Int Int 29 print Int fmt tostring 2 2 [19] ML ML [19] ML Emacs Standard ML M M ::= x c λx.m M M let x = M in M end (M) x c λx.

Size: px
Start display at page:

Download "Int Int 29 print Int fmt tostring 2 2 [19] ML ML [19] ML Emacs Standard ML M M ::= x c λx.m M M let x = M in M end (M) x c λx."

Transcription

1 1, 2 1 m110057@shibaura-it.ac.jp 2 sasano@sic.shibaura-it.ac.jp Eclipse Visual Studio ML Standard ML Emacs 1 ( IDE ) IDE C C++ Java IDE IDE IDE IDE Eclipse Java IDE Java Standard ML 1 print (Int. 1

2 Int Int 29 print Int fmt tostring 2 2 [19] ML ML [19] ML Emacs Standard ML M M ::= x c λx.m M M let x = M in M end (M) x c λx.m M M let x = M in M end let M M M σ := α 1... α n.τ τ := int α τ τ σ τ int α τ 1 τ 2 τ 1 τ 2 σ = α 1... α n.τ 0 τ = [τ 1 /α 1... τ n /α n ]τ 0 τ 1,..., τ n τ σ τ < σ

3 (const) Γ c : τ (c : τ Const) (var) Γ{x : σ} x : τ if τ < σ (app) Γ M 1 : τ 1 τ 2 Γ M 2 : τ 1 Γ M 1 M 2 : τ 2 (abs) Γ{x : τ 1 } M : τ 2 Γ λx.m : τ 1 τ 2 (let) Γ M 1 : τ 1 Γ{x 1 : Cls(Γ, τ 1 )} M 2 : τ 2 Γ let x 1 = M 1 in M 2 end : τ 2 1. M pre c = {} pre x = {( s, x) s is a prefix of x} pre (M 1 M 2 ) = {(M 1 P 2, x) (P 2, x) pre M 2 } {(P 1, x) (P 1, x) pre M 1 } pre (λx.m) = {(λx.p, x) (P, x) pre M} pre (let x = M 1 in M 2 end) = {(let x = M 1 in P 2, x) (P 2, x) pre M 2 } {(let x = P 1, x) (P 1, x) pre M 1 } pre((m)) = {((P, x) (P, x) pre M} 2. pre M let ML [17] 1 1 (M) Γ M τ Γ M : τ Γ x τ Γ{x : τ} Γ x Γ(x) Cls Γ τ F T V (τ) \ F T V (Γ) = {α 1,..., α n } α 1 α n. τ F T V Const 1 P P ::= λx.p M P let x = M in P let x = P (P f f M P 2 pre pre M M c pre let pre pre M (λabc. abc) 1 pre {((λabc. a, abc), ((λabc. ab, abc), ((λabc. abc, abc)} pre 1 1 ( ) P Γ V v V, M, τ, Γ M : τ, (P, v) pre M V V

4 P let xx = 1 in let xy = λx.λy.x y in let xz = λx.x in xy x Γ xx xy xz xy xz xx {xy, xz} 3 int αβ. (α β) α β α. α α x xy xy xx x 3 P M M P M [19] 3.1 [19] P M [18] P let ff = λx.+ x 1 in ff ( f + int int int P P end 1 f α α = int int ff ff int int P ff ( f ff ( f [ ]) end [ ] f [ ] α β α = β int ff int int f β int ff f ff

5 P ff ( f ff ( f [ ] [ ]) end α β int ff P (let ff = λx.+ x 1 in (ff ( f )) end) ( f ) f, f [ ], f [ ] [ ], f [ ] [ ] [ ] (ff ( f )) ff f, ff ( f [ ]), ff f [ ], ff ( f [ ]) [ ] ff int int ff ff f ff ff ff int int ff ff ff [ ] f ff f int f ff [ ] ff ( f ) int (ff ( f )) int ff f ff ff 4 P P D ::= D λx.d M D let x = D in [ ] end let x = M in D end P D cmp 3

6 cmp : P D cmp = cmp (λx.p ) = λx.(cmp P ) cmp (M P ) = (M (cmp 2 P )) cmp (let x = M in P ) = (let x = M in cmp P end) cmp (let x = P ) = (let x = cmp P in [ ] end) cmp ((P ) = (cmp P ) cmp 2 : P D cmp 2 = cmp 2 (let x = M in P ) = (let x = M in cmp P end) cmp 2 (let x = P ) = (let x = cmp P in [ ] end) cmp 2 ((P ) = cmp P 3. cmp cmp 2 cmp 2 λx.p M P cmp 2 cmp 2 cmp (λx.p ) (λx.(cmp P )) P cmp P let xa = λx.x 2 in let yy = λx.x in let xc = 3 in xa ( x cmp D (let xa = λx.x 2 in (let yy = λx.x in (let xc = 3 in (xa ( x ) ) end) end) end) 5 D V Milner W [17] 4 V D Γ 3 V Milner W V W W Γ M S τ W S(Γ) M : τ W V W U[18] U ( 1 ) V W W V 3 V W V W V

7 V(Γ, D) = case D of let N = {count(γ(x)) x dom(γ)} T = {g(x) x N} in {(, τ, (Γ, τ)) τ T } D let {(S 0, τ 0, C 0 ),..., (S i, τ i, C i )} = V(Γ, D) {τ 0,0,..., τ 0,k } = at(τ 0 ). {τ i,0,..., τ i,m } = at(τ i ) in {(S 0, τ 0,0, C 0 ),..., (S 0, τ 0,k, C 0 ),. (S i, τ i,0, C i ),..., (S i, τ i,m, C i )} λx.d let {(S 0, τ 0, C 0 ),..., (S i, τ i, C i )} = V(Γ{x : α}, D) (α fresh) in {(S 0, S 0 (α) τ 0, C 0 ),..., (S i, S i (α) τ i, C i )} M D let (S 1, τ 1 ) = W(Γ, M) {(S 2,0, τ 2,0, C 2,0 ),..., (S 2,i, τ 2,i, C 2,i )} = V(S 1 (Γ), D) S 3,j = U{(S 2,j (τ 1 ), τ 2,j α j )} (α j fresh) (j {0,..., i}) in {(S 3,j S 2,j S 1, S 3,j (α j ), C 2,j ) j {0,..., i}} let x = D in [ ] end let {(S 0, τ 0, C 0 ),..., (S i, τ i, C i )} = V(Γ, D) in {(S 0, α 0, C 0 ),..., (S i, α i, C i )} (α 0,..., α i fresh) let x = M in D end let (S 1, τ 1 ) = W(Γ, M) {(S 2,0, τ 2,0, C 2,0 ),..., (S 2,i, τ 2,i, C 2,i )} = V(S 1 (Γ){x : Cls(S 1 (Γ), τ 1 )}, D) in {(S 2,j S 1, τ 2,j, C 2,j ) j {0,..., i}} count(τ 1 τ 2 ) = count(τ 2 ) + 1 count(α) = 0 count(int) = 0 g(n + 1) = α g(n) (α fresh) g(0) = α (α fresh) at(τ 1 τ 2 ) = {τ 1 τ 2 } at(τ 2 ) at(α) = {α} at(int) = {int} 4. V

8 D M V 3 [ ] [ ] V D D 0 V D 4 at V τ 1 τ k (τ k int ) τ 1,..., τ k α 1,..., α k α 1 α k count g count τ τ count (int int int) 2 g n n + 1 g(2) α 0 α 1 α 2 α 0, α 1, α 2 count g 1 6 D 2 D 2 τ 0,..., τ i 0 D 0 V 3 V V V(Γ, D) (S, τ, (Γ, τ )) S Γ τ V 4 D V V(, D) D V Γ Γ = {xa : α.(int α) α, yy : α.α α, xc : int} f V x 2 3 {(, β 1 β 2, (Γ, β 1 β 2 )), (, β 3, (Γ, β 3 ))} β 1 β β 3 at V ( x ) 3 3 {(, β 1 β 2, (Γ, β 1 β 2 )), (, β 2, (Γ, β 1 β 2 )), (, β 3, (Γ, β 3 ))} xa ( x ) V 3 S 1 = U{(int α 0 ) α 0, (β 1 β 2 ) γ 1 )} S 2 = U{(int α 1 ) α 1, β 2 γ 2 )} S 3 = U{(int α 2 ) α 2, β 3 γ 3 )} (int α i ) α i (i = 0, 1, 2) xa α.(int α) α α α 0, α 1, α 2 W γ 1, γ 2, γ 3 V V xa ( f ) 3 3 {(S 1, α 0, (Γ, β 1 β 2 )), (S 2, α 1, (Γ, β 1 β 2 )), (S 3, α 2, (Γ, β 3 ))}

9 3 3 V(, D) S 1, S 2, S 3 β 1 β 2, β 1 β 2, β 3 3 int α 0, β 1 int α 1, int α 2 S 1, S 2, S 3 Γ Γ V Γ τ τ α 1... α k.τ [β 1 /α 1 ]... [β k /α k ]τ (β 1,..., β k fresh) 5 int α 0 β 1 int α 1 int α 2 Γ = {xa : α.(int α) α, yy : α.α α, xc : int} xa, yy, xc = 9 U{(int α 0, (int α 5 ) α 5 )}, U{(int α 0, α 6 α 6 )}, U{(int α 0, int)}, U{(β 1 (int α 1 ), (int α 5 ) α 5 )}, U{(β 1 (int α 1 ), α 6 α 6 )}, U{(β 1 (int α 1 ), int)}, U{(int α 2, (int α 5 ) α 5 )}, U{(int α 2, α 6 α 6 )}, U{(int α 2, int)} xa yy xa x yy {xa} P Γ 5 V {(S 0, τ 0, (Γ, τ 0 )),..., (S i, τ i, (Γ, τ i ))} = V(Γ, cmp P ) V V = { {x x dom(sj (Γ )), j {0,...,i} U{(S j (Γ )(x), S j (τ j ))}, P s s x }} 1 2

10 1 ( ) 1 V 1 v V, M, τ, Γ M : τ, (P, v) pre M 2 ( ) 1 1 V M, τ, Γ M : τ, (P, v) pre M v V 2 2 V D D 8 Standard ML Emacs lambda-mode Emacs Lambda-mode web http: // lambda-mode lambda-mode auto-complete [5] auto-complete 5 x lambda-mode 5. lambda-mode lambda-mode Standard ML 6 let, id, val, in, end, =, =>, fn, (, ), const, ws, EOF

11 start := exp (1) exp := appexp (2) fn id => exp (3) appexp := atexp (4) appexp atexp (5) atexp := id (6) const (7) (exp) (8) let decseq in exp end (9) dec := val id = exp (10) decseq := dec decseq (11) ɛ (12) 6. id const ws EOF id const const + - ws int + - int int int id id EOF LR [16] yacc kmyacc[8] EOF EOF EOF EOF id 2 id atexp id 4 cmp cmp P D P 1 2 [19] 1 appexp 2 5 2

12 start exp let decseq in appexp ( dec val id ff = exp decseq atexp id ff fn id x => exp appexp appexp atexp appexp atexp atexp id x const 1 id+ 7. ɛ appexp appexp atexp atexp id let decseq in exp end dec decseq appexp val id ff = exp ɛ appexp atexp fn id x => exp atexp appexp id ff (exp) appexp appexp atexp atexp appexp atexp atexp id atexp id x const 1 id appexp ::= appexp atexp appexp ::= appexp atexp appexp mark mark ::= appexp 1 appexp mark mark exp f let val ff = fn x => + x 1 in ff (f_ _ + int int int f let, val, ff, =, fn, id x, =>, id +, id x, const 1, in, ff, (, id, EOF 7 let, decseq, in, appexp, (, appexp 8 8 mark ::= appexp V 4 D 5 6 lambda-mode

13 9 Lambda-mode CPU Intel Core i GB OS Windows 7 Home Premium 64bit Emacs Meadow (GNU Emacs ) Let let let 1 1 let 30 1 let 1 1 let let let 1 ( ) IDE Visual Studio Intellisense Eclipse content assist [2] vim omni completion intellisense content assist IDE Visual F# Visual C++ Visual C# Eclipse C++ Java Visual Studio

14 Eclipse FP[4] Haskell Eclipse Leksah[9] Haskell IDE Caml mode [1] tuareg mode [12] Caml OCaml Emacs caml mode OCamlSpotter[11] Java Development Environment for Emacs [7] Java Emacs F# Emacs [6] OCaml Development Tools [10] Eclipse OCaml IDE [13] [14] Djinn[3] [15] 11 1,2 Haskell Standard ML OCaml

15 Haskell ML [1] Caml mode. [2] Content assist. doc.isv/guide/editors contentassist.htm. [3] Djinn. [4] Eclipse FP. [5] EmacsWiki: Auto complete. [6] Fsharp mode. [7] Java development environment for Emacs. [8] KMyacc. [9] Leksah. [10] OCaml Development Tools. [11] OCamlSpotter. [12] Tuareg mode. acohen/tuareg/index.html.en. [13] Christian Haack and J. B. Wells. Type error slicing in implicitly typed higher-order languages. Science of Computer Programming, Vol. 50, pp , [14] Masatomo Hashimoto and Atsushi Ohori. A typed context calculus. Theoretical Computer Science, Vol. 266, No. 1-2, pp , [15] Susumu Katayama. Systematic search for lambda expressions. In Trends in Functional Programming, pp , [16] Donald E. Knuth. On the translation of languages from left to right. Information and Control, Vol. 8, No. 6, pp , [17] Robin Milner. A theory of type polymorphism in programming. Journal of Computer and System Sciences, Vol. 17, No. 3, pp , [18] John A. Robinson. A machine-oriented logic based on the resolution principle. Journal of the ACM, Vol. 12, No. 1, pp , [19],. Emacs. 12, pp , 2010.

Emacs ML let start ::= exp (1) exp ::= (2) fn id exp (3) ::= (4) (5) ::= id (6) const (7) (exp) (8) let val id = exp in

Emacs ML let start ::= exp (1) exp ::= (2) fn id exp (3) ::= (4) (5) ::= id (6) const (7) (exp) (8) let val id = exp in Emacs, {l06050,sasano}@sic.shibaura-it.ac.jp Eclipse Visual Studio Standard ML Haskell Emacs 1 Eclipse Visual Studio variable not found LR(1) let Emacs Emacs Emacs Java Emacs JDEE [3] JDEE Emacs Java 2

More information

…J…−†[†E…n…‘†[…hfi¯„^‚ΛžfiüŒå

…J…−†[†E…n…‘†[…hfi¯„^‚ΛžfiüŒå takuro.onishi@gmail.com II 2009 6 11 [A] D B A B A B A B DVD y = 2x + 5 x = 3 y = 11 x = 5 y = 15. Google Web (2 + 3) 5 25 2 3 5 25 Windows Media Player Media Player (typed lambda calculus) (computer

More information

koba/class/soft-kiso/ 1 λ if λx.λy.y false 0 λ typed λ-calculus λ λ 1.1 λ λ, syntax τ (types) ::= b τ 1 τ 2 τ 1

koba/class/soft-kiso/ 1 λ if λx.λy.y false 0 λ typed λ-calculus λ λ 1.1 λ λ, syntax τ (types) ::= b τ 1 τ 2 τ 1 http://www.kb.ecei.tohoku.ac.jp/ koba/class/soft-kiso/ 1 λ if λx.λy.y false 0 λ typed λ-calculus λ λ 1.1 λ 1.1.1 λ, syntax τ (types) ::= b τ 1 τ 2 τ 1 τ 2 M (terms) ::= c τ x M 1 M 2 λx : τ.m (M 1,M 2

More information

ML λ λ 1 λ 1.1 λ λ λ e (λ ) ::= x ( ) λx.e (λ ) e 1 e 2 ( ) ML λx.e Objective Caml fun x -> e x e let 1

ML λ λ 1 λ 1.1 λ λ λ e (λ ) ::= x ( ) λx.e (λ ) e 1 e 2 ( ) ML λx.e Objective Caml fun x -> e x e let 1 2005 sumii@ecei.tohoku.ac.jp 2005 6 24 ML λ λ 1 λ 1.1 λ λ λ e (λ ) ::= x ( ) λx.e (λ ) e 1 e 2 ( ) ML λx.e Objective Caml fun x -> e x e let 1 let λ 1 let x = e1 in e2 (λx.e 2 )e 1 e 1 x e 2 λ 3 λx.(λy.e)

More information

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3 13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >

More information

( ) ( ) lex LL(1) LL(1)

( ) ( ) lex LL(1) LL(1) () () lex LL(1) LL(1) http://www.cs.info.mie-u.ac.jp/~toshi/lectures/compiler/ 29 5 14 1 1 () / (front end) (back end) (phase) (pass) 1 2 1 () () var left, right; fun int main() { left = 0; right = 10;

More information

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4 20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d

More information

Jacques Garrigue

Jacques Garrigue Jacques Garrigue Garrigue 1 Garrigue 2 $ print_lines () > for i in $1; do > echo $i > done $ print_lines "a b c" a b c Garrigue 3 Emacs Lisp (defun print-lines (lines) (dolist (str lines) (insert str)

More information

shift/reset [13] 2 shift / reset shift reset k call/cc reset shift k shift (...) k 1 + shift(fun k -> 2 * (k 3)) k 2 * (1 + 3) 8 reset shift reset (..

shift/reset [13] 2 shift / reset shift reset k call/cc reset shift k shift (...) k 1 + shift(fun k -> 2 * (k 3)) k 2 * (1 + 3) 8 reset shift reset (.. arisa@pllab.is.ocha.ac.jp asai@is.ocha.ac.jp shift / reset CPS shift / reset CPS CPS 1 [3, 5] goto try/catch raise call/cc [17] control/prompt [8], shift/reset [5] control/prompt, shift/reset call/cc (continuationpassing

More information

平成 28 年度 ( 第 38 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 28 月年 48 日開催月 1 日 semantics FB 1 x, y, z,... FB 1. FB (Boolean) Functional

平成 28 年度 ( 第 38 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 28 月年 48 日開催月 1 日 semantics FB 1 x, y, z,... FB 1. FB (Boolean) Functional 1 1.1 semantics F 1 x, y, z,... F 1. F 38 2016 9 1 (oolean) Functional 2. T F F 3. P F (not P ) F 4. P 1 P 2 F (P 1 and P 2 ) F 5. x P 1 P 2 F (let x be P 1 in P 2 ) F 6. F syntax F (let x be (T and y)

More information

ML Edinburgh LCF ML Curry-Howard ML ( ) ( ) ( ) ( ) 1

ML Edinburgh LCF ML Curry-Howard ML ( ) ( ) ( ) ( ) 1 More Logic More Types ML/OCaml GADT Jacques Garrigue ( ) Jacques Le Normand (Google) Didier Rémy (INRIA) @garriguejej ocamlgadt ML Edinburgh LCF ML Curry-Howard ML ( ) ( ) ( ) ( ) 1 ( ) ML type nebou and

More information

imai@eng.kagawa-u.ac.jp No1 No2 OS Wintel Intel x86 CPU No3 No4 8bit=2 8 =256(Byte) 16bit=2 16 =65,536(Byte)=64KB= 6 5 32bit=2 32 =4,294,967,296(Byte)=4GB= 43 64bit=2 64 =18,446,744,073,709,551,615(Byte)=16EB

More information

# let rec sigma (f, n) = # if n = 0 then 0 else f n + sigma (f, n-1);; val sigma : (int -> int) * int -> int = <fun> sigma f n ( : * -> * ) sqsum cbsu

# let rec sigma (f, n) = # if n = 0 then 0 else f n + sigma (f, n-1);; val sigma : (int -> int) * int -> int = <fun> sigma f n ( : * -> * ) sqsum cbsu II 4 : 2001 11 7 keywords: 1 OCaml OCaml (first-class value) (higher-order function) 1.1 1 2 + 2 2 + + n 2 sqsum 1 3 + 2 3 + + n 3 cbsum # let rec sqsum n = # if n = 0 then 0 else n * n + sqsum (n - 1)

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

導入基礎演習.ppt

導入基礎演習.ppt Multi-paradigm Programming Functional Programming Scheme Haskell ML Scala X10 KL1 Prolog Declarative Lang. C Procedural Lang. Java C++ Python Object-oriented Programming / (root) bin home lib 08 09

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

24 201170068 1 4 2 6 2.1....................... 6 2.1.1................... 6 2.1.2................... 7 2.1.3................... 8 2.2..................... 8 2.3................. 9 2.3.1........... 12

More information

untitled

untitled PPL 2006 MinCaml (myth) vs. vs. vs. Haskell (www.haskell.org) ML (www.standardml.org, caml.inria.fr) Standard ML (SML), Objective Caml (OCaml) Scheme (www.schemers.org) low level GCC C GCJ Java

More information

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α 20 6 18 1 2 2.1 A B α A B α: A B A B Rel(A, B) A B (A B) A B 0 AB A B AB α, β : A B α β α β def (a, b) A B.((a, b) α (a, b) β) 0 AB AB Rel(A, B) 1 2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

I: 2 : 3 +

I: 2 : 3 + I: 1 I: 2008 I: 2 : 3 + I: 3, 3700. (ISBN4-00-010352-0) H.P.Barendregt, The lambda calculus: its syntax and semantics, Studies in logic and the foundations of mathematics, v.103, North-Holland, 1984. (ISBN

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

IPSJ SIG Technical Report Vol.2013-CE-119 No /3/15 enpoly enpoly enpoly 1) 2) 2 C Java Bertrand Meyer [1] 1 1 if person greeting()

IPSJ SIG Technical Report Vol.2013-CE-119 No /3/15 enpoly enpoly enpoly 1) 2) 2 C Java Bertrand Meyer [1] 1 1 if person greeting() enpoly enpoly enpoly ) 2) 2 C Java 2 6. Bertrand Meyer [] if person greeting() if person if Faculty of Informatics, Shizuoka University, Hamamatsu, Shizuoka, 432-80, Japan C Jone[2] 2. Java Anchor Garden

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A B f : A B 4 (i) f (ii) f (iii) C 2 g, h: C A f g = f h g = h (iv) C 2 g, h: B C g f = h f g = h 4 (1) (i) (iii) (2) (iii) (i) (3) (ii) (iv) (4)

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

構造化プログラミングと データ抽象

構造化プログラミングと データ抽象 計算の理論 後半第 3 回 λ 計算と型システム 本日の内容 λ 計算の表現力 ( 前回のつづき ) 前回の復習 不動点演算子と再帰 λ 計算の重要な性質 チャーチ ロッサー性 簡約戦略 型付き λ 計算 ブール値 組 ブール値と組の表現 ( 復習 ) true, false を受け取り 対応する要素を返す関数 として表現 T = λt.λf.t F = λt.λf.f if e 1 then e

More information

読めば必ずわかる 分散分析の基礎 第2版

読めば必ずわかる 分散分析の基礎 第2版 2 2003 12 5 ( ) ( ) 2 I 3 1 3 2 2? 6 3 11 4? 12 II 14 5 15 6 16 7 17 8 19 9 21 10 22 11 F 25 12 : 1 26 3 I 1 17 11 x 1, x 2,, x n x( ) x = 1 n n i=1 x i 12 (SD ) x 1, x 2,, x n s 2 s 2 = 1 n n (x i x)

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

Microsoft Word - 倫理 第40,43,45,46講 テキスト.docx

Microsoft Word - 倫理 第40,43,45,46講 テキスト.docx 6 538 ( 552 ) (1) () (2) () ( )( ) 1 vs () (1) (2) () () () ) ()() (3) () ( () 2 () () () ()( ) () (7) (8) () 3 4 5 abc b c 6 a (a) b b ()() 7 c (c) ()() 8 9 10 () 1 ()()() 2 () 3 1 1052 1051 () 1053 11

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

: gettoken(1) module P = Printf exception End_of_system (* *) let _ISTREAM = ref stdin let ch = ref ( ) let read () = (let c =!ch in ch := inp

: gettoken(1) module P = Printf exception End_of_system (* *) let _ISTREAM = ref stdin let ch = ref ( ) let read () = (let c =!ch in ch := inp 7 OCaml () 1. 2. () (compiler) (interpreter) 2 OCaml (syntax) (BNF,backus normal form ) 1 + 2; let x be 2-1 in x; ::= ; let be in ; ::= + - ::= * / ::= 7.1 ( (printable characters) (tokens) 1 (lexical

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p

a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p a a a a y y ax q y ax q q y ax y ax a a a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p y a xp q y a x p q p p x p p q p q y a x xy xy a a a y a x

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

Chap9.dvi

Chap9.dvi .,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A, B Z Z m, n Z m n m, n A m, n B m=n (1) A, B (2) A B = A B = Z/ π : Z Z/ (3) A B Z/ (4) Z/ A, B (5) f : Z Z f(n) = n f = g π g : Z/ Z A, B (6)

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1 No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1 1 (1) 1.1 X Y f, g : X Y { F (x, 0) = f(x) F (x, 1) = g(x) F : X I Y f g f g F f g 1.2 X Y X Y gf id X, fg id Y f : X Y, g : Y X X Y X Y (2) 1.3

More information

., White-Box, White-Box. White-Box.,, White-Box., Maple [11], 2. 1, QE, QE, 1 Redlog [7], QEPCAD [9], SyNRAC [8] 3 QE., 2 Brown White-Box. 3 White-Box

., White-Box, White-Box. White-Box.,, White-Box., Maple [11], 2. 1, QE, QE, 1 Redlog [7], QEPCAD [9], SyNRAC [8] 3 QE., 2 Brown White-Box. 3 White-Box White-Box Takayuki Kunihiro Graduate School of Pure and Applied Sciences, University of Tsukuba Hidenao Iwane ( ) / Fujitsu Laboratories Ltd. / National Institute of Informatics. Yumi Wada Graduate School

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

untitled

untitled 20 31 5104258 1 1. p 2. p 2.1. p 2.2.i ppli Development Kit for JDK-4.0(FOMA) p 2.3. p 2.4. i p 3. p11 3.1. p12 3.2. IApplication RPG2 p12 3.3. RpgCnav p13 3.4. ScratchPad ImageMap MapData p14 4. p17 5.

More information

学習内容と日常生活との関連性の研究-第2部-第6章

学習内容と日常生活との関連性の研究-第2部-第6章 378 379 10% 10%10% 10% 100% 380 381 2000 BSE CJD 5700 18 1996 2001 100 CJD 1 310-7 10-12 10-6 CJD 100 1 10 100 100 1 1 100 1 10-6 1 1 10-6 382 2002 14 5 1014 10 10.4 1014 100 110-6 1 383 384 385 2002 4

More information

FileMaker Server Getting Started Guide

FileMaker Server Getting Started Guide FileMaker Server 11 2004-2010 FileMaker, Inc. All Rights Reserved. FileMaker, Inc. 5201 Patrick Henry Drive Santa Clara, California 95054 FileMaker FileMaker, Inc. FileMaker, Inc. FileMaker FileMaker,

More information

1153006 JavaScript try-catch JavaScript JavaScript try-catch try-catch try-catch try-catch try-catch 1 2 2 try-catch try-catch try-catch try-catch 25 1153006 26 2 12 1 1 1 2 3 2.1... 3 2.1.1... 4 2.1.2

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

構造化プログラミングと データ抽象

構造化プログラミングと データ抽象 計算の理論 後半第 3 回 λ 計算と型システム 本日の内容 λ 計算の表現力 ( 前回の復習 ) データの表現 不動点演算子と再帰 λ 計算の重要な性質 チャーチ ロッサー性 簡約戦略 型付き λ 計算 ブール値 組 ブール値と組の表現 true, false を受け取り 対応する要素を返す関数 として表現 T = λt.λf.t F = λt.λf.f if e 1 then e 2 else

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

untitled

untitled .. 3. 3 3. 3 4 3. 5 6 3 7 3.3 9 4. 9 0 6 3 7 0705 φ c d φ d., φ cd, φd. ) O x s + b l cos s s c l / q taφ / q taφ / c l / X + X E + C l w q B s E q q ul q q ul w w q q E E + E E + ul X X + (a) (b) (c)

More information

統計的データ解析

統計的データ解析 ds45 xspec qdp guplot oocalc (Error) gg (Radom Error)(Systematc Error) x, x,, x ( x, x,..., x x = s x x µ = lm = σ µ x x = lm ( x ) = σ ( ) = - x = js j ( ) = j= ( j) x x + xj x + xj j x + xj = ( x x

More information

論理学入門 講義ノート email: mitsu@abelardfletkeioacjp Copyright c 1995 by the author ll right reserved 1 1 3 2 5 3 7 31 7 32 9 33 13 4 29 41 33 42 38 5 45 51 45 52 47 3 1 19 [ 1] Begin at the beginning [ 2] [

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

nakata/nakata.html p.1/20

nakata/nakata.html p.1/20 http://www.me.titech.ac.jp/ nakata/nakata.html p.1/20 1-(a). Faybusovich(1997) Linear systems in Jordan algebras and primal-dual interior-point algorithms,, Euclid Jordan p.2/20 Euclid Jordan V Euclid

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

untitled

untitled 7/67/1073,42911 15,020158,393 7/127/184,6674,913 2927 71.3 894 21.8 287 7.0 n=4108) 132 3.2 62 1.5 934 22.7 786 19.1 629 15.3 801 19.5 407 9.9 357 8.7 (n=4108) 35 35 30 25 20 15 10 153 3.7 1 0.02 23 0.6

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information

3 1 5 1.1........................... 5 1.1.1...................... 5 1.1.2........................ 6 1.1.3........................ 6 1.1.4....................... 6 1.1.5.......................... 7 1.1.6..........................

More information

# let st1 = {name = "Taro Yamada"; id = };; val st1 : student = {name="taro Yamada"; id=123456} { 1 = 1 ;...; n = n } # let string_of_student {n

# let st1 = {name = Taro Yamada; id = };; val st1 : student = {name=taro Yamada; id=123456} { 1 = 1 ;...; n = n } # let string_of_student {n II 6 / : 2001 11 21 (OCaml ) 1 (field) name id type # type student = {name : string; id : int};; type student = { name : string; id : int; } student {} type = { 1 : 1 ;...; n : n } { 1 = 1 ;...; n = n

More information

Fig. 3 3 Types considered when detecting pattern violations 9)12) 8)9) 2 5 methodx close C Java C Java 3 Java 1 JDT Core 7) ) S P S

Fig. 3 3 Types considered when detecting pattern violations 9)12) 8)9) 2 5 methodx close C Java C Java 3 Java 1 JDT Core 7) ) S P S 1 1 1 Fig. 1 1 Example of a sequential pattern that is exracted from a set of method definitions. A Defect Detection Method for Object-Oriented Programs using Sequential Pattern Mining Goro YAMADA, 1 Norihiro

More information

L A TEX? Word Word Word Word WYSIWYG T E X by Donald Knuth L A T E X by Leslie Lamport L A T E X 2ε L A T E X 2ε, pt E X, pl A T E X LATEX p.2/27

L A TEX? Word Word Word Word WYSIWYG T E X by Donald Knuth L A T E X by Leslie Lamport L A T E X 2ε L A T E X 2ε, pt E X, pl A T E X LATEX p.2/27 L A TEX 2007 2007 10 5 ( ) 338 8570 255 Tel: 048 858 3577, Fax : 048 858 3716 Email: tohru@mail.saitama-u.ac.jp URL: http://www.nls.ics.saitama-u.ac.jp/ tohru/ LATEX p.1/27 L A TEX? Word Word Word Word

More information

¥ƥ­¥¹¥ȥ¨¥ǥ£¥¿¤λȤ¤˽

¥ƥ­¥¹¥ȥ¨¥ǥ£¥¿¤λȤ¤˽ : 2010 2 14 1 MS Word.doc (MS Word 2003 ).docx (MS Word 2007 ) Word Windows.txt MS Word Word Word Word Excel Word 1 Word Word Word MS Word MS Word MS Word Word Windows MS Word MS Word Word Windows.txt

More information

R R 16 ( 3 )

R R 16   ( 3 ) (017 ) 9 4 7 ( ) ( 3 ) ( 010 ) 1 (P3) 1 11 (P4) 1 1 (P4) 1 (P15) 1 (P16) (P0) 3 (P18) 3 4 (P3) 4 3 4 31 1 5 3 5 4 6 5 9 51 9 5 9 6 9 61 9 6 α β 9 63 û 11 64 R 1 65 13 66 14 7 14 71 15 7 R R 16 http://wwwecoosaka-uacjp/~tazak/class/017

More information

() / (front end) (back end) (phase) (pass) 1 2

() / (front end) (back end) (phase) (pass) 1 2 1 () () lex http://www.cs.info.mie-u.ac.jp/~toshi/lectures/compiler/ 2018 4 1 () / (front end) (back end) (phase) (pass) 1 2 () () var left, right; fun int main() { left = 0; right = 10; return ((left

More information

TaskPit TaskPit TaskPit TaskPit 3 TaskPit Windows OS PC CPU 2 TaskPit TaskPit Windows OS CPU 1 10 TaskPit

TaskPit TaskPit TaskPit TaskPit 3 TaskPit Windows OS PC CPU 2 TaskPit TaskPit Windows OS CPU 1 10 TaskPit 28 29 2 16 TaskPit TaskPit TaskPit TaskPit 3 TaskPit Windows OS PC CPU 2 TaskPit TaskPit Windows OS CPU 1 10 TaskPit 1 3 2 4 3 6 3.1............... 6 3.2............................... 6 3.3...............................

More information

2.2 Sage I 11 factor Sage Sage exit quit 1 sage : exit 2 Exiting Sage ( CPU time 0m0.06s, Wall time 2m8.71 s). 2.2 Sage Python Sage 1. Sage.sage 2. sa

2.2 Sage I 11 factor Sage Sage exit quit 1 sage : exit 2 Exiting Sage ( CPU time 0m0.06s, Wall time 2m8.71 s). 2.2 Sage Python Sage 1. Sage.sage 2. sa I 2017 11 1 SageMath SageMath( Sage ) Sage Python Sage Python Sage Maxima Maxima Sage Sage Sage Linux, Mac, Windows *1 2 Sage Sage 4 1. ( sage CUI) 2. Sage ( sage.sage ) 3. Sage ( notebook() ) 4. Sage

More information

InterSafe Personal_v2.3 ユーザーズガイド_初版

InterSafe Personal_v2.3 ユーザーズガイド_初版 InterSafe Personal v2.3 1. 3 1-1. 4 1-2. 5 InterSafe Personal 5 1-3. InterSafe Personal 6 6 7 8 2. 9 2-1. 10 2-2. 14 2-3. 17 17 17 2 18 19 21 3. 22 3-1. 23 23 3-2. [ ] 24 [ ] 24 [ ] 24 3-3. [ ] 25 [ ]

More information

00 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.... 0........ 0 0 0 0 0 0 0 0 0 0..0..........0 0 0 0 0 0 0 0 0 0 0.... 0........ 0 0 0 0 0 0 0 0 0 0... 0...... 0... 0 0 0 0 0 0..0 0... 0 0 0 0 0.0.....0.

More information

平成 19 年度 ( 第 29 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 19 ~8 年月 72 月日開催 30 日 ) 1 PCF (Programming language for Computable Functions) PCF adequacy adequacy

平成 19 年度 ( 第 29 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 19 ~8 年月 72 月日開催 30 日 ) 1 PCF (Programming language for Computable Functions) PCF adequacy adequacy 1 PCF (Programming language for Computable Functions) PCF adequacy adequacy 2 N X Y X Y f (x) f x f x y z (( f x) y) z = (( f (x))(y))(z) X Y x e X Y λx. e x x 2 + x + 1 λx. x 2 + x + 1 3 PCF 3.1 PCF PCF

More information

(2 Linux Mozilla [ ] [ ] [ ] [ ] URL 2 qkc, nkc ~/.cshrc (emacs 2 set path=($path /usr/meiji/pub/linux/bin tcsh b

(2 Linux Mozilla [ ] [ ] [ ] [ ] URL   2 qkc, nkc ~/.cshrc (emacs 2 set path=($path /usr/meiji/pub/linux/bin tcsh b II 5 (1 2005 5 26 http://www.math.meiji.ac.jp/~mk/syori2-2005/ UNIX (Linux Linux 1 : 2005 http://www.math.meiji.ac.jp/~mk/syori2-2005/jouhousyori2-2005-00/node2. html ( (Linux 1 2 ( ( http://www.meiji.ac.jp/mind/tool/internet-license/

More information

2 2.1 NPCMJ ( (Santorini, 2010) (NPCMJ, 2016) (1) (, 2016) (1) (2) (1) ( (IP-MAT (CONJ ) (PP (NP (D ) (N )) (P )) (NP-SBJ *

2 2.1 NPCMJ (  (Santorini, 2010) (NPCMJ, 2016) (1) (, 2016) (1) (2) (1) ( (IP-MAT (CONJ ) (PP (NP (D ) (N )) (P )) (NP-SBJ * Emacs Emacs : Emacs 1 Emacs Emacs ( ) (NPCMJ ) 1 Emacs NPCMJ 2 1 2 2.1 NPCMJ (http://npcmj.ninjal.ac.jp/) (Santorini, 2010) (NPCMJ, 2016) (1) (, 2016) (1) (2) (1) ( (IP-MAT (CONJ ) (PP (NP (D ) (N )) (P

More information

2012 M

2012 M 2012 M0109218 2012 : M0109218 36 1 1 1.1............................. 1 1.2................................. 5 2 6 2.1................... 6 2.2................ 8 2.3............ 12 3 15 3.1...................

More information

福岡大学人文論叢47-3

福岡大学人文論叢47-3 679 pp. 1 680 2 681 pp. 3 682 4 683 5 684 pp. 6 685 7 686 8 687 9 688 pp. b 10 689 11 690 12 691 13 692 pp. 14 693 15 694 a b 16 695 a b 17 696 a 18 697 B 19 698 A B B B A B B A A 20 699 pp. 21 700 pp.

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

CVaR

CVaR CVaR 20 4 24 3 24 1 31 ,.,.,. Markowitz,., (Value-at-Risk, VaR) (Conditional Value-at-Risk, CVaR). VaR, CVaR VaR. CVaR, CVaR. CVaR,,.,.,,,.,,. 1 5 2 VaR CVaR 6 2.1................................................

More information

Super perfect numbers and Mersenne perefect numbers /2/22 1 m, , 31 8 P = , P =

Super perfect numbers and Mersenne perefect numbers /2/22 1 m, , 31 8 P = , P = Super perfect numbers and Mersenne perefect numbers 3 2019/2/22 1 m, 2 2 5 3 5 4 18 5 20 6 25 7, 31 8 P = 5 35 9, 38 10 P = 5 39 1 1 m, 1: m = 28 m = 28 m = 10 height48 2 4 3 A 40 2 3 5 A 2002 2 7 11 13

More information

ID POS F

ID POS F 01D8101011L 2005 3 ID POS 2 2 1 F 1... 1 2 ID POS... 2 3... 4 3.1...4 3.2...4 3.3...5 3.4 F...5 3.5...6 3.6 2...6 4... 8 4.1...8 4.2...8 4.3...8 4.4...9 4.5...10 5... 12 5.1...12 5.2...13 5.3...15 5.4...17

More information