2 1,, x = 1 a i f i = i i a i f i. media ( ): x 1, x 2,..., x,. mode ( ): x 1, x 2,..., x,., ( ). 2., : box plot ( ): x variace ( ): σ 2 = 1 (x k x) 2

Size: px
Start display at page:

Download "2 1,, x = 1 a i f i = i i a i f i. media ( ): x 1, x 2,..., x,. mode ( ): x 1, x 2,..., x,., ( ). 2., : box plot ( ): x variace ( ): σ 2 = 1 (x k x) 2"

Transcription

1 1 1 Lambert Adolphe Jacques Quetelet ( ) (1 ) x 1, x 2,..., x ( ) x a 1 a i a m f f 1 f i f m 1.1 ( ( )) x f x 1, x 2,..., x 1. mea or average ( ):,. x = 1 x k k=1

2 2 1,, x = 1 a i f i = i i a i f i. media ( ): x 1, x 2,..., x,. mode ( ): x 1, x 2,..., x,., ( ). 2., : box plot ( ): x variace ( ): σ 2 = 1 (x k x) 2 = 1 k=1 x 2 k x 2 stadard deviatio ( ): σ = σ 2 = 1 (x k x) 2 x, σx, 2 σ x., σ 2 = 1 (a i x) 2 f i = (a i x) 2 f i = a 2 f i i x2 i i i 1.2 Iferetial Statistics k=1 k=1 Statistics Experimets Measuremets Data Statistical Iferece Good decisio Useful iformatio Probability Theory

3 1.3. What is a Radom Variable? What is a Radom Variable? (radom variable)., X, Y, Z, T,.... Discrete radom variables ( ) (1) 3. (2). Cotiuous radom variables ( ) (1) 1,. (2). X. X. X,. 1.4 Distributios of Discrete Radom Variables 1.2 3, X. X {0, 1, 2, 3}., P (X = 0) = 1 8, P (X = 1) = 3 8, P (X = 2) = 3 8, P (X = 3) = 1 8,.. x P (X = x) 1 8 X,, X ( ). X {a 1,..., a i,... } x a 1 a i P (X = x) p 1 p i

4 4 1, P (X = a i ) (, ),. p i = P (X = a i ), p i 0, p i = 1. (p i = 0 a i, p i = 0.) i E[X] = m X = i a i p i = i a i P (X = a i ), V[X] = σ 2 X = i (a i m X ) 2 p i = i a 2 i p i m 2 X., ( ). V[X] = E[(X m X ) 2 ] = E[X 2 ] E[X] ( ) E[X] = 3 2, V[X] = Distributios of Cotiuous Radom Variables 1.3 R 1, X. X [0, R]. a X = a P (X = a) = 0,. R x F (x) = P (X x). x < 0 F (x) = 0, x > R F (x) = 1., 0 x R. X x 1 O x, O x. 1,., F (x) = P (X x) = πx2 πr 2 = x2 R 2. 2 x, 0 x R, f(x) = R2 0,. X.

5 1.5. Distributios of Cotiuous Radom Variables 5 X, ( ) f(x) = f X (x). F X (x) = P (X x) f X (x),, F X (x) = P (X x) = : x f(x) 0, P (a X b) = f X (t)dt d dx F X(x) = f X (x). + b a f(x)dx = 1. f(x)dx, a < b, f (x) E[X] = m X = + + a b x xf(x)dx, + V[X] = σx 2 = (x m X ) 2 f(x)dx = x 2 f(x)dx m 2 X., V[X] = E[(X m X ) 2 ] = E[X 2 ] E[X] ( ) E[X] = 2 3 R, V[X] = 1 18 R2. HW 1 2, X,,. HW 2 2, L, S., L = S. L, S,,. HW 3 L X. (1) X. (2) (1), 2. (3) X.

6

7 7 第 2 章 基本的な離散分布 Sime o-deis Poisso ( ) 2.1 Biomial Distributio (二項分布) 表が出る確率が p であるコインを 回投げたとき, 表の出る回数 X の分布 ( ) k P (X = k) = p (1 p) k, k = 0, 1, 2,..., k を二項分布といい, B(, p) で表す. 特に, B(1, p) を成功確率 p のベルヌーイ分布という. 例 題 2.1 B(4, 1/2) と B(4, 1/4) を図示せよ. k k P (X = k) P (X = k) 定 理 2.2 二項分布 B(, p) の平均値と分散は m = p, σ 2 = p(1 p) 確率母関数 {0, 1, 2,... } に値をとる確率変数に対して pk = P (X = k) (k = 0, 1, 2,... ) とお く. このとき, pk xk f (x) = k=0 を X のまたは確率分布 {p0, p1,... } の母関数という. 補 題 2.3 確率母関数について次が成り立つ. (1) f (0) = p0, f (1) = 1. (2) E[X] = f (1). (3) V[X] = f (1) + f (1) {f (1)}2.

8 Geometric Distributio ( ) p, X P (X = k) = p(1 p) k, k = 0, 1, 2,.... p. ( ) 2.4 p m = 1 p p, σ 2 = 1 p p Poisso Distributio ( ) X λ > 0, P (X = k) = λk k! e λ, k = 0, 1, 2, λ m = λ, σ 2 = λ. 2.6 ( ) B(, p) p = λ ( ),, p 0, λ. 2.7 ( ) 1 3,., 1, (1) 1. [0.05] (2) 5. [0.18] HW ,. 5, ( ). [199.8 ] HW 5, 20., 1 3. HW ? 1 365,, 5 5 X B(50, 1/365)., P (X = k) (k = 0, 1, 2, 3, 4). [ , , , , ; : , , , , ]

9 2.3. Poisso Distributio ( ) 9 HW 7 X λ. (1) P (X = 0) P (X = 1) λ. (2) X, P (X = k) k.

10

11 11 第 3 章 基本的な連続分布 Joha Carl Friedrich Gauss ( ) 3.1 Uiform Distributio (一様分布) 区間 [a, b] からどの点も同等な確からしさで 1 点を選ぶときのモデルとして現れる. 1, a x b f (x) = b a 0, その他 定 理 3.1 [a, b] 上の一様分布の平均値と分散は, m= 3.2 a+b, 2 σ2 = (b a)2 12 Expoetial Distributio (指数分布) ランダム到着の待ち時間をモデル化するときに現れる. λ > 0 を定数として { λe λx, x 0 f (x) = 0, x<0 定 理 3.2 パラメータ λ の指数分布の平均値と分散は, m= 3.3 1, λ σ2 = 1 λ2 Normal Distributio (正規分布) N (m, σ 2 ): 平均 m, 分散 σ 2 の正規分布 (またはガウス分布) { } (x m)2 1 exp f (x) = 2σ 2 2πσ 2 定 理 3.3 (de Moivre Laplace の定理) 二項分布は, 同じ平均と分散をもつ正規分布で近似 できる. B(, p) N (p, p(1 p)), 0 < p < 1,.

12 B(100, 0.4) N(40, ) Stadard Normal Distributio ( ) N(0, 1) ( ) X N(m, σ 2 ), ax + b N(am + b, a 2 σ 2 ),, Z = X m N(0, 1) σ 3.6 Z N(0, 1). (1). P (Z 1.15), P (Z 1.23) [0.8749, ] (2) a. P (Z a) = 0.33, P (Z < a) = 0.75 [0.44, 0.67] (3) X N(2, 5 2 ), P (X 0) , 225 ( ( ) ). HW 8 500, 250. HW 9 ( ) m, σ, ( ) = x m σ,., 20 80,. HW 10, 4% ,. [0.0901]

13 3.4. Stadard Normal Distributio ( ) N(0, 1) 13 I(z) = 1 2π z 0 e x2 /2 dx z

14 ,. 30cm 40cm, 5cm. [1/2] , 10.,. 2.,. [9/25] 3 3 3, 4, 5 1 P, P ( 5 ) 1. [95/144] 4 ( ) X, F (x) = F X (x) = P (X x)., x. 3, X. X,. 5 L Y. Y,,,. [F Y (x) = 0 (x < 0); = 2x/L (0 x L/2); = 1 (x > L/2). f Y (x) = 2/L (0 x L/2); = 0 (otherwise). E[Y ] = L/4. V[Y ] = L 2 /48.] 6 R 1, X. X. [E[X] = R/3. V[X] = R 2 /18.] 7 O R 1, O X. X,,,. 8 (, ) λ. [.] 9 N 4. 1 N N, 4, X. 4 k N, P (X = k), E[X]. [4(N + 1)/5] 10 (1) X N(20, 4 2 ), P (X > 17.8). [0.7088] (2) X N(50, 10 2 ), P (X > a) = a. [28.3] 11 60, 1 12., 600, 1 120,. [.] 12, 5%., 68, 8.,. [ ]

15 15 4 I Jacob Beroulli ( ) 4.1 Samplig ( ) ( ),, ( ). 1, x 1.,, x., X, x X. Radom Samplig with Replacemet ( ) 1,.,, 1 X 1, 2 X 2,..., X., X 1, X 2,..., X ( ). Estimate of Populatio Parameters ( ),..,,.. X 1, X 2,..., X,.,,.

16 16 4 I 4.2 Poit Estimatio, f(x 1, X 2,..., X ) (poit estimatio)., X = 1 k=1 X k ( ) ( ) E[ X] = m. 4.2 ( ) X, ( ) P X = m = 1. lim 4.3 (Strog law of large umbers ( )) X 1, X 2,..., m., ( P lim 1 k=1 ) X k = m = ( ), 1, 0., x 1, x 2,... t = 1 k=1 x k. t,

17 4.3. Biomial Populatio Biomial Populatio E, 2, E p..,, E 1, E 0. m = p. X 1, X 2,..., X. k, X k = { 1, k E, 0, k E,..,,, ˆp = 1 X k., ˆp. 4.5 (Audiece Ratig Survey ( )).,? ( ) 5 1 ( ) ( ) 10 (%) 16/04/27( ) 8: /05/01( ) 20: /05/01( ) 21: /04/27( ) 22: /04/27( ) 21: /04/30( ) 21: /04/25( ) 21: /04/30( ) 20: /04/28( ) 21: /04/25( ) 21: /04/29( ) 12: k=1 32,., 27, PM.,, PM 600, 200. ( ) : ( )

18 18 4 I 4.4 Iterval Estimatio of Biomial Parameter ˆp, (!),., ˆp p., ˆp,. (iterval estimatio). ˆp. (1) X k B(, p). k=1 (2), B(, p) N(p, p(1 p)) ( ). p 5, (1 p) 5. (3), ˆp = 1 X k N k=1 ( p, ) p(1 p) ˆp p p(1 p)/ N(0, 1) (4) 2 ( ), p ˆp : ˆp p ˆp(1 ˆp)/ N(0, 1). α = α/2 α, Z N(0, 1) ( ) P ( z Z z) = 1 α z N(0, 1) α. z α α N(0,1) 1 α α/2 α/2 -z 0 z

19 4.4. Iterval Estimatio of Biomial Parameter 19 p 1 α [ ] ˆp(1 ˆp) ˆp(1 ˆp) ˆp(1 ˆp) ˆp z, ˆp + z ˆp ± z. 90% (α = 0.1, z = 1.64) 95% (α = 0.05, z = 1.96) 99% (α = 0.01, z = 2.58). α 1 0 (1 α) 0% 100% 0 ( ) ( ) ( ), x 1..., x (, x k = 0 = 1). ˆp,.,.., 1 α, α.,. 4.6 ( ) %. 95%, 0.141( ) ± ± , 95% 0.01,? [38416] HW , 51% (NHK ). 90%. [0.51 ± 0.027] HW 12, 90% 0.02,? [6724] HW 13,.

20

21 21 5 II William Sealy Gosset ( ) ( ) X, Y, E[XY ] = E[X]E[Y ], V[X + Y ] = V[X] + V[Y ] 5.2 ( ) N(m, σ 2 ) X 1, X 2,..., X X = 1 X k, X N ) (m, σ2 k=1 X m σ/ N(0, 1) m, σ 2,,. ( ) ( ) P X = m = 1. lim 5.3 ( ) X 1, X 2,..., m = 0, σ 2 = 1., ( ) lim P 1 X k x = 1 x e t2 /2 dt. 2π,, k=1 1 X k N(0, 1). k=1 5.2 ( ) X 1, X 2,..., X : m ( ), σ 2 ( ) m 1 α, X ± z σ z N(0, 1) α (= α/2 ) (5.1)

22 22 5 II p 1 α, ˆp ± z ˆp(1 ˆp) (5.2)., (5.1)., p p(1 p). (5.2), (5.1), σ 2 ˆp σ 2 = ˆp(1 ˆp). 5.4, 200, 2.2 g., 1.5 g., g?. [95% 2.2 ± 0.208] HW g., 8g. 1. [95% 156 ± 2.48] HW 15 HW14, 95% 1g? [984] 5.3 ( ) X 1, X 2,..., X : m ( ), σ 2 ( ) U 2 = 1 1 (X i X) 2, S 2 = 1 i=1 (X i X) 2 i=1,. (,, ) : E[S 2 ] σ U 2 : E(U 2 ) = σ 2.,, S 2 U N(m, σ 2 ) X 1,..., X, T = X m U/ t 1 ( 1) t-,.

23 5.3. ( ) 23 t- 1 B ( 2, 1 2) ( ) t2 2 = Γ( +1 2 ) Γ( 2 )Γ( 1 2 ) ( ) t2 2 (5.3) (1) Γ. Γ(x) = 0 t x 1 e t dt, x > 0. (2) B. B(x, y) = 1 (3) N(0, 1),. 0 t x 1 (1 t) y 1 dt = Γ(x)Γ(y), x > 0, y > 0. Γ(x + y) (4) = t- N(0, 1). (5), 30 N(0, 1). m 1 α, X ± t U t t 1 α 5.7 8,. 90% [ x = , u 2 = = , t 7 = ± 0.375] HW 16,. 95%. [33 ± 4.17] HW 17 (5.3), = t- N(0, 1). [Γ(1/2) = π.]

24 24 5 II t ( α P ( T t (α)) = α) \α α 0 t ( α)

25 25 6 Testig Hypotheses 6.1 Sir Roald Aylmer Fisher ( ) 1. (ull hypothesis) H 0 (alterative hypothesis) H T ( ), H 0,. 3. (sigificace level) 0 < α < 1 (critical regio)., H 0., 10%, 5%, 1%., T, T α (P (T W ) = α). ( H 1. ),. 4. T t, W (t W ). t W. T, H 0. α, H 0 (reject), H 1 (accept). t W. T, α, H 0 (, ) , 223.? 1. p. H 0 : p = 1 2 H 1 : p X. H 0, X B(400, 1/2) N(200, 10 2 )., Z = X 200 N(0, 1) 10.

26 26 6 Testig Hypotheses 3. α = 0.05., 5% ( ). 5% (= 2.5% ) 1.96, 4. x = 223 Z z = W : z = 2.3., H 0., 5% H 0.,. 5. 1%, 1% 2.58, z = % H 0.. α α α W W W W N(0, 1) α α z α ( ) m, σ 2, X = 1 ) X k N (m, σ2 X m σ/ N(0, 1) k=1,, (. N(m, σ 2 ) ). 6.2 ( ) 25 mm.,.,, 0.8 mm mm.? [ 5% H 0 : m = 25 ( ). 1%.]

27 (Two Types of Error) ( ) 120,., 25, , [ m. 5% H 0 : m = 25 ( ).] HW 18 ( ), [ 5% H 0 : p = 1/2 ( ). 1%..] HW 19 ( ), m = 60 (g).,, m 50 70, σ = 3 ( )., 25,, m = 60? [ 5% m = 60 ( ). 1%.] HW 20 ( ), 100g 2g., 2g. 200, 2.2g.,, 1.5g.. [ 5% ] (Two Types of Error) H 0, 4. \ H 0 H 0 H 0 2 H 0 1 α: 1 (Type I error) = β: 2 (Type II error) 1 = = 2 = = , 58.?

28 28 6 Testig Hypotheses. H 0 : p = 0.5 H 1 : p 0.5, α = B(100, 0.5) N(50, 5 2 ), B(100, 0.5). α p = , H 0,. 2., p, 2., p = 0.6. B(100, 0.6) N(60, 24) N(60, 5 2 ), B(100, 0.6) B(100, 0.5) 10..,, 2 β. β = 0.5. p = 0.50 p = 0.60 β (1) α β (2) α, β,. (3) H 0,. H 0.

29 29 7 Jerzy Neyma ( ) Ego Sharpe Pearso ( ) 7.1 ( ) m, σ 2,, X = 1 ) X k N (m, σ2 k=1 X m σ/ ( ).. N(0, 1) 7.2 ( : T - ) N(m, σ 2 ) X 1,..., X, U 2 = 1 (X i 1 X) 2,. X, i=1 T = X m U/ t 1 1 t (g) 9 494, 8 2.,? [ α = 0.05, t = 2.25 > H 0., N(0, 1), 2.25 < 1.96 H 0.] 7.2 ( ),. 50kg, 50kg. 12 (kg), x = 48.6, u 2 = [ 5% H 0 : m = 50 ( )]

30 30 7 HW A , A. A. [ 5% ] 7.3 P (P-value), α H 0.,, H 0. t, H 0, P = t, t P.,,. 7.3 A P. [0.0734] HW ,, ? P. [0.0076] ( ) X, Y a, b, E[aX + by ] = ae[x] + be[y ]. 7.5 ( ) X, Y a, b, V[aX + by ] = a 2 V[X] + b 2 E[Y ]. 7.6 ( ) 2 X N(m 1, σ1) 2 Y N(m 2, σ2) 2, a, b, ( ax + by N am 1 + bm 2, a 2 σ1 2 + b 2 σ2) 2

31 N(m 1, σ1), 2 N(m 2, σ2) 2 1, 2 X 1, X2, ( ) X 1 X 2 N m 1 m 2, σ2 1 + σ ( ). A B A 0.7, B [H 0 : m 1 = m 2, H 1 : m 1 m 2. z = % H 0.] HW 23 A 36, B 40, A x A = 64.5, B x B = A B., N(m 1, σ 2 ), N(m 2, σ 2 ) 1, 2 X 1, X2, U 2 1, U 2 2. U 2 = ( 1 1)U ( 2 1)U , T = X 1 X 2 ( ) U t ( ) 2 A, B. A 6, B 8. A : B : A,B. [ x A = , u 2 A = , x B = , u 2 B = , u 2 = , t = , t % %.]

32

33 33 8 Thomas Bayes ( ) 8.1 Coditioal Probability 8.1 A, B 2. P (A) > 0, P (B A) = P (A B) P (A) A B. A, B. 8.2 (Drawig lots) 10, ,,? [,.] X, Y ( X = Y ). P (X 5 Y = 2) P (X + Y 8 X 4). [4/9, 5/9] HW 24 2 E, F, P (E) = 1 3, P (F ) = 1 2, P (E F ) = [2/3, 1/12, 1/4, 1/2, 1/6, 3/7] P (E c ), P (E F c ), P ((E F c ) c ), P (E F ), P (E F c ), P (E F E F ) 8.2 Idepedece of Evets A, B, P (A B) = P (A)P (B). A 1, A 2,..., A i1, A i2,..., A i (i 1 < i 2 < < i ). P (A i1 A i2 A i ) = P (A i1 )P (A i2 ) P (A i )

34 P (A) > 0, 2 A, B P (B) = P (B A) , 121, 211, , 1 1 A 1, 10 1 A 2, A 3. A 1, A 2, A 3 2, 3. HW 25 A, B, C, P (A) = a, P (B) = b, P (C) = c. a, b, c. [a(1 b), a + b ab, a + b + c ab bc ca + abc, a] P (A B c ), P (A B), P (A B C), P (A B C) 8.3 Bayes Formula 8.7 (Bayes formula) Ω = A 1 A 2, A 1 A 2 =, B, P (A 1 B) =. P (A 1 )P (B A 1 ) P (A 1 )P (B A 1 ) + P (A 2 )P (B A 2 ) 8.8 (1), A B, 95%, 2%... [0.160] (2), 100p %,. p? [1.9/( p)] HW 26, A B, 90%, 5%. (1). [ ] (2). [ ] HW 27 ( ) (1) 1, 6. [2/3] (2) 1, 6. [4/5]

35 X 1, X 2 [0, 1]., [0, 1]. X = (X 1 + X 2 )/2. a 0 < a < 1, A = ax 1 + (1 a)x 2. (1) E[A] = 1/2., A. (2) V[A] V[ X]., X A. 14 X 1, X 2 [0, 1]., [0, 1]. Y = X 1 X 2. E[Y ] = 4/9., Y ,?. 16 m, σ = 3, %, 95%. [14.5 ± 1.56, 14.5 ± 1.86] , 38, 62. [ 5% ] , 23.5 ( ) ?

36 cm cm, 4.63 cm. [ 1% ] 20 8%., 177, 23.. [ 5% 5% ] (kg), kg, [ x = 53.24, u 2 = 20.10, t = % ] 22, A B, 90%, 5%. (1).. [0.0674] (2).. [0.9938] 23, 100x % A (0 x 1). B, 90%, 5%.. x, x ( ) ,. 4. ( ),. 5.,.,.

37 37 9 χ 2 - Karl Pearso ( ) 9.1 χ 2-1 ( ) x 2 1 e x 2, x > 0, f (x) = 2 /2 Γ 2 0, x 0, 2 (χ 2 - ). (χ 2.), χ 2., Γ(t). = = = = = χ 2 - (1) X 1, X 2,..., X, N(0, 1), χ 2 = χ 2 -. (2) X 1, X 2,..., X, N(m, σ 2 ), χ 2 1 = 1 σ 2 i=1 i=1 X 2 i (X i X) 2, X = 1 i=1 X i ( ) 1 2. χ 2 1.

38 38 9 χ χ 2 - χ 2, m =, σ 2 = (Goodess of Fit Test) A 1, A 2,..., A k k., X 1, X 2,..., X k. A 1 A 2 A k p 1 p 2 p k 1 X 1 X 2 X k, p 1, p 2,..., p k. 9.2 (Pearso χ 2 - ) m i = p i, χ 2 k 1 = k (X i m i ) 2 m i=1 i, m 1,..., m k (m i = p i 5), k , 120.? [χ 2 = 2.9. χ 2 5-5% %.] 9.4,, 1 1 (2013 J ) , 1.436, λ = (i) m i = p i 5 0, 1,..., 5 6. (ii), = 4 2.

39 HW 28,. 4 : 3 : 2 : 1.,? [χ 2 = χ 2 3(0.05) = ] A O B AB HW 29, 45, 55.? (1) (2), A = {A 1,..., A r }, B = {B 1,..., B s }, χ 2 = r i=1 s j=1 ( Xij X i X i X j ) 2 X j, (X ij 5), (r 1)(s 1) 2. B 1 B 2 B s A 1 X 11 X 12 X 1s X 1 A 2 X 21 X 22 X 2s X 2. A r X r1 X r2 X rs X r X 1 X 2 X s.

40 40 9 χ ? [χ 2 = %, χ 2 1(0.01) = ] , , 5., 5 1:1?. [χ 2 = χ 2 5(0.01) = :1. 51:49, χ 2 = 7.97, 5.] : 0:5 1:4 2:3 3:2 4:1 5: , 1 ( ) , λ = ?

41 : P (χ 2 χ 2 (α)) = α α χ α \α ( = 1 ).

42

43 43 第 10 章 多変量の統計 Sir Fracis Galto ( ) 変量データの記述 2 変量データ (2 次元データ): (x1, y1 ), (x2, y2 ),..., (x, y ) scatter diagram (散布図) データを xy-座標平面に図示したもの 例 題 10.1 身長 (x) と体重 (y) の散布図. クラス (A) とクラス (B) に対する結果 (B) (A) covariace (共分散) 個の 2 変量データ (x1, y1 ), (x2, y2 ),..., (x, y ) に対して, 変数ご との平均値と分散 1 x = xi, i=1 1 = (xi x )2 ; i=1 σx2 1 y = yi, i=1 1 = (yi y )2 i=1 σy2 を用いて共分散が定義される: 1 1 = (xi x )(yi y ) = xi yi x y i=1 i=1 σxy (注意) σxy = σyx. σxx = σx2 (したがって, 分散を σxx と書く流儀もある). correlatio coefficiets (相関係数) r = rxy = (注意) rxy = ryx. 正の相関 負の相関 強い相関 弱い相関 無相関 σxy σxy = σx σy σxx σyy

44 ( ( )) x i = x i x σ x, ỹ i = y i ȳ σ y x, y, x, ỹ, r xy = σ xỹ = r xỹ (10.1)., x, y, x, ỹ r xy 1. {t(x i x) + (y i ȳ)} 2 0 t (A) (B) A B HW 30 2 (x 1, y 1 ), (x 2, y 2 ),..., (x, y ) σ x > 0, σ y > 0., r = 1., r = 1. [ 10.4.] 10.2 Radom Vectors X, Y, covariace ( ) σ XY = Cov (X, Y ) = E[(X E[X])(Y E[Y ])] = E[XY ] E[X]E[Y ]., correlatio coefficiet ( ) : r XY = σ XY σ = XY σ X σ Y σxx σy Y

45 10.3. Regressio Models r XY ( ) X, ( ) Y. X, Y. E[X] = X\Y / /36 2 2/36 1/ /36 3 2/36 2/36 1/ /36 4 2/36 2/36 2/36 1/ /36 5 2/36 2/36 2/36 2/36 1/36 0 9/36 6 2/36 2/36 2/36 2/36 2/36 1/36 11/36 11/36 9/36 7/36 5/36 3/36 1/36 1, E[Y ] = , V[X] = V[Y ] =, Cov (X, Y ) = , r = HW 31 4, 1 X, 6 Y. X, Y. [r XY = 1/5] 10.3 Regressio Models 2 (x i, y i ) y = f(x) (x, y )., 1 y = ax + b liear regressio model ( ) y x. Method of least squares ( ) 1 y = ax + b, x = x i y i, (x i, y i ) ϵ i y i = ax i + b + ϵ i. Q = ϵ 2 i = i=1 (y i ax i b) 2 i=1 a, b. Q a, b 2,., Q a = 2a(σ2 x + x 2 ) 2(σ xy + xȳ) + 2b x, Q = 2b 2ȳ + 2a x b

46 Q a = Q b = 0, 1, a 0 = σ xy σ 2 x y = a 0 x + b 0., b 0 = ȳ a 0 x (10.2) (x 1, y 1 ), (x 2, y 2 ),..., (x, y ), x, y y ȳ = σ xy (x x) = σ y r(x x) σx 2 σ x y ȳ σ y., y, x x x = σ xy (y ȳ) = σ x r(y ȳ) σy 2 σ y., r. x x σ x = r x x σ x (10.3) = r y ȳ σ y (10.4) ( ) 2, ( x, ȳ), ( ) A,B (x) (y). A, x = , ȳ = 63.59, σ 2 x = , σ 2 y = , σ xy = , x,., y y = 0.73x (10.5) x = 0.27y (10.6). (10.6) 1/ , (10.5)., B,, x,, y. x = , ȳ = 51.05, σ 2 X = , σ 2 Y = , σ XY = y = 0.72x x = 0.58y

47 10.3. Regressio Models (A) (B) HW 32 4 (0, 1), (1, 3), (3, 6), (4, 6) x. [y 4 = 1.3(x 2)] 27 x, y, σ xy σ x σ y. 28 Galto, (1886).. Galto.,? ( ). Mid-height parets (x) Adult Childre (y) below above sum above below sum

ii 2. F. ( ), ,,. 5. G., L., D. ( ) ( ), 2005.,. 6.,,. 7.,. 8. ( ), , (20 ). 1. (75% ) (25% ). 60.,. 2. =8 5, =8 4 (. 1.) 1.,,

ii 2. F. ( ), ,,. 5. G., L., D. ( ) ( ), 2005.,. 6.,,. 7.,. 8. ( ), , (20 ). 1. (75% ) (25% ). 60.,. 2. =8 5, =8 4 (. 1.) 1.,, (1 C205) 4 8 27(2015) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7.... 1., 2014... 2. P. G., 1995.,. 3.,. 4.. 5., 1996... 1., 2007,. ii 2. F. ( ),.. 3... 4.,,. 5. G., L., D. ( )

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

24 6 I., X, x X. Radom Samplig with Replacemet ( ) 1,.,, 1 X 1, 2 X 2,..., X., X 1, X 2,..., X ( ).,.,,. Estimate of Populatio Parameters ( ),..,,.. 6

24 6 I., X, x X. Radom Samplig with Replacemet ( ) 1,.,, 1 X 1, 2 X 2,..., X., X 1, X 2,..., X ( ).,.,,. Estimate of Populatio Parameters ( ),..,,.. 6 23 第 6 章 母数の推定 I 二項母集団の母比率 6.1 Audiece Ratig Survey (視聴率調査) テレビ局では視聴率の獲得にしのぎを削っているようである. 果たして, コンマ以下の数字に 意味はあるのだろうか? 2016 年 4 月 25 日 (月) 5 月 1 日 (日) ドラマ (関東地区) 視聴率ベスト 10 番組名 放送局 連続テレビ小説 とと姉ちゃん 真田丸 日曜劇場

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,. 23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

populatio sample II, B II?  [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2 (2015 ) 1 NHK 2012 5 28 2013 7 3 2014 9 17 2015 4 8!? New York Times 2009 8 5 For Today s Graduate, Just Oe Word: Statistics Google Hal Varia I keep sayig that the sexy job i the ext 10 years will be statisticias.

More information

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3.....................................

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3..................................... 1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3........................................... 1 17.1................................................

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

24 7 I., X, x X. Radom Samplig with Replacemet ( ) 1,.,, 1 X 1, 2 X 2,..., X., X 1, X 2,..., X ( ).,.,,. Estimate of Populatio Parameters ( ),..,,.. 7

24 7 I., X, x X. Radom Samplig with Replacemet ( ) 1,.,, 1 X 1, 2 X 2,..., X., X 1, X 2,..., X ( ).,.,,. Estimate of Populatio Parameters ( ),..,,.. 7 23 第 7 章 母数の推定 I 二項母集団の母比率 7.1 Audiece Ratig Survey (視聴率調査) テレビ局では視聴率の獲得にしのぎを削っているようである. 果たして, コンマ以下の数字に 意味はあるのだろうか? 2015 年 5 月 25 日 (月) 5 月 31 日 (日) ドラマ (関東地区) 視聴率ベスト 10 番組名 放送局 連続テレビ小説 まれ 天皇の料理番 ようこそ

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e, ( ) L01 I(2017) 1 / 19

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e,   ( ) L01 I(2017) 1 / 19 I L01(2017-09-20 Wed) : Time-stamp: 2017-09-20 Wed 07:38 JST hig e, http://hig3.net ( ) L01 I(2017) 1 / 19 ? 1? 2? ( ) L01 I(2017) 2 / 19 ?,,.,., 1..,. 1,2,.,.,. ( ) L01 I(2017) 3 / 19 ? I. M (3 ) II,

More information

renshumondai-kaito.dvi

renshumondai-kaito.dvi 3 1 13 14 1.1 1 44.5 39.5 49.5 2 0.10 2 0.10 54.5 49.5 59.5 5 0.25 7 0.35 64.5 59.5 69.5 8 0.40 15 0.75 74.5 69.5 79.5 3 0.15 18 0.90 84.5 79.5 89.5 2 0.10 20 1.00 20 1.00 2 1.2 1 16.5 20.5 12.5 2 0.10

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

(I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 Typeset by Akio Namba usig Powerdot. 2 / 47

(I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 Typeset by Akio Namba usig Powerdot. 2 / 47 4 Typeset by Akio Namba usig Powerdot. / 47 (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 Typeset by Akio Namba usig Powerdot. 2 / 47 (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 (radom variable):

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

() Statistik19 Statistik () 19 ( ) (18 ) ()

() Statistik19 Statistik () 19 ( ) (18 ) () 010 4 5 1 8.1.............................................. 8............................................. 11.3............................................. 11.4............................................

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

untitled

untitled 17 5 16 1 2 2 2 3 4 4 5 5 7 5.1... 8 5.2... 9 6 10 1 1 (sample survey metod) 1981 4 27 28 51.5% 48.5% 5 10 51.75% 48.24% (complete survey ( ) ) (populatio) (sample) (parameter) (estimator) 1936 200 2 N

More information

( 30 ) 30 4 5 1 4 1.1............................................... 4 1.............................................. 4 1..1.................................. 4 1.......................................

More information

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1 t χ F Q t χ F µ, σ N(µ, σ ) f(x µ, σ ) = ( exp (x ) µ) πσ σ 0, N(0, ) (00 α) z(α) t χ *. t (i)x N(µ, σ ) x µ σ N(0, ) (ii)x,, x N(µ, σ ) x = x+ +x N(µ, σ ) (iii) (i),(ii) z = x µ N(0, ) σ N(0, ) ( 9 97.

More information

統計学のポイント整理

統計学のポイント整理 .. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!

More information

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp ( 28) ( ) ( 28 9 22 ) 0 This ote is c 2016, 2017 by Setsuo Taiguchi. It may be used for persoal or classroom purposes, but ot for commercial purposes. i (http://www.stat.go.jp/teacher/c2epi1.htm ) = statistics

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j )

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j ) 5 Armitage. x,, x n y i = 0x i + 3 y i = log x i x i y i.2 n i i x ij i j y ij, z ij i j 2 y = a x + b 2 2. ( cm) x ij (i j ) (i) x, x 2 σ 2 x,, σ 2 x,2 σ x,, σ x,2 t t x * (ii) (i) m y ij = x ij /00 y

More information

数理統計学Iノート

数理統計学Iノート I ver. 0/Apr/208 * (inferential statistics) *2 A, B *3 5.9 *4 *5 [6] [],.., 7 2004. [2].., 973. [3]. R (Wonderful R )., 9 206. [4]. ( )., 7 99. [5]. ( )., 8 992. [6],.., 989. [7]. - 30., 0 996. [4] [5]

More information

L P y P y + ɛ, ɛ y P y I P y,, y P y + I P y, 3 ŷ β 0 β y β 0 β y β β 0, β y x x, x,, x, y y, y,, y x x y y x x, y y, x x y y {}}{,,, / / L P / / y, P

L P y P y + ɛ, ɛ y P y I P y,, y P y + I P y, 3 ŷ β 0 β y β 0 β y β β 0, β y x x, x,, x, y y, y,, y x x y y x x, y y, x x y y {}}{,,, / / L P / / y, P 005 5 6 y β + ɛ {x, x,, x p } y, {x, x,, x p }, β, ɛ E ɛ 0 V ɛ σ I 3 rak p 4 ɛ i N 0, σ ɛ ɛ y β y β y y β y + β β, ɛ β y + β 0, β y β y ɛ ɛ β ɛ y β mi L y y ŷ β y β y β β L P y P y + ɛ, ɛ y P y I P y,,

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

分散分析・2次元正規分布

分散分析・2次元正規分布 2 II L10(2016-06-30 Thu) : Time-stamp: 2016-06-30 Thu 13:55 JST hig F 2.. http://hig3.net ( ) L10 2 II(2016) 1 / 24 F 2 F L09-Q1 Quiz :F 1 α = 0.05, 2 F 3 H 0, : σ 2 1 /σ2 2 = 1., H 1, σ 2 1 /σ2 2 1. 4

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l 1 1 ϕ ϕ ϕ S F F = ϕ (1) S 1: F 1 1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l : l r δr θ πrδr δf (1) (5) δf = ϕ πrδr

More information

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

II (No.2) 2 4,.. (1) (cm) (2) (cm) , ( II (No.1) 1 x 1, x 2,..., x µ = 1 V = 1 k=1 x k (x k µ) 2 k=1 σ = V. V = σ 2 = 1 x 2 k µ 2 k=1 1 µ, V σ. (1) 4, 7, 3, 1, 9, 6 (2) 14, 17, 13, 11, 19, 16 (3) 12, 21, 9, 3, 27, 18 (4) 27.2, 29.3, 29.1, 26.0,

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

(iii) x, x N(µ, ) z = x µ () N(0, ) () 0 (y,, y 0 ) (σ = 6) *3 0 y y 2 y 3 y 4 y 5 y 6 y 7 y 8 y 9 y ( ) *4 H 0 : µ

(iii) x, x N(µ, ) z = x µ () N(0, ) () 0 (y,, y 0 ) (σ = 6) *3 0 y y 2 y 3 y 4 y 5 y 6 y 7 y 8 y 9 y ( ) *4 H 0 : µ t 2 Armitage t t t χ 2 F χ 2 F 2 µ, N(µ, ) f(x µ, ) = ( ) exp (x µ)2 2πσ 2 2 0, N(0, ) (00 α) z(α) t * 2. t (i)x N(µ, ) x µ σ N(0, ) 2 (ii)x,, x N(µ, ) x = x + +x ( N µ, σ2 ) (iii) (i),(ii) x,, x N(µ,

More information

統計的データ解析

統計的データ解析 ds45 xspec qdp guplot oocalc (Error) gg (Radom Error)(Systematc Error) x, x,, x ( x, x,..., x x = s x x µ = lm = σ µ x x = lm ( x ) = σ ( ) = - x = js j ( ) = j= ( j) x x + xj x + xj j x + xj = ( x x

More information

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 67 A Section A.1 0 1 0 1 Balmer 7 9 1 0.1 0.01 1 9 3 10:09 6 A.1: A.1 1 10 9 68 A 10 9 10 9 1 10 9 10 1 mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 A.1. 69 5 1 10 15 3 40 0 0 ¾ ¾ É f Á ½ j 30 A.3: A.4: 1/10

More information

Microsoft Word - 表紙.docx

Microsoft Word - 表紙.docx 黒住英司 [ 著 ] サピエンティア 計量経済学 訂正および練習問題解答 (206/2/2 版 ) 訂正 練習問題解答 3 .69, 3.8 4 (X i X)U i i i (X i μ x )U i ( X μx ) U i. i E [ ] (X i μ x )U i i E[(X i μ x )]E[U i ]0. i V [ ] (X i μ x )U i i 2 i j E [(X i

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003) 3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

2011 ( ) ( ) ( ),,.,,.,, ,.. (. ), 1. ( ). ( ) ( ). : obata/,.,. ( )

2011 ( ) ( ) ( ),,.,,.,, ,.. (. ), 1. ( ). ( ) ( ). :   obata/,.,. ( ) 2011 () () (),,.,,.,,. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.,.. (. ), 1. ( ). ()(). : www.math.is.tohoku.ac.jp/ obata/,.,. () obata@math.is.tohoku.ac.jp http://www.dais.is.tohoku.ac.jp/ amf/, (! 22 10.6; 23 10.20;

More information

Probit , Mixed logit

Probit , Mixed logit Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

solutionJIS.dvi

solutionJIS.dvi May 0, 006 6 morimune@econ.kyoto-u.ac.jp /9/005 (7 0/5/006 1 1.1 (a) (b) (c) c + c + + c = nc (x 1 x)+(x x)+ +(x n x) =(x 1 + x + + x n ) nx = nx nx =0 c(x 1 x)+c(x x)+ + c(x n x) =c (x i x) =0 y i (x

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

カテゴリ変数と独立性の検定

カテゴリ変数と独立性の検定 II L04(2015-05-01 Fri) : Time-stamp: 2015-05-01 Fri 22:28 JST hig 2, Excel 2, χ 2,. http://hig3.net () L04 II(2015) 1 / 20 : L03-S1 Quiz : 1 2 7 3 12 (x = 2) 12 (y = 3) P (X = x) = 5 12 (x = 3), P (Y =

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

Microsoft PowerPoint - statistics08_03.ppt [互換モード]

Microsoft PowerPoint - statistics08_03.ppt [互換モード] 授業担当 : 徳永伸一 東京医科歯科大学教養部 数学講座 前回 ( 第 2 回 ) の授業の概要 : 第 1 回 ( 教科書第 9 章 順列 組合せと確率 ほぼ全部 ) の復習 教科書第 10 章 記述統計 S. TOKUNAGA 2 1 Overview 確率 (9 章 ) 記述統計 (10 章 ) 情報の要約 表やグラフで表す 代表値 ( 平均など ) や散布度 ( 分散など ) を求める 確率モデル

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4 20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552 3 3.0 a n a n ( ) () a m a n = a m+n () (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 55 3. (n ) a n n a n a n 3 4 = 8 8 3 ( 3) 4 = 8 3 8 ( ) ( ) 3 = 8 8 ( ) 3 n n 4 n n

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

応用数学III-4.ppt

応用数学III-4.ppt III f x ( ) = 1 f x ( ) = P( X = x) = f ( x) = P( X = x) =! x ( ) b! a, X! U a,b f ( x) =! " e #!x, X! Ex (!) n! ( n! x)!x! " x 1! " x! e"!, X! Po! ( ) n! x, X! B( n;" ) ( ) ! xf ( x) = = n n!! ( n

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

untitled

untitled yoshi@image.med.osaka-u.ac.jp http://www.image.med.osaka-u.ac.jp/member/yoshi/ II Excel, Mathematica Mathematica Osaka Electro-Communication University (2007 Apr) 09849-31503-64015-30704-18799-390 http://www.image.med.osaka-u.ac.jp/member/yoshi/

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

統計的データ解析

統計的データ解析 統計的データ解析 011 011.11.9 林田清 ( 大阪大学大学院理学研究科 ) 連続確率分布の平均値 分散 比較のため P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x = 3 MATLAB Runge-Kutta Butcher 3. Taylor Taylor y(x 0 + h) = y(x 0 ) + h y (x 0 ) + h! y (x 0 ) + Taylor 3. Euler, Runge-Kutta Adams Implicit Euler, Implicit Runge-Kutta Gear y n+ y n (n+ ) y n+ y n+ y n+

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

x y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... x ( ) 2

x y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... x ( ) 2 1 1 1.1 1.1.1 1 168 75 2 170 65 3 156 50... x y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... x ( ) 2 1 1 0 1 0 0 2 1 0 0 1 0 3 0 1 0 0 1...... 1.1.2 x = 1 n x (average, mean) x i s 2 x = 1 n (x i x) 2 3 x (variance)

More information

第7章

第7章 5. 推定と検定母集団分布の母数を推定する方法と仮説検定の方法を解説する まず 母数を一つの値で推定する点推定について 推定精度としての標準誤差を説明する また 母数が区間に存在することを推定する信頼区間も取り扱う 後半は統計的仮説検定について述べる 検定法の基本的な考え方と正規分布および二項確率についての検定法を解説する 5.1. 点推定先に述べた統計量は対応する母数の推定値である このように母数を一つの値およびベクトルで推定する場合を点推定

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

(pdf) (cdf) Matlab χ ( ) F t

(pdf) (cdf) Matlab χ ( ) F t (, ) (univariate) (bivariate) (multi-variate) Matlab Octave Matlab Matlab/Octave --...............3. (pdf) (cdf)...3.4....4.5....4.6....7.7. Matlab...8.7.....9.7.. χ ( )...0.7.3.....7.4. F....7.5. t-...3.8....4.8.....4.8.....5.8.3....6.8.4....8.8.5....8.8.6....8.9....9.9.....9.9.....0.9.3....0.9.4.....9.5.....0....3

More information

最小2乗法

最小2乗法 2 2012 4 ( ) 2 2012 4 1 / 42 X Y Y = f (X ; Z) linear regression model X Y slope X 1 Y (X, Y ) 1 (X, Y ) ( ) 2 2012 4 2 / 42 1 β = β = β (4.2) = β 0 + β (4.3) ( ) 2 2012 4 3 / 42 = β 0 + β + (4.4) ( )

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

Excelにおける回帰分析(最小二乗法)の手順と出力

Excelにおける回帰分析(最小二乗法)の手順と出力 Microsoft Excel Excel 1 1 x y x y y = a + bx a b a x 1 3 x 0 1 30 31 y b log x α x α x β 4 version.01 008 3 30 Website:http://keijisaito.info, E-mail:master@keijisaito.info 1 Excel Excel.1 Excel Excel

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information