 3.1 ( (H ölder) ) 1 < p < q 1 = 1 p 1 u(x)v(x) dx u L p v L q u L p (Ω), v L q (Ω) (3.) Ω u L p = u L q = u L p u L q a, b = ab p 1 a p + q 1 b q (3.3) a = u(x) / u L p, b = v(x) / v L q u(x) v(x) u L p u L q 1 p u(x) p u p L p + 1 q v(x) q v q L q 7

75 Ω u(x) v(x) u L p u L q dx 1 p 1 u p L p Ω u(x) p dx + 1 q 1 u q L q Ω v(x) q dx = 1 3. ( (Minkowski) ) 1 p < ( u(x) + v(x) p ) 1/p ( dx Ω u, v L p (Ω) u + v L p (Ω) u(x) p dx Ω ) 1/p + ( v(x) p 1/p dx) (3.4) Ω p = 1 p > 1 (a + b) p p 1 (a p + b p ) (a, b ) u(x) + v(x) p ( ) p ) u(x) + v(x) p 1( u(x) p + v(x) p u + v L p (Ω) u(x) + v(x) p dx u(x) + v(x) p 1 u(x) dx + Ω Ω u(x) + v(x) p 1 v(x) dx p 1 + q 1 = 1 q = p/(p 1) u + v p 1 L q (Ω) u(x) + v(x) p 1 ( u(x) dx u(x) + v(x) (p 1)q ) 1/q ( dx u(x) p ) 1/p dx Ω Ω Ω u(x) + v(x) p 1 ( v(x) dx u(x) + v(x) (p 1)q ) 1/q ( dx v(x) p ) 1/p dx Ω Ω Ω u(x) + v(x) p ( dx u(x) + v(x) p dx Ω Ω [( u(x) p ) 1/p ( dx + Ω Ω ) 1/q v(x) p dx Ω ) 1/p ] 71

76 u(x) + v(x) p ( dx u(x) + v(x) p 1/q dx) Ω Ω u(x) + v(x) p dx = Ω 3.1 L p (Ω) u L p L p (Ω) L p (Ω) 3. ( ) p ) u(x) + v(x) p u(x) + v(x) p 1( u(x) p + v(x) p u + v L p (Ω) u L p {u n } {n nk } u nk+1 u nk L p< 1 k (k = 1,,... ) n, m > n 1 u n u m L p< 1 n 1 n, m > n u n u m L p< 1 n (> n 1 ) n 1, n,... {u nk } v k = u nk 1 v k+1 v k L p< = 1 (3.5) k k=1 k=1 g n g 1 (x) = v 1 (x) x Ω n 1 g n (x) = v 1 (x) + v k+1 (x) v k (x) n, x Ω k=1 g L p (Ω) (3.6) 7

77 g n (x) p, g n (x) p g n+1 (x) p, g n (x) v n (x) {g n (x) p } Ω ( n 1 ) p ( g n (x) p dx = g n p L p v 1 L p + v k+1 v k L p k=1 ) p v 1 L p +1 g n (x) Ω g(x) = lim n g n (x) a.e. x Ω Ω ( g(x) p dx g L p (Ω) ) p v 1 L p +1 {v k } k < m v m (x) v k (x) m 1 v j+1 (x) v j (x) = g m (x) g k (x) (3.7) j=k {g m (x)} x Ω lim v m (x) v k (x) = m,k lim n v n(x) = u (x) u a.e. x Ω u L p (Ω) (3.7) k = 1 g 1 (x) m v m (x) v 1 (x) + g m (x) u (x) v 1 (x) + g(x) v 1, g L p (Ω) u L p (Ω) v k (x) u (x) p ( v k (x) + u (x) ) p 73

78 ( ) p g k (x) + u (x) ( ) p } g(x) + u (x) p 1{(g k (x)) p + u (x) p vk (x) u (x) p Ω k p 1 { (g k (x)) p + u (x) p } v k (x) u (x) p (k ) v k u L p (k ) {u n } ɛ > N n, n k > N = u n u nk = u n v k < ɛ k u n u < ɛ u n u L p (n ) 3. C X x, y (x, y) 1) 3) (x, y) 1) (x, x) (x, x) = x = ) (x, y) = (y, x) 3) (x 1 + x, y) = (x 1, y) + (x, y) (α x, y) = α (x, y) α C X X (x, y 1 + y ) = (x, y 1 ) + (x, y ) 74

79 (x, α y) = α (x, y) α j, β j C x j, y j X (j = 1,,..., n) ( n n ) α j x j, β k y k = j=1 k=1 n n α j β k (x j, y k ) j=1 k=1 3. X x x = (x, x) 1/ X 1) x ) x = x = 3) αx = α x (α C) 4) x + y x + y 1) 3) 4) (x, y) x y (x, y) = (x, y) α = (x, y) / y (x + α y, x + α y) = x +α (y, x) + α (x, y) + α y = x (x, y) / y (x, y) x y x + y = (x + y, x + y) = x +(x, y) + (y, x)+ y x + x y + y = ( x + y ) 75

80 4) (x n, y n ) (x, y) = (x n x, y n y) + (x n x, y) + (x, y n y) (x n x, y n y) x n x y n y x n x, y n y x n x, y n y (x n x, y n y) (x n x, y), (x, y n y) (x n, y n ) (x, X X Ω R n u, v L (Ω) (u, v) = u(t) v(t) dt (3.8) L (Ω) Ω 3.3 X A, B x A, y B (x, y) = A B X L L L L = {x X; x L} L X α, β C, x, y L (αx + βy, L) = α (x, L) + β (y, L) = αx + βy L 76

81 L X u n L, u n = u X (u, L) = lim n (u n, L) = u L L 3.3 ( ) X L X x X x = y + z y L z L y x L P L x = y x = y + z = y + z y, y L z, z L y y = z z L L = {} y = y, z = z x X X L δ δ = inf ξ L x ξ ξ n L, x ξ n δ {ξ n } {ξ n } L (x ξ n )+(x ξ m ) + (x ξ n ) (x ξ m ) = x ξ n + x ξ m 1 (ξ n + ξ m ) L δ x ξ n + ξ m ξ n ξ m = (x ξ n ) (x ξ m ) = x ξ n + x ξ m (x ξ n ) + (x ξ m ) = x ξ n + x ξ m 4 x ξ n + ξ m 77

82 x ξ n + x ξ m 4δ m, n x ξ n δ, x ξ m δ ξ n ξ m {ξ n } {ξ n } y X L y L δ = x y z = x y z L ξ L ϕ(t) = z γ t ξ γ = (z, ξ), t R y + γ t ξ L δ = ϕ() ϕ(t) ϕ(t) = z γ t (ξ, z) γ t (z, ξ)+ γ t ξ = z γ t + γ t ξ γ t ϕ(t) < ϕ() = δ γ = z L X L X = L L X {x k } X (x j, x k ) = δ jk (j, k = 1,,..., n) {x k } ( n n ) n α j x j, β k x k = α k β k j=1 k=1 1) L ( (, 1) ) { sin πjt} j=1 ) L ( (, 1) ) {e πkti } k= (i = 1) k=1 3.4 ( ) {x k } X x X (x, x k ) x k 78

83 α k = (x, x k ) n x α k x k k=1 = x = x n α k (x, x k ) k=1 n α k k=1 n α k (x k, x) + k=1 n α j α k (x j, x k ) n α k x n k=1 j,k=1 {x k } X {x k } L { n } L = α k x k : α k C, n k=1 L = L L X X L X = L L x X x = y + z (y L, z L ) y = P L x 3.5 {x k } L L y = α k x k (α k C) k=1 n L α j x j, j=1 n α j x j j=1 m α j x j, j=1 m ( m α j x j = j=1 (m > n) j=n+1 α j x j, m k=n+1 α k x k ) = m j=n+1 α j 79

84 m n n, m α j α j x j L L j=n+1 y = α j x j L j=1 j=1 3.6 {x k } L x, x X P L x = k (P L x, P L x ) = k (x, x k )x k (3.9) (x, x k )(x, x k ) (3.1) α j = (x, x j ) y = α j x j L j=1 (x y, x k ) = (x, x k ) ( α j x j, x k ) = (x, x k ) j=1 α j (x j, x k ) = n x y x k {x k } γ k x k (γ k C) (x y, ξ) = ξ L z x y L P L x = y = α j x j = (x, x j )x j j=1 j=1 P L x = n (x, x k )x k, k k k=1 k x, x X α j = (x, x j ), α j = (x, x j ) ( n n ) α j x j, α jx n ( n ) 1/ ( n ) 1/ j α j α j α j α j x x j=1 j=1 j=1 n α j α j j=1 ( n (P L x, P L x ) = lim α j x j, n j=1 j=1 n ) α jx j = j=1 j=1 j=1 k=1 α j α j = (x, x j ) (x, x j ) j=1 j=1 8

85 (P L x, P L x ) = (x, x k ) (x, x k ) k {x k } {x k } L (1) (5) (1) L = X () x X x = (x, x k ) x k k (3) x X x = k (x, x k ) ( ) (4) x, x X (x, x ) = k (x, x k ) (x, x k ) (5) x X (x, x k ) = x = (1) () L = X x = P L x = k (x, x k )x k () (4) () (x, x ) = (P L x, P L x ) = k (x, x k ) (x, x k ) (4) (3) x = (x, x) = (P L x, P L x) = k (x, x k ) (x, x k ) = k (x, x k ) (3) (5) (5) (1) x L (x, x k ) = (k = 1,... ) x = L = {} X = L X {x k } (1) (5) {x k } X 3.8 L ( ( π, π) ) { 1 π, 1 π sin nt, 1 π cos nt } n=1 ϕ (t) = 1 π, ϕ k (t) = 1 π cos nt, ϕ k 1 (t) = 1 π sin nt 81

86 ϕ k (t) (k =, 1,,... ) x L ( π, π) π π x(t) ϕ k (t) dt = (k =, 1,... ) = x(t) x(t) x(t) x(t) x(t) x(t) x(t) [ π, π] x(t) t t x(t ) x(t ) > x(t) ε >, δ > I = [t δ, t + δ] x(t) ε (t I) h(t) = 1 + cos(t t ) cos δ h(t) 1 (t I), h(t) < 1 (t [ π, π] \ I) h n (t) ϕ j π π x(t) h n (t) dt = (n = 1,,... ) (3.11) [ π, π] I [ π, π] \ I I h(t) < 1 (t I ) x(t) h n (t) dt x(t) dt (3.1) I I I = [t δ, t + δ ] ( < δ < δ) h(t) 1 + η (t I ) η > x(t) h n (t) ε (1 + η) n (t I ) x(t) h n (t) dt I x(t) h n (t) dt δ ε (1 + η) n I n (1 + η) n (3.11) x(t) h n (t) dt = I x(t) h n (t) dt I (3.1) x(t) h n (t) dt x(t) I x(t) y(t) = t π x(s) ds 8

87 y(t) [ π, π] x ϕ y(π) = y( π) = π y(t) cos kt dt = 1 [ ] π y(t) sin kt 1 π x(t) sin kt dt = π k π k π π π y(t) sin kt dt = cos kt, sin kt z(t) = y(t) π π y(s)ds {ϕ k } z(t) z(t) z (t) = y (t) = x(t) x(t) (a.e.) L ( ( π, π) ) x(t) x(t) = 1 ( ) α + α n cos nt + β n sin nt n=1 (3.13) α k, β k π π α k = 1 x(t) cos kt dt, β k = 1 π π π π x(t) sin kt dt α k, β k 3.5 X {y i } {x k } { a) xn y 1,..., y n (3.14) b) y n x 1,..., x n n x 1 = y 1 y 1 x = y (y, x 1 )x 1 y (y, x 1 )x 1 83

88 n 1 y n (y n, x j )x j j=1 x n = n 1 y n (y n, x j )x j j=1 {y j } y 1 x 1 x 1 y 1 y y 1 x 1 y (y, x 1 )x 1 x y 1, y x 1, x,..., x n 1 y 1, y,..., y n 1 n 1 y n (y n, x j )x j j=1 x n x n x 1, x,..., x n 1, y n x n y 1, y,..., y n b) {x k } {x k } 1 e iθ k 3.9 X X X {z j } z 1 = z 1 z z 1 z n z 1, z,..., z n 1 {z j } {y j } {y j } a), b) {x k } x X (x, x k ) = (k = 1,,... ) y k x 1, x,... x k (x, y k ) = (k = 1,,... ) z k y 1, y,... y k (x, z k ) = (k = 1,,... ) 84

89 {z k } X z kn x (n ) {z kn } (x, x) = lim n (x, z kn ) = x = {x k } 1 t 1 1, t, t,..., t n,... L ( 1, 1) y n (t) = t n 1 y 1 = x 1 (t) = 1 (y, x 1 ) =, y = 3 x (t) = y (y, x 1 )x 1 3 y (y, x 1 )x 1 = t {x k } P n (t) = 1 n n! d n dt n (t 1) n P n (t) n 1 1 P n (t)p m (t) dt = n + 1 δ nm {P n } x n+1 (t) = ( n + 1 ) 1/Pn (t) (3.15) {x n } (3.14) (3.14) (3.15) {x n } 3.6 J ν (αx), J ν (βx) d [ x dj ν(αx) dx dx J ν (βx) x dj ν(βx) dx ] J ν (αx) = (β α ) x J ν (αx)j ν (βx) (3.16) 85

90 ν > J ν (αx)j ν (βx) x dx = 1 { } α J β α ν (α)j ν (β) β J ν (α)j ν (β) (3.17) α = β β = α + ɛ ɛ 1 [J ν (αx)] x dx = 1 = 1 { [J ν (α)] J ν (α)j ν (α) 1 } α J ν(α)j ν (α) { ) } [J ν (α)] + (1 ν [J α ν (α)] J ν (x) = (> ) α, β 1 J ν (αx)j ν (βx) x dx = 1 α β [J ν (αx)] x dx = 1 [J ν (α)] = 1 [J ν+1(α)] (3.18) J ν (x) = j 1, j,... J ν (j m ) = < j 1 < j < j 3 < {j m } x J ν+1 (j m ) J ν(j m x) (m = 1,,... ) L ( (, 1) ). G.N.Watson [18] x =, T n (t, x) = n m=1 J ν (j m x)j ν (j m t) J ν+1 (j m ) ( < x < 1, ν + 1/ ) (3.19) x lim n t ν+1 T n (t, x) dt = 1 xν, 1 lim t ν+1 T n (t, x) dt = 1 n xν (3.) x. 86

91 G.N.Watson [18] [18.1],[18.] 3. (, 1) xf(x) (a, b) (a, b) [, 1] x / [a, b], < x < 1 n b a tf(t)t n (t, x) dt = o(1) (3.1) T n (t, x) 3.1 G.N.Watson [18] The analogue of Riemamm-Lebesgue Lemma 3.3 n U t t ν+1 T n (t, x) dt < U < x 1, < t 1 (3.) T n (t, x) 3.1 G.N.Watson [18] [18.] 3.1 (, 1) xf(x) f(x) (a, b) < a < b < 1 (a, b) x 1 { } f(x + ) + f(x ) = a m = J ν+1(j m ) m=1 1 a m J ν (j m x) t f(t) J ν (j m t) dt (ν + 1/ ) (3.3) 3.1 n a m J ν (j m x) = m=1 1 1 { } f(x + ) + f(x ) t f(t) T n (t, x) dt (3.4) 87

92 = lim n x ν f(x ) x t ν+1 T n (t, x) dt + lim n x ν f(x + ). x } S n (x) t {t ν+1 ν f(t) x ν f(x ) T n (t, x) dt + 1 x 1 x t ν+1 T n (t, x) dt (3.5) } t {t ν+1 ν f(t) x ν f(x + ) T n (t, x) dt (3.6) (3.3) n S n (x). 1 x } t {t ν+1 ν f(t) x ν f(x + ) T n (t, x) dt. t ν f(t) x ν f(x + ) (x, b) (x, b) t χ 1 (x + ) = χ (x + ) = χ 1 (t), χ (t) t ν f(t) x ν f(x + ) χ 1 (t) χ (t). Modern Analysis [3.64] ε > < δ < b x δ x t x + δ χ 1 (t) < ε, χ (t) < ε. 1 } t {t ν+1 ν f(t) x ν f(x + ) T n (t, x) dt x = + 1 x+δ x+δ x } t {t ν+1 ν f(t) x ν f(x + ) T n (t, x) dt t ν+1 χ 1 (t) T n (t, x) dt x+δ x t ν+1 χ (t) T n (t, x) dt. 3. n 1 } t {t ν+1 ν f(t) x ν f(x + ) T n (t, x) dt < ε (3.7) x+δ. x+δ x t ν+1 χ 1 (t) T n (t, x) dt = χ 1 (x + δ) x+δ x+ξ t ν+1 T n (t, x) dt ξ (, δ). 3.3 n U χ 1 (x + δ) x+δ x+ξ t ν+1 T n (t, x) dt < ε U 88

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

J. Bernoulli 694 Riccti dy dx + ψy + φy + χ = (ψ, φ, χ x ) Leibniz Riccti 73 Leibniz Bessel ( )Bessel. 738 J. Bernoulli. 764 Novi Comm. Acd. Petrop. L

J. Bernoulli 694 Riccti dy dx + ψy + φy + χ = (ψ, φ, χ x ) Leibniz Riccti 73 Leibniz Bessel ( )Bessel. 738 J. Bernoulli. 764 Novi Comm. Acd. Petrop. L Bessel ) Lommel Bessel ( + ) Γ. Γ................................. 3. Γ............................... 6.3 ( )............................... 3 Bessel I: 4 3. Bessel J n (z) (n Z)......................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 ( 3 3. D f(z) D D D D D D D D f(z) D f (z) f (z) f(z) D (i) (ii) (iii) f(z) = ( ) n z n = z + z 2 z 3 + n= z < z < z > f (z) = e t(+z) dt Re z> Re z> [ ] f (z) = e t(+z) = (Rez> ) +z +z t= z < f(z) Taylor

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

prime number theorem

prime number theorem For Tutor MeBio ζ Eite by kamei MeBio 7.8.3 : Bernoulli Bernoulli 4 Bernoulli....................................................................................... 4 Bernoulli............................................................................

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + 1.3 1.4. (pp.14-27) 1 1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + i2xy x = 1 y (1 + iy) 2 = 1

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

2 2 L 5 2. L L L L k.....

2 2 L 5 2. L L L L k..... L 528 206 2 9 2 2 L 5 2. L........................... 5 2.2 L................................... 7 2............................... 9. L..................2 L k........................ 2 4 I 5 4. I...................................

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

RIMS98R2.dvi

RIMS98R2.dvi RIMS Kokyuroku, vol.084, (999), 45 59. Euler Fourier Euler Fourier S = ( ) n f(n) = e in f(n) (.) I = 0 e ix f(x) dx (.2) Euler Fourier Fourier Euler Euler Fourier Euler Euler Fourier Fourier [5], [6]

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

30 I .............................................2........................................3................................................4.......................................... 2.5..........................................

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R = 1 1 1.1 1827 *1 195 *2 x 2 t x 2 = 2Dt D RT D = RT N A 1 6πaη (1.1) D N A a η 198 *3 ( a =.212µ) *1 Robert Brown (1773-1858. *2 Albert Einstein (1879-1955 *3 Jean Baptiste Perrin (187-1942 2 1 x 2 x 2

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de Riemann Riemann 07 7 3 8 4 ). π) : #{p : p } log ) Hadamard de la Vallée Poussin 896 )., f) g) ) lim f) g).. π) Chebychev. 4 3 Riemann. 6 4 Chebychev Riemann. 9 5 Riemann Res). A :. 5 B : Poisson Riemann-Lebesgue

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y 5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t) Radiation from moving harges# Liénard-Wiehert potential Yuji Chinone Maxwell Maxwell MKS E x, t + B x, t = B x, t = B x, t E x, t = µ j x, t 3 E x, t = ε ρ x, t 4 ε µ ε µ = E B ρ j A x, t φ x, t A x, t

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

, ( ) 2 (312), 3 (402) Cardano

, ( ) 2 (312), 3 (402) Cardano 214 9 21, 215 4 21 ( ) 2 (312), 3 (42) 5.1.......... 5.2......................................... 6.2.1 Cardano................................... 6.2.2 Bombelli................................... 6.2.3

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k f(x) f(z) z = x + i f(z). x f(x) + R f(x)dx = lim f(x)dx. R + f(x)dx = = lim R f(x)dx + f(x)dx f(x)dx + lim R R f(x)dx Im z R Re z.: +R. R f(z) = R f(x)dx + f(z) 3 4 R f(x)dx = f(z) f(z) R f(z) = lim R

More information

untitled

untitled 1 kaiseki1.lec(tex) 19951228 19960131;0204 14;16 26;0329; 0410;0506;22;0603-05;08;20;0707;09;11-22;24-28;30;0807;12-24;27;28; 19970104(σ,F = µ);0212( ); 0429(σ- A n ); 1221( ); 20000529;30(L p ); 20050323(

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

KENZOU

KENZOU KENZOU 2008 8 2 3 2 3 2 2 4 2 4............................................... 2 4.2............................... 3 4.2........................................... 4 4.3..............................

More information

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m 2009 10 6 23 7.5 7.5.1 7.2.5 φ s i m j1 x j ξ j s i (1)? φ i φ s i f j x j x ji ξ j s i (1) φ 1 φ 2. φ n m j1 f jx j1 m j1 f jx j2. m j1 f jx jn x 11 x 21 x m1 x 12 x 22 x m2...... m j1 x j1f j m j1 x

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

09 8 9 3 Chebyshev 5................................. 5........................................ 5.3............................. 6.4....................................... 8.4...................................

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia B2 ( 19) Lebesgue ( ) ( 19 7 12 ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purposes. i Riemann f n : [0, 1] R 1, x = k (1 m

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1. Section Title Pages Id 1 3 7239 2 4 7239 3 10 7239 4 8 7244 5 13 7276 6 14 7338 7 8 7338 8 7 7445 9 11 7580 10 10 7590 11 8 7580 12 6 7395 13 z 11 7746 14 13 7753 15 7 7859 16 8 7942 17 8 Id URL http://km.int.oyo.co.jp/showdocumentdetailspage.jsp?documentid=

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,, 6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,

More information

Email: kawahiraamath.titech.ac.jp (A=@) 27 2 25 . 2. 3. 4. 5. 3 4 5 ii 5 50 () : (2) R: (3) Q: (4) Z: (5) N: (6) : () α: (2) β: (3) γ, Γ: (4) δ, : (5) ϵ: (6) ζ: (7) η: (8) θ, Θ: (9) ι: (0) κ: () λ, Λ:

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information