SiC SiC QMAS(Quantum MAterials Simulator) VASP(Vienna Ab-initio Simulation Package) SiC 3C, 4H, 6H-SiC EV VASP VASP 3C, 4H, 6H-SiC (0001) (11 20) (1 1

Size: px
Start display at page:

Download "SiC SiC QMAS(Quantum MAterials Simulator) VASP(Vienna Ab-initio Simulation Package) SiC 3C, 4H, 6H-SiC EV VASP VASP 3C, 4H, 6H-SiC (0001) (11 20) (1 1"

Transcription

1 QMAS SiC

2 SiC SiC QMAS(Quantum MAterials Simulator) VASP(Vienna Ab-initio Simulation Package) SiC 3C, 4H, 6H-SiC EV VASP VASP 3C, 4H, 6H-SiC (0001) (11 20) (1 100) MedeA SiC QMAS - C Si (0001) VASP (0001) QMAS VASP

3 SiC (Lely-method) (MSE:Metastable Solvent Epitaxy) (first principles calculations) Schrödinger QMAS(Quantum MAterials Simulator) qmas-atom qmas-band QMAS SiC

4 1 SiC VASP(Vienna Ab-initio Simulation Package) SiC 3C, 4H, 6H SiC (0001) (11 20) (1 100) VASP SiC (0001) SiC VASP QMAS(Quantum MAterials Simulator) QMAS SiC VASP 2 SiC SiC 3 QMAS 4 5 2

5 2 2.1 (SiC) Si C 19 SiC 1955 (Lely ) SiC Lely 10mm 1981 Tairov Lely SiC Lely SiC (2000 ) 1980 SiC SiC (Metastable Solvent Epitaxy) SiC MSE [1] VASP 2 SiC 2.2 SiC (Lely-method) SiC Lely Lely 3

6 Si C 2.1 Lely ( ) 2500 [2] 2.1: Lely SiC [2] (MSE:Metastable Solvent Epitaxy) MSE SiC 2.2 MSE MSE TaC 2 SiC Si MSE (feed) 3C-SiC 4H-SiC 4

7 (seed) SiC 1800 SiC Si C µm Lely MSE 2.3 MSE Si C C S-SiC 2.3(a) 4H 3C 3C 4H 2.3(b) 3C-SiC 4H-SiC SiC µ 2.3(b) 3C µ c 4H µ c 4H 4H-SiC 4H-SiC C C C 2.3(c) Si C 4H-SiC 3C-SiC MSE [2] 2.2: MSE SiC [2] 5

8 2.3: MSE C C (a) 4H 3C (b) Si-C (c) [2] 6

9 SiC SiC C-SiC 4H-SiC 6H-SiC (111) (0001) (1 10) (11 20) (11 2) (1 100) 4H 6H-SiC (0001) 3C-SiC (111) C-SiC (1 10) (11 2) 4H 6H-SiC (11 20) (1 100) Si C 3C-SiC (111) 4H 6H-SiC (0001) Si (111) (0001) Si C Si C Si C [2] 7

10 図 2.4: 3C-SiC の表面 青色で示したのが Si 原子 黒色で示したのが C 原子 図 2.5: 4H-SiC の表面 青色で示したのが Si 原子 黒色で示したのが C 原子 8

11 図 2.6: 6H-SiC の表面 青色で示したのが Si 原子 黒色で示したのが C 原子 この構造では (0001) 面と (0001 ) 面の終端面の構成元素の組み合わせにより 表 面エネルギーが変わってくる この様子を模式的に表すと図 2.7 のようになり 表 面を覆う Si 原子の割合 (被覆率 coverage ratio)θsi によって 全く違った構造を 取れる事が分かる 本研究では 図 2.7 のようなスラブモデルを作成し それぞれ の表面エネルギーを計算した θsi = 0.5 でないモデルでは モデル中の Si 原子数 と C 原子数の比が 1:1 でなくなる この状態での表面エネルギー計算のためには 化学ポテンシャルに依存した計算法を利用する必要がある そこで 西谷研究室では VASP を用いて化学ポテンシャルに依存した計算手法 を用いて表面エネルギー計算してきた しかし この計算手法だけでは電場勾配 による影響を考慮するという面で不安を残している そこで新たな計算手法での 再計算が必要である 9

12 2.7: Si θ Si Si-rich C-rich θ Si =0.5 a-type b-type [2] SiC 2.8 SiC C (a) 3C-SiC (b) 6H-SiC 2.8 (a) (b) 3C 6H SiC 3C 6H Si 1414 (a)

13 2.8: SiC [3] (a) Olenski Abbaschian 1996 (b) Fromm Gebhardt 1976 SiC VASP SiC 6H > 4H > 3C VASP 11

14 3 3.1 (first principles calculations) Schrödinger (first principles calculations) Schrö dinger Schrödinger Hψ = ɛψ (3.1) ( d2 + V )ψ = ɛψ (3.2) dx2 (Hamiltonian:H) (wave function:ψ) (energy Eigen value:ɛ) (Kinetic Energy) (d 2 ψ/dx 2 ) (Vψ) (potential:v ) (nuclearpotential) ( exchange-correlation interaction) ψ self consistent loop [4] Full Potential pseudo potential 2 PseudoP 12

15 ultra soft norm [4] (Atomic Orbital) (Plane Wave) 2 AO (Linear Combination) LCAO PW (augument) APW (Linearlized) FP All Electron AE Projector Augmented Wave Pseudo P [4] (Local Density Approximation:LDA) (Generalized Gradient Approximation:GGA) version Perdew-Wang 91 [4] PW (K-space) (Fast Fourier Transformation) (real space) PW (periodic boundary condition) [4] 3.2 QMAS(Quantum MAterials Simulator) QMAS(Quantum MAterials Simulator) PAW(Project Augmented-Wave) 13

16 QMAS PAW FLAPW(Full-potential Linear Augmented Plane Wave) FLAPW PAW [5] 3.1: FLAPW PAW FLAPW PAW PAW 3.1 QMAS 3 (qmas-atom qmas-band qmas-gamma) qmas-atom qmas-band qmas-atom qmas-atom V qmas-band (total number of electrons) (principal quantum number) (azimuthal quantum number) LDA GGA GGA 3.1 qmas-atom 14

17 3.1: qmas-atom cdir z 3.1 C 6.0 nc C 1 K 2 L nv 3.1 C 2 1 2p 2 15

18 iexc LDA GGA 1 LDA 2 GGA nn 1,2,3.. K L M.. ll 0,1,2.. s p d f C 3 5 occ C icv C qmas-band qmas-band Schrödinger ɛ qmas-atom self consistent loop QMAS (rydberg:ry) 16

19 (hartree:e h ) qmas-atom 4H-SiC : qmas-band title 8 unit 1 2 Bohr number atom Si 4 C

20 number element 4H-SiC Si C 2 lattice v angle v (Primitive Vector) a,b,c 4H-SiC a : b : c = : : [ ] α : β : γ = 90:90:120[ ] element list qmas-atom qmas-band 3.3: qmas-band number space H-SiC P6 3 mc

21 number wycoff pos number atom number space 4H-SiC 4 wycoff position 2 (1/3,2/3,1/4) a 1/3 b 2/3 c 1/4 (1/3,2/3,1/4) (0,0,0) (1.309,0.755,2.531) 3 Primitive Vector P 0,P 1,P 2 (x, y, z) (X, Y, Z) P 0 = p 0,0 p 0,1 p 0,2,P 1 = p 1,0 p 1,1 p 1,2,P 2 = p 2,0 p 2,1 p 2,2 (3.3) x B = y (3.4) z X Y = P 0 x + P 1 y + P 2 z (3.5) Z

22 3.4: qmas-band 20

23 cutoff wf QMAS Ry VASP number max iteration number max relax 1 2 th charge 1 cal stress

24 3.5 (force) cell [4] 3.5: [4] 3.3 QMAS VASP QMAS 2 Si C E SiC(surface) E H SiC(slab) 22

25 E SiC(bulk) E H(bulk) E SiC(surface) = E H SiC(slab) E SiC(bulk) E H(bulk) (3.6) QMAS QMAS SiC 2.8 QMAS SiC VASP 23

26 4 4.1 SiC QMAS 3C 4H 6H-SiC 2.8 QMAS E-V E-V x y y 2 E-V x y [4] Qmas SiC 24

27 4.1: SiC lattice constant polytype length[ ] angle[ ] symmetry c/a a b c 3C F-43m 4H P6 3 mc 6H P6 3 mc polytype 4.2: atomic coordinate Si C x y z x y z 3C H H (a) 3C 4H 6H-SIC E-V (B) 4.3 3C > 6H > 4H 3C E-V 0K

28 4.1: 3C,4H,6H-SiC (a) (E-V) (b) E-V 4.3: lattice constant polytype length[ ] V[ ] E[eV/SiC] c/a a b c 3C H H VASP SiC 3C 4H SiC 4.2 3C 4H Qmas SiC Qmas 26

29 4.2: SiC 4.2 SiC QMAS QMAS SiC VASP VASP 2 SiC Lely C C-rich SiC (0001) 4.3(a) MSE TaC 2 3C-SiC Si H-SiC 4H-SiC Si Si-rich 4.3(b) 2 SiC Si-rich (0001) 4.5 C-rich 27

30 (0001) Si-rich C-rich Si-rich C-rich Si-rich MSE SiC C-rich Lely SiC 4.3: SiC [2] 28

31 4.4: Si-rich SiC [2] 4.5: C-rich SiC [2] 29

32 MedeA SiC 2. QMAS 1 3. QMAS Maple Maple VESTA(Visualization for Electronic and STructural Analysis) 4H-SiC (11 20) Si C 4.6 (1 100) 4.7 (0001) 4.8 (11 20) - - Lely - MSE - 30

33 4.6: VESTA 4H-SiC (11 20) (1 100) Si C 4.7: VESTA 4H-SiC (11 20) (0001) Si C 31

34 4.8: VESTA 4H-SiC (11 20) (11 20) Si C Si C SiC 3C, 4H, 6H-SiC 4H, 6H-SiC (0001) (11 20) (1 100) 3C-SiC (111) (1 10) (11 2) QMAS E Si(bulk) E C(bulk) E SiC(bulk) E SiC(slab) E Si(bulk) E C(bulk) 4.1 QMAS E SiC(bulk) E SiC(slab) E = E SiC(slab) E SiC(bulk) (4.1) 4.2 ( E) (S [m 2 ]) (E SiC(surface) ) E SiC(surface) = E S (4.2) [2] 32

35 4.9: (0001) (11 20) (1 100) (111) (1 10) (11 2) [2] 4.10: [2] 33

36 4.4: SiC lattice constant polytype length[ ] angle[ ] symmetry c/a a b c 3C F-43m 4H P6 3 mc 6H P6 3 mc SiC (0001) (000-1) θ Si =0.5 Si C 1:1 4.2 µ E i(bulk) n i 4.3 µ i = E i(bulk) n i (4.3) SiC µ SiC(bulk) Si µ Si C µ C A B AB AB=A+B+ H f SiC 4.4 H f µ Si + µ C = µ SiC(bulk) = µ Si(bulk) + µ C(bulk) + H f (4.4) 4.4 SiC (µ Si µ C ) H f 0 (4.5) µ Si(bulk) + H f µ Si µ Si(bulk) (4.6) µ C(bulk) + H f µ C µ C(bulk) (4.7) 34

37 µ Si µ C 4.4 µ Si = µ Si(bulk) µ C = µ C(bulk) + H f C-rich Si-rich E SiC(suface) (S [m 2 ]) E SiC(suface) = E SiC(slab) n Si (µ Si(bulk) + H f ) n C µ C(bulk) S (C rich) (4.8) E SiC(suface) = E SiC(slab) n Si µ Si(bulk) n C (µ C(bulk) + H f ) (Si rich) (4.9) S Si-C Si100 % C100 % SiC 1:1 Si C SiC SiC Si SiC Si µ Si(bulk) SiC µ Si SiC µ C SiC Si SiC µ Si = µ Si(bulk) µ C = µ C(bulk) + H f C-rich µ C = µ C(bulk) µ Si = µ Si(bulk) + H f [2] 4.11: Si-C Si100 % C100 % SiC 1:1 [2] 35

38 4.2.5 QMAS Maple E-V C-SiC(1 10) Maple C-SiC(111) θ Si = H, 6H-SiC H-SiC error Maple 36

39 4.12: 3C-SiC(1 10) Maple 4.13: 3H-SiC(111) Si-rich Maple 37

40 4.2.6 SiC : SiC [n i ] Cutoff-E k-mesh polytype Energy [ev] n i Cutoff-E [ev] k-mesh 3C-SiC E+03 n Si :n C =1: H-SiC E+04 n Si :n C =2: H-SiC E+04 n Si :n C =3: C-Si E+03 n Si :n C =1: C-C E+03 n Si :n C =0: (0001) (11 20) (1 100) : (0001) (11 20) (1 100) [n i ] Cutoff-E k-mesh polytype Surface Energy [ev] n i Cutoff-E [ev] k-mesh 3C-SiC (1 10) E+05 n Si :n C =16: (11 2) E+05 n Si :n C =24: H-SiC (11 20) E+05 n Si :n C =32: (1 100) E+05 n Si :n C =32: H-SiC (11 20) E+05 n Si :n C =48: (1 100) E+05 n Si :n C =48: (0001) 4.7 polytype a-type b-type 2.7 θ Si = 1/2 38

41 4.7: (0001) (θ Si ) [n i ] Cutoff-E k-mesh a-type b-type 2.7 θ Si = 1/2 polytype coverage (θ Si ) Energy [ev] n i Cutoff-E [ev] k-mesh 3C-SiC θ Si = E+05 n Si :n C =48: a-type θ Si = 1/ E+05 n Si :n C =48: b-type θ Si = 1/ E+05 n Si :n C =48: θ Si = E+05 n Si :n C =52: H-SiC θ Si =0 error n Si :n C =64: a-type θ Si = 1/2 error n Si :n C =64: b-type θ Si = 1/2 error n Si :n C =64: θ Si =1 error n Si :n C =68: H-SiC θ Si =0 error n Si :n C =48: a-type θ Si = 1/ E+05 n Si :n C =48: b-type θ Si = 1/ E+05 n Si :n C =48: θ Si = E+05 n Si :n C =52: : [J/m 2 ]. 1[eV]= [J] Surface 3C-SiC 4H-SiC 6H-SiC (11 20) (1 100)

42 4.9: [J/m 2 ]. 1[eV]= [J] environment coverage (θ Si ) 3C-SiC 4H-SiC 6H-SiC Si-rich θ Si = error error a-type θ Si = 1/ error b-type θ Si = 1/ error θ Si = error 9.30 C-rich θ Si = error error a-type θ Si = 1/ error b-type θ Si = 1/ error θ Si = error

43 5 4 3C-SiC (1 10), (11 2) VASP QMAS 5.1 3C-SiC (111) Si-rich C-rich 5.2 QMAS VASP (1 10) VASP (11 2) 5.1: 3C-SiC (1 10), (11 2) VASP QMAS 41

44 5.2: 3C-SiC (111) Si-rich C-rich VASP QMAS QMAS VASP (111) VASP Maple QMAS SiC QMAS QMAS 42

45 [1] SiC (2009) [2] (2011) [3] R.W.Olensinski, G.J.Abbaschian The C-Si System (1984) [4] VASP (2011) [5] ProjectorAugmented Wabe 43

46 44

Si SiO 2. Si 1 VASP Si 1,, Si-Si 0.28Å Si Si-Si 0.19Å Si 166 Si Å Si

Si SiO 2. Si 1 VASP Si 1,, Si-Si 0.28Å Si Si-Si 0.19Å Si 166 Si Å Si 8615 2012 3 Si SiO 2. Si 1 VASP Si 1,, Si-Si 0.28Å Si 160 1 2 Si-Si 0.19Å Si 166 Si 4 0.85Å Si 118 2 4 1 3 1.1 SiO 2... 3 1.2 Si... 3 1.3 Cz... 4 1.4 SiO 2... 4 1.5... 5 2 6 2.1... 6 2.2 VASP(Vienna Ab-initio

More information

SiC Si Si Si 3 SiC Si SiC Metastable Solvent Epitaxy MSE MSE SiC MSE SiC SiC 3C,4H,6H-SiC 4H-SiC(11-20) 4H-SiC (0001) Si Si C 3 C 1

SiC Si Si Si 3 SiC Si SiC Metastable Solvent Epitaxy MSE MSE SiC MSE SiC SiC 3C,4H,6H-SiC 4H-SiC(11-20) 4H-SiC (0001) Si Si C 3 C 1 SiC 4718 20 2 21 SiC Si Si Si 3 SiC Si SiC Metastable Solvent Epitaxy MSE MSE SiC MSE SiC SiC 3C,4H,6H-SiC 4H-SiC(11-20) 4H-SiC (0001) Si Si C 3 C 1 1 4 1.1.................... 4 1.2 SiC........................

More information

4/15 No.

4/15 No. 4/15 No. 1 4/15 No. 4/15 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = m ψ(r,t)+v(r)ψ(r,t) ψ(r,t) = ϕ(r)e iωt ψ(r,t) Wave function steady state m ϕ(r)+v(r)ϕ(r) = εϕ(r) Eigenvalue problem

More information

02-量子力学の復習

02-量子力学の復習 4/17 No. 1 4/17 No. 2 4/17 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = 2 2m 2 ψ(r,t)+v(r)ψ(r,t) ψ(r,t) Wave function ψ(r,t) = ϕ(r)e iωt steady state 2 2m 2 ϕ(r)+v(r)ϕ(r) = εϕ(r)

More information

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru 1. 1-1. 1-. 1-3.. MD -1. -. -3. MD 1 1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Structural relaxation

More information

講 座 熱電研究のための第一原理計算入門 第1回 密度汎関数法による第一原理バンド計算 桂 1 はじめに ゆかり 東京大学 2 密度汎関数理論 第一原理 first-principles バンド計算とは 結晶構造 Schrödinger 方程式は 量子力学を司る基本方程式で 以外の経験的パラメータや

講 座 熱電研究のための第一原理計算入門 第1回 密度汎関数法による第一原理バンド計算 桂 1 はじめに ゆかり 東京大学 2 密度汎関数理論 第一原理 first-principles バンド計算とは 結晶構造 Schrödinger 方程式は 量子力学を司る基本方程式で 以外の経験的パラメータや 講 座 熱電研究のための第一原理計算入門 第1回 密度汎関数法による第一原理バンド計算 桂 1 はじめに ゆかり 東京大学 2 密度汎関数理論 第一原理 first-principles バンド計算とは 結晶構造 Schrödinger 方程式は 量子力学を司る基本方程式で 以外の経験的パラメータや任意パラメータを使わず 基 ある 定常状態において電子 i の状態を定義する波動 本的な物理方程式のみを用いて行う電子状態計算であ

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

ssp2_fixed.dvi

ssp2_fixed.dvi 13 12 30 2 1 3 1.1... 3 1.2... 4 1.3 Bravais... 4 1.4 Miller... 4 2 X 5 2.1 Bragg... 5 2.2... 5 2.3... 7 3 Brillouin 13 3.1... 13 3.2 Brillouin... 13 3.3 Brillouin... 14 3.4 Bloch... 16 3.5 Bloch... 17

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 実空間差分法に基づく 第一原理電子構造 量子輸送特性計算 09/05/15 大阪大学大学院工学研究科小野倫也 Real-space first-principles calculation code The grand-state electronic structure is obtained by solving the Schrödinger (Kohn-Sham) equation 1 2

More information

27011559 2018 3 1 3 2 4 2.1........................ 4 2.2.................................. 5 2.3 pseudovasp................................... 7 3 8 3.1 EAM potential.................................

More information

Chebyshev Schrödinger Heisenberg H = 1 2m p2 + V (x), m = 1, h = 1 1/36 1 V (x) = { 0 (0 < x < L) (otherwise) ψ n (x) = 2 L sin (n + 1)π x L, n = 0, 1, 2,... Feynman K (a, b; T ) = e i EnT/ h ψ n (a)ψ

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

QMI_10.dvi

QMI_10.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 σ τ x u u x t ux, t) u 3.1 t x P ux, t) Q θ P Q Δx x + Δx Q P ux + Δx, t) Q θ P u+δu x u x σ τ P x) Q x+δx) P Q x 3.1: θ P θ Q P Q equation of motion P τ Q τ σδx

More information

QMI_09.dvi

QMI_09.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 3.1.2 σ τ 2 2 ux, t) = ux, t) 3.1) 2 x2 ux, t) σ τ 2 u/ 2 m p E E = p2 3.2) E ν ω E = hν = hω. 3.3) k p k = p h. 3.4) 26 3 hω = E = p2 = h2 k 2 ψkx ωt) ψ 3.5) h

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

200708_LesHouches_02.ppt

200708_LesHouches_02.ppt Numerical Methods for Geodynamo Simulation Akira Kageyama Earth Simulator Center, JAMSTEC, Japan Part 2 Geodynamo Simulations in a Sphere or a Spherical Shell Outline 1. Various numerical methods used

More information

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) * * 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *1 2004 1 1 ( ) ( ) 1.1 140 MeV 1.2 ( ) ( ) 1.3 2.6 10 8 s 7.6 10 17 s? Λ 2.5 10 10 s 6 10 24 s 1.4 ( m

More information

Laves A-B AB 2 MgCu 2 (C14) MgZn 2 (C15) MgNi 2 (C36) Laves VASP ZrCr 2 Laves VASP(Vienna Ab-initio Simulation Package) Laves Energy-Volume Quasi-Harm

Laves A-B AB 2 MgCu 2 (C14) MgZn 2 (C15) MgNi 2 (C36) Laves VASP ZrCr 2 Laves VASP(Vienna Ab-initio Simulation Package) Laves Energy-Volume Quasi-Harm ZrCr 2 Laves 5633 2009 2 Laves A-B AB 2 MgCu 2 (C14) MgZn 2 (C15) MgNi 2 (C36) Laves VASP ZrCr 2 Laves VASP(Vienna Ab-initio Simulation Package) Laves Energy-Volume Quasi-Harmonic Energy-Volume Phonon-DOS

More information

EPSON LP-8900ユーザーズガイド

EPSON LP-8900ユーザーズガイド 3 4 5 6 7 8 abc ade w p s 9 10 s s 11 p 12 p 13 14 p s 15 p s A B 16 w 17 C p 18 D E F 19 p w G H 20 A B 21 C s p D 22 E s p w 23 w w s 24 p w s 25 w 26 p p 27 w p s 28 w p 29 w p s 30 p s 31 A s B 32

More information

原子・分子架橋系の量子輸送の理論 現状と展望

原子・分子架橋系の量子輸送の理論 現状と展望 1cm 10 21 1 m 1nm 10 9 1 10-4 N Maxwell DFT E.Tsuchida and M.Tsukada Phys.Rev.B52(1995)5573-5578 Phys.Rev.B54(1996)7602-7605 J.Phys.Soc.Jpn.67(1998)3844-3858 Chem.Phys.Lett.311(1999)236-240 N.Watanabe

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization) . D............................................... : E = κ ............................................ 3.................................................

More information

卒業研究報告 題 目 Hamiltonian 指導教員 山本哲也教授 報告者 汐月康則 平成 14 年 2 月 5 日 1

卒業研究報告 題 目 Hamiltonian 指導教員 山本哲也教授 報告者 汐月康則 平成 14 年 2 月 5 日 1 卒業研究報告 題 目 Hamiltonian 指導教員 山本哲也教授 報告者 汐月康則 平成 4 年 月 5 日 .....4.....4......6.. 6.. 6....4. 8.5. 9.6....7... 3..... 3.... 3.... 3.3...4 3.4...5 3.5...5 3.5....6 3.5.... 3.5...... 3.5...... 3 3.5.3..4 3.5.4..5

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

untitled

untitled SPring-8 RFgun JASRI/SPring-8 6..7 Contents.. 3.. 5. 6. 7. 8. . 3 cavity γ E A = er 3 πε γ vb r B = v E c r c A B A ( ) F = e E + v B A A A A B dp e( v B+ E) = = m d dt dt ( γ v) dv e ( ) dt v B E v E

More information

CP-PACS CP-PACS CP-PACS : 2048PU+128IOU 614GFLOPS peak 128GByte memory 1058GByte disk 1992 1996 SR2201 : 1996 8 9 CP-PACS Top 500 List ranking No. 1 November 1996 Linpack 368.2Gflops No. 24 Novermber 1999

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r 11 March 2005 1 [ { } ] 3 1/3 2 + V ion (r) + V H (r) 3α 4π ρ σ(r) ϕ iσ (r) = ε iσ ϕ iσ (r) (1) KS Kohn-Sham [ 2 + V ion (r) + V H (r) + V σ xc(r) ] ϕ iσ (r) = ε iσ ϕ iσ (r) (2) 1 2 1 2 2 1 1 2 LDA Local

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

http://www1.doshisha.ac.jp/ bukka/qc.html 1. 107 2. 116 3. 1 119 4. 2 126 5. 132 6. 136 7. 1 140 8. 146 9. 2 150 10. 153 11. 157 12. π Hückel 159 13. 163 A-1. Laguerre 165 A-2. Hermite 167 A-3. 170 A-4.

More information

和佐田P indd

和佐田P indd B3LYP/6-31G* Hartree-Fock B3LYP Hartree-Fock 6-31G* Hartree-Fock LCAO Linear Combination of Atomic Orbitals Gauss Gaussian-Type Orbital: GTO Gaussian- Type Function: GTF 2 23 1 1 X, Y, Z x, y, z l m n

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing The Hydrodynamic Force Acting on the Ship in a Following Sea (1 St Report) Summary by Yutaka Terao, Member Broaching phenomena are most likely to occur in a following sea to relative small and fast craft

More information

和佐田P indd

和佐田P indd 2000 B3LYP/6-31G Gaussian 98 03 B3LYP/6-31G* Gaussian STO-3G RHF Gaussian RHF/STO-3G B3LYP RHF 6-31G* STO-3G Schrödinger Schrödinger s p d Schrödinger Schrödinger Hohenberg-Kohn Kohn-Sham Kohn-Sham [1-3]

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

untitled

untitled C n π/n σ S n π/n v h N tc C S S S S S S S S S S S S S σ v S C σ v C σ v S. O. C / 8 Grou ABCABC EAAEA E AA - A- AE A - N C v EC C σ v σ v σ v 6 C C σ v σ v σ v X X A X - AXB B A B A B B A A C B C A B...

More information

Microsoft Word - 4NMR2.doc

Microsoft Word - 4NMR2.doc 4 NMR 4.1 Zeeman 1, 13 C, 19 F, 31 P NMR 1 13 C 1/2 4.1 7%&'- 89:;'

More information

Frontier Simulation Software for Industrial Science

Frontier Simulation Software for Industrial Science PACS-CS FIRST 2005 2005 2 16 17 2 28 2 17 2 28 3 IT IT H14~H16 CHASE CHASE-3PT Protein Protein-DF ABINIT-MP 17 2 28 4 CMOS Si-CMOS CMOS-LSI CMOS ATP 10nm 17 2 28 5 17 2 28 6 CMOS CMOS-LSI LSI 90nm CMOS

More information

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct 27 6 2 1 2 2 5 3 8 4 13 5 16 6 19 7 23 8 27 N Z = {, ±1, ±2,... }, R =, R + = [, + ), R = [, ], C =. a b = max{a, b}, a b = mi{a, b}, a a, a a. f : X R [a < f < b] = {x X; a < f(x) < b}. X [f] = [f ],

More information

24 10 10 1 2 1.1............................ 2 2 3 3 8 3.1............................ 8 3.2............................ 8 3.3.............................. 11 3.4........................ 12 3.5.........................

More information

0201

0201 2018 10 17 2019 9 19 SI J cal 1mL 1ºC 1999 cal nutrition facts label calories cal kcal 1 cal = 4.184 J heat capacity 1 K 1 J K 1 mol molar heat capacity J K mol (specific heat specific heat capacity) 1

More information

NISTEP REPORT No. 95 ( ) ( ) ( ) ( ) ( ) ( ) 104 397 1022 1050 1173 1674 1738 2679(651cites) 2683 2721 2763 2780 3032 3865 3866 3879 3928 4151 4203 4335 4676 4682 4699 4715 4898 5431

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

QMI13a.dvi

QMI13a.dvi I (2013 (MAEDA, Atsutaka) 25 10 15 [ I I [] ( ) 0. (a) (b) Plank Compton de Broglie Bohr 1. (a) Einstein- de Broglie (b) (c) 1 (d) 2. Schrödinger (a) Schrödinger (b) Schrödinger (c) (d) 3. (a) (b) (c)

More information

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2 6 Feynman (Green ) Feynman 6.1 Green generating functional Z[J] φ 4 L = 1 2 µφ µ φ m 2 φ2 λ 4! φ4 (1) ( 1 S[φ] = d 4 x 2 φkφ λ ) 4! φ4 (2) K = ( 2 + m 2 ) (3) n G (n) (x 1, x 2,..., x n ) = φ(x 1 )φ(x

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

°ÌÁê¿ô³ØII

°ÌÁê¿ô³ØII July 14, 2007 Brouwer f f(x) = x x f(z) = 0 2 f : S 2 R 2 f(x) = f( x) x S 2 3 3 2 - - - 1. X x X U(x) U(x) x U = {U(x) x X} X 1. U(x) A U(x) x 2. A U(x), A B B U(x) 3. A, B U(x) A B U(x) 4. A U(x),

More information

untitled

untitled 4/6 S. Hara@ [.ppt] On Road 4/9 4/6 4/ 5/7 4 Scott 5/4 5 Off Road 5/ 5/8 6 7 S. Hara@ [.ppt] ... 4. [] S. Hara@ [.ppt] : 4 ε s ε a ε b Anti-bonding orbital bonding orbital Anion Cation ε c ε a ε a ε b

More information

MOSFET HiSIM HiSIM2 1

MOSFET HiSIM HiSIM2 1 MOSFET 2007 11 19 HiSIM HiSIM2 1 p/n Junction Shockley - - on-quasi-static - - - Y- HiSIM2 2 Wilson E f E c E g E v Bandgap: E g Fermi Level: E f HiSIM2 3 a Si 1s 2s 2p 3s 3p HiSIM2 4 Fermi-Dirac Distribution

More information

Donald Carl J. Choi, β ( )

Donald Carl J. Choi, β ( ) :: α β γ 200612296 20 10 17 1 3 2 α 3 2.1................................... 3 2.2................................... 4 2.3....................................... 6 2.4.......................................

More information

1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ +

1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ + 1 1.1 21 11 22 10 33 cm 10 29 cm 60 6 8 10 12 cm 1cm 1 1.2 2 1 1 1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

Platypus-QM β ( )

Platypus-QM β ( ) Platypus-QM β (2012.11.12) 1 1 1.1...................................... 1 1.1.1...................................... 1 1.1.2................................... 1 1.1.3..........................................

More information

H AB φ A,1s (r r A )Hφ B,1s (r r B )dr (9) S AB φ A,1s (r r A )φ B,1s (r r B )dr (10) とした (S AA = S BB = 1). なお,H ij は共鳴積分 (resonance integra),s ij は重

H AB φ A,1s (r r A )Hφ B,1s (r r B )dr (9) S AB φ A,1s (r r A )φ B,1s (r r B )dr (10) とした (S AA = S BB = 1). なお,H ij は共鳴積分 (resonance integra),s ij は重 半経験量子計算法 : Tight-binding( 強結合近似 ) 計算の基礎 1. 基礎 Tight-binding 近似 ( 強結合近似, TB 近似あるいは TB 法などとも呼ばれる ) とは, 電子が強く拘束されており隣り合う軌道へ自由に移動できない, とする近似であり, 自由電子近似とは対極にある. 但し, 軌道間はわずかに重なり合っているので, 全く飛び移れないわけではない. Tight-binding

More information

Sgr.A 2 saida@daido-it.a.jp Sgr.A 1 3 1.1 2............................................. 3 1.2.............................. 4 2 1 6 2.1................................. 6 2.2...................................

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

CH, CH2, CH3êLèkä¥éÛó¶.pdf

CH, CH2, CH3êLèkä¥éÛó¶.pdf CH CH CH 3 CH SFG 1 1 SFG 4 6 7 SFG 13 14 3-1 16 4-18 1 4 3 GF 8 4 CH 3 C 3v 31 CH CH c CH c µ c α c α cc a b CH α aa = α bb α aa = r α cc µ c α cc α aa CH r CH 1 ( µ c / r CH ) 0 ( α/ r CH ) 0 β 0 = (

More information

KENZOU Karman) x

KENZOU Karman) x KENZO 8 8 31 8 1 3 4 5 6 Karman) 7 3 8 x 8 1 1.1.............................. 3 1............................................. 5 1.3................................... 5 1.4 /.........................

More information

スライド 1

スライド 1 Matsuura Laboratory SiC SiC 13 2004 10 21 22 H-SiC ( C-SiC HOY Matsuura Laboratory n E C E D ( E F E T Matsuura Laboratory Matsuura Laboratory DLTS Osaka Electro-Communication University Unoped n 3C-SiC

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

反D中間子と核子のエキゾチックな   束縛状態と散乱状態の解析 .... D 1 in collaboration with 1, 2, 1 RCNP 1, KEK 2 . Exotic hadron qqq q q Θ + Λ(1405) etc. uudd s? KN quasi-bound state? . D(B)-N bound state { { D D0 ( cu) B = D ( cd), B = + ( bu) B 0 ( bd) D(B)-N

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

量子情報科学−情報科学の物理限界への挑戦- 2018

量子情報科学−情報科学の物理限界への挑戦- 2018 1 http://qi.mp.es.osaka-u.ac.jp/main 2 0 5000 10000 15000 20000 25000 30000 35000 40000 1945 1947 1949 1951 1953 1955 1957 1959 1961 1963 1965 1967 1969 1971 1973 1975 1977 1979 1981 1983 1985 1987 1989

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

Vol. 12 ( ) Mirifusus Evolution of Radiolarian Mirifusus (Marine Plankton) and Mechanical Optimization of Frame Structure Structual Mechanichal

Vol. 12 ( ) Mirifusus Evolution of Radiolarian Mirifusus (Marine Plankton) and Mechanical Optimization of Frame Structure Structual Mechanichal Vol. (009 8 ) Mirifusus Evolution of Radiolarian Mirifusus (Marine Plankton) and Mechanical Optimization of Frame Structure Structual Mechanichal Verification of Succession of Its Skeleton Shape Takashi

More information

鉄鋼協会プレゼン

鉄鋼協会プレゼン NN :~:, 8 Nov., Adaptive H Control for Linear Slider with Friction Compensation positioning mechanism moving table stand manipulator Point to Point Control [G] Continuous Path Control ground Fig. Positoining

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

11) 13) 11),12) 13) Y c Z c Image plane Y m iy O m Z m Marker coordinate system T, d X m f O c X c Camera coordinate system 1 Coordinates and problem

11) 13) 11),12) 13) Y c Z c Image plane Y m iy O m Z m Marker coordinate system T, d X m f O c X c Camera coordinate system 1 Coordinates and problem 1 1 1 Posture Esimation by Using 2-D Fourier Transform Yuya Ono, 1 Yoshio Iwai 1 and Hiroshi Ishiguro 1 Recently, research fields of augmented reality and robot navigation are actively investigated. Estimating

More information

: (EQS) /EQUATIONS V1 = 30*V F1 + E1; V2 = 25*V *F1 + E2; V3 = 16*V *F1 + E3; V4 = 10*V F2 + E4; V5 = 19*V99

: (EQS) /EQUATIONS V1 = 30*V F1 + E1; V2 = 25*V *F1 + E2; V3 = 16*V *F1 + E3; V4 = 10*V F2 + E4; V5 = 19*V99 218 6 219 6.11: (EQS) /EQUATIONS V1 = 30*V999 + 1F1 + E1; V2 = 25*V999 +.54*F1 + E2; V3 = 16*V999 + 1.46*F1 + E3; V4 = 10*V999 + 1F2 + E4; V5 = 19*V999 + 1.29*F2 + E5; V6 = 17*V999 + 2.22*F2 + E6; CALIS.

More information

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices Grand Unification M.Dine, Supersymmetry And String Theory: Beyond the Standard Model 6 2009 2 24 by Standard Model Coupling constant θ-parameter 8 Charge quantization. hypercharge charge Gauge group. simple

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 1 2011.9.30 マルチスケールモデリングによる材料科学 研究会 Fe-Ni-S 鋼の粒界脆化機構 の第一原理計算 新日本製鐵 ( 株 ) 先端技術研究所 澤田英明 2 鉄鋼において粒界偏析が係わる事象 割れ スラブ表面割れ耐熱鋼再熱脆化 IF 鋼二次加工脆性 変態制御 Solute drag 効果 ( 粒成長抑制 ) 変態核生成抑制 ( 変態抑制 ) 強度 靭性 焼入れ性 3 粒界偏析に対する当社の取り組み

More information

薄膜結晶成長の基礎2.dvi

薄膜結晶成長の基礎2.dvi 2 464-8602 1 2 2 2 N ΔμN ( N 2/3 ) N - (seed) (nucleation) 1.4 2 2.1 1 Makio Uwaha. E-mail:uwaha@nagoya-u.jp; http://slab.phys.nagoya-u.ac.jp/uwaha/ 2 [1] [2] [3](e) 3 2.1: [1] 2.1 ( ) 1 (cluster) ( N

More information

2

2 DX Simulator Copyright 2001-2002 Yamaha Corporation. All rights reserved. Version 1.2, 2002 YAMAHA CORPORATION 2 z x z x c 3 z Windows Macintosh Windows Macintosh x 4 z Windows Macintosh Windows Macintosh

More information

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x University of Hyogo 8 8 1 d x(t) =f(t, x(t)), dt (1) x(t 0 ) =x 0 () t n = t 0 + n t x x n n x n x 0 x i i = 0,..., n 1 x n x(t) 1 1.1 1 1 1 0 θ 1 θ x n x n 1 t = θf(t n 1, x n 1 ) + (1 θ)f(t n, x n )

More information

講 座 熱電研究のための第一原理計算入門 第2回 バンド計算から得られる情報 桂 1 はじめに ゆかり 東京大学 が独立にふるまうようになる 結晶構造を定義する際に 前回は 第一原理バンド計算の計算原理に続いて 波 アップスピンの原子 ダウンスピンの原子をそれぞれ指 のように自由な電子が 元素の個性

講 座 熱電研究のための第一原理計算入門 第2回 バンド計算から得られる情報 桂 1 はじめに ゆかり 東京大学 が独立にふるまうようになる 結晶構造を定義する際に 前回は 第一原理バンド計算の計算原理に続いて 波 アップスピンの原子 ダウンスピンの原子をそれぞれ指 のように自由な電子が 元素の個性 講 座 熱電研究のための第一原理計算入門 第2回 バンド計算から得られる情報 桂 1 はじめに ゆかり 東京大学 が独立にふるまうようになる 結晶構造を定義する際に 前回は 第一原理バンド計算の計算原理に続いて 波 アップスピンの原子 ダウンスピンの原子をそれぞれ指 のように自由な電子が 元素の個性のない一様な周期的 定することで 強磁性体や反強磁性体など さまざまな ポテンシャルに置かれたときに

More information

ohpr.dvi

ohpr.dvi 2003/12/04 TASK PAF A. Fukuyama et al., Comp. Phys. Rep. 4(1986) 137 A. Fukuyama et al., Nucl. Fusion 26(1986) 151 TASK/WM MHD ψ θ ϕ ψ θ e 1 = ψ, e 2 = θ, e 3 = ϕ ϕ E = E 1 e 1 + E 2 e 2 + E 3 e 3 J :

More information

.I.v e pmd

.I.v e pmd Structural Design for Curved Panels by Laminated Composite Materials (Identification of Lamination Parameters Using Modal Testing Method ) Tetsuya NARISAWA, Shohei IWATA Abstract - Using a modal testing

More information

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G 8 ( ) 8. 1 ( ) F F = F I (N I, T, V I ) + F II (N II, T, V II ) (8.1) F δf = δn I [ ( FI (N I ) N I 8. 1 111 ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0

More information