128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

Size: px
Start display at page:

Download "128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds"

Transcription

1 127 3 II Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ

2 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds S 1 +S 2 = { B( r) n( r)}ds { B( r) n( r)}ds S 1 S 2 = Φ 1 Φ 2 Φ 1 = Φ 2 (3.5) S 3.1.2

3 (0, 0, B) AB l v x y B A B E y - Q Q C f = -e v B B B v l D x A 3.1 E ( e) = V A V B l ( e) = vb ( e) AB E

4 130 3 II AB = vbl vbl vl = ds/dt S ϕ em = E( r, t) d s (3.6) C C 3.1 E( r, t) d s = B( r, t) ds t (3.7) C E( r, t) ds = B( r, t t) ds (3.8) S S S E( r, t) = B( r, t t) (3.9) S

5 ,2 1 I 1 2 Φ 2 Φ 2 I 1 M Φ 2 = MI 1 I M 3.2 I 1 Φ 2 2 V 2 V 2 = dφ 2 dt = M di 1 dt M

6 132 3 II V I V = L di dt L H(= V s A ) L I 3.3 n l S I B = µ 0 ni

7 BS nl Φ = nlbs = µ 0 n 2 lsi L = µ 0 n 2 ls (3.10) L di R dt V V L di(t) dt = RI(t) I(t) = V R (1 e t/τ ) τ = L/R cm T 15 ===== ===== Φ = 2000 π sin( 2π t) T

8 134 3 II L R I V/R V S 0 t 3.4 dφ dt [V] = 2000 π π T = cos(30 π t) 2π cos( t) / I z z-x 1 S) v x-y ===== ===== z-x

9 Φ(t) = µ 0I 2 π r(t) S ϕ em ϕ em = dφ dt = dφ dr dr dt = µ 0IS dr 2 π r 2 dt = µ 0IS 2 π r 2 v x-y Fig. 3.1 R AB ===== ===== 1. ϕ em = dφ dt = Blv I = ϕ em R = Blv R

10 136 3 II I 2 R = ( ) 2 Blv R = B2 l 2 v 2 R R 2. f = IBl = Blv R Bl = B2 l 2 v R fv = B2 l 2 v 2 R cm 20 cm 2000 ===== ===== [H] L = µ 0 n 2 ls = µ l 2 l π r = 4π π = a 1, a 2 (a 2 > a 1 ) 2 R I

11 l l (a 2 a 1 ) ===== ===== 1. r a 1 < r < a 2 2 π r B(r) = µ 0 I B(r) = µ 0I 2 π r r > a 2 B(r) = 0 2. a2 Φ = l a 1 = µ 0Il 2 π B(r)dr a2 a 1 1 r dr = µ 0Il 2 π log(a 2/a 1 ) L = µ 0l 2 π log(a 2/a 1 )

12 138 3 II n 1, n 2 l 1, l 2 S 1, S S 1 > S ===== ===== 1 B = µ 0 n 1 I 1 2 Φ 2 = n 2 l 2 BS 2 = µ 0 n 1 n 2 l 2 S 2 I 1 M = µ 0 n 1 n 2 l 2 S L 1 2 M 1 ϕ 1 (t) 2 ϕ 2 (t) ===== ===== 1 I 1 ϕ 1 (t) L di 1 dt = 0 ϕ 2 (t) = M di 1 dt ϕ 1 (t) ϕ 1 (t)/ϕ 2 (t) = L/M

13 a 1, a 2 a 1 a 2 1. a I B( r) µ0 I t( r ) ( r r ) = 4π r r 3 ds r = (a cos θ, a sin θ, 0) t( r ) = ( sin θ, cos θ, 0) r = (0, 0, 0) ds = adθ θ 0 2π 2. 1 I a I xy x 1 r = (x, 0, 0) x a (1 + x) n nx, 1 + x 1 x x I 2 1 ===== ===== 1. = B( 0) µ0 I t( r ) ( r r ) 4π r r 3 ds

14 140 3 II = µ0 ( sin θ, cos θ, 0) ( a cos θ, a sin θ, 0) ( 4π ( a ) 3 Iadθ cos θ)2 + (a sin θ) 2 z z B z ( r) 0 2π µ0 a B z ( 0) = 4π a 3 Iadθ = µ 0 I dθ 4π a = µ 0 I 4π a 2π = µ 0 2a I 2. 1 B = µ 0 2a 1 I 1 2 ϕ 2 = BS = µ 0 2a 1 I 1 πa 2 2 M = πµ 0a 2 2 2a 1 3. (x, 0, 0) x a B( r)

15 = = µ0 I t( r ) ( r r ) 4π r r 3 ds µ0 ( sin θ, cos θ, 0) (x a cos θ, a sin θ, 0) ( 4π (x ) 3 Iadθ a cos θ)2 + (a sin θ) 2 z z B z ( r) 0 2π = B z ( r) µ0 a x cos θ ( 4π (x ) 3 Iadθ a cos θ)2 + (a sin θ) 2 1 since 1 + nx when x 1 (1 x) n ( ) µ0 (a x cos θ) ax cos θ 2 x = 2 +a 2 4π ( x2 + a 2) 3 Iadθ = µ0 4π since a x cos θ + 3 a2 x cos θ x 2 +a 3 ax2 cos 2 θ 2 x 2 +a ( 2 x2 + a 2) 3 Iadθ cos 2n+1 θdθ = 0 4. = µ0 4π a 3 ax2 cos 2 θ x 2 +a 2 ( x2 + a 2) 3 Iadθ since x a µ0 Ia a 3 2 = a 4π x 3 dθ = µ 0 πa 2 I 4π x 3 = µ 0 a 2 I 4 x 3 Φ 1 = a1 0 B z ( r) 2πrdr

16 142 3 II = a 1 B z ( r) 2πrdr B( r) d s semi sphere r B( r) B(r 0 ) r3 0 r 3 ds = 4πr2 semi sphere 2 Φ 1 = = a 1 a 1 = πµ 0a 2 2I 2 2 = πµ 0a 2 2 2a 1 I 2 B z ( r) 2πrdr ( µ 0 4 a 1 a 2 ) 2I r 3 2πrdr dr r 2 M = πµ 0a 2 2 2a I 1 B( r) = A( r) A( r) = µ 0I 1 d s 1 ( r 1 ) 4π C 1 r r 1 2 Φ 2 = B( r) ds S 2

17 = { A( r)} ds S 2 = A( r2 ) d s 2 C 2 A( r) µ 0 I 1 d s 1 d s 2 Φ 2 = C 2 4π C 1 r 2 r 1 (3.11) 1 L 21 = µ 0 d s 1 d s 2 (3.12) 4π C 1 r 2 r 1 C 2 2 L 12 C 1, C 2 d s 1, d s 2 r 1, r u e = 1 2 ε 0E 2 (3.13) u m = 1 2µ 0 B 2 (3.14) = µ 0 2 H2

18 144 3 II 3.14 I(t) t = 0 I(0) = 0 t = t 1 I(t 1 ) = I ϕ(t) ϕ(t) = L di(t) dt I(t) t W = ϕ(t)i(t) t t = 0 t 1 W = = L t1 0 t1 0 = 1 2 LI2 ϕ(t)i(t) dt di(t) I(t) dt dt 3.10 L W = 1 2 µ 0n 2 lsi 2 = 1 2 µ 0n 2 V I 2 = 1 2µ 0 B 2 V V = ls B = µ 0 ni 3.14

19 V (t) = V 0 cos ωt ω f = ω/2π R L C I(t) V (t) = V 0 cos ωt = RI(t) I(t) = V 0 cos ωt R V (t) L di dt = V 0 cos ωt L di dt = 0 I(t) = V 0 cos ωtdt = V 0 cos(ωt π/2) L ωl V (t) Q/C = 0 I(t) = dq dt

20 146 3 II = C dv dt = C dv 0 cos ωt dt = V 0 ωc cos(ωt + π/2) I R II L III q - q C 3.5

21 R V (t) = V 0 cos ωt V 2 (t)/r < V 2 (t) R > = 1 T = V 0 2 R = 1 2 T 0 1 T V 2 0 R V 2 0 R cos2 ωtdt T cos 2ωt dt 2 T V e = V 0 2 V 2 e R I e = I 0 2 π/2 π/2 ϕ cos ϕ I e V e cos ϕ C Q 0 S I(t) I(t) = dq(t) dt Q(t)

22 148 3 II S Q L - Q C R 3.6 R = 0 Q(t) 0 = L di(t) dt = L d2 Q(t) dt 2 + RI(t) + Q(t) C + R dq(t) dt d 2 Q(t) dt 2 = 1 LC Q(t) + Q(t) C Q(t) = Q 0 cos(ω 0 t + δ) 1 ω 0 = LC Q(t) = Ae αt cos(ω t + δ) α = R 2L 1 ω = LC R2 4L 2

23 H 1 A 0.1 µf? ===== ===== 1 2 LI2 = CV 2 = V 2 V = 10 7 = [V] L I R t = 0 I 0 R ===== ===== L di dt + RI = 0 di dt = R L I I(t) = I 0 e t/t

24 150 3 II T = L/R Q = = 0 0 RI 2 dt RI 2 0 e 2t/T dt = RI0 2 e 2t/T dt 0 [ = RI0 2 T ] 2 e 2t/T 0 = 1 2 RT I2 0 = 1 2 LI L 1 2 LI2 ===== ===== U = l 2µ 0 a2 a 1 = 1 µ 2 0I 2 l 2µ 0 2π B 2 (r)2πrdr a2 a 1 1 r dr = 1 µ 0 I 2 l 2 2π log(a 2/a 1 ) L = µ 0l 2π log(a 2/a 1 ) U = 1 2 LI2

25 L 1, L 2 M I 1 U 1? I 1,2? 3. ϕ I 2 U I 2 ϕ 1 1 I 1 U 3 5. U 1, U 2, U 3 ===== ===== U = 1 2 L 1I 2 1 Φ 1 = L 1 I 1 + MI Φ 2 = L 2 I + MI 1 ϕ 2 = L 2 di dt T U 2 = ϕ 2 Idt 0

26 152 3 II T = = 0 I2 0 = 1 2 L 2I 2 2 L 2 di dt Idt L 2 IdI 4. T U 3 = = 0 T 0 ϕ 1 I 1 dt I2 = MI 1 di = MI 1 I 2 M di dt I 1dt 0 5. U 1 + U 2 + U 3 = 1 2 L 1I L 2I2 2 + MI 1 I 2 = 1 ( ) ( ) 2 (I L1 M I1 1, I 2 ) M L 2 I ? 2.? ===== ===== 1. Q(t) = Q 0 cos(ω 0 t + δ)

27 S Q L - Q C R 3.7 I(t) = dq dt = ω 0 Q 0 sin(ω 0 t + δ) = I 0 sin(ω 0 t + δ) ω 0 t + δ = nπ 1 Q C 2. ω 0 t + δ = π/2 + nπ 1 2 LI2 0 = 1 2 L(ω 0Q 0 ) 2 = 1 2 Lω2 0Q 2 0 = 1 2 L 1 = 1 Q C LC Q2 0

28 154 3 II C R S Q R C ===== ===== 1. Q C + RI = 0 Q C + R dq dt = 0 Q(t) = Q 0 e t/t 2. T = CR Q/C Q 0 T e t/t 0 RI 2 dt = R = R ( Q0 T ( Q0 T ) 2 e 2t/T dt 0 ) 2 [ T 2 e 2t/T ] 0 = 1 2 R Q2 0 T = 1 Q C

29 ϕ(t) = ϕ 0 cos(ωt + α) (3.15) { I(t) = I0 cos(ωt + β) (3.16a) Q(t) = Q 0 cos(ωt + γ) (3.16b) ϕ(t) = ϕ 0 e i(ωt+α) = ϕ 0 e iωt ϕ 0 = ϕ 0 e iα Ĩ(t) = I 0 e (ωt+β) iωt = Ĩ0e (3.17c) Ĩ 0 = I 0 e iβ Q(t) = Q 0 e (ωt+γ) = Q 0 e iωt Q 0 = Q 0 e iγ (3.17a) (3.17b) (3.17d) (3.17e) (3.17f) L dĩ(t) dt + RĨ(t) + Q C = ϕ(t)

30 156 3 II {L di(t) dt + RI(t) + Q C } + i{ldi (t) dt + RI (t) + Q C } = ϕ(t) + iϕ (t) L, R, C { } L di(t) dt + RI(t) + Q C = ϕ(t) (3.18) 3.6 d Q(t) dt = iω Q 0 e iωt = Ĩ0e iωt iω Q = Ĩ dĩ(t) = iωĩ0e iωt dt iωlĩ + RĨ + Ĩ iωc = ϕ e iωt Ĩ = ϕ Z Z = R + i ( ωl 1 ) ωc (3.19) (3.20)

31 R ω ωl 1 ωc = 0 Z 3.20 ω 0 ω 0 = 1 LC (3.21) Z D D t S d Q I = dq dt x D = Q D I = S S t I/S = D t

32 158 3 II I x q -q 3.8 B( r) d s = µ 0 i( r) ds (3.22) C B( r, t) d s = µ 0 C S S E( r, t) { i( r, t) + ε 0 } ds t (3.23) B( r, E( r, t) t) = µ 0 { i( r, t) + ε 0 } (3.24) t

33 E( r, t) = E 0 sin ωt σ i( r, t) = σ E 0 sin ωt i d ( r, t) = ε 0 E t = ε 0ω E 0 cos ωt ω σ ε s E 0 f = ω/2π 1. E 0 = 1 µv m 1 f = 10 6 s 1 2. E 0 = V m 1 f = s 1 ===== =====

34 160 3 II i d = ε 0 t E( r, t) = ε 0 t E 0 cos ωt = ε 0 ω E 0 sin ωt 1. ( )(2π 10 6 )( ) = [A] 2. ( )(2π )( ) = [A] (σ) Ω 1 m Ω 1 m 1 ε 0 ωe 0 σe 0 = ε 0ω σ s s 1 ===== =====

35 π = π = π = π = v?? ===== ===== t = t /2 t = t + /2

36 162 3 II D(t - D/2) DD(t) D(t + D/2) t - D/2 t v t + D/2 D(t - D/2) DD(t) D(t + D/2) D(t + D/2) DD(t) D(t - D/2) D ds = (S ) S E d r = d B ds C dt S B ds = 0 S H d r = I j + d C dt j S D d S 4 D = ε 0E B = µ 0H i = σe (3.25a) (3.25b) (3.25c)

37 D = ρ B = 0 E = B t H = i + D t 3.26d { H} }{{ = } i + D t =0 3.26a (3.26a) (3.26b) (3.26c) (3.26d) i + ρ t = 0 (3.27) x, y, z 6 8

38 164 3 II 3.26d { H} }{{ = } i + D t = i D t / t t { D ρ( r, t)} = 0 F ( r) D ρ( r, t) = F ( r) 3.26a 3.26a 3.26a 3.26b d E 3.26c H 2 H { E + B t } = 0 E { H D t } = E i H B t + E D t + H { E} E { H} = E i

39 H B t + E D t = t {1 2 ( E D + H B) } (3.28) }{{} u( r,t) H { E} E { H} = { E H }{{ } (3.29) } S( r,t) u( r, t) t + S( r, t) = E( r, t) i( r, t) (3.30) 1 2 E D 1 2 H B 3.14 u E i S u, S 3.27 ρ, i S (Poynting vector) *1 *1 S/c 2 [2]

40 166 3 II R Q 0 R 0 t I(t) t I(t) Q(t) C = R 0I(t) I(t) = dq(t) dt I(t) = I 0 e t/τ τ = RC I 0 t = D 5. R 0 l l

41 ===== ===== 1. I(t)/πR πr 2 µ 0 I(t) = 2πrB(r, t) πr2 B(r, t) = µ 0r 2πR 2 I(t) Q(t) ε 0 πr 2 µ 0 r 2πR 2 I(t) r Q(t) I(t) 2πR2 ε 0 πr 2 = 1 r 2ε 0 (πr 2 ) 2 Q(t)dQ(t) dt = 1 r dq 2 (t) 4ε 0 (πr 2 ) 2 dt Q(t)

42 168 3 II 4. 2π D 1 R dq 2 (t) 0 4ε 0 (πr 2 ) 2 Rdθ dt = D 1 R dq 2 (t) 4ε 0 (πr 2 ) 2 R2π dt = D 1 1 dq 2 (t) 2ε 0 πr 2 dt D t = 0 t = D 1 1 dq 2 (t) 0 2ε 0 πr 2 dt dt = 1 D dq 2 (t) 2 ε 0 πr 2 dt 0 dt = 1 1 dq 2 (t) 2 C 0 = 1 Q 2 (0) 2 C C = ε 0 πr 2 /D 5. B(r, t) = µ 0 2πr I(t) E(r, t) = R 0I(t) l

43 S S = 1 µ 0 E(r, t)b(r, t) = 1 µ 0 R 0 I(t) l µ 0 2πr I(t) Sdlrdθ = 1 µ 0 E(r, t)b(r, t)dlrdθ = 1 µ 0 R 0 I(t) l = R 0 I 2 (t) µ 0 2πr I(t)lr2π c d... ρ = 0 i = 0 D = ε 0E B = µ0h

44 170 3 II x z y E H E = 0 E = µ 0 H t H = 0 H = ε 0 E t z z t E = 0 = z E z = 0 E = µ 0 t H = H = 0 = z H z = 0 z E y = µ 0 t H x z E x = µ 0 t H y 0 = µ 0 t H z H = ε 0 t E = z H y = ε 0 t E x z H x = ε 0 t E y 0 = ε 0 t E z A B = B A ze z = 0 t E z = 0 E z z t E z = 0 H z = 0

45 E x E y = 0 E y = 0 t H x = 0, z H x = 0 H x = 0 H y E z = 0 H z = 0 E y = 0 H x = 0 z E x = µ 0 t H y z H y = ε 0 t E x 2 3,4 2 E x = 1 t t ε 0 t H y z t z = 1 H y ε 0 z t H y t 1 E x µ 0 z = 1 2 E x ε 0 µ 0 z 2 2 H y t 2 = 1 2 H y ε 0 µ 0 z 2 c 0 = 1 ε0 µ 0

46 172 3 II E x = E 0 cos ω(t z ) c 0 E y = 0 E z = 0 H x = 0 H y = H 0 cos ω(t z ) c 0 H z = 0 H 0 = E 0 x ε0 µ 0 E z y H SI [m/s] µ 0 = 4π 10 7 [H/m] ε 0 [F/m] 3.3.5

47 E = 0 B = 0 E + B t = 0 B E ε 0 µ 0 t = 0 (3.31a) (3.31b) (3.31c) (3.31d) 3.31c { E( r, t)} + { B( r, t) } = 0 (3.32) t 1 E = 0 2 E 3.31d 2 ε 0 µ 0 t 2 E 2 E( r, t) ε0 µ 0 2 t E( r, t) = 0 (3.33) (0, 0, z 0 + cos ωt) (0, 0, z 0 cos ωt) z z z z z z x z y x x

48 174 3 II 3.10 z Vm 1??

49 ===== ===== H 0 ε0 = E 0 µ 0 ε0 H 0 = E 0 µ = 4π = [A/m] B 0 = µ 0 H 0 = [T] [W/m 2 ] 1 µ 0 E 0 B 0 = = z 2 x E 1 (z, t) = E 0 cos(kz ωt) E 2 (z, t) = E 0 cos( kz ωt)?

50 176 3 II ===== ===== E(z, t) = E 1 (z, t) + E 2 (z, t) = E 0 (cos(kz ωt) + cos( kz ωt)) = 2E 0 cos kz cos ωt B(z, t) = B 0 cos(kz ωt) B 0 cos( kz ωt) = 2B 0 sin kz sin ωt y z A( r, t) E = ta B = A Maxwell ===== ===== A = 0 Maxwell 2 A = ε0 µ 0 2 t A D = 0 B = 0 E = B t H = D t

51 A 1 A ( ε 0 t A) = ε0 t ( A) 1 A = 0 2 A ( A) A 2 3 A ( ta) = t ( A) A 3 4 A ( 1 A) = t ( ε 0 t A) µ 0 1 ( ) 2 A + ( A) = t ( ε 0 t A) µ 0 A = 0 2 A = ε0 µ 0 2 t A 3.4

52 178 3 II

53 (a) (b) (c) l S σ

54 180 3 II 3.12 (a) (b) s -s C s 0 C 0 -s' s' -s u ρ σ = ρ u σsl P = (ρ usl)/(sl) = ρ u (3.34) P r S u S ρ u d S P P ds S S

55 s P l E s + Q P Q P = P ds (3.35) 3.35 ρ P ( r) P ρ P ( r) = P (3.36) E( r) = 1 {ρ( r) + ρ P ( r)} ε 0 S

56 182 3 II P {ε 0E( r) + P ( r)} = ρ( r) D( r) = ε 0E( r) + P ( r) D( r) = ρ( r) (3.37) P = χ ee χ e χ e D = (ε 0 + χ e ) E ε = ε 0 + χ e (3.38) D = εe (3.39) ε 0 ε D( r) = ρ( r) E( r) = 0 D( r) = ε 0E( r) + P ( r) (c) (3.40a) (3.40b) (3.40c)

57 r abcd 3.40b E d s = 0 C E d s C = E d s + E d s + E d s + E d s ab cd bc da bc da ab cd E E d s C

58 184 3 II = E 1 t s E 2 t s = { E 1 t E 2 t} s = 0 t E 1 t = E 2 t (3.41) 3.16 r a D S ds = ρdv V 1 S 1 2 S 2 D ds = { D1 n} S S 1 S 2 D d S = { D2 n} S

59 { D 1 n D 2 n} S = 0 D 1 n = D 2 n (3.42) A,B nm Cm A,B? ===== ===== q l p = ql = q q [C] % = q a q 1. u? 2. E

60 186 3 II 3. ===== ===== 1. 4πu 2 E 1 4 = ε 0 3 πu3 ρ ρ = q 4 3 πa3 E = q 4πε 0 a 3 u 2. q E = q2 4πε 0 a 3 u q E ext q E(u) = 0 E ext x qe ext = q2 4πε 0 a 3 u qu = 4πε 0a 3 qe ext q 3. 1 p = qu = αe α = 4πε 0 a 3

61 a P u a 1. a ρ r E( r) 2. u/2 a ρ u/2 a ρ E( r) 3. E( r) P ===== ===== πr 2 E( r) = 1 ε 0 4π 3 r3 ρ r r E( r) = E + ( r) = ρ 3ε 0 r ρ 3ε 0 ( r 1 2 u) E ( r) = ρ 3ε 0 ( r u) E = E + ( r) + E ( r) = ρ 3ε 0 ( r 1 2 u r 1 2 u) = ρ 3ε 0 u

62 188 3 II 3. E = P 3ε p E 2pE T p p 2pE k B T = 2p2 k B T E k B N 1. χ e 2Np2 k B T K Cm ε/ε nm k B = JK 1 ===== ===== 1. P = χe E P = N p = N 2p 2 2. ε ε 0 1 = χ e ε 0 k B T E χ e = N 2p2 k B T

63 = 2Np2 / ε0 k B T = 2( ) 3 ( ) / ε mm µf? ===== ===== C = ε ε 0 S d = S = S = 0.49 [m 2 ]

64 190 3 II ε θ ===== ===== E n D n εe n = ε 0 E cos θ σ P = P n = εe n ε 0 E n = (ε ε 0 ) ε 0 ε E cos θ D = ε E = ε 0 E + P ε E E ===== ===== 1.

65 D n E = ε ε 0 E 3. P /3ε 0 E E E = E P 3ε 0 ε E = ε 0 E + P E = 3ε 0 2ε 0 + ε E ε ε 0 E = 3ε 2ε + ε 0 E ε Q ? 1 L 1 L d

66 192 3 II ===== ===== 1. ε/ε 0 2. x C = L d ((L x)ε + xε 0) U(x) = 1 dq 2 2 (εl (ε ε 0 )x) L F = x U(x) = 1 dq 2 2 L (εl (ε ε 0)x) 2 (ε ε 0 )( 1) = 1 dq 2 2 L (εl (ε ε 0 )x) 2 (ε ε 0) ε ε 0 = εl (ε ε 0 )x U(x) ε a E 0 ===== ===== P /3ε 0 E = E 0 P /3ε 0 ε E = ε 0 E+ P P = 3ε 0(ε ε 0 ) 2ε 0 + ε E 0

67 π 3 a3 P 4π 3ε 0(ε ε 0 ) = 3 a3 E 0 2ε 0 + ε = 4πε 0(ε ε 0 ) a 3 E0 2ε 0 + ε

68 194 3 II II B M H( r) H( r) = 1 B( r) M( r) (3.43) µ 0 H( r) = i( r) i( r)

69 * 2 M( r) = χ mh( r) (3.44) χ m B( r) = µ 0 {1 + χ m } H( r) = µ H( r) (3.45) µ = µ 0 (1 + χ m ) µ µ 0 ε { H( r) = i( r) (3.46a) B( r) = 0 (3.46b) *2 EB EH H( r) = 1 µ 0 { B( r) M( r)} M M(EH) = µ 0M(EB) SI EB M EH EB [3] EB

70 196 3 II H 1 ( r) t = H 2 ( r) t (3.47) B 1 ( r) n = B 2 ( r) n (3.48) K µ µ A m nm ===== ===== B( T) µ Am 2 =JT 1 µb 2( ) 3 ( ) µ 0 = M

71 ===== ===== B = µ 0 ( H + M) B M B in = µ 0 (H in + M) B out = µ 0 H out B in = B out B H out = 1 µ 0 B H in = 1 µ 0 B M B = 0 H out = 0 H in = M M 2 N S B = µ 0 M 1. S ===== ===== 1. U(x) x U(x) = 1 2µ 0 B 2 Sx x F F = x U(x) = 1 2µ 0 B 2 S

72 198 3 II JT m 3? ===== ===== µ = [T](Wb/m 2 ) ===== =====

73 D( r, t) = ε 0E( r, t) + P ( r, t) (3.49a) H( r, t) = 1 µ 0 B( r, t) M( r, t) (3.49b) D( r, t) = ρ ( r, t) (3.50a) B( r, t) = 0 (3.50b) E( r, t) + tb( r, t) = 0 (3.50c) H( r, t) td( r, t) = i ( r, t) (3.50d) P ( r, t) = χ e E( r, t) M( r, t) = χ m H( r, t) 3.5.2

74 200 3 II k u m d2 u dt 2 + k u = 0 (3.51) ω 0 = k/m E = E 0 cos ωt m d2 u dt 2 + k u(t) = e E 0 cos ωt (3.52) u = u 0 cos ωt ( mω 2 + k) u(t) = e E 0 cos ωt u = e m(ω 2 0 ω2 ) E (3.53) 1 z 1 p p = ze u (3.54) = α(ω) E (3.55) α(ω) = ze 2 m(ω 2 0 ω2 ) (3.56) E ω ω 0 N 3.55 P = N p = χ ee (3.57)

75 χ e (ω) = Nze 2 m(ω 2 0 ω2 ) (3.58) χ e ε(ω) = ε 0 + Nze 2 m(ω 2 0 ω2 ) (3.59) ω = ω

76 202 3 II m d2 u dt 2 + m τ d u dt + k u = e E (3.60) τ u = e m(ω 2 0 ω2 + iω/τ) E (3.61) ε(ω) = ε 0 + Nze 2 m(ω 2 0 ω2 + iω/τ) (3.62) ε(ω) = ε 0 + Nze2 m ε (ω) = Nze2 m ε(ω) = ε(ω) + iε (ω) (3.63) ω 2 0 ω 2 (ω 2 0 ω2 ) 2 + (ω/τ) 2 (3.64) ω/τ (ω 2 0 ω2 ) 2 + (ω/τ) 2 (3.65) D E = 1 2 ε E 2 = 1 2 (ε(ω) + iε (ω)) E 2

77 P P P = R{ χ e (ω) E} = R{[χ e (ω) + iχ e(ω)][ E(t) + ie (t)]} = χ e (ω) E(t) χ e(ω) E (t) = χ e (ω) E 0 cos ωt χ e(ω) E 0 sin ωt i P (t) = ωχ e (ω) E 0 sin ωt ωχ e(ω) E 0 cos ωt

78 204 3 II i P (t) E(t) = ωχ e (ω)e0 2 sin ωt cos ωt ωχ e(ω)e0 2 cos ωt cos ωt 1 2 < i P (t) E(t) > = 1 2 ωχ e(ω)e0 2 (3.66) χ e < ===== ===== m d2 u dt 2 + m τ d/dt iω d u dt + k u = e E mω 2 u + iω m τ u + k u = e E u u = = e E m( ω 2 + iω/τ + k/m) e E m(ω 2 0 ω2 + iω/τ) ω 2 0 = k/m

79 Z m Z = 6 a = 0.07 nm ===== ===== q E = k q2 4πε 0 a 3 u (Ze) 2 4πε 0 a 3 ω 0 = k/zm Ze = 2 4πε 0 a 3 m 6( = 19 ) 2 4π ( ) = [Hz]( [s 1 ]) s s s 1 ===== =====

80 206 3 II Nze 2 ε(ω) = ε 0 + m(ω0 2 ω2 ) α = ε 0 + ω0 2 ω2 ω = 0 ε/ε 0 = 4.5 ε(ω) 3.5 = 1 + ε 0 1 (ω/ω 0 ) 2 ω/ω 0 = ω/ω 0 = E( r, t) 1 v 2 2 t E( r, t) = 0 (3.67) v = 1 εµ (3.68) n = c v (3.69) 1,2 n 1, n 2 n 2 /n 1 2 1

81 N (( f(t, x) = e ( i N )2 sin k 0 i ) (x ω ) 0 t) N k 0 f d (t, x) = i= N N i= N (( e ( i N )2 sin k 0 i ) (x ω ( 0 1 i ) ) t) N k 0 3N N = 100, x 0 = 2π, ω 0 = 2π ρ = 0 D = ε E B = µ H E H E = 0 E = µ t H H = 0 H = i + ε t E

82 208 3 II t = 0 2 t = 6 (f(t, x)) 3 t = 6 f d (t, x) z z t E = 0 = z E z = 0 E = µ t H = z E y = µ t H x z E x = µ t H y 0 = µ t H z

83 H = 0 = z H z = 0 H = i + ε t E = z H y = i x + ε t E x z H x = i y + ε t E y 0 = i z + ε t E z A B = B z A x y z E z = 0 z E z H z = 0 f( k r t) E z (z ct) E x E y = 0 i = σ E σ x i y = i z = 0 E y = 0 t H x = 0, z H x = 0 H x = 0 H y E z = 0 H z = 0 E y = 0 H x = 0 z E x = µ t H y z H y = i x + ε t E x

84 210 3 II 2 3,4 2 t ( t E x ) = 1 ε t z H y 1 ε ti x 1 t z = 1 ε z th y 1 ε ti x t H y 1 µ ze x = 1 εµ 2 ze x 1 ε ti x i x σe x = 1 εµ 2 ze x σ ε te x 2 ze x εµ 2 t E x σµ t E x = 0 (3.70), σ = 0 Ẽ x (z, t) = Ẽ(z)eiωt (3.71) zẽ(z) 2 + (εµω2 iσµω)ẽ(z) = 0 (3.72) Ẽ(z) = E 0 e ikz (3.73) k = ±ω/v v = 1/ εµ E x (z, t) = E 0 cos k(z vt) (3.74)

85 σ 0 k Ẽ(z) = E 0e i kz [ k 2 + (εµω 2 iσµω)]e 0 = 0 (3.75) E 0 0 k 2 = εµω 2 iσµω (3.76) 1 2 σ 10 7 [Ω 1 m 1 ] ε [F m 1 ] σ ε 1018 [s 1 ] (3.77) ω k 2 iσµω (3.78) k = ± 1 i 2 σµω (3.79) E x (z, t) = E 0 cos( z l ωt)e z/l (3.80) l = 2 µσω (3.81) ω l [m] 10 cm

86 212 3 II [m/s] 2. 1 ns 1 ns 2 m 3. 1 ns 1 ns 2 m ===== ===== 1. n = ε/ε [m/s] [m/s] [m/s] 2. 2/ = [s] 2/ = [s] t = [ns] [ns] [ns] 1.1[ns]

87 t = [ns] [ns] [ns] 2.9[ns] ω σ/ε ===== ===== k 2 = εµω 2 iσµω = µεω 2 (1 i σ εω ) k µε(1 i σ 2εω )ω k m t v + m τ v = e E 0 cos(ωt) i(t) = en v(t) ===== =====

88 214 3 II d/dt iω v = i i = ne v ne 2 = E m(1/τ + iω) = ne2 (1/τ iω) E m(1/τ 2 + ω 2 ) e E m(1/τ + iω) = ne2 (1/τ iω) m(1/τ 2 + ω 2 ) E 0 (cos ωt + i sin ωt) ( ne 2 ) (1/τ iω) R( i) = R m(1/τ 2 + ω 2 E ) 0 (cos ωt + i sin ωt) = ne2 τe 0 m(1 + ω 2 τ 2 R((1 iωτ)(cos ωt + i sin ωt)) ) = ne 2 τ m(1 + ω 2 τ 2 ) (cos ωt + ωτ sin ωt) E 0 = ne2 τ m ( ω 2 τ 2 cos ωt + ωτ 1 + ω 2 τ 2 sin ωt) E 0

89 215 [1] I,II. [2] [3] EH EB EB EH B EH EB monograph [4] G. Arfken, Mathematical Method for Physicist, ACADEMIC PRESS. New York.

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

2 0.1 Introduction NMR 70% 1/2

2 0.1 Introduction NMR 70% 1/2 Y. Kondo 2010 1 22 2 0.1 Introduction NMR 70% 1/2 3 0.1 Introduction......................... 2 1 7 1.1.................... 7 1.2............................ 11 1.3................... 12 1.4..........................

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

1 B () Ver 2014 0 2014/10 2015/1 http://www-cr.scphys.kyoto-u.ac.jp/member/tsuru/lecture/... 1. ( ) 2. 3. 3 1 7 1.1..................................................... 7 1.2.............................................

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information

c 2009 i

c 2009 i I 2009 c 2009 i 0 1 0.0................................... 1 0.1.............................. 3 0.2.............................. 5 1 7 1.1................................. 7 1.2..............................

More information

4‐E ) キュリー温度を利用した消磁:熱消磁

4‐E ) キュリー温度を利用した消磁:熱消磁 ( ) () x C x = T T c T T c 4D ) ) Fe Ni Fe Fe Ni (Fe Fe Fe Fe Fe 462 Fe76 Ni36 4E ) ) (Fe) 463 4F ) ) ( ) Fe HeNe 17 Fe Fe Fe HeNe 464 Ni Ni Ni HeNe 465 466 (2) Al PtO 2 (liq) 467 4G ) Al 468 Al ( 468

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

Quz Quz

Quz Quz http://www.ppl.app.keo.ac.jp/denjk III (1969). (1977). ( ) (1999). (1981). (199). Harry Lass Vector and Tensor Analyss, McGraw-Hll, (195).. Quz Quz II E B / t = Maxwell ρ e E = (1.1) ε E= (1.) B = (1.3)

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t) 338 7 7.3 LCR 2.4.3 e ix LC AM 7.3.1 7.3.1.1 m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x k > 0 k 5.3.1.1 x = xt 7.3 339 m 2 x t 2 = k x 2 x t 2 = ω 2 0 x ω0 = k m ω 0 1.4.4.3 2 +α 14.9.3.1 5.3.2.1 2 x

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

/Volumes/NO NAME/gakujututosho/chap1.tex i

/Volumes/NO NAME/gakujututosho/chap1.tex i 2010 4 8 /Volumes/NO NAME/gakujututosho/chap1.tex i iii 1 5 1.1............................... 5 2 9 2.1........................................... 9 2.2................................... 16 2.3...................................

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

85 4

85 4 85 4 86 Copright c 005 Kumanekosha 4.1 ( ) ( t ) t, t 4.1.1 t Step! (Step 1) (, 0) (Step ) ±V t (, t) I Check! P P V t π 54 t = 0 + V (, t) π θ : = θ : π ) θ = π ± sin ± cos t = 0 (, 0) = sin π V + t +V

More information

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 { 7 4.., ], ], ydy, ], 3], y + y dy 3, ], ], + y + ydy 4, ], ], y ydy ydy y y ] 3 3 ] 3 y + y dy y + 3 y3 5 + 9 3 ] 3 + y + ydy 5 6 3 + 9 ] 3 73 6 y + y + y ] 3 + 3 + 3 3 + 3 + 3 ] 4 y y dy y ] 3 y3 83 3

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

30 (11/04 )

30 (11/04 ) 30 (11/04 ) i, 1,, II I?,,,,,,,,, ( ),,, ϵ δ,,,,, (, ),,,,,, 5 : (1) ( ) () (,, ) (3) ( ) (4) (5) ( ) (1),, (),,, () (3), (),, (4), (1), (3), ( ), (5),,,,,,,, ii,,,,,,,, Richard P. Feynman, The best teaching

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

第3章

第3章 5 5.. Maxwell Maxwell-Ampere E H D P J D roth = J+ = J+ E+ P ( ε P = σe+ εe + (5. ( NL P= ε χe+ P NL, J = σe (5. Faraday rot = µ H E (5. (5. (5. ( E ( roth rot rot = µ NL µσ E µε µ P E (5.4 = ( = grad

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI 65 8. K 8 8 7 8 K 6 7 8 K 6 M Q σ (6.4) M O ρ dθ D N d N 1 P Q B C (1 + ε)d M N N h 2 h 1 ( ) B (+) M 8.1: σ = E ρ (E, 1/ρ ) (8.1) 66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3)

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

1 2 2 (Dielecrics) Maxwell ( ) D H

1 2 2 (Dielecrics) Maxwell ( ) D H 2003.02.13 1 2 2 (Dielecrics) 4 2.1... 4 2.2... 5 2.3... 6 2.4... 6 3 Maxwell ( ) 9 3.1... 9 3.2 D H... 11 3.3... 13 4 14 4.1... 14 4.2... 14 4.3... 17 4.4... 19 5 22 6 THz 24 6.1... 24 6.2... 25 7 26

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ 1 1 1.1 (Isaac Newton, 1642 1727) 1. : 2. ( ) F = ma 3. ; F a 2 t x(t) v(t) = x (t) v (t) = x (t) F 3 3 3 3 3 3 6 1 2 6 12 1 3 1 2 m 2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t)

More information

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t 1 1 2 2 2r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t) V (x, t) I(x, t) V in x t 3 4 1 L R 2 C G L 0 R 0

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

/Volumes/NO NAME/gakujututosho/chap1.tex i

/Volumes/NO NAME/gakujututosho/chap1.tex i 2012 4 10 /Volumes/NO NAME/gakujututosho/chap1.tex i iii 1 7 1.1............................... 7 2 11 2.1........................................... 11 2.2................................... 18 2.3...................................

More information

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx x E E E e i ω t + ikx k λ λ π k π/λ k ω/v v n v c/n k nω c c ω/π λ k πn/λ π/(λ/n) κ n n κ N n iκ k Nω c iωt + inωx c iωt + i( n+ iκ ) ωx c κω x c iω ( t nx c) E E e E e E e e κ e ωκx/c e iω(t nx/c) I I

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

46 4 E E E E E 0 0 E E = E E E = ) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0

46 4 E E E E E 0 0 E E = E E E = ) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0 4 4.1 conductor E E E 4.1: 45 46 4 E E E E E 0 0 E E = E E E =0 4.1.1 1) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0 4.1 47 0 0 3) ε 0 div E = ρ E =0 ρ =0 0 0 a Q Q/4πa 2 ) r E r 0 Gauss

More information

untitled

untitled 1 17 () BAC9ABC6ACB3 1 tan 6 = 3, cos 6 = AB=1 BC=2, AC= 3 2 A BC D 2 BDBD=BA 1 2 ABD BADBDA ABC6 BAD = (18 6 ) / 2 = 6 θ = 18 BAD = 12 () AD AD=BADCAD9 ABD ACD A 1 1 1 1 dsinαsinα = d 3 sin β 3 sin β

More information

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2 1 1 2 2 2 1 1 P F ext 1: F ext P F ext (Count Rumford, 1753 1814) 0 100 H 2 O H 2 O 2 F ext F ext N 2 O 2 2 P F S F = P S (1) ( 1 ) F ext x W ext W ext = F ext x (2) F ext P S W ext = P S x (3) S x V V

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

214 March 31, 214, Rev.2.1 4........................ 4........................ 5............................. 7............................... 7 1 8 1.1............................... 8 1.2.......................

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

Microsoft Word - 章末問題

Microsoft Word - 章末問題 1906 R n m 1 = =1 1 R R= 8h ICP s p s HeNeArXe 1 ns 1 1 1 1 1 17 NaCl 1.3 nm 10nm 3s CuAuAg NaCl CaF - - HeNeAr 1.7(b) 2 2 2d = a + a = 2a d = 2a 2 1 1 N = 8 + 6 = 4 8 2 4 4 2a 3 4 π N πr 3 3 4 ρ = = =

More information

修士論文

修士論文 SAW 14 2 M3622 i 1 1 1-1 1 1-2 2 1-3 2 2 3 2-1 3 2-2 5 2-3 7 2-3-1 7 2-3-2 2-3-3 SAW 12 3 13 3-1 13 3-2 14 4 SAW 19 4-1 19 4-2 21 4-2-1 21 4-2-2 22 4-3 24 4-4 35 5 SAW 36 5-1 Wedge 36 5-1-1 SAW 36 5-1-2

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y 5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =

More information

1

1 1 1.. ( ) ( ) ( ) (A) E icb φ Et = + cdiva ct (H3) (B) ( ) ct ct ' ctct ' + ' = ' ct ' + ct ' i( ') (H3,H18) 3 (i) cosh Ψ = cosh ΘcoshΩ sinhψ sinhθ sinhω cosh Ψ cosh Θ cosh Ω = sinhψ sinhθ sinhω tanhψ

More information

graph4.eps

graph4.eps 9 : . 6. S =3ˆ+4ŷ +5ẑ â = ˆ+ ŷ + ẑ () S â () â ˆb.,b,c,d O A, B, C, D b =(d c) (3) â, ˆb AD BC P AD BC 3.,b,c b θ c = +b ccosθ 3. 4. O A, B, C, D O A, B, C, D A,B,C,D () AB BC A B = B C () AB A B (3),b,c,d

More information

213 March 25, 213, Rev.1.5 4........................ 4........................ 6 1 8 1.1............................... 8 1.2....................... 9 2 14 2.1..................... 14 2.2............................

More information

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1 ABCD ABD AC BD E E BD : () AB = AD =, AB AD = () AE = AB + () A F AD AE = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD AB + AD AB + 7 9 AD AB + AD AB + 9 7 4 9 AD () AB sin π = AB = ABD AD

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information