i

Size: px
Start display at page:

Download "i"

Transcription

1 009 I 1 8 5

2 i E E E flux E E E dive = ρ ε div div div E

3 ii E rot rot rot grad,rot,div

4 magnet elektron electrics cgs Gb cgs 3 4 (classical) (quantum) 5 6

5 one piece IC 7

6 [ ] [ ] 9 (interaction) 8 9

7 ( non-local non-local 11 [ ] EPR

8

9 r q q > 0 F = q 4πε 0 r (1.1) q < (1.1) SI q, C ε 0 5 SI F m ε 0 6 F( ) ε 0 = q 4πr F ε 0 [C /N m ] F C /N m

10 πε π ε 0 1 SI 1 4πε 0 SI πε 0 = k k = [N m /C ] k m/s SI SI 100W (100W 1 100J )1 100J J t ct c 30 r 4πr 100J 4πr πr (177 ) 8 1C 1m N W 100J 8

11 8 1 1C kg kg = C = ( ) 1 = [N] (1.) ( ) 1 = N (1.3) 10 0 e e 0 (1.4) 1.. (1.1) x q x q q x x q x x q x q x x q x x q x kg 3.45m/s

12 1.. 9 x x q F q = q 4πε 0 x x q 3 ( x x q ) (1.5) ( ) 3 x x q ( ) x x q e q = 1 x x q ( x x q ) (1.6) x x q x x q 1 x x q = x x q }{{} e q }{{} (1.7) e 1 11 x x 1 e x e y, e z e x, e y, e z A x e x +A y e y +A z e z e x ˆx ˆ e x, e y, e z i, j, k A x e x + A y e y + A z e z A xˆx + A y ŷ + A z ẑ A x i + A y j + A z k (1.8) F q = q 4πε 0 x x q 3 ( x x q ) = q 4πε 0 x x q } {{ } e q }{{} 11 e 1 (1.9)

13 10 1 F q q q F q F q = q 4πε 0 x q x 3 ( x q q x ) = 4πε 0 x q x e q (1.10) q F q = F q q q 1 q x q = 0 (r, θ, φ) x x q = r e r (1.11) e r (r, θ, φ) r 13 e θ, e φ θ φ 14 r e r r r, θ, φ e r, e θ, e φ e x, e y, e z 15 e r, e θ, e φ e r e θ = e φ e θ e φ = e r (1.1) e φ e r = e θ q x q = 0 x x q = r 1 13 e r ˆr 14 e ρ, e φ, e z 15 e θ e φ

14 F q = q 4πε 0 r 3 r e r = q 4πε 0 r e r (1.13) q > 0 q < i (i = 1,,, N) q i 16

15 q x q 1,,, N x 1, x,, x N q N F i q = i=1 = N i=1 N i=1 i q ( ) xq 4πε 0 x q x i 3 x i i q 4πε 0 x q x i e i q e i q = x q x i x q x i (1.14) 17 ( )

16 1.4. E E E 18 p11 19 E E q F E = F q E E x q x x E( x) 0 q 4πε 0 x x e x x E( x) = F q = q 4πε 0 x x e x x (1.15) E E E 18 electric field field field 19 0 E( x) E(x, y, z) x, y, z

17 E SI E F = q E F [N] q [C] [N/C] V E [V] [1/m] E [V/m] E 1.4. E E E E E r E 1m 4πε 0 r r 4πε 0 r r 4πr 4πε 0 r 4πr = ε 0 (1.16) 3 r [C] ε 0 1 ε C FA E 1 E E E 3 4π SI 4π

18 1.4. E 15 E E 1 r E E r 4πε 0 r 4πr = ε 0 E (1) E () E (3) (4) #$%'&!" (5)!!" (6) [C] ε 0 ε 0 ()+*, #$%-&-" (4),(5),(6) N S N S N N 4 5

19 E d

20 (x, y, z) z ρ 6 dz ρdz z = L z = L L (x, 0, 0) z E ρl z = 0 z r = x + y E Step 1. Step. Step 3. Step Step 1. L N L dz N dz z d z dz ρdz Step. (x, 0, 0) (0, 0, z) (0, 0, z + dz) ρdz E E = 4πε 0 r ρdz x + z ρdz 4πε 0 (x + z ) (1.17) (0, 0, z) (0, 0, z + dz) (x + z ) (x + (z + dz) ) E z z x z 0 x ρdz 4πε 0 (x + z ) x x + z = ρxdz 4πε 0 (x + z ) 3 (1.18) E x 6 1m 1m 1m 3 m cm

21 18 1 Step 3. E ρxdz z 4πε 0 (x + z ) 3 N dz dz 0 0 L ρxdz 7 dz L 4πε 0 (x + z ) 3 dz dz 0 E (x + z ) (x + (z + dz) ) (0, 0, z) (0, 0, z + dz) (0, 0, z) (0, 0, z z + dz) (0, 0, z) (0, 0, z + dz) N dz 8 N L ρx dz L 4πε 0 (x + z ) 3 z = x tan θ θ x + z = x cos θ 9 dz θ dθ dz = x cos dθ θ Z 7 dz Z dz( ) ( )dz Z L ρxdz L 4πε 0 (x + z ) 3 d dx tan θ = 1 cos θ

22 dz dθ = x cos θ z = L tan θ = L α x = = α ρx ( α 4πε x 0 cos θ ρ α cos θdθ 4πε 0 x α ρ 4πε 0 x [sin θ]α α = ) 3 x cos θ dθ ρ πε 0 x sin α α = π E = ρ πε 0 x πx πx ρ L 4πε 0 xl sin α = 4πε 0 x }{{} x sin α (1.0) L L α x R (1.19) sin α = L R x L sin α = x 1 R E z x dz E E = ρdz 4πε 0 (x + z ) } {{ } (cos θ e x sin θ e z ) }{{} (1.1) cos θ e x sin θ e z x θ z =

23 0 1 x tan θ, dz = x cos θ dθ x + z = E = ( x ) cos θ ρdθ 4πε 0 x (cos θ e x sin θ e z ) (1.) cos θ e x sin θ e z θ θ α α (cos θ e x sin θ e z ) dθ (1.3) e z e x α α cos θ e x dθ = [sin θ] α α e x = sin α e x (1.4) (1.19) 1.5. E E 30 σ 31 (r, θ) 3 r r + dr θ θ + dθ r 0 r 0 θ 0 π r dr θ rdθ dθ rdrdθ σrdrdθ z P E σrdrdθ 4πε 0 R E σrdrdθ 4πε 0 R z R (1.5) E R = z + r σz 4πε 0 r0 π 0 0 rdrdθ (z + r ) 3 (1.6) ( ) dθ θ π σz ε 0 r0 0 rdr (z + r ) 3 (1.7) σ 3 z (r, θ, z) z r ρ r r ρ ρ

24 r = z tan φ r = t dr = σz ε 0 φ0 0 z tan φ ( z + z tan φ ) tan φ = 1 cos φ 1 ( 1 + tan φ ) 3 cos φ 0 = φ0 σ sin φdφ ε 0 0 }{{} [ cos φ] φ 0 0 z cos φ dφ = σ ε 0 φ0 0 tan φ ( 1 + tan φ ) 3 = cos 3 φ = σ ε 0 [ cos φ 0 + cos 0] = z z + (r 0 ) z cos φ dφ 1 cos dφ (1.8) φ σ ε 0 (1 cos φ 0 ) (1.9) E = σ z + (r 0 ) z = ε 0 z + (r 0 ) πε 0 (r 0 ) z + (r 0 ) z (1.30) z + (r 0 ) π(r 0 ) σ = = r 0 cos φ 0 = 0 φ 0 E σ ε 0 E E r 0 z (r 0) z r 0 z r 0 z 1 r 0 z 1 z + (r 0 ) E z z + (r 0 ) z z + (r 0 ) z z + (r 0 ) = 1 + ( r 0 z ) ( r 0 z ) (1.31) 1 + x x + z + (r 0 ) z = 1 + ( 1 r0 ) ( z r0 ) ( z + (r 0 ) r0 ) = z + ( z r0 ) (1.3) z + z z + (r 0 ) z z + (r 0 ) 1 E (1.30) ( r0 ) (1.33) z πε 0 (r 0 ) z + (r 0 ) z z + (r 0 ) πε 0 (r 0 ) 1 ( r0 ) = z 4πε 0 z (1.34) z 1.6

25 1 0.0pt pt ρ( x) x ρ( x )d 3 x x E( x) = x x 4πε 0 x x 3 = 4πε 0 e x x x x (1.35) ρ( x )d 3 x x E( x) = d 3 x ρ( x )( x x ) 4πε 0 x x 3 = d 3 x ρ( x ) e x x 4πε 0 x x (1.36) π steradian Ω Ω = dθdφ sin θ (1.37) sin θ θ θ + dθ φ φ + dφ dθ sin θdφ ε 0 4π Ω Ω 4πε 0

26 E E 0 E E a : b a b E (1.37) θ [0, π] φ [0, π] 4π E z α, β (1) dz () γ α β α + β (3) E 1-3 R ρ z E 1-4 r σ z E z < r z E 0 z R = p r + z rz cos θ σr sin θdθdφ E z Z π F (cos θ) sin θdθ cos θ = t 0 R = p r + z rz cos θ 1-5

27 4 1 ρ 1-6 q 1 cos θ 1 + q cos θ = (1.38) θ 1, θ A (1) A A A () A 1 A ( ) θ π(1 cos θ) (3) q 1, q, θ 1, θ E σ ε 0 (1 cos φ 0 ) σ 4πε 0 ( P ) (1.39) (1) E () E z z

28 5.1 E E E (Gauss).1.1 flux E E( x) = 1 4πε 0 r e r R 4πR ε 0 ε 0 E E E E E E S E S cos θ θ 1 n E S S cos θ E E cos θ E S cos θ E ns ns S E S 1 1

29 6 n ds nds ds E ds n x yz ds = dydz n y ds = dzdx z ds = dxdy n = (n x, n y, n z ) (n x ) + (n y ) + (n z ) = 1 d S = n x dydz e x + n y dzdx e y + n z dxdy e z a = a x e x + a y e y + a z e z b = b x e x + b y e y + b z e z a b dy e y dz e z, dz e z dx e x, dx e x dy e y a b v v ( a b) cos θ a b v v ( a b) a b v ( a b) > 0 v d S (flux) 3 d S ρ ρ v d S E E d S E a b a b 3 flux

30 ε 0 E ds = E nds (.1) n E r 4πε 0 r r sin θdθdφ 4πε 0 (r + dr) (r +dr) sin θdθdφ E ds 0 E ds = ε 0 5 A B 6 flux Z E ds =.1. ε 0 6

31 8 0 E ds = 0 0 E ds ε = 0 ε 0.1. E ds flux flux ds E ds...1 E ε 0 rdrdφ

32 .. 9 E 4πε 0 (r + z ) θ 4πε 0 (r + z rdrdφ cos θ (.) ) θ r r θ r = 0 r = r θ θ = 0 θ = π 1 r = z tan θ dr = z cos dθ θ cos θ tan θ dθ 4πε 0 cos dφ cos θ = dφdθ sin θ (.3) θ 4πε 0 π 0 dθ cos θ = 1 π 0 dφ = π E = ε 0 E = (r e 4πε 0 (r + z ) 3 r + z e z ) (.4) d S = rdrdφ e z E ds = zrdrdφ (.5) 4πε 0 (r + z ) 3 φ r φ π r r = t rdr = dt π E ds = dφ }{{} rdr z 0 0 4πε }{{} 0 (r + z ) 3 = 1 dt = = =π dt z 0 4ε 0 (t + z ) 3 [ z 4ε 0 (t + z ) 1 ] 0 = ε 0 Z 1 dt (t + a) 3 1 = (t + a) 1 (.6) 1.5. E E E 7 7

33 30.. a r e r a e r r d S r sin θdθdφ e r r r sin θdθdφ 4πε 0 r e r a 3 (r e r a) e r r sin θdθdφ (.7) e r a = a cos θ a a 4πε 0 (r + a ar cos θ) 3 (r a cos θ) r sin θdθdφ (.8) cos θ = t sin θdθ = dt θ (0, π) t ( 1, 1) sin θdθ 8 r 1 dt 4πε 0 1 π 0 r at dφ (r + a art) 3 φ π t r at (r + a art) 3 = r ( 1 (r + a art) 1 9 t r ( ) r 1 1 dt ε 0 r 1 (r + a art) 1 ) (.9) (.10) (.11) 1 1 dt 1 (r + a art) dt = (r + a art) 1 [ 1 ( r + a art ) ] 1 1 = 1 ( (r a) ) (r + a) ar 1 ar (.1) r, a (r + a) r + a (r a) r > a r a r < a a r r > a 1 (r a (r + a)) = ar r (.11) r r ε 0 r < a 1 ar (a r (r + a)) = a r > a ε 0 r < a 0 0 ε 0.3 Z π Z 1 8 sin θdθ dt 9 0 1

34 pt pt E E E E ds = 1 i (.13) ε 0 E ds = 1 ρdv (.14) ε 0 V V V V V V d S E ρdxdydz.3.1 E z = 0 xy σ S σs z (0, 0, z) E

35 3 z xy x y E E x y z E FA E z z E S σs ε 0 σs S E ε σ ε 0 r 0 E πε 0 (r 0 ) z + (r 0 ) z = π(r 0 ) σ r 0 z + (r 0 ) 1-7 E σ ( P ) 4πε 0 π E E = σ ε E z E z z ρ ρ z ρ ε 0 z πr z E ρ ε 0 z πr z = ρ πε 0 r

36 ρ R 4π 3 R3 ρ ε 0 4πr 4πε 0 r e r E r < R r 4π 3 r3 ρ E E = 4π 3 r3 ρ 1 4πε 0 r e r = 1 ρr e r (.15) 3ε 0 r E r E E E S S ε FA ε 0 ε 0 A B 100 A 100 B E ε 0 S 10 capacitor

37 34 E ε 0 S E E E.4 E (.14).4.1 E flux E (E x, E y, E z ) x y z z x+ x y+ y dx dy E z (x, y, z) (.16) x y x, y 0 x+ x y+ y dx dy x y x y 1 E z (x, y, z) x x x ( x) x ( x)

38 .4. E 35 E z (x, y, z) x y E z (x, y, z) x y (.17) E z 1 E z (x, y, z + z) x y (.18) z z (E z (x, y, z + z) E z (x, y, z)) x y (.19) 13 E z (x, y, z + z) E z (x, y, z) lim = E z(x, y, z) z 0 z z (.0) z E z x y z (.1) z E z (x, y, z + z) = E z (x, y, z) + z E z z + (.) FA E z (x, y, z) z E z z E z(x, y, z) d S E z > 0 E d S d S 13 Z x+ x Z y+ y dx dy (E z (x, y, z + z) E z (x, y, z)) x y x y (.19)

39 36 14 x y x, y, z ( Ex x + E y y + E ) z x y z (.3) z x y z E x x + E y y + E z z E x x + E y y + E z z = div E div E 15 A div 16 div A = A x x + A y y + A z z (.4) div (divergence) 17 div E 18 div div (.14) E ds x y z V (.14) ρdv ρ x y z V ρ x y z x y z div E div E = ρ ε 0 (.5) (.14) div E = 0 div E = 0 div EdV = V V div EdV = V V ρ ε 0 dv (.6) E d S (.7) E A( x) E 16 A (.4) A E H v A (; ;)

40 .4. E div AdV = A ds (.8) E V V 0.4. E div E = 0 E E (0, 0, ρ ε 0 ) div E = 0 E = 4πε 0 r e r e r x, y, z ( x x + y + z, y x + y + z, ) z x + y + z 1 ( ) x y z E =,, 4πε 0 (x + y + z ) 3 4πε 0 (x + y + z ) 3 4πε 0 (x + y + z ) 3 (.9) 19 0 E E div 1 e r (x, y, z) 1 p x + y + z e r

41 38 E x x E x x = = = ( x x 4πε 0 (x + y + z ) 3 3 x x 4πε 0 (x + y + z ) 3 4πε 0 (x }{{} + y + z ) 5 }{{} 4πε 0 (x + y + z ) 3 ) x 3 4πε 0 (x + y + z ) 5 (.30) x, y, z E y y = 4πε 0 (x + y + z ) 3 E z z = 4πε 0 (x + y + z ) 3 3 4πε 0 (x + y + z ) 5 3 4πε 0 (x + y + z ) 5 3 x, y, z div E ( = 3 3 x + y + z ) (.31) 4πε 0 (x + y + z ) 3 4πε 0 (x + y + z ) 5 0 div y z.4.3 div E = ρ ε 0 E = 1 3ε 0 ρr e r (.15) r e r = (x, y, z) E x = ρ 3ε 0 x, E y = ρ 3ε 0 y, E z = ρ 3ε 0 z (.3) div E = ( ) ρ x + ( ) ρ y + ( ) ρ z = ρ 3 = ρ (.33) x 3ε 0 y 3ε 0 z 3ε 0 3ε 0 ε 0 div E = ρ ε 0 d ρ E z = d z = d (x, y, z) E x, y E x, E y 0 dive = 0 z E z = 0 E z x, y E z z d dz E z = 0 E z

42 .5. div 39 d dz E z = ρ ε 0 E z = ρ ε 0 z + C (.34) z = 0 E z = 0 C 0 ρ d (d z) ε 0 ρ E z = z ( d < z < d) ε 0 ρ d (z d) ε 0 (.35) x, y z 1 div 1 de z dz div E = 0 z= -d z=d.5 div V x x + V y y + V z div z div V = V r r + V θ θ + V φ φ.5.1 div div r r θ r sin θ φ r sin θ r θ φ (r + r) sin θ θ φ r sin θ θ φ r sin θ θ φ (r + r) sin θ θ φ flux (r + r) V (r + r, θ, φ) sin θ θ φ flux r V (r, θ, φ) sin θ θ φ V r > 0 (r + r) V r (r + r, θ, φ) sin θ θ φ r V r (r, θ, φ) sin θ θ φ = ( (r + r) V r (r + r, θ, φ) r V r (r, θ, φ) ) sin θ θ φ (.36)

43 40 div r sin θ r θ φ div 1 (r + r) V r (r + r, θ, φ) r V r (r, θ, φ) r r (.37) r V (r, θ, φ) r r + r ( (r + r) V r (r + r, θ, φ) ) r ( r V r (r, θ, φ) ) (.37) r r 1 r 0 r div r V (r, θ, φ) r 1 r 1 ( r r V r (r, θ, φ) ) (.38) r r V r V r r r V r FA 1.5. r r + dr rdθ (r + dr)dθ drdθ (r + r) V r (r + r, θ, φ) r V r (r, θ, φ) (.39) (r + r) V r (r + r, θ, φ) `r + r r + ( r) V «r(r, θ, φ) + r Vr (r, θ, φ) + r = r V r (r, θ, φ) + r rv (r, θ, φ) + r V r (r, θ, φ) + ( r) V (r, θ, φ) + r( r) V r (r, θ, φ) + {z } r r {z } {z } 0 1 (.40) (r + r) r r (r + r) r (r + r) r + r r

44 .5. div sin θ div 1 r sin θ θ (r sin(θ + θ)v θ(r, θ + θ, φ) r sin θv θ (r, θ, φ)) 1 r sin θ θ (sin θv θ) (.41) 1 r sin θ φ (r sin θv φ(r, θ, φ + φ) r sin θv φ (r, θ, φ)) 3 div 1 r sin θ φ V φ (.4) div A = 1 r ( r ) 1 A r + r r sin θ θ (sin θa θ) + 1 A φ r sin θ φ div (.43) div A = 1 (ρa ρ ) + 1 A φ ρ r ρ φ + A z z (.44).5. div 4 div A = A A = e x x + e y y + e z z A = A x e x + A y e y + A z e z e i e j = δ ij 5 ( ) A = e x x + e y y + e z (A x e x + A y e y + A z e z ) = A x z x + A y y + A z (.45) z div A e x e x = e y e y = e z e z = 1 e e F ( x) = lim h 0 F ( x + h e) F ( x) h (.46) F ( x + h e) = F ( x) + h e F ( x) + O(h ) (.47) h F ( x) h h 0 e F (x) df (x) dx = lim h 0 F (x + h) F (x) h sin θ sin θ sin θ r dθ rdθ θ 1 r θ 3 r sin θ r sin θdφ φ 1 r sin θ φ 4 (nabla) 5 e x, e y, e z 1 (.48)

45 4 df (x) F (x + h) = F (x) + h dx + O(h ) (.49) x h F (x) h x e x F = F x e y F = F y e e F F F x y F F = e x x + e F y y + e F z (.50) z F = e x x + e y y + e z z (.51) e r e r F ( x) F θ r e θ F ( x) 1 F r θ θ h θ h r (.5) 1 r φ h φ e θ F F (r, θ + h r, φ) F (r, θ, φ) (r, θ, φ) = lim h 0 h F (r, θ + h r, φ) = F (r, θ, φ) + h r F θ F θ h r sin θ e φ F = 1 r sin θ F F = e r r + e 1 F θ r θ + e 1 F φ r sin θ φ = e r r + e 1 θ r θ + e 1 φ r sin θ φ (.5) (.53) F φ e r = r, e θ = 1 r θ, e φ = 1 r sin θ φ A = A r e r + A θ e θ + A φ e φ A = ( ) e r r + e 1 θ r θ + e 1 φ (A r e r + A θ e θ + A φ e φ ) r sin θ φ = A r r + 1 A θ r θ + 1 A φ r sin θ φ e r, e θ, e φ e r e r = 0, θ e r = e θ, φ e r = sin θ e φ, r e θ = 0, θ e θ = e r, φ e θ = cos θ e φ, r e φ = 0, θ e φ = 0, φ e φ = sin θ e r cos θ e θ (.54) (.55) (.56)

46 .5. div 43-5 ( 1 1 e r A = r + e θ r θ + e φ r sin θ φ = A r r + 1 A θ r θ + 1 A φ r sin θ φ + 1 r e θ + 1 ( r sin θ e φ A r e r φ }{{} =sin θ e φ +V θ e θ φ }{{} =cos θ e φ ) (A r e r + A θ e θ + A φ e φ ) ( A r e r θ }{{} = e θ +A θ e θ θ }{{} = e r +V φ e φ φ }{{} sin θ e r cos θ e θ = A r r + 1 A θ r θ + 1 A φ r sin θ φ + r A r + cos θ r sin θ A θ ) ) (.57) (.43) e.5.3 div E div div (.43) A E = 4πε 0 r e r 0 V r 4πε 0 r div r V r 0 E div E = 0 E θ E φ div E = 0 1 ( r ) r E r r ( r ) E r r = 0 r = 0 r E r = C r (.58) E r = C r C div E = ρ ε 0 ρ 1 ( r ) r E r r ( r ) E r r = ρ ε 0 r = ρ ε 0 r r E r = ρ 3ε 0 r 3 + C E r = ρ r + C 3ε 0 r r (.59) C 0 r = 0 E r FA E r = 4πε 0 r

47 44 C r = R E = C r E = C R = ρ 3ε 0 R C = 4π 3 R3 ρ = ρ 3ε 0 r ρ 3ε 0 R 3 (.60) E = ρr3 4π 3ε 0 r = 3 ρr3 4πε 0 r = 4πε 0 r (.61) E.3.3 div E = ρ ε 0 (.6).6-1 R 0 E E r E kr n n n - E = x e x y e y div E = 0 z (1) E () dy dx (3) E = y e x + x e y div E = 0-3 r 1 r r 1 < r < r ρ z r ρ r ρ z πε 0 r r z div E = 0 (1)

48 () -5 (.56) e r, e θ, e φ e x, e y, e z e x, e y, e z r, θ, φ -6 (.56)

49

50 45 3 E E 3.1 m x F (x) m d x dt = F (x) x t 1 x 1 t x x 1 x 1 m x x 1 d x dt dx = x x 1 F (x)dx (3.1) F (x) dx dx dt x t dt t d x dx x m t 1 dt dt dt = F (x)dx (3.) x 1 dx dt v x d dt = dv dt t dv x m t 1 dt vdt = F (x)dx (3.3) x 1 F (x) x d ( v ) = dv dt dt v (3.4) 1 t m d ( v ) x dt = F (x)dx (3.5) t 1 dt x 1 t 1 t x 1 x v 1 mv 1 t=t t=t1 mv = x x 1 F (x)dx (3.6) 1 mv F (x) x F (x)dx F (x)dx F (x)dx x=x F (x)dx x=x x 1 1 mv 1 t=t t=t1 mv = F (x)dx x=x F (x)dx x=x (3.7) 1

51 46 3 x 1 t 1 x t 1 mv F (x)dx t=t1 F (x)dx = U(x) x=x1 = 1 t=t mv F (x)dx (3.8) x=x 1 mv + U(x 1 ) = 1 t=t1 t=t0 mv + U(x 0 ) (3.9) t 1 x 1 t 0 x 0 1 mv +U 1 mv U(x) U(x) F (x) U(x) = F (x)dx F (x) = d U(x) (3.10) dx mg g mg x F (x) = mg U = mgx M m GMm r U(r) = GMm r r = r x kx x = 0 x F (x) = kx 1 kx F (x)

52 F (x) d U(x) dx E E E = 4πε 0 r F (r) = q 4πε 0 r U(r) = q 4πε 0 r F (r) = d U(r) dr 3 U(r) F (r) q F E = 1 q F E E q U V = U q 4 V U F F = d dr U E E = d dr V V E [V] 5 1.5V 1.5V (voltage) 3 GMm r GMm q > 0 r 4 5

53 48 3 q 1.5 q[j] q[c] 1.5q[J] q > 0 6 q 4πε 0 r r V = 4πε 0 r z E E 3. E 3..1 F (x) F (x) (F x, F y, F z ) F x dx + F y dy + F z dz = F d x (3.11) 6 q (1..1 1C ) 1.5q[J]

54 $ $ F = (F x, F y, F z ) d x = (dx, dy, dz) U(x, y, z) F x = U x, F y = U y, F z = U z F = du dx 7 U F x e x = e x x U +F y e y = e y y U +F z e z = e z z (3.1) (3.13) F x e x +F y e y +F z e z = e x U x e y U y e z U z = e x x + e y y + e z z U ( Φ Φ( x) x, Φ y, Φ ) (gradient) z grad grad grad Φ = Φ Φ = e x x + e Φ y y + e Φ z z (3.14) grad div rot div grad grad e (grad Φ) = e Φ = lim h 0 Φ( x + h e) Φ( x) h (3.15) x Φ h x+h e Φ h h Φ x h h % '&)( *!!" # e h grad grad φ e e Φ 7

55 E F = grad U E E E E E = grad V E = V (3.16) V E z V V V grad V grad V grad V E

56 E E E E 8 x a V ( x + ɛ a) V ( x) = 0 (3.17) ɛ a ɛ a x, y, z ɛ V (x + ɛa x, y + ɛa y, z + ɛa z ) V (x, y, z) = 0 (3.18) ɛ a grad V = 0 ɛ a E = 0 (3.19) V ɛa x x + ɛa V y y + ɛa V z z = 0 ɛa xe x ɛa y E y ɛa z E z = 0 (3.0) E E 8

57 5 3 E E E E E 0 E 3..3 F = U F (x)

58 F U F = x e y = (0, x, 0) F y = x U = xy U x = y F x 0 F = U y x A B C A D C B C A D B C A C ( ) A B A B mg π θ h cos θ mg h cos(π θ) = mgh cos θ A C B A C C B mgh z z F d x z F = U U

59 rot A(x, y) D(x + x, y) C(x + x, y + y) A(x, y) B(x, y + y) C(x + x, y + y) 9 x, y F x (x, y) x + F y (x + x, y) y F y (x, y) y F x (x, y + y) x = (F y (x + x, y) F y (x, y)) y + (F x (x, y) F x (x, y + y)) x }{{}}{{} ( x F y Fy x x ) x y ( ) y F x x y Fx y y (3.1) x F y y F x = 0 (3.) 10 F F ( x F y ) y F x x y (3.3) x y x F y y F x (3.4) Z y+ y 9 x, y F y (x, y )dy F y (x, y) y 10 y

60 3.3. rot 55 xy yz zx xy : yz : zx : x F y y F x = 0 y F z z F y = 0 z F x x F z = 0 (3.5) xy z yz x zx y rot F = rot ( y F z z F y, z F x x F z, x F y ) y F x (rotation) curl 11 rot E = 0 1 rot rot rot rot x y z rot yz zx xy x yz (3.6) 11 curl rot E =

61 rot rot rot rot V x x V x x V x x V x x y y V x (x, y y, z) x + V x (x, y, z x }{{}}{{} (3.7) V x (x, y + y) = V x (x, y) + V x (x, y) y + y V x x y y ( ) V y x + x Vy x y x

62 3.3. rot rot rot 14 a q a a 0 (x + a ), y qe (x + a ), y E y E y z ( qe y x + a ) a, y (3.8) ( x, y + a ) ( qe x x, y + a ) a (3.9) E x > 0 q [E y (x + a ) (, y E x x, y + a ) E y (x a ) (, y + E x x, y a )] a (3.30) a ( E y x + a ) (, y E y x a ), y = x E y(x, y)a (3.31) [ Ey q x E ] x a y z rot E z (3.3) FA (rot E) y = z E x x E z (rot E) x = y E z z E y y z (rot E) z = x E y y E x x y (rot E) y = z E x x E z z x rot x y z y z x x z y z x rot E = 0 15 rot nonzero F = x e y rot nonzero F y x = 1 rot 0 E E E = x e y E rot E 0

63 58 3 rot rot ( rot F = y F z z F y, z F x x F z, x F y ) y F x ( ) a b = a y b z a z b y, a z b x a x b z, a x b y a y b x ( (3.33) rot = x, y, ) z F = (F x, F y, F z ) rot F = F (3.34) grad,rot,div div,rot,grad grad rot 0 Φ grad φ rot rot (grad φ) = 0 grad rot grad rot rot grad ( )-( ) rot div 0 V div (rot V ) = 0 div rot rot div rot rot div 6 rot

64 rot rot rot ( rot) rot div (Stokes) rot S S S (rot V ) ds = S V d x (3.35) S S div V dv = V ds V V rot E = 0 0 S F = grad ( ) ( ) ( ) q = 4πε 0 r q q 1 = e r + e θ 4πε 0 r r 4πε 0 r r θ }{{} θ,φ (3.36) U = q 4πε 0 r V = 4πε 0 r E = grad V V C grad C = 0 E E = grad (V + C) 16 (r = ) V = 0 V = 4πɛ 0 r E E = V V E E 16

65 60 3 1,,, N N x 1, x,, x N x V ( x) = 1 4πε 0 x x 1 + N 4πε 0 x x + = i 4πε 0 x x i i=1 (3.37) grad E grad 17 V ( x) = N i N 4πε 0 x x i = i 4πε 0 x x i e x i x (3.38) i=1 E E ρ( x) V ( x) = 1 4πε 0 ρ( x ) x x d3 x (3.39) i=1 18 x ρ( x )d 3 x x V ( x) x (1.36) 3.4. div E = ρ rot E ε = 0 E = grad V 0 rot E = 0 grad rot 0 div E = ρ div ( grad V ) = ρ (3.40) ε 0 ε 0 div (grad V ) = ρ (3.41) ε 0 grad grad div grad V ( V x, V y, V z ) div (A x, A y, A z ) A x x + A y y + A z z ( div (grad V ) = x + y + z x + y + z 19 ) V = ρ ε 0 (3.4) d 3 x dxdydz 3 d 3 x = dx dy dz 19 ( )

66 V = ρ ε 0 (3.43) 0 f = j j ρ (source) ε 0 0 f = 0 V = 4πε 0 r r = x + y + z ( ) 1 x x + y + z = 1 x (x + y + z ) = ( ) x x (x + y + z ) 3 x (x + y + z ) 3 1 = + 3 x x (x + y + z ) (x + y + z ) 3 (x + y + z ) 5 1 x = + 3 (x + y + z ) 3 (x + y + z ) 5 ( ) ( ) 1 x 1 r y r z ( ) ( ) x + y + 1 z r ( 1 r ( ) 1 = 0 r grad V ( V r, 1 r div ) (3.44) x y x z 1 = + 3 (x + y + z ) 3 (x + y + z ) 5 1 y + 3 (x + y + z ) 3 (x + y + z ) 5 1 z + 3 (x + y + z ) 3 (x + y + z ) 5 3 = + 3 x + y + z (x + y + z ) 3 (x + y + z ) 5 = 0 div A = 1 r V = div (grad V ) = 1 r V θ x x y z ( ) 1 ( r ) 1 ( r ) 1 r (3.45) 1 V ) r θ φ r sin θ φ ( r ) 1 A r + r r sin θ θ (sin θa θ) + 1 A φ r sin θ φ r ( r V ) 1 + r r sin θ θ ( sin θ V ) + θ (3.46) 1 V r sin θ φ (3.47) V = 1 θ, φ 0 r V r = 1 r r r V ( ) 1 = 1 0 = 0 r r r 0 r = 0 0 0

67 grad div f = 0 d dx f = 0 0 dy dx = lim y(x + x) y(x) x 0 x d y dx = lim (y(x + x) y(x)) (y(x) y(x x)) x 0 ( x) = lim x 0 (3.48) y(x + x) + y(x x) y(x) ( x) (3.49) y(x + x) + y(x x) y(x) y(x + x) + y(x x) y(x) = x + x y x y y f(x, y) = 0 x y f(x, y) = log(x + y ) x y f = 0 f = 0 x, y, z ( 1 ) V x y, z 1 x, y, z f

68 grad div ρ R E 0 R 0 R E ρr 3 3ε 0 r E = e r r > R ρr e r r R 3ε 0 (3.50) E r V r E = E r e r E = V dv = e r dr E r = dv V dr V 1 + ρr3 r > R 3ε 0 r V = (3.51) V ρr r R 6ε 0 E V 1, V r =, r = 0 E

69 V 1 = 0 V r > R r = R r R r = R V ρr = ρr 6ε 0 3ε 0 (3.5) V = ρr ε 0 E V ( 1) E r = R r = R E E E E E (r ) sin θdr dθdφ 3 ρ(r ) sin θdr dθdφ dv = (3.53) 4πε 0 r + (r ) rr cos θ r R φ π θ π sin θdθ dt θ r V = ρ ε 0 R 0 dr 1 1 (r ) dr dt r + (r ) rr t (3.54) d B A + Bt = dt A + Bt V = ρ ε 0 R A = r + (r ), B = rr 0 dr (r ) dr [ 1 rr r + (r ) rr t ] 1 1 (3.55) [ 1 ] 1 r rr + (r ) rr t = 1 r 1 rr + (r ) rr + 1 r rr + (r ) + rr (3.56) r + (r ) ± rr = (r ± r ) [ 1 ] 1 r rr + (r ) rr t = 1 1 rr ( r r r + r ) (3.57) A A A r > r 1 rr ( r ) r < r 1 rr ( r) r 0 R R < r r > r V = ρ R dr (r ) dr 1 ε 0 r = ρr3 (3.58) 3ε 0 r 0 3 r r r, θ, φ

70 r < R V = ( ρ r dr (r ) dr 1 ) R ε 0 r + dr (r ) dr 1 r 0 ( [(r = ρ ) 3 ] r [ (r ) + ε 0 3r 0 = ρ ( ) r ε R r r ] R r ) = ρ ε 0 R ρ 6ε 0 r (3.59) E 1 d (r ddr ) r dr V (r) = ρ (3.60) ε 0 r > R 1 d (r ddr ) r dr V (r) = 0 (3.61) d dr (r ddr ) V (r) = 0 r d dr V (r) = C 1 r d dr V (r) = C 1 r V (r) = C 1 r + C r = V = 0 C = 0 d (r ddr ) dr V (r) = ρ r ε 0 r d dr V (r) = ρ r 3 + C 3 3ε 0 d dr V (r) = V (r) = ρ r + C 3 3ε 0 r ρ 6ε 0 r C 3 r + C 4 r V C 3 = 0 C 1, C 4 V dv r = R dr E E V (r) ρ R + C 4 = C 1 6ε 0 R dv ρ (r) R = C 1 dr 3ε 0 R (3.65) C 1 = ρ R 3 3ε 0 (3.6) (3.63) (3.64) ρ R + C 4 = ρ R (3.66) 6ε 0 3ε 0

71 66 3 C 4 = ρ R ε 0 4 r > R 4πε 0 r E V 0 V = 4πε 0 r = 4π 3 R3 ρ R 0 ρ ( ) = 4πε 0 r 3 R 0 4πR3 r = 0 0 (3.67) r 0 0 r = 0 ε 0 ε 0 f( x) d 3 x f( x )δ( x x ) = f( x) (3.68) Dirac x = 0 δ( x) = 0 x 0 (3.69) 4

72 ( ) δ 3 ( x x ) = 1 4π x x e x x ( ) δ 3 ( x x 1 ) = 4π x x (3.70) (3.71) δ 3 ( x) = δ(x)δ(y)δ(z) div E = ρ ε 0 V = ρ ε 0 ε 0 x x 0 x = x d 3 x δ( x x ) = 1 (3.7) 1 1 4π x x ρ 1 ε 0 ε 0 ε r < R r > R 0 1 div E 0 1 R 3.5. z = d z = d d ρ 0 x = x = y x, y x y E E d dz φ(z) = 1 ε 0 ρ(z) (3.73) ρ 0 d < z < d ρ(z) = 0 (3.74) 5 6

73 68 3 d < z < d dφ(z) dz = ρ 0 ε 0 z + C 1 φ(z) = ρ 0 ε 0 z + C 1 z + C (C 1, C ) z = 0 E dφ(0) = 0 dz C 1 0 z = 0 C = 0 (3.75) 0 E ( 1) 0 z > 0 z < Na + Cl 0 7 E (0, 0, d) +q (0, 0, d) q V (x, y, z) = q 4πε 0 x + y + (z d) q (3.76) 4πε 0 x + y + (z + d) d 0 qd p 8 d 0 q q q p 9 p ( ) V (x, y, z) = p 1 1 4πε 0 d x + y + (z d) 1 x + y + (z + d) d 0 ( ) 1 1 lim d 0 d x + y + (z d) 1 = d x + y + (z + d) dz ( 1 x + y + z ) = z (x + y + z ) 3 z d z + d x + x x x d (3.77) (3.78) C m 9

74 V (x, y, z) = p 4πε 0 z (x + y + z ) 3 = p cos θ 4πε 0 r (3.79) x + y + z = r, z = r cos θ E ( {}}{ ) E = p z 4πε 0 (x + y + z ) 3 ( ( ) ) = p z 4πε (z) 0 (x + y + z ) 3 (x + y + z ) 3 ( ) = p 3z (x + y + z ) 1 + e 4πε 0 (x + y + z ) 5 (x + y + z 3 z ( ) p 3z(x e x + y e y + z e z ) 1 = e 4πε 0 (x + y + z ) 5 z (x + y + z ) 3 = e r r + e 1 θ r θ + e 1 φ r sin θ φ ( ) p cos θ sin θ E = e r 4πε 0 r 3 + e θ r 3 (3.81) ( ) (3.80) (3.81) r e r = x e x + y e y + z e z e z = cos θ e r sin θ e θ z +z z p (ab) = ( a)b + a( b) f 3 = 3 ff 5, z = ez (x ) = x e x, (y ) = y e y, (z ) = z e z p x V = 4πε 0 x 3, E p x = 3 4πε 0 x 4 x 1 p (3.8) 4πε 0 x 3 ( ) ( p x) = p, 1 x 3 = 3 x x 4 (3.80) U = q q 4πε 0 r 4πε 0 r q q 4πε 0 r q q 4πε 0 r πε 0 r q 4πε 0 r q 1 q 4πε 0 r q 4πε 0 r 30 q U = q 4πε 0 r (double-counting)

75 70 3 x k 1 kx k x 1 kx 31 1 ε 0 E ( q, ) r q 4πε 0 r q q 1 r 1 q r q 1 q q 1 q 4πε 0 r 1 + q q 4πε 0 r (3.83) q 1q 4πε 0 r q 1 q + q q + q 1q 4πε 0 r 1 4πε 0 r 4πε 0 r (3.84) q 1, q,, q N N q i q j r ij r ij i j N 1 N i=1 N j=1 j i q i q j 4πε 0 r ij (3.85) i = j i = j 31

76 r ii = 0 1 N = q i q j = 1 4πε 0 r ij i=1 j=1 j i = 1 = 3 j=1 j 1 q 1 q j 4πε 0 r 1j + 3 j=1 j q q j 4πε 0 r j + 3 q 3 q j 4πε 0 r 3j j=1 j 3 ( q1 q + q 1q 3 + q q 1 + q q 3 + q 3q 1 + q 3q 4πε 0 r 1 4πε 0 r 13 4πε 0 r 1 4πε 0 r 3 4πε 0 r 31 4πε 0 r 3 q 1 q + q 1q 3 + q q 3 4πε 0 r 1 4πε 0 r 13 4πε 0 r 3 1 double-counting 1 double-counting 3 ) (3.86) 1 N i=1 N j=1 j i q i q j 4πε 0 r ij = 1 N i=1 q i N j=1 j i q j 4πε 0 r ij } {{ } =V ī ( x i) = 1 N q i V ī ( x i ) i=1 (3.87) V ī ( x i ) x i q i ī i dxdydz = d 3 x ρd 3 x 0 1 N q i V ī ( x i ) 1 ρ( x)v ( x)d 3 x (3.88) i=1 ρ V 1 ρ( x)v ( x)d 3 x i = j ρd 3 x V ( x) x x ρ( x)v ( x)d 3 x ρ div E = ρ ε 0 ε 0 (div E( x))v ( x)d 3 x (3.89) div E E V x, y, z ε 0 3 over-counting ( x E x( x) + y E y( x) + ) z E z( x) V ( x)d 3 x (3.90)

77 7 3 b a [ ] b df(x) dx g(x)dx = f(x)g(x) a }{{} b a f(x) dg(x) dx (3.91) dx x E x( x)v ( x) ε 0 ( E x ( x) x V ( x) + E y( x) y V ( x) + E z( x) ) z V ( x) d 3 x (3.9) 33 [ ε0 ] x= E x ( x)v ( x)dydz x= (3.93) V ( x) E( x) 0 34 E = V x E x = x V ε 0 (E x ( x)e x ( x) + E y ( x)e y ( x) + E z ( x)e z ( x)) d 3 x (3.94) U = ε 0 E d 3 x (3.95) 35 ε 0 E 1 kx qv S V d ε 0 S V V 0 V 0 + V ε 0 S 1 (V + V 0) + 1 ( )V 0 = 1 V = 1 d ε 0 S (3.96) 1 V Z 33 d 3 xdiv ( ) Z 0 Z Z 35 ( E)V = E V = E E

78 q V qv q q q + dq dqv V = qd ε 0 S dq qd q 0 ε 0 S 0 dq qd ε 0 S = d [ q ε 0 S ] 0 = d ε 0 S (3.97) 1 V dqv 1 V V V V d Sd ε 0 S 1 ε 0 S = 1 ( ) ε 0 (3.98) ε 0 S 1 ε 0 E

79 74 3 E 1 E 0 0 d 1 Ed = 1 V FA E F = q E 1 F = q E E 1 E 1 E V = kx z (1) () a y 3- (a)e x = kx, E y = ky, E z = 0 (b)e x = ky, E y = kx, E z = 0 (c)e x = ky, E y = kx, E z = 0 (d)e x = k(x + y ), E y = kxy, E z = 0 x = 1 r ( r ) + 1r r r θ + z

80 V = ( ) r 1 < r < r ρ 0 r = 0 V = 0 ε 0 E = grad V R 1 R 0 (R 1 > R 0 ) (a) (b) 1 qv (c) 1 ε 0 E 3-6 V (r, θ) = p cos θ 4πε 0 r 90 x V (r, θ, φ) φ 3-7 q q q E q E E( x) = E ( x) = q 4πε 0 x x q 3 ( x x q) q 4πε 0 x x q 3 ( x x q ) ( x q, x q q, q ) E + E 1 ( ε 0 E + E ) ( E + E ) = 1 ε 0 E + 1 ε 0 E + ε 0E E 1 ε 0 E q 1 ε 0 E q ε 0 E E ε 0E E qq 4πε 0 x q x q (hint: z (0, 0, L) )

81

82 FA 100g (96485C) 1

83 !" 1 0 rot E = 0 rot E = S σ ρ S σ S S E = σ n ε 0 E = σ n ε 0 1 ε r 0 1

84 x = 0 V = 0 V = ρ ε 0 ρ x = 0 0 +, r x ( r, 0, 0) (r, 0, 0) (x, y, z) ( ) V (x, y, z) = 1 4πε 0 (x + r) + y + z 1 (x r) + y + z (4.1) x > 0 ( ) 1 V (x, y, z) = 4πε 0 (x + r) + y + z 1 x < 0 (x r) + y + z 0 x > 0 (4.) x = 0 V = 0 V = ρ V 1 = ρ, V = ρ ε 0 ε 0 ε 0 (V 1 V ) = 0 (4.3) V 1 V V 1 V (x = 0) V 1 = V x ( ) E x = x V = x + r x r 4πε 0 ((x + r) + y + z ) 3 ((x r) + y + z ) 3 (4.4)

85 80 4 x = 0 x x = 0 E x = 4πε 0 r (r + y + z ) 3 σ E = σ ε 0 n σ = π r (r + y + z ) 3 (4.5) n σ ( dy dz) z E R 0 r = R V = Ez = Er cos θ r = R V r=r = ER cos θ r = R V = ER cos θ V = p cos θ 4πε 0 r p = 4πε 0ER 3 V = V + V = Er cos θ + ER3 cos θ r 0 0 r R V (r, θ) = E(R 3 r 3 ) cos θ r R < r = E(R3 r 3 ) cos θ r (4.6) R = r ( ) E = V = e r r + e 1 θ r θ + e 1 E(R 3 r 3 ) cos θ φ r sin θ φ r }{{} φ ( = e r 3E cos θ E(R3 r 3 ) ) cos θ E(R 3 r 3 ) sin θ r 3 e θ r 3 (4.7) (4.8) 3

86 r = R E r=r = 3E cos θ e r (4.9) e r σ = 3ε 0 E cos θ (4.10) 0 θ < π π < θ π 4.3 V V C = CV (4.11) 1V 1C 1F F F=C/V 1F 1µF( )=10 6 F 1pF( )=10 1 F C ( k) E k E V kv V S d ε 0 S ε 0S d V = d ε 0 S = ε 0S d V (4.1) (dielectrics) 5 (insulator) (polarization) 4 E 5 dielectrics

87 q q d q p = qd n p n p P p p i = n p = P (4.13) +q -q [C m] [m 3 ] [C/m ] P 0 0 z P z (x, y, z + z) x y P z (x, y, z) x y P z x y z x, y z ( Px ρ P x y z = x + P y y + P ) z x y z (4.14) z V/m

88 ρ P div P ρ P ρ div P div E = ρ div P ε 0 (4.15) div E = ρ ε 0 1 ε 0 div P (4.15) div ) (ε 0E + P = ρ (4.16) (electric displacement 8 electric flux density) D D = ε 0 E + P (4.17) SI ε 0 [N/c] [V/m] [C/m ] (flux) [C] 1C 1C D (4.16) div D = ρ (4.18) ρ P D = ε 0E E D E = 4πε 0 r e r D = 4πr e r ε 0 E D P, D, E 9 (4.17) E ε( 0 ) D E D = εe (4.19) ε εd = ε 0 ( D P ) ε 0 D div P = 0 div P = 0 div P 0 10 S d P nq nq d 8 electric displacement D 0 9 P E 10 0

89 84 4! #" $ %&(')*,+.-/ :1; <' =! #" C DE F +nqds = +PS G H I(J<' >K L 3 M1N< -nqds = -PS +nq -nq qd S = P S qd S = P S P P ε 0 E }{{} = 1 ε 0 D 1 ε 0 P }{{} 1 ε 0 D 11 ε 0 S P ε 0 )#*,+.- "#"#"#"%$ &#'#(!!"#"#"#"%$ &#'#( // 1 ε 0 P FA ε E = D ε E = D ε 0 P 11 div D = ρ D 1 ε 0 D th 1 ε 0 D

90 R ε 1 D = 4πr e r, E = 4πεr e r P = D ε 0 E = (1 ε 0 ε ) 4πr e r (4.0) R ( σ P = 1 ε ) 0 ε 4πR (4.1) ( 4πR σ P = 1 ε ) 0 ε ( 1 ε ) 0 = ε 0 ε ε (4.) ε 0 ε E = 4πεr e r ε 0 ε E = ε 0ε 4πε 0 r e r 13 ε 0 ε r 4πε 0 r e r 4πεr e r ε 0 ε ε ε ε 0 = ε r div E = 1 ε 0 (ρ + ρ P ) div D = ρ div E ρ ε 0 ρ P ε 0 div E = 1 ε 0 (ρ + ρ P ) div D = ρ div D = 0 E D E 1 R R 13 ε ε 0ε 0 ε E = 4πεr e r 14

91 86 4 E D 1 ε 0 D div D = ρ, rot E = 0 div D = 0 rot E = FA E D E D E ε 0 D E D ( D ) D ρ ρ P = div P D ρ P div D = ρ D rot D = 0 rot 0 D D = ε E div E = ρ ε ε div 4.6 E D div D = 0 D

92 E, D H, B 4.7 ε 0 E ε 0 E 1 ρv d 3 x div E = ρ div D ε = ρ 0 1 ρv d 3 x = 1 ( D)V d 3 x = 1 D V d 3 x = 1 D Ed 3 x (4.3) 1 U = 1 D x = ε 0 E d 3 x + 1 P Ed 3 x (4.4) P Ed 3 x P nqd 1 P Ed 3 x = 1 nq d Ed 3 x = 1 n F dd 3 x (4.5) F = q E q F = K d 1 nk d d 3 x (4.6) 1 K d nd 3 x 1 D E 15 rot E = 0 rot D = 0 rot P 0 16

93 q F E = 1 F q q U V = 1 q U E = grad V rot E = 0 D = ε 0E + P D = εe div D = ρ D ds = ρdv V = ρ ε 0 V V rot E 0 rot E 0 rot E ε d E θ E D E D

94 R P E, D P cos θ θ P

95 90 curl, 55 div, 36 F( ), 81 flux, 6 grad, 49 rot, 55 steradian,, 6, 59 div, 41, 11, 36, 5, 31, 34, 79 div, 39, 3, 6, 6, 49, 49 ( ), 10, 6,, 59, 77, 47, 81, 83, 68, 8 div, 36, 66, 47, 47, 13, 79, 68, 68 b, 14, 83, 83, 13, 77, 41 (div), 36, 85, 71 F( ), 81, 78, 81, 33, 53 V( ), 47, 61, 81, 6, 83, 61, 61,, 6, 6, 55 (div), 36

i

i 007 0 1 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................ 3 0.4............................................. 3 1

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

1 B () Ver 2014 0 2014/10 2015/1 http://www-cr.scphys.kyoto-u.ac.jp/member/tsuru/lecture/... 1. ( ) 2. 3. 3 1 7 1.1..................................................... 7 1.2.............................................

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30 2.4 ( ) 2.4.1 ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) I(2011), Sec. 2. 4 p. 1/30 (2) Γ f dr lim f i r i. r i 0 i f i i f r i i i+1 (1) n i r i (3) F dr = lim F i n i r i. Γ r i 0 i n i

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

notekiso1_09.dvi

notekiso1_09.dvi 39 3 3.1 2 Ax 1,y 1 Bx 2,y 2 x y fx, y z fx, y x 1,y 1, 0 x 1,y 1,fx 1,y 1 x 2,y 2, 0 x 2,y 2,fx 2,y 2 A s I fx, yds lim fx i,y i Δs. 3.1.1 Δs 0 x i,y i N Δs 1 I lim Δx 2 +Δy 2 0 x 1 fx i,y i Δx i 2 +Δy

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

i E B Maxwell Maxwell Newton Newton Schrödinger Newton Maxwell Kepler Maxwell Maxwell B H B ii Newton i 1 1.1.......................... 1 1.2 Coulomb.......................... 2 1.3.........................

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b 23 2 2.1 n n r x, y, z ˆx ŷ ẑ 1 a a x ˆx + a y ŷ + a z ẑ 2.1.1 3 a iˆx i. 2.1.2 i1 i j k e x e y e z 3 a b a i b i i 1, 2, 3 x y z ˆx i ˆx j δ ij, 2.1.3 n a b a i b i a i b i a x b x + a y b y + a z b

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r) ( : December 27, 215 CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x f (x y f(x x ϕ(r (gradient ϕ(r (gradϕ(r ( ϕ(r r ϕ r xi + yj + zk ϕ(r ϕ(r x i + ϕ(r y j + ϕ(r z k (1.1 ϕ(r ϕ(r i

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

G:/SHIRAFUJI/テキスト類/EM1999/ALL/em99ps.dvi

G:/SHIRAFUJI/テキスト類/EM1999/ALL/em99ps.dvi 1999 1999 12 17 Contents 1 9 1.1........................ 9 1.2 (Cartesian )..................... 9 1.3........................ 10 1.4............................. 11 1.5............................. 12

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l c 28. 2, y 2, θ = cos θ y = sin θ 2 3, y, 3, θ, ϕ = sin θ cos ϕ 3 y = sin θ sin ϕ 4 = cos θ 5.2 2 e, e y 2 e, e θ e = cos θ e sin θ e θ 6 e y = sin θ e + cos θ e θ 7.3 sgn sgn = = { = + > 2 < 8.4 a b 2

More information

/Volumes/NO NAME/gakujututosho/chap1.tex i

/Volumes/NO NAME/gakujututosho/chap1.tex i 2012 4 10 /Volumes/NO NAME/gakujututosho/chap1.tex i iii 1 7 1.1............................... 7 2 11 2.1........................................... 11 2.2................................... 18 2.3...................................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

応力とひずみ.ppt

応力とひずみ.ppt in yukawa@numse.nagoya-u.ac.jp 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) http://astr-www.kj.yamagata-u.ac.jp/~shibata f4a f4b 2 f4cone f4eki f4end 4 f5meanfp f6coin () f6a f7a f7b f7d f8a f8b f9a f9b f9c f9kep f0a f0bt version feqmo fvec4 fvec fvec6 fvec2 fvec3 f3a (-D) f3b

More information

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b. 2009 7 9 1 2 2 2 3 6 4 9 5 14 6 18 7 23 8 25 9 26 10 29 11 32 12 35 A 37 1 B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t),

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r 2.4 ( ) U(r) ( ) ( ) U F(r) = x, U y, U = U(r) (2.4.1) z 2 1 K = mv 2 /2 dk = d ( ) 1 2 mv2 = mv dv = v (ma) (2.4.2) ( ) U(r(t)) r(t) r(t) + dr(t) du du = U(r(t) + dr(t)) U(r(t)) = U x = U(r(t)) dr(t)

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30 2.5 (Gauss) 2.5.1 (flux) v(r)( ) n v n v n (1) v n = v n = v, n. n n v v I(2012), ec. 2. 5 p. 1/30 i (2) lim v(r i ) i = v(r) d. i 0 i (flux) I(2012), ec. 2. 5 p. 2/30 2.5.2 ( ) ( ) q 1 r 2 E 2 q r 1 E

More information

/Volumes/NO NAME/gakujututosho/chap1.tex i

/Volumes/NO NAME/gakujututosho/chap1.tex i 2010 4 8 /Volumes/NO NAME/gakujututosho/chap1.tex i iii 1 5 1.1............................... 5 2 9 2.1........................................... 9 2.2................................... 16 2.3...................................

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 { 7 4.., ], ], ydy, ], 3], y + y dy 3, ], ], + y + ydy 4, ], ], y ydy ydy y y ] 3 3 ] 3 y + y dy y + 3 y3 5 + 9 3 ] 3 + y + ydy 5 6 3 + 9 ] 3 73 6 y + y + y ] 3 + 3 + 3 3 + 3 + 3 ] 4 y y dy y ] 3 y3 83 3

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ 1 1 1.1 (Isaac Newton, 1642 1727) 1. : 2. ( ) F = ma 3. ; F a 2 t x(t) v(t) = x (t) v (t) = x (t) F 3 3 3 3 3 3 6 1 2 6 12 1 3 1 2 m 2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t)

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

Quz Quz

Quz Quz http://www.ppl.app.keo.ac.jp/denjk III (1969). (1977). ( ) (1999). (1981). (199). Harry Lass Vector and Tensor Analyss, McGraw-Hll, (195).. Quz Quz II E B / t = Maxwell ρ e E = (1.1) ε E= (1.) B = (1.3)

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

untitled

untitled 1 17 () BAC9ABC6ACB3 1 tan 6 = 3, cos 6 = AB=1 BC=2, AC= 3 2 A BC D 2 BDBD=BA 1 2 ABD BADBDA ABC6 BAD = (18 6 ) / 2 = 6 θ = 18 BAD = 12 () AD AD=BADCAD9 ABD ACD A 1 1 1 1 dsinαsinα = d 3 sin β 3 sin β

More information

Acrobat Distiller, Job 128

Acrobat Distiller, Job 128 (2 ) 2 < > ( ) f x (x, y) 2x 3+y f y (x, y) x 2y +2 f(3, 2) f x (3, 2) 5 f y (3, 2) L y 2 z 5x 5 ` x 3 z y 2 2 2 < > (2 ) f(, 2) 7 f x (x, y) 2x y f x (, 2),f y (x, y) x +4y,f y (, 2) 7 z (x ) + 7(y 2)

More information

C:/KENAR/0p1.dvi

C:/KENAR/0p1.dvi 2{3. 53 2{3 [ ] 4 2 1 2 10,15 m 10,10 m 2 2 54 2 III 1{I U 2.4 U r (2.16 F U F =, du dt du dr > 0 du dr < 0 O r 0 r 2.4: 1 m =1:00 10 kg 1:20 10 kgf 8:0 kgf g =9:8 m=s 2 (a) x N mg 2.5: N 2{3. 55 (b) x

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1 . ( + + 5 d ( + + 5 ( + + + 5 + + + 5 + + 5 y + + 5 dy ( + + dy + + 5 y log y + C log( + + 5 + C. ++5 (+ +4 y (+/ + + 5 (y + 4 4(y + dy + + 5 dy Arctany+C Arctan + y ( + +C. + + 5 ( + log( + + 5 Arctan

More information