2,200 WEB * Ξ ( ) η ( ) DC 1.5 i

Size: px
Start display at page:

Download "2,200 WEB * Ξ ( ) η ( ) DC 1.5 i"

Transcription

1 mailto:

2 2,200 WEB * Ξ ( ) η ( ) DC 1.5 i

3 H * * * * ii

4 iii * *

5 1 1.8 H One Point 1

6 V N V/N v =(v x,v y,v z ) i v i i N i N i /N i N i = N (1.1) i dv x dv y dv z N i V = f(v x,v y,v z )dv x dv y dv z (1.2) f(v x,v y,v z )dv x dv y dv z = n (= N/V ) (1.3) f(v x,v y,v z ) v = v = v x2 + v y2 + v z2 1.3 V N

7 x- da dt v i da v ix dt v i 1 v i N i /V ν ( ) νdadt = v ix >0 N i V v ix dt da (1.4) x- v x > 0 x 2 ν = 1 2 i N i V v ix = N 2V i N i N v ix = n 2 v x (1.5) n = N/V B = i N i N B(v i) (1.6) 2 v x = v y = v z = 1 2 v (1.7) ν = n 4 v (1.8) 1 v ix dt 2 v z = v 4π π 0 cos θ 2π sin θ dθ = v π/2 0 cos θ sin θ dθ = v 1 0 sin θ dsinθ = v 2

8 4 1 v i p i 2p ix P da dt (P da) dt = = N V v ix >0 i 2p ix N i V v ix dt da N i N p ixv ix dt da = n p x v x dt da (1.9) 2 p x v x = p y v y = p z v z = 1 3 p v (1.10) P = n 3 p v (1.11) m p = mv ɛ = mv 2 /2 ɛ ( ) 3 P = 1 V p v =2ɛ (1.12) u = U/V = Nɛ/V = nɛ P = 2 3 u (1.13) N N A RT = N V k = R/N A R N A T = nkt (1.14) u = 3 2 nkt U = 3 2 NkT (1.15) (1.13) H = U + PV = 5 3 U (1.16) 3 ɛ = cp P = u/3

9 C V = 3 2 R, C P = 5 2 R, γ= C P /C V =5/3 (1.17) γ ( ) 1 2 mv x 2 = 1 2 mv y 2 = 1 2 mv z 2 = mv2 = 1 kt (1.18) 2 kt/2 2 C V =5R/2 1 (300K) v 2 480m/s 1.4 a M Z M 2a 1.3 ν 4π(2a) 2 (1.8) M 4 2 v Z =4 2πa 2 nv (4πa 2 ) (1.20) 4 v v 1 V =(v +v 1 )/2 u = v 1 v mv 2 +mv 1 2 = MV 2 + µu 2 M =2m, µ = m/2 1.6 exp( mv 2 /2kT) exp( mv 1 2 /2kT) d 3 vd 3 v 1 =exp( MV 2 /2kT) exp( µu 2 /2kT) d 3 V d 3 u (1.19) u 1.3 u = 8kT/πµ = 16kT/πm = 2 v 2 (v 1 v) 2 = v 12 2v 1 v + v 2 =2v 2

10 6 1 Z Z 1 λ ( ) v λ = vz 1 = 1 4 2πa 2 n (1.21) V =22.4l N A = n = N A /V m 3, n 1/ m a m m/s λ m, Z s 1, T P A ν n = P/kT v 1.5 A

11 w v ix (> 0) (v ix +2w) w v ix 1 2 m(v ix +2w) mv ix 2 2mwv ix =2wp ix (1.22) v ix V/A dt ( Z 1 ) v ix dt 2V/A 5 dt v i dɛ i =2wp ix v ixdt 2V/A = wadt V p ix v ix (1.23) wadt dv d W = i ( ) ( ) N i n N i dɛ i = i V p ixv ix dv = 3 p v dv (1.24) (1.11) d W = P dv U = i N i ɛ i du = i ɛ i dn i + i N i dɛ i (1.25) du =d W +d Q d Q = i ɛ i dn i (1.26) 5

12 i ɛ i {N i } N 1 N 1 2 N 2 G = N! N 1! N 2!... (1.27) {N i } G

13 log G (Stirling) 6 log G =logn! i log N i!=n(log N 1) i N i (log N i 1) (1.28) 2 N = i N i (1.29) E = i N i ɛ i (1.30) δ log G = i [log N i ] δn i =0 {δn i } 2 δn = i δn i =0, δe = i ɛ i δn i =0 2 α β δ log G + αδn βδe = i [ log N i + α βɛ i ] δn i =0 0 log G log N i = α βɛ i N i = A exp( βɛ i ) (A =e α ) (1.31) ɛ i = mv 2 /2 N i (1.2) [ ] f(v x,v y,v z )dv x dv y dv z = a exp βmv2 dv x dv y dv z (1.32) 2 A a a β (1.3) ɛ = a n mv 2 2 exp [ 6 N ] βmv2 dv x dv y dv z = kt log N! N(log N 1) N 10 log G N

14 f(v x,v y,v z )dv x dv y dv z = n ( m ) 3/2 [ mv 2 ] exp dvx dv y dv z (1.33) 2πkT 2kT ( 1.8 H v v +dv F (v)dv dv x dv y dv z =4πv 2 dv ( m F (v)dv =4πn 2πkT ) 3/2 v 2 exp [ mv2 ] dv (1.34) 2kT v v = 1 n 0 vf(v)dv = 8kT πm (1.35) v 2 v 2 = 3kT/m 3π v 2 = 8 v v 7 n =0 1 x 2n (2n 1) π e ax2 dx = 2 n+1 a n a 0 0 x 2n+1 e ax2 dx = n! 2a n+1

15 (v v) 2 = v 2 (v) v (1.36) n F (x 1,x 2,..., x n ) r (x 1 0,x 2 0,..., x n 0 ) G k (x 1,x 2,..., x n )=0 (k =1, 2,.., r) (1.37) δg k = n i=1 G k x i δx i =0 (k =1, 2,..., r) (1.38) δf = n i=1 F x i δx i = 0 (1.39) n {δx i } r 1 (1.38) r {δx j }(j = n r +1,..., n) (n r) {δx i } (i =1, 2,..., n r) δf = n r i=1 [ F + x i n j=n r+1 F x j ] x j δx i = 0 (1.40) x i (n r) {δx i } (i =1, 2,..., n r) (1.40) =0 r {λ k } (k =1, 2,..., r) (n r)+r = n δf r k=1 λ k δg k = n i=1 [ F x i r k=1 ] G k λ k δx i = 0 (1.41) x i n {δx i } (i =1, 2,.., n) F x i r k=1 λ k G k x i =0 (i =1, 2,..., n) (1.42) n {x i } {λ k } x i 0 (λ 1,λ 2,..., λ r ) (1.43) r (1.37) r {λ k } (1.43) F n {x i }

16 12 1 G = ax + by + cz 1=0 F = x 2 + y 2 + z 2 δf λδg =(2x λa)δx +(2y λb)δy +(2z λc)δz =0 x = λa/2, y = λb/2, z = λc/2, G =0 G = λ(a 2 + b 2 + c 2 )/2 1=0 λ =2/(a 2 + b 2 + c 2 ) x 0 = a/(a 2 + b 2 + c 2 ), y 0 = b/(a 2 + b 2 + c 2 ), z 0 = c/(a 2 + b 2 + c 2 ) F F min =1/(a 2 + b 2 + c 2 ) φ(r) ( ) ɛ i = 1 2 mv2 + φ(r) (1.44) f(r, v) dxdydzdv x dv y dv z ( ) m 3/2 [ = a exp 1 ( 1 2πkT kt 2 mv2 + φ(r))] dxdydzdv x dv y dv z (1.45) - (1.45) T r v n(r) =n 0 exp [ φ(r) ] kt (1.46) a φ =0 n 0 n(z) =n(0) exp [ mg kt z]

17 1.8. H * 13 n P = nkt M R mg/kt = Mg/RT ω ( ) φ(r) = mω 2 r 2 /2 3 z z +dz RT/Mg m 8500m 1.8 H * v r f(r, v,t) f(r, v,t) t r, v df dt = f t + f dx x dt + f dy y dt + f dz z dt + f dv x v x dt + f dv y v y dt + f dv z v z dt = f t + ṙ f + v v f (1.47) v =( / x, / y, / z) v =( / v x, / v y, / v z ) ṙ = v K v = K/m 8 ( t + v + K ) ( ) f m v f = (1.48) t µ f/ t coll.

18 M S v v 1 v v 1 v v v + v 1 = v + v 1, v2 + v 2 1 = v 2 + v 1 2 (1.49) v v v, v 1 a ω ( ) (v, v 1, ω) S[(v, v 1, ω) (v, v 1 )] S v M ω v 1 (1.4) M ω dω M 2a da =(2a) 2 dω dt v 1 v (1.4) x- ω v M S v 1 = f(v 1 ) (v 1 v) ω dt (2a) 2 dω (v 1 v) ω < 0 r f(r, v 1,t) f(v 1 ) r S v f(v) { 4a 2 (v C(S) = 1 v) ω (v 1 v) ω < 0 0 (v 1 v) ω > 0

19 1.8. H * S S S ω 9 v S [(v, v 1, ω) (v, v 1)] ( ) f = dv 1 dω C(S)f(v)f(v 1 )+ dv 1 dω C(S )f(v )f(v 1 t ) coll. S S C(S) = C(S ) (1.50) M v 1 v v 1 v ω (v 1 v) ω = (v 1 v ) ω S S[( v, v 1, ω) ( v, v 1)] ω C(S) = C(S) x, y, z S S (1.50) (1.48) ( ) f = dv 1 dω C(S) [ f(v)f(v 1 ) f(v )f(v 1 t ) ] (1.51) coll. v f 9 σ I Iσ C(S) dω 4πa 2 v 1 v σ =4πa 2

20 (1.33) (1.49) f(v)f(v 1 )=f(v )f(v 1) (1.52) H H H 10 H(t) = dv f(v,t)logf(v,t) (1.53) dh dt 0 (1.52) dh/dt =0 (1.52) H H H H f 0 = f(v,t), f 1 = f(v 1,t), f 0 = f(v,t), f 1 = f(v 1,t) 10 e η

21 1.8. H * 17 dv df 0 dt =0 dh dt = dv df 0 dt log f 0 0 (1.51) ( ) dh = C(S) [f 0 f 1 f 0 f 1 ] logf 0 dt coll. S S 0 1 C(S) [f 0 f 1 f 0 f 1 ] logf 0 = C(S) [f 1 f 0 f 1 f 0 ] logf 1 = S C(S )[f 0 f 1 f 0 f 1 ] logf 0 = S S C(S )[f 1 f 0 f 1 f 0 ] logf 1 S (1.50) S S 4 4 log f 0 +logf 1 =logf 0 f 1 ( ) dh = 1 C(S) [f 0 f 1 f 0 f 1 ] [log f 0 f 1 log f 0 f 1 ], dt coll. 4 S (x y)(log x log y) 0 x = y dh/dt 0 (1.49) (v 1 v) 2 = 2(v v 2 ) (v 1 + v) 2 = 2(v 12 + v 2 ) (v 1 + v ) 2 =(v 1 v ) 2 (1.54) ω c v 1 v 1 = cω = (v v) (1.55) (v 1 v ) (v 1 v) =2cω 2cω (1.54) (v 1 v ) cω =(v 1 v)+cω, 2c (v 1 v ) ω =2c (v 1 v) ω (v 1 v ) ω = (v 1 v) ω (1.55) ω

22 2 N 6N 2.1 N 3N 3N 6N 3N 1 {q 1,q 2,q 3,,q 3N } {p 1,p 2,p 3,,p 3N } 6N (q 1,q 2,q 3,,q 3N,p 1,p 2,p 3,,p 3N ) (ˆq, ˆp) 6N Γ ( ) 6 µ ( ) 2 Γ Φ(q 1,q 2,q 3,,q 3N ) ( ) H(ˆq, ˆp) = 3N i=1 p i 2 2m + Φ(q 1,q 2,q 3,,q 3N ) (2.1) (ˆq, ˆp) H(ˆq, ˆp) H(ˆq, ˆp) = constant (2.2) 6N Γ ṗ i = Φ q i, p i = m q i (i =1, 2,, 3N) 1 2 q i p i (2.3) 2 Γ µ Gas molecule 18

23 (2.1) q i = H p i, ṗ i = H q i (2.3) Γ 6N ˆv =(ˆ q,ˆṗ) (2.3) 2.2 Γ 1 {ˆq(t), ˆp(t)} Q(ˆq, ˆp) Q τ = 1 τ τ 0 Q(ˆq(t), ˆp(t)) dt (2.4) τ ( ) τ τ = 1 τ Q = lim Q(ˆq(t), ˆp(t)) dt (2.5) τ τ 0

24 20 2 τ Γ dˆqdˆp =dq 1 dq 2 dq 3 dq 3N dp 1 dp 2 dp 3 dp 3N ρ(ˆq, ˆp)dˆqdˆp (2.5) Q = Q(ˆq, ˆp)ρ(ˆq, ˆp) dˆqdˆp (2.6) Q = Q (2.7) N 2.3 (2.6)

25 ρ(ˆq, ˆp) Γ Γ 6N ρ(ˆq, ˆp) ( ) 3 3 { ρ t = ˆ ρˆv 3N (ρ qi ) = + (ρṗ } i) (2.8) q i p i ˆ 3 div i=1 a = a x x + a y y + a z z = i=x,y,z 6N (2.3) 6N ˆv =(ˆ q, ˆṗ) ˆ ˆv = 3N i=1 { qi + ṗ } i = q i p i 3N i=1 a i x i { H } H =0 (2.9) q i p i p i q i 4 (2.8) 5 ρ t = 3N i=1 ( ρ q i + ρ ) ṗ i q i p i = 3N i=1 ( ρ H ρ ) H q i p i p i q i (2.10) Γ ρ/ t Γ Γ ˆq(t), ˆp(t) t dρ dt = ρ 3N ( t + ρ q i + ρ ) ṗ i q i p i (2.10) i=1 dρ dt = 0 (2.11) Q(ˆq, ˆp)

26 Γ Γ Γ ρ t =0 ρ(ˆq, ˆp) H(ˆq, ˆp) (ˆq, ˆp) ρ = ρ 0 (H(ˆq, ˆp) ) ρ = dρ 0 H ρ, = dρ 0 H q i dh q i p i dh p i (2.10) ρ/ t =0 2.4

27 H(ˆq, ˆp) (ˆq, ˆp) ρ 0 (H(ˆq, ˆp)) E Γ E E + E constant E H(ˆq, ˆp) E + E ρ 0 (H(ˆq, ˆp)) = (2.12) / ˆ H(ˆq, ˆp) ˆ 6N { ˆ H 3N ( ) 2 H 3N ( ) } 1/2 2 H = + q i p i i=1 i=1

28 /2 6 1/ (2.7) 2.6 * 2.3 Γ T T (t 1,t 2 )=T(t 1,t)T(t, t 2 ) 2

29 2.6. * S={(x, y); 0 <x 1, 0 <y 1} S (2x, y/2) 0 <x 1 2 F (x, y) = (2.13) 1 (2x 1, (y +1)/2) <x Γ Γ Γ

30 26 2 ρ(x, y, z, t) v(x, y, z, t) j = ρv ρ j dx dy dz x- dydz x ρdxdydz t ρ(x, y, z, t)dxdydz = [j x(x, y, z, t) j x (x +dx, y, z, t)]dydz + [j y (x, y, z, t) j y (x, y +dy,z,t)]dzdx + [j z (x, y, z, t) j z (x, y, z +dz,t)]dxdy = j x x dx dydz j y y dy dzdx j z dz dxdy z (2.14) ρ t = j x x j y y j z z ( / x, / y, / z) = ( x, y, ) z (2.15) (2.16) a b = a x b x + a y b y + a z b z (2.17) ρ t = j = ρv (2.18) div ρ t = div(ρv) (2.19) ρv =( ρ) v + ρ( v) (2.20) grad ρ =gradρ (2.21)

31 3 - Γ Γ Γ Γ µ µ i =1, 2, 3, i i g i 1 i N i {N i } {N i } N N i N i N!/N 1! N 2! N 3! N i g i g N i i G({N i })= N! N 1! N 2! N 3! gn 1 1 g N 2 2 g N 3 3 (3.1) E W i 1 ɛ i 27

32 28 3 N i = N, N i ɛ i = E (3.2) i i {N i } (3.1) W = G({Ni }) (3.3) {N i } E W N (3.3) G (1 p.9 ) (3.1) 1 log G N(log N 1) + i N i (log g i log N i + 1) (3.4) (3.2) {N i } α β δ log G + αδ( N i ) βδ( N i ɛ i )=0 i i [log g i log N i + α βɛ i ] δn i =0 i log g i log N i + α βɛ i =0 N i = g i A e βɛ i A =e α (3.5) A β (3.5) (3.2) β N (1) N (2) 2 (3.2) (1) (2) (1) Ni = N (1) (2), Ni = N (2) (1), Ni ɛ i + (2) Nj ɛ j = E j i i i 1 N i /N i p i 4 log G N i log(n i /N g i ) N 1 log G p i log(p i /g i )= log(p i /g i ) i i

33 β 2 β 2 α µ dxdydzdp x dp y dp z i g i φ(r) ɛ i = p2 2m + φ(r) (3.5) β =1/kT A µ n G(n) W G(n) = N! n!(n n)!, N W = G(n) =2 N (3.6) g 1 = g 2 (= g) g N (3.6) G max n = N/2 2 n=0 log G max N(log N 1) 2 N 2 (log N 2 1) = N log 2 = log W G max W log M! M(log M 1) + 1 log 2πM 2 log G max log W =1 ( log N N ) 2 N n =(N 1)/2 n =(N +1)/2 N

34 N N log G max log W 2 1 n n P (n) = G(n) W = 1 N! 2 N n!(n n)! f(s) = N n=0 P (n)s n = 1 (1 + s)n 2N N n = np (n) =f (1) = N 2 n=0 N n(n 1) = n(n 1)P (n) =f (1) = n=0 n 2 = n(n 1) + n = N(N +1) 4 N(N 1) 4 (n n) 2 = n 2 n 2 = N 4, (n n) 2 = N 2

35 x = n/n x = 1 (x 2, (n n) 2 x) 2 = = 1 N 2 N N 3.1 N 1/2 x p(x) x 1/2 log p(x) p(x)dx = 2N π exp [ 2N ( x 1 ) ] 2 dx 2 ( ) µ 2 N i N 3 / log G max log W =1 (3.8) N N A = W = 52! G = (26!) 2 G/W = (26!) 2 /52! = (3.7) 3.3 log G max (3.5) A (3.2) / A = N g i e βɛ i G max / N (max) i = Ng i e βɛ i g j e βɛ j (3.9) j 3 G max /W N i

36 32 3 (max) (3.1) log G max = N(log N 1) + i N i [ log N + βɛ i +log( j g j e βɛ j )+1] = N log( j g j e βɛ j )+βe 1 Nd [log( j g j e βɛ j )] = N j / (ɛ j dβ + βdɛ j )g j e βɛ j g j e βɛ j j = ( j N j ɛ j )dβ β j N j dɛ j = Edβ β j N j dɛ j 4 d(log G max ) = Edβ β j N j dɛ j +d(βe) = βde β j N j dɛ j 2 j N j dɛ j 1.5 d W de = T ds +d W d(log G max )=β(de d W )=βtds = k 1 ds S = k log G max (3.10) N (3.8) (3.10) S = k log W W (3.11) W (3.11) S 4 g j U E

37 (3.10) (3.11) G G 5 G S G max W ( ) 2 W W S W 2 W W (1) W (2) W = W (1) W (2) S S (1) S (2) S = S (1) + S (2) 5 log G (3.4) 1 8 H (1.53) dv g i f(v i )=N i /g i p.28 Γ ρ(ˆq, ˆp, t) H H(t) = ρ(ˆq, ˆp, t)logρ(ˆq, ˆp, t) dˆqdˆp ρ(ˆq, ˆp, t) (2.10) dh/dt =0 H

38 34 3 S = k log W k 3.4 S W (3.11) W E V (3.11) S E V S(E,V ) E U ( ) S E V = 1 ( ) S T, = P V E T T P H = E + PV F = E TS G = F + PV V N E W µ 1 h 3 h µ dxdydzdp x dp y dp z 1 g i = dxdydzdp xdp y dp z h 3 1 q p = h µ ( ) H(ˆq, ˆp) E E + E N W (E) = 1 N! E H(ˆq, ˆp) E+ E dˆq dˆp h 3N 1/N! H(ˆq, ˆp) = 3N i=1 p i 2 2m

39 V p i = 2ms i W (E) = ( ) 3N 2m V N h N! E s 2 1 +s s 2 3N E+ E ds 1 ds 2 ds 3N = ( ) 3N 2m V N h N! 2π 3N/2 ( E) 3N 1 Γ(3N/2) E 2 E (3.12) 3 3N E E E + E Γ(x) x 0 Γ(x +1)=x! x log Γ(x +1) x(log x 1) (3.12) N log W = N (log V N log E ) N + constant π m h constant E E S(E,V ) = k log W = Nk (log V N log E ) N + constant (3.13) ( ) 1 S T = E V = 3 ( ) Nk 2 E, P S T = = Nk V E V E = 3 2 NkT, PV = NkT Nk = R (3.10) (3.11) k 2 (3.12) W E E 3N (2/3N) π 3N/2 ( E) 3N / Γ(3N/2) Ω(E) ( ) S = k log Ω

40 36 3 h 3N 1/N! h 3N (3.13) ( ) 1 V/N E/N N V/N N W 1/N! N N! N N! 1 2 generic phase specific phase Γ N! - N! 3 N i ( i N i = N) V N S 1/N! S N! N 1!N 2!... log N! i log N i! i N i log(n/n i ) x i = N i /N S = Nk i x i log x i

41 4 4.1 I T II I II I II I Γ i i E i i N G i I II I II E 0 W I+II W I+II (E 0 )= i G i W II (E 0 E i ) (4.1) W II II I II (4.1) I i P i = G i W II (E 0 E i ) (4.2) W I+II (E 0 ) II S II (E) (3.11) W II (E 0 E i )=exp[s II (E 0 E i )/k] (4.3) I II E 0 S II (E 0 E i ) E i S II (E 0 E i ) = S II (E 0 ) E i S II 37 E + E2 i 2 2 S II E 2 +

42 38 4 ( ) S E V = 1 ( 2 ) T, S E 2 V = S II (E 0 ) E i T = [ ( ) 1 E T V 1+ E ] i + 2TCV II = 1 ( ) T T 2 E V = 1 T 2 C V (4.4) II CV II (4.4) [] 2 (4.3) I (4.2) P i = 1 ( Z G i exp E ) i (4.5) kt Z exp( E i /kt ) (4.5) ɛ i (4.5) E i N 1 I II G i = g i = dxdydzdp xdp y dp z h 3 E i = ɛ i P i = N i /N (4.5) - 1 N N 1 Γ µ - N i (3.5) (4.5) G p.28 (3.4) log G = N i P i log(p i /G i )= N log(p i /G i ) (N )

43 P i (4.5) log G (3.10) 1 1 S = N 1 k log G max = k log(p i /G i ), P i = Z 1 G i exp( E i /kt ) (4.6) (4.5) Z i P i =1 Z = i G i e βe i ( β =1/kT ) (4.7) E = i P i E i = 1 Z G i E i e βe i = 1 i Z Z β = log Z β (4.8) Z Z 2 U 4.3 Z U = E (4.8) log Z log(p i /G i )= log Z E i /kt (4.6) S = E T + k log Z E = U S =(U F )/T F = kt log Z (4.9) 1 P i /G i i G i (4.6) W 1/W S = k log W 2

44 40 4 Γ (4.5) 3.3 d(log G max ) (4.7) (4.7) d(log Z) = Z 1 i G i (E i dβ + βde i )e βe i = Edβ + β i P i de i (4.10) 2 d W ( β) F = U TS ( ) F d T ( ) U = d T S ( ) 1 = Ud + 1 (du T ds) T T ( ) 1 = Ud + 1 T T d W U = E β =1/kT (4.9) 3.3 (4.10) 2 V ( ) log Z = βp (4.11) V 19 ) T T V Z(T,V ) (4.7) F (T,V ) U ( ) F T V ( ) F U = F + TS = F T T V = S, ( ) F V T ( ) = T 2 F T T V = P = ( ) F T 1 T V = log Z β (4.8) U F -

45 T V N U P 3.4 Γ G i (4.7) Z = 1 N! exp[ βh(ˆq, ˆp)] dˆqdˆp h 3N (4.12) N! 3.4 H = ˆq V N 3N i=1 p 2 i /2m Z = V N ( ) 3N e p2 /2mkT V N ( ) 3N/2 2πmkT dp = h 3N N! N! h 2 Γ 1 p.9 F (T,V )= kt log Z = NkT (log V N + 3 ) 2 log T + constant ( ) F S = T V = F T + 3 ( ) F 2 Nk, P = V T U = log Z β = 3 NkT = F + TS 2 = NkT V = nkt 4.3 E E +de 3 G(E)dE G(E)dE = G i E E i E+dE E E +de P (E)dE P (E)dE = Z 1 G(E) e βe de (4.13) Z = G(E) e βe de (4.14) W (E) W (E) = G(E) E Ω(E) G(E) =dω/de G(E) (4.14) G(E)

46 E Z (4.8) E U T C V β =1/kT C V = ( ) E T V [ ] 1 = 1 kt 2 ( 1 β Z ) Z = ( Z 1 β kt 2 Z β 2 Z ) 2 Z β 1 2 Z Z β 2 = 1 Z G(E)E 2 e βe de = P (E)E 2 de = E 2 2 (4.8) (E) 2 C V = 1 kt 2 [E2 (E) 2 ]= 1 kt 2 (E E)2 (4.15) E E 4 (4.15) (E E) 2 E kt 1 C V E N (4.15) E = (E E) 2 N E E 1 N N E E (4.13) E e βe G(E) 4 T V

47 E E + E N (4.1) (4.4) W S N (4.4) S II (E 0 E i,n 0 N i ) S II (E 0,N 0 ) E i T + µn i T (4.16) µ 1 5 ( ) S = µ N T E,V (4.13) E E +de N P (E,N)dE = Ξ 1 G N (E) e β(e µn) de (4.17) Ξ ( ) α = βµ 6 Ξ(V,β,α) = G N (E)e β(e µn) de = N=0 e αn Z N (T,V ) (4.18) N=0 5 1 µ =( G/ N) T,P dg = SdT + V dp + µdn G = U TS + PV (U, V, N) ds = 1 T du + P T dv µ T dn 6 β βµ

48 44 4 N G Z G N Z N (4.17) (4.18) N Q(N) Q(N) = P (E,N)dE = Ξ 1 e αn Z N (T,V ) (4.19) E N ( E = Q(N) 1 ) Z N = 1 ( ) ( ) e αn ZN log Ξ = Z N β Ξ β β N=0 N=0 N = Q(N)N = 1 Ne αn Z N = 1 N=0 Ξ N=0 Ξ V ( ) Ξ = α V, β ( ) log Ξ (4.11) N ( ) kt log ZN P N = V T = kt ( ) ZN Z N V T α V, β V, α (4.20) (4.21) (4.19) Q(N) P = kt Ξ N=0 e αn ( ZN V ) T = kt Ξ ( ) Ξ = V α,β ( ) kt log Ξ V α, β (4.22) kt log Ξ F = kt log Z J J = kt log Ξ = PV (4.23) dj = SdT P dv Ndµ (4.24) (4.23) dj = P dv V dp (4.24) N G = Nµ ( G/ N) T,P = µ - SdT + V dp Ndµ = 0 (4.25) κ T ( ) 4.3 (4.21) ( ) N α V,β = 2 log Ξ α 2 = 1 Ξ 2 ( ) 2 Ξ 1 α 2 Ξ Ξ α = N 2 (N) 2 = (N N) 2 (4.26)

49 α = βµ ( ) ( ) N N = kt α V,β µ V,T ( ) N µ V,T = N 2 κ T V, κ T = 1 V ( ) V P N,T (4.27) (N N) 2 N = nkt κ T (4.28) n = N/V nkt P N 1 N = (N N) 2 N N 1 N N 1 N N (4.23) (4.6) (4.17) S = k log [P (E,N)dE/G N (E)dE] = (kt log Ξ µn + E)/T E = U Nµ = G kt log Ξ = G U + TS = PV (4.22) log Ξ V V V 2 V 1 V 2 N 1 N N 1 N 1 =0, 1, 2,..., N 3.4 p.36 2 (4.18) G N (E) G N (E)dE = N N 1 =0 de 1 G (1) N 1 (E 1 ) G (2) N N 1 (E E 1 )d(e E 1 ) Z N (T,V 1 + V 2 ) = = = de G N (E)e βe N N 1 =0 N N 1 =0 de 1 G (1) N 1 (E 1 )e βe 1 de G (2) N N 1 (E E 1 )e β(e E 1) Z N1 (T,V 1 )Z N N1 (T,V 2 )

50 46 4 (4.18) Ξ(V 1 + V 2,β,α) = N=0 N 1 =0 e αn N N 1 =0 Z N1 (T,V 1 )Z N N1 (T,V 2 ) = e αn 1 Z N1 (T,V 1 )e α(n N 1) Z N N1 (T,V 2 ) N=N 1 = Ξ(V 1,β,α) Ξ(V 2,β,α) log Ξ V log Ξ(V 1 + V 2,β,α)=logΞ(V 1,β,α)+logΞ(V 2,β,α) (4.24) J = β 1 log Ξ (4.20) (4.22) [ log Ξ dj = β 2 1 ( ) ] log Ξ dβ 1 ( ) log Ξ dα 1 ( ) log Ξ dv β β α,v β α β,v β V α,β = 1 β (PV + E)dβ N dβ (µdβ + βdµ) P dv ( β β = dt, dα = µdβ + βdµ) T E + PV µn = dt Ndµ P dv = SdT Ndµ P dv T (4.27) V ( ) N = V µ V,T ( µ ) N V V,T = V ( ) n µ V,T - (4.25) µ (T,P) n = N/V (T,P) (T,µ) n V N ( N µ ) V,T = V ( n µ ) V,T = V ( ) n µ N,T = N V ( ) V µ N,T T µ P - (4.25) ( P/ µ) T = N/V ( ) ( ) ( ) V V P = = Nκ T µ N,T P N,T µ N,T (4.27) 1 T -P Y (T,P,N)= 0 e PV/kT Z N (T,V )dv, G(T,P,N)= kt log Y (T,P,N) ktκ T = (V V ) 2 /V (4.29) 2 T,P T,µ N V V V N = n(t,p)v N N = n(t,p) V N/N = V/V κ T 2 (4.28) (4.29)

51 θ ( ) ϕ ( ) 1 H 1 = p x 2 + p y 2 + p z 2 2M + p θ 2 + p ϕ 2 / sin 2 θ 2I (5.1) 1 M 2 1 I θ ϕ p θ = I θ, p ϕ = I ϕ sin 2 θ 1 Z 1 = V h 5 dθdϕ Z N = 1 N! Z 1 N dp x dp y dp z dp θ dp ϕ e H 1/kT (5.2) N! 3 H E N = 5 kt (5.3) 2 (5.1) p 2 ϕ sin2 θ p ϕ p.9 αs 2 / /2 ds e 2 e αs2 αs2 /2 ds = 1 (5.4)

52 G 2 H = f i=1 s i 1 2 α is i α i s i2 = 1 2 kt E N = f 2 kt (5.5) 2 f =5 (5.3) s i 2 1 kt f C V = 1 2 N Afk = 1 2 fr, C P = C V + R = 1 f +2 (f +2)R, γ= 2 f (5.6) γ ( ) γ = C P /C V 5.2 (5.1) 2

53 ɛ>kt q i p i H(ˆq, ˆp) lim H = lim H = (5.7) q i p i q i H q i = kt, p i H p i = kt (5.8) q i X i X i = H/ q i f q i X i = fkt (= 2 ) (5.9) i=1 q i X i Z H q i = 1 H q i e βh dˆqdˆp = 1 e βh q i dˆqdˆp q i Z q i βz q i = 1 [ e βh (qi e βh ] ) dˆqdˆp dˆqdˆp = 1 βz q i β (5.10) 1 Z 2 (5.7) q i 0 p i 1 cx 2n (c>0) kt/2n 2 (5.8) q i H/ q j p i H/ p j δ ij kt

54 N { ɛ0 ɛ = Z = Z 1 N, Z 1 = ɛ e βɛ =1+e βɛ 0 E E = β log Z = Nɛ 0e βɛ0 1+e βɛ 0 = Nɛ 0 1+e βɛ 0 = Nɛ 0 1+e ɛ 0/kT (5.11) ( Nɛ 0 1 ɛ ) 0 2 2kT + kt/ɛ 0 1 E Nɛ 0 e ɛ0/kt (1 e ɛ0/kt + ) kt/ɛ 0 1 (5.12) C = de dt ( de = kβ2 dβ = Nkβ2 2 ɛ 0 ɛ0 (1 + e βɛ 0 ) 2 eβɛ 0 /kt = Nk 1+e ɛ 0/kT ) 2 e ɛ 0/kT (5.13) 5.3 ( ) ɛ0 2 C Nk e ɛ 0 /kt kt C 0 kt/ɛ 0 =0.391 E = nɛ 0 N n ɛ 0 W (E) = N! n!(n n)!, W (E) =2 N E 2 N! N

55 S = k log W = k[n(log N 1) n(log n 1) (N n)(log(n n) 1)] [ n = Nk N log n ( N + 1 n ) ( log 1 n )] N N (5.14) 1 T = S E = 1 S ɛ 0 n = k [ log n +log(n n)] = k log N n ɛ 0 ɛ 0 n N n n =e ɛ 0/kT E = nɛ 0 = (5.11) Nɛ 0 1+e ɛ 0/kT (5.12) T Nɛ 0 /2 2 ɛ =0 ɛ = ɛ 0 ɛ =0 1 1+e ɛ 0/kT < e ɛ0/kt 1+e ɛ 0/kT T<0 T = W (E) E E = Nɛ 0 /2 n = N/2 T 1 = S/ E

56 n m H H = m H = mh cos θ (5.15) θ ( ) H m m n Z = Z 1 Z 1 = 1 π e βmh cos θ 2π sin θdθ = 1 1 e βmhz dz = sinh(βmh) 4π βmh e x ± e x cosh x = 2 sinh x (5.16) E = log Z β = n [mh coth(βmh) β 1 ] (5.17) coth x =coshx/ sinh x M M = n m cos θ = E H = nm [coth(βmh) 1 βmh ] (5.18) coth x ( )/ ( ) coth x = 1+ x2 2! + x 1+ x2 3! + H kt/m M χh, χ = ( ) M = C H H=0 T = 1 x ( 1+ 1 ) 3 x2 + (C = nm 2 /3k) (5.19) χ ( ) T 4 (4.15) M = n m cos θ = 1 Z Z h ( h = βh)

57 5.4. * χ = M H = β h 1 Z Z h = β 1 2 ( Z 1 Z h 2 Z ) 2 Z h = 1 kt [M 2 (M) 2 ]= 1 kt (M M)2 (5.20) (5.15) 5.4 * m ±1 2 σ ( ) 3 H 1 H 1 = σh (5.21) 1 m σ = ±1 e βh 1 =e ±βh m = σ = eβh e βh = tanh(βh) (5.22) e βh +e βh tanh x =sinhx/ cosh x ( ) m χ 0 (T )= = C ( C =1/k) (5.23) H H=0 T 3 i τ i =1 τ i =0 τ i σ i =2τ i 1 (i, i ) K (ii ) τ i τ i τ i = τ i =1 K 0

58 H = Hσ i J σ i σ i (5.24) i (ii ) i (i i ) J >0 J <0 1 1 N N N H = Hσ i J σ i σ i+1, σ N+1 = σ 1 (5.25) i=1 i=1 Z = = {σ i =±1} {σ i =±1} exp [ ] N β (Hσ i + Jσ i σ i+1 ) i=1 [ β N exp i=1 ( H σ )] i + σ i+1 + Jσ i σ i+1 2 (5.26) s A ss =TrA (A N ) ss = s 2 (5.26) 2 2 ( {+1, +1} {+1, 1} A = { 1, +1} { 1, 1} s 3 A ss2 A s2 s 3 A sn 1 s N A sn s s N ) ( exp[β(h + J)] exp[ βj] = exp[ βj] exp[β( H + J)] ) (5.27) Z =TrA N (5.28) A 2 λ 1 λ 2 λ 1 >λ 2 Z =TrA N = λ N 1 + λn 2 = λn 1 [1 + (λ 2/λ 1 ) N ]

59 5.4. * 55 N 1 log Z = N log λ 1 (5.29) 2 2 A λ 1 =e βj cosh βh +e βj 1+e 4βJ sinh 2 βh (5.30) 1 σ βh = h σ = 1 N log Z h = log λ 1 h = 1 λ 1 λ 1 h χ = σ H = e2j/kt kt (5.31) T 0 T 1 2 T C 2 T C lim σ 0 H i 1 σ i H i = (H + J σ i ) σ i (5.32) i i i σ i σ i m = σ z (5.32) ( ) H = H + zjm

60 (5.22) H σ i m m ( ) H + zjm m =tanh kt m =tanh(βh) (5.33) (5.34) H m (5.23) (5.34) m χ 0 (T )(H + zjm) (5.35) m χ(t )= m H = χ 0 1 zjχ 0 = C T T C (T C = zj/k) (5.36) - T C T T C +0 T C lim σ 0 H 0 (5.34) H m T 4 H(m, T ) = T log 1+m kt C 2T C 1 m m (5.37) 5.5(a) T<T C H =0 m 0 m S (T ) (5.37) H =0 / T =2m S log 1+m S T C 1 m S 4 y =tanhx x =tanh 1 y =log (1 + y)/(1 y)

61 5.5. * (b) 5.5(a) T<T C χ =( m/ H) T < 0 5.5(a) (b) T<T C χ(t )= ( ) m H H=±0 C 2(T C T ) T T C 0 H =0 T T C 2 T C H H =0 m(t,h) ±m S (c) T - T<T C 1 z =2 (5.32) σ i σ i m 5.5 * n n PV NkT =1+B 2(T )n + B 3 (T )n 2 + (5.38) 2 B 2 (T ) φ(r) B 2 (T )= 0 [1 e φ(r)/kt ]2πr 2 dr (5.39)

62 φ(r)... φ(r) = 1 r 12 1 r 6 r 0 = r r (5.39) B 2 (T ) 1 3 a φ(r) = (r <2a), φ(r) =0(r 2a) B 2 (T ) B 2 =16πa 3 /3= Ψ ( ) Φ ( ) ξ ( ) i r i N Ψ(r 1, r 2, )=Φ(r 1, r 2, )+ ξ(r i ) i=1 (5.9) f =3N N N r i i Φ + r i i ξ =3NkT (5.40) i=1 i=1 i =( / x i, / y i, / z i ) 2 i ξ i i ξ i f i 2 1 N N r i i ξ = r i f i = r P nds i=1 i=1 = P r nds = P ( r) dv =3PV (5.41) r = x/ x + y/ y + z/ z =3 (5.41)

63 5.5. * G(r) e φ(r)/kt (5.40) PV = NkT 1 N r i i Φ (5.42) 3 i=1 2 φ( r i r j ) Φ = 1 2 N N φ( r i r j ) i j i N N i Φ = i φ( r i r j )= j φ( r i r j ) j i j i N N N N N r i i Φ = r i i φ( r i r j ) = r i j φ( r i r j ) i i j i i j i = 1 N N i r j ) i φ( r i r j )= 2 i j i(r 1 N N dφ(r ij ) r ij (5.43) 2 i j i dr ij N r i i Φ = 1 N N dφ(r ij ) N(N 1) r ij = i 2 i j i dr ij 2 r dφ(r) dr (5.44) r ij = r i r j N 1 (5.42) PV = NkT N 2 6 r dφ(r) dr (5.45) 1 r 2

64 60 5 G(r) 2 r dφ dr = 1 V 0 r dφ dr G(r)4πr2 dr dφ(r)/dr 1 V 1 (5.42) PV NkT =1 2πn 3kT 0 r 3 dφ(r) G(r)dr (5.46) dr 2 G(r) X (5.46) 2 G(r) n (5.46) (5.38) n G(r) n φ(r) G(r) e φ(r)/kt G( ) =1 (5.46) r 3 dφ(r) 0 dr e φ(r)/kt dr = kt r 3 d 0 dr [1 e φ(r)/kt ]dr = ktr 3 [1 e φ(r)/kt ] 3kT [1 e φ(r)/kt ]r 2 dr (5.47) 1 φ( ) =0 φ(0) = 0 2 B 2 (T ) (5.39) 0 0

65 6 6.1 H 1 = p2 2m + mω2 q 2 (6.1) 2 m ω ν = ω/2π 1 1 [ ( p 2 Z 1 = exp β 2m + mω2 q 2 )] dqdp 2 h = 2π βhω = 1 βhν E 1 = log Z 1 β = 1 β = kt (6.2) q mω2 q 2 = 1 2m p2 = 1 kt (6.3) 2 ν E 1 =2 (kt/2) = kt N 3N (6.2) E =3NkT 61

66 N = N A C V =3N A k =3R (6.4) C P C V C P 3R lim C P (T ) = lim C V (T ) = 0 (6.6) T 0 T 0 C P (T ) T 3 (6.7) T E 1 hν ɛ n = ( n + 1 ) hν, (n =0, 1, 2, ) (6.8) TS(T ) d ds(t ) 0 = lim S(T ) = lim = lim TS(T ) = lim [S(T )+T ] T 0 T 0 T T 0 dt T 0 dt = lim S(T ) + lim C P, lim C P =0 (6.5) T 0 T 0 T 0

67 q 2 2E 1 /mω 2 + p2 2mE 1 =1 A = π (2E 1 /mω 2 )(2mE 1 )=E 1 /ν A = ( n + 1 ) h, (n =0, 1, 2, ) 2 h 3 1 h 1 (4.7) g i =1 Z 1 = e βɛn = e β(n+1/2)hν = e βhν/2 (6.9) 1 e βhν n=0 n=0 ν kt hν ( 6.5(b) kt/hν ) E 1 = log Z 1 β = hν 2 + hν e βhν 1 (6.10) 1 (6.8) ( ) 1/2 ( 1) ν 3N (6.10) ( ) 2 de 1 hν dt = k e hν/kt (6.11) kt (e hν/kt 1) 2

68 hν/k Θ D 3N A C V =3R ( ) 2 hν e hν/kt (6.12) kt (e hν/kt 1) 2 hν kt C V 3R - (6.4) hν kt ( ) 2 hν C V 3R e hν/kt kt (6.6) 6.2 hν kt kt 1 (6.12) - 3R 1 3N A 0 [3R C V (T )]dt = hν C V T 0 0 (6.12) T 3

69 g(ν)dν = { (9N/νD 3 ) ν 2 dν (ν ν D ) 0 (ν>ν D ) (6.13) ν D νd 0 g(ν)dν =3N (6.14) N = N A 1 (6.11) (6.13) C V = 9N Ak = 3R νd ν 3 D 0 ( ) T 3 ΘD /T ΘD (hν/kt ) 2 e hν/kt ν 2 dν (e hν/kt 1) 2 0 e x 3x 4 dx (6.15) (e x 1) 2 Θ D = hν D /k T Θ D 3x 4 e x (e x 1) 2 =3x2 ( x2 + ) 3x 2 - T Θ D 2 0 e x 3x 4 4π4 dx = (e x 1) 2 5 (6.16) C V T 3 2 x z 1 dx e x 1 = 0 n=1 0 C V 12π4 R 5 1 e x 1 = x z 1 e nx dx = ( T ΘD e x 1 e x = e nx n=1 n=1 1 n z ) 3 (6.17) 0 x z 1 e x dx = Γ(z)ζ(z) Γ(z) p.35 z 1 Γ(z) =(z 1)! ζ(z) ζ(z) = n=1 1 n z (z>1) ζ(2) = π 2 /6 ζ(4) = π 4 /90 (6.16) 3x 4 e x dx ( ) 1 (e x 1) 2 = 3x 4 x e x dx =12 3 dx 4π4 1 e x =12Γ(4)ζ(4) =

70 Θ D =0 21 (6.13) L 3 (l, m, n) ( ) ( ) ( ) lπx mπy nπz u(x, y, z, t) =sin(2πνt)cos cos cos L L L c u c 2 t 2 = 2 u x u y u z 2 (2πν) 2 =(πc/l) 2 (l 2 + m 2 + n 2 ) ν = c l 2L 2 + m 2 + n 2, (l, m, n =1, 2, 3, ) ν (l, m, n) (l, m, n) 3 1 (l, m, n > 0) 1 ν ν +dν g(ν)dν (l, m, n) l 2 + m 2 + n 2 =2Lν/c 2L(ν +dν)/c 1 ) g(ν)dν = 1 4π 8 3 ( ) 2L 3 [(ν +dν) 3 ν 3 ]= 4πV c c 3 ν2 dν, (V = L 3 ) c/ν ν c 1 c 2 2 ( 1 g(ν)dν =4πV c ) ν 2 dν (6.18) 1 c 3 2 (6.13) (6.18) (6.14)

71 T 2 (6.18) g(ν)dν = 8πV c 3 ν2 dν (6.19) c 2 c ν 1 (6.10) 6.5 ν ν +dν E(ν)dν = 8π hν 3 dν (6.20) c 3 e hν/kt 1 (6.10) V =1 λ = c/ν I(λ)dλ = 8πhc λ 5 dλ e hc/λkt 1 (6.21) T λ 6.5(b) λ max T 1 kt (6.21) I cl (λ)dλ = 8πkT λ 4 - u (6.20) 65 u = 8π c 3 0 dλ hν 3 dν e hν/kt 1 = 8πh ( ) 4 kt x 3 dx c 3 h 0 e x 1 = αt 4 (6.22) α = 8π5 k 4 15c 3 h 3 = J/m 3 K 4

72 (a) 1 (b) P u P = u/3-3 (1.8) c n u Q = cu 4 = σt 4 - σ = cα/4 σ = 2π5 k 4 15c 2 h 3 = W/m 2 K 4 P = u/3 25 (6.22) T T 3 2 λ max λ max T = mk 3 du = T ds P dv ( ) U = T V T ( ) S P = T V T ( ) P P = T du T V 3 dt u 3 U = u(t )V ( U/ V ) T = u du/u =4dT/T u T 4

73 {ɛ i } (i =1, 2, 3, ) {n i } n i 2 (a) - BE n i =0, 1, 2, 3,, (b) - FD 2 n i =0, 1 (a) (b) 4 He 3 He N! 69

74 70 7 N N! - MB N = i n i E = i n i ɛ i 22 {n i } 1 (4.18) G N (E) =1 {n i } n i =0, 1, 2, Ξ(T,V ) = {n i } e β(e µn) = = i n 1 =0 n 2 =0 n i =0 e β(ɛ i µ)n i = i e β (ɛ i µ)n i 1 1 e β(ɛ i µ) log Ξ(T,V )= i log(1 e βɛ i+α ), (α = βµ) (7.1) βµ = α (4.20) (4.21) E = log Ξ β = i ɛ i e βɛ i+α 1 e βɛ i+α = i ɛ i e β(ɛ i µ) 1 (7.2) N = log Ξ α = i e βɛ i+α 1 e βɛ i+α = i 1 e β(ɛ i µ) 1 ɛ i 2 n i = 1 e β(ɛ i µ) 1 (7.3) (7.4) - (7.3) N µ N T V (7.4) µ =0 ɛ i = hν hν g(ν) (6.20) ν hν µ =0 2 βµ i n i = i α in i log Ξ(T,V )= i log[1 exp( βɛ i+α i )] n i = log Ξ/ α i =1/[exp(βɛ i α i ) 1] α i = βµ

75 n i =0, 1 Ξ(T,V ) = 1 1 e β(e µn) = e β (ɛ i µ)n i {n i } n 1 =0 n 2 =0 = 1 e β(ɛ i µ)n i = (1 + e β(ɛi µ) ) i n i =0 i log Ξ(T,V )= i log(1 + e βɛ i+α ), (α = βµ) (7.5) E = log Ξ β = i ɛ i e βɛ i+α 1+e βɛ i+α = i ɛ i e β(ɛ i µ) +1 (7.6) N = log Ξ α = i e βɛ i+α 1+e βɛ i+α = i ɛ i n i = 1 e β(ɛ i µ) +1 1 e β(ɛ i µ) +1 (7.7) (7.8) ±1 7.2 V ɛ = p 2 /2m ɛ ɛ +dɛ 1 µ V 4πp 2 dp =2πV (2m) 3/2 ɛdɛ p = 2mɛ h 3 g(ɛ)dɛ = 2πV h 3 (2m)3/2 ɛdɛ (7.9)

76 (7.3) (7.7) 2π ɛdɛ h 3 (2m)3/2 0 e β(ɛ µ) 1 = N V (7.10) + µ(t,v,n) 7.3 (7.4) (7.8) e β(ɛ µ) 1 n i e βµ e βɛ i ( 1 ) (7.11) - (3.5) n i (7.10) ɛ = x 2 (p.10 ) N V 2π ( ) 3/2 2πmkT h 3 (2m)3/2 e βµ ɛe βɛ dɛ = e βµ (7.12) 0 h 2 e βµ 1 ( ) 3/2 N 2πmkT V (7.13) h 2 h/ 2πmkT 3 (7.13) ( V N ) 1/3 h 2πmkT (7.14) 3 p 2 /2m =3kT/2 p T = 3mkT x T = h/ p T = h/ 3mkT (V/N) 1/ m p.6 O 2 h/ 2πmkT m

77 * 73 2 BE FD MB 3 N V (a) BE N V 1 W BE = N+V 1 C N = (N + V 1)! N!(V 1)! (b) FD 1 2 V N N V W FD = V C N = V! N!(V N)! (c) MB N! V W MB = V N (N + V 1)! = V (V +1)(V +2) (V + N 1) >V N (V 1)! (be) V! (V N)! = V (V 1)(V 2) (V N +1)<VN (fd) N! W FD <W MB <W BE MB 1 N/V N/V 1 2 (be),(fd) V N MB MB MB N! * µ (7.10) 2π(2m) 3/2 h 3 0 ( ) 3/2 ɛ dɛ 2πmkT e β(ɛ µ) 1 = 2 x dx π h 2 0 e x βµ 1 = N V (7.15)

78 74 7 n = N/V T ɛ = p 2 /2m 0 0 µ <0 µ =0 x µ =0 4 ( 2πmkT h 2 ) 3/2 ζ(3/2) < N V (7.16) (7.15) n = N/V (7.12) µ kt (log n 3 ) 2 log T + constant < 0 (7.17) 7.1(a) µ ( ) 3/2 2πmkTC ζ(3/2) = n (7.18) h 2 T C (n) µ =0 µ>0 T<T C µ =0 n T C T <T C (n) V N 0 = N V 2π(2m)3/2 ɛ dɛ h 3 0 e βɛ 1 ( ) 3/2 2πmkT = N V ζ(3/2) N 0 p =0 ɛ = p 2 /2m =0 - (7.18) h 2 N 0 (T ) N =1 ( T T C ) 3/2 (T<T C ) (7.19) 7.1(b) 4 ζ(z) p.65 ζ(3/2) = ζ(5/2) = Γ(1/2) = π Γ(3/2) = π/2 Γ(5/2) = 3 π/4 n=1 s n = φ(z,s) (z>1, s 1 z>0, s < 1) nz φ(z,1) = ζ(z) βµ 0 1 x z 1 dx Γ(z) 0 e x βµ 1 = φ(z,eα ), (α = βµ) dφ(z,e α )/dα = φ(z 1, e α )

79 * (a) (b) T C (7.18) E = V 2π(2m)3/2 ɛ ɛ dɛ h 3 0 e β(ɛ µ) 1 ( ) 3/2 2πmkT 3kT 4 = V h x 3/2 dx π 0 e x βµ 1 ( ) 3/2 2πmkT 3kT = V φ(5/2, e α ), (α = βµ) (7.20) h 2 2 E = 3 ( ) T 5/2 φ(5/2, e α ) NkT C 2 T C ζ(3/2) (7.21) φ(z, e α ) T >T C α(= βµ) (7.15) T C ( TC T ) 3/2 = 1 ζ(3/2) 2 π 0 xdx e x βµ 1 = φ(3/2, eα ) ζ(3/2) (7.22) T α T/T C C V Nk = 15 φ(5/2, e α ) 4 φ(3/2, e α ) 9 φ(3/2, e α ) 4 φ(1/2, e α ) (7.23) T T C ( φ(z, s) =s 1+ s ) 2 + s2 z 3 + < s s (s 1) z 1 s φ(z, e βµ ) e βµ

80 76 7 E 3 2 NkT, C V 3 2 Nk T T C µ =0 φ(z, 1) = ζ(z) E = 3 ( ) ζ(5/2) T 5/2 ( ) T 5/2 = (7.24) NkT C 2 ζ(3/2) TC TC T T C C V Nk = 15 ζ(5/2) 4 ζ(3/2) ( T TC ) 3/2 ( ) T 3/2 = (7.25) TC T =0 ɛ =0 W =1 0 3 lim C V =0 T 0 7.1(b) T C 5 C V /Nk T C / PV =2E/3 (7.20) T n n V P ( ) 3/2 2πmkT n = n C (T )=ζ(3/2) (V C = N/n C ) P (= 2E/3V ) (7.20) α =0 h 2 P = ζ(5/2) ζ(3/2) n C(T )kt = n C (T )kt - 2 p =0 5 φ(1/2, 1) =

81 7.5. * 77 ɛ =0 p =0 =0 = K ρ = kg/m 3 m = kg n = ρ/m T C h = Js k = JK 1 T C 2.8K T λ =2.17K λ - T λ λ * (7.8) 1 f(ɛ) = (7.26) e β(ɛ µ) +1 (7.9) g(ɛ) 6 g(ɛ)f(ɛ)dɛ = N (7.27) (7.26) T 0 β 1 ɛ<µ f(ɛ) = 1/2 ɛ = µ 0 ɛ>µ (7.28) T =0 µf g(ɛ) dɛ = N (7.29) µ F T =0 1 E 0 = µf ɛg(ɛ)dɛ (7.30) 6 ɛ ɛ 0 g(ɛ)

82 W =1 3 lim S =0 T 0 lim C V =0 T 0 ɛ 0 µ F ɛ 0 T F =(µ F ɛ 0 )/k (7.31) T T F f(ɛ) 7.2 ɛ µ 4kT T f (ɛ) f (ɛ) = βeβ(ɛ µ) (e β(ɛ µ) +1) = β 2 (e β(ɛ µ) + 1)(e β(ɛ µ) +1) (7.32) ɛ µ ɛ = µ 4kT ϕ(ɛ) ( ) ϕ(ɛ)f(ɛ)dɛ = µ ϕ(ɛ)dɛ + π2 ϕ (µ) 6 (kt) 2 + 7π4 ϕ (µ) (kt) 4 + (7.33) 360 (7.29) (7.27) N = = µ g(ɛ)f(ɛ)dɛ g(ɛ)dɛ + π2 g (µ) (kt) 2 + (7.34) 6

83 7.5. * 79 N µ µ F g(ɛ)dɛ = π2 g (µ) 6 E 0 = E = = µf µ = E 0 + (kt) 2 + (7.35) µ = µ F π2 g (µ F ) 6g(µ F ) (kt)2 + (7.36) ɛg(ɛ)dɛ (7.37) ɛg(ɛ)f(ɛ)dɛ ɛg(ɛ)dɛ + π2 (g(µ)+µg (µ)) (kt) µ ɛg(ɛ)dɛ + π2 (g(µ)+µg (µ)) µ F 6 (kt) 2 + (7.38) E = E 0 + π2 g(µ F ) (kt) 2 + (7.39) 6 C V π2 g(µ F ) k 2 T (7.40) (7.9) 2 g(ɛ) = 4πV (2m)3/2 3N ɛ = ɛ, (ɛ 0) (7.41) h 3 2µ 3/2 F µ F (7.29) (7.30) E 0 = ( ) µ F = h2 3N 2/3 (7.42) 2m 8πV 3N µf ɛ 3/2 dɛ = 3Nµ F 2µ 3/2 0 5 F E = 3Nµ F π2 (kt) 2 + (7.43) 12µ 2 F

84 C V π2 Nk 2 T = π2 Nk T (7.44) 2µ F 2 T F T F = µ F /k C V =3Nk/2 - C V =3Nk +3Nk/2=9Nk/2 T T F T F K Θ D K T 3 T T F M = kg/mol N A = mol 1 ρ = kg/m 3 n h = Js k = JK 1 m = kg T F = 82000K Θ D = 340K (6.17) 3K (7.33) Φ(ɛ) = ϕ(ɛ)f(ɛ)dɛ = ɛ ϕ(ɛ )dɛ, Φ( ) =0 Φ (ɛ)f(ɛ)dɛ = Φ(ɛ)f (ɛ)dɛ

85 7.5. * 81 Φ(ɛ) ɛ = µ Φ(ɛ) =Φ(µ)+Φ (µ)(ɛ µ)+ Φ (µ) (ɛ µ) 2 + 2! (7.32) f (ɛ) f (ɛ)dɛ = f( ) f( ) =1 (ɛ µ) 2n 1 f (ɛ)dɛ =0 1 (ɛ µ) 2n f 1 (ɛ)dɛ = 2 (2n)! (2n)! µ 2n = 2 (2n)! µ = 2 (kt) 2n 1 ϕ(ɛ)f(ɛ)dɛ = Φ(µ)+ π2 Φ (µ) 6 (ɛ µ) 2n f (ɛ)dɛ (ɛ µ) 2n 1 f(ɛ)dɛ Γ(2n) ( = n 1 0 x 2n 1 dx e x +1 ) ζ(2n) (kt) 2n (7.45) (kt) 2 + 7π4 Φ (4) (µ) (kt) (7.45) 1 x z 1 ( dx Γ(z) 0 e x +1 = φ(z, 1) = 1 1 ) 2 z 1 ζ(z) p.65 ζ(2) = π 2 /6, ζ(4) = π 4 /90,

86 8 * ** 1 A p.6 2 T P m A mv 2 i /2 2 (T 1,P 1 ) (T 2,P 2 ) A m T 1 T 2 3 2V T P m A T p m 1 m w 12 T 1 2 a 1 a 2 n 1 n 2 p.5 6 T n m R M( m) v u ω x u v x > u 2m(v x + u) x y x 2 ds = y 2 ds = (x 2 + y 2 )ds = πr 4 /4 82

87 83 7 ω T m 1 m P u P =2u/3 PV 5/3 = 9 x =0 x = L x- v m x-p x = L v u dl 10 3 µ 6 λ TV 2/3 = 11 m l E ω E/ω E 12 n N 1 13 x τ 1 1/2 a t x x 2 t N = t/τ n N n x =[n (N n)]a =(2n N)a 14 a, b 2 N 2 ɛ 0 x X = ( F/ x) T ɛ 0 =0 15 ɛ ɛ = cp P = u/3 C V C P ɛ = c (mc) 2 + p 2 ɛ = cp

88 84 8 ɛ = p 2 /2m * 16 Φ(r 1, r 2,...) Q N (V,T) = 1 N! e Φ/kT dr 1 dr (1) V b 1 2 (2) N/V 2Na/V (a >0) V/b N V Nb kt Na/V 17 2 ±Q N 2N 2 L V = L 2 m 2 Q 1,Q 2 2 r 12 U 12 = aq 1 Q 2 ln(1/r 12 ) a (1) T (2) (1) P =0 T C T C (3) T T C T>T C - [0,L] [0, 1] L Z N (T,V ) ( log Z N / V ) T = P/kT F = kt log Z N,P = ( F/ V ) T x = L ξ(x i L) ξ(x i L)/ x i = ξ(x i L)/ L ξ(x L) =0(x<L), ξ(x L) = + (x L)

89 85 20 m A m B 2 A B N A N B A B AB ɛ 0 A B AB 3 N A +N AB = N B + N AB = log Z N A,N B,N AB φ(q) =cq 2 /2 bq 3 (b> 0) q a( kt/c) ba 3 ca 2 /2 q = P =2u/3 PV = kt log Ξ ɛ =(2/3)dɛ 3/2 /dɛ µ = P = u/3 23 log Ξ g(ɛ)dɛ =2 V 4πp 2 dp/h 3 = V (8π/c 3 h 3 )ɛ 2 dɛ 27 σ = ±1/2 η B H ±η B H ɛ = p 2 /2m ± η B H η B µ B T =0 ±η B p =0 p ± p 2 ±/2m η B H p ± A B AB T =0 m A = m B (= m) N A = N B (= N) ɛ 0 (i) (ii) (iii) 3

90 H 16 H 16 5, Γ , , , , , , , ,

91 87 65, 74, T 80 T -P 46 T , , µ λ

92

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

all.dvi

all.dvi I 1 Density Matrix 1.1 ( (Observable) Ô :ensemble ensemble average) Ô en =Tr ˆρ en Ô ˆρ en Tr  n, n =, 1,, Tr  = n n  n Tr  I w j j ( j =, 1,, ) ˆρ en j w j j ˆρ en = j w j j j Ô en = j w j j Ô j emsemble

More information

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2 1 1 2 2 2 1 1 P F ext 1: F ext P F ext (Count Rumford, 1753 1814) 0 100 H 2 O H 2 O 2 F ext F ext N 2 O 2 2 P F S F = P S (1) ( 1 ) F ext x W ext W ext = F ext x (2) F ext P S W ext = P S x (3) S x V V

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

master.dvi

master.dvi 4 Maxwell- Boltzmann N 1 4.1 T R R 5 R (Heat Reservor) S E R 20 E 4.2 E E R E t = E + E R E R Ω R (E R ) S R (E R ) Ω R (E R ) = exp[s R (E R )/k] E, E E, E E t E E t E exps R (E t E) exp S R (E t E )

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

i Γ

i Γ 018 4 10 i 1 1.1.............................. 1.......................... 3 1.3............................ 6 1.4............................ 7 8.1 Γ.................................... 8.......................

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

Maxwell

Maxwell I 2018 12 13 0 4 1 6 1.1............................ 6 1.2 Maxwell......................... 8 1.3.......................... 9 1.4..................... 11 1.5..................... 12 2 13 2.1...................

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k 4.6 (E i = ε, ε + ) T Z F Z = e ε + e (ε+ ) = e ε ( + e ) F = kt log Z = kt loge ε ( + e ) = ε kt ln( + e ) (4.8) F (T ) S = T = k = k ln( + e ) + kt e + e kt 2 + e ln( + e ) + kt (4.20) /kt T 0 = /k (4.20)

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

成長機構

成長機構 j im πmkt jin jim π mkt j q out j q im π mkt jin j j q out out π mkt π mkt dn dt πmkt dn v( ) Rmax bf dt πmkt R v ( J J ), J J, J J + + T T, J J m + Q+ / kt Q / kt + ( Q Q+ )/ ktm l / ktm J / J, l Q Q

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

KENZOU

KENZOU KENZOU 2008 8 2 3 2 3 2 2 4 2 4............................................... 2 4.2............................... 3 4.2........................................... 4 4.3..............................

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

/Volumes/NO NAME/gakujututosho/chap1.tex i

/Volumes/NO NAME/gakujututosho/chap1.tex i 2012 4 10 /Volumes/NO NAME/gakujututosho/chap1.tex i iii 1 7 1.1............................... 7 2 11 2.1........................................... 11 2.2................................... 18 2.3...................................

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T 3 3.1 [ ]< 85, 86 > ( ) ds > 0. (1) dt ds dt =0, S = S max. (2) ( δq 1 = TdS 1 =0) (δw 1 < 0) (du 1 < 0) (δq 2 > 0) (ds = ds 2 = TδQ 2 > 0) 39 3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3)

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 2, S 1 N 1 = S 2 N 2 2 (chemical potential) µ S N

More information

2013 25 9 i 1 1 1.1................................... 1 1.2........................... 2 1.3..................................... 3 1.4..................................... 4 2 6 2.1.................................

More information

/Volumes/NO NAME/gakujututosho/chap1.tex i

/Volumes/NO NAME/gakujututosho/chap1.tex i 2010 4 8 /Volumes/NO NAME/gakujututosho/chap1.tex i iii 1 5 1.1............................... 5 2 9 2.1........................................... 9 2.2................................... 16 2.3...................................

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

現代物理化学 2-1(9)16.ppt

現代物理化学 2-1(9)16.ppt --- S A, G U S S ds = d 'Q r / ΔS = S S = ds =,r,r d 'Q r r S -- ds = d 'Q r / ΔS = S S = ds =,r,r d 'Q r r d Q r e = P e = P ΔS d 'Q / e (d'q / e ) --3,e Q W Q (> 0),e e ΔU = Q + W = (Q + Q ) + W = 0

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R = 1 1 1.1 1827 *1 195 *2 x 2 t x 2 = 2Dt D RT D = RT N A 1 6πaη (1.1) D N A a η 198 *3 ( a =.212µ) *1 Robert Brown (1773-1858. *2 Albert Einstein (1879-1955 *3 Jean Baptiste Perrin (187-1942 2 1 x 2 x 2

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) http://astr-www.kj.yamagata-u.ac.jp/~shibata f4a f4b 2 f4cone f4eki f4end 4 f5meanfp f6coin () f6a f7a f7b f7d f8a f8b f9a f9b f9c f9kep f0a f0bt version feqmo fvec4 fvec fvec6 fvec2 fvec3 f3a (-D) f3b

More information