GaNの特長とパワーデバイス応用に向けての課題 GaNパワーデバイスの低コスト化技術 大面積 Si 上 MOCVD 結晶成長技術 Si 上大電流 AlGaN/GaNパワー HFET GaN パワーデバイスのノーマリオフ動作 伝導度変調を用いたAlGaN/GaNトランジスタ - Gate Inject

Size: px
Start display at page:

Download "GaNの特長とパワーデバイス応用に向けての課題 GaNパワーデバイスの低コスト化技術 大面積 Si 上 MOCVD 結晶成長技術 Si 上大電流 AlGaN/GaNパワー HFET GaN パワーデバイスのノーマリオフ動作 伝導度変調を用いたAlGaN/GaNトランジスタ - Gate Inject"

Transcription

1 高耐圧 GaN パワーデバイス開発 松下電器産業 ( 株 ) 半導体社半導体デバイス研究センター 上田哲三

2 GaNの特長とパワーデバイス応用に向けての課題 GaNパワーデバイスの低コスト化技術 大面積 Si 上 MOCVD 結晶成長技術 Si 上大電流 AlGaN/GaNパワー HFET GaN パワーデバイスのノーマリオフ動作 伝導度変調を用いたAlGaN/GaNトランジスタ - Gate Injection Transistor (GIT) 超高耐圧 GaN パワーデバイス まとめ 講演内容 10000V 耐圧 AlGaN/GaN HFET

3 GaN の特長と パワーデバイス応用に向けての課題

4 GaN 系半導体の特長 Si, GaAs との比較 - パワー応用 絶縁破壊電界 ワイドギャップ (V/um) パワー応用 100 ( ) 50 動作温度 ワイドギャップ高ポテンシャル障壁 Si 10 GaN GaAs 100 RF 応用 最大発振周波数 (fmax) 高飽和電子速度低寄生容量 (GHz) パワー応用 最大電流 (Imax) 高キャリア濃度高電子速度 (A/mm) (db) RF 応用 雑音指数 (NF) 低キャリア散乱低 RF 損失

5 GaN パワーデバイスの技術課題 低コスト化 現状のSiパワーデバイスを置き換えるためには低コスト化が必要 GaNデバイスでは基板コストが大きな割合を占める大口径 Si 基板上への結晶成長 ノーマリオフ動作の実現 AlGaN/GaNヘテロ接合においては分極のためアンドープでも高いシートキャリア (~1x10 13 cm -2 ) が発生 ノーマリオフと大電流の両立が困難新動作原理ノーマリオフデバイス (GIT) さらなる高耐圧化の実証 これまでの最高耐圧は1900VにとどまりGaN 材料のポテンシャルを十分に引きだせていない新たな高耐圧デバイス構造

6 GaN パワーデバイスの低コスト化技術 大面積 Si 上 MOCVD 結晶成長技術 Si 上大電流 AlGaN/GaN パワー HFET

7 GaN の結晶成長に用いられる基板 基板材料 基板価格 格子定数 (A) 熱膨張係数 (10-6 /K) GaNの転位密度 (cm -2 ) 熱伝導率 (Wcm/K) GaN 100 インチ (50,000 円 /cm 2 ) SiC 50 インチ (25,000 円 /cm 2 ) サファイア 5 (600 円 /cm 2 ) 4.76 (2.74) Si 0.5 (30 円 /cm 2 ) GaNでは異種基板上へのヘテロエピタキシャル成長を行う必要がある 結晶性とコストにトレードオフが存在 Si 基板はコスト 放熱の点で有望だが これまではGaNの結晶性が課題

8 Si 基板上 AlGaN/GaN HFET 構造 MOCVD エピタキシャル構造 X 線回折パターン 格子定数 : Si>GaN>AlN 熱膨張係数 : Si<GaN<AlN GaN AlN GaN GaN 超格子バッファ層 AlGaN AlN Si(111) 基板 圧縮歪 応力緩和 X-ray Intensity (arb. units) AlGaN/AlN 初期成長層 GaN/AlN 多層膜による応力緩和 θ(deg.) 良好な周期性を確認

9 6 インチ Si 基板上への MOCVD 成長 6 インチ全面にて鏡面 クラックフリー

10 Si 上 HFET エピタキシャル構造の面内均一性 移動度 シートキャリア濃度の面内分布 Hall Mobility (cm 2 /Vsec) Sheet Carrier Concentration (x cm ー 2 ) Distance from Center (mm) Distance from Center (mm) 移動度 1653 cm 2 /Vsec

11 Si 基板上大電流 AlGaN/GaN パワー HFET 5.6mm Drain Gate Drain Drain 2.8mm Al0.26Ga0.74N Un-GaN Buffer AlN Buffer Surface Source Via Silicon Substrate Surface Source Via Sisub. Source ソースビア接地 FET 構造 Gate Drain チップ写真 (Wg= 500mm) 断面 SEM 写真

12 大電流 AlGaN/GaN パワー HFET の DC 特性 Vgs=0V -0.5V -1.0V -1.5V Vgs=-3.0V -2.0V -2.5V BVoff: 350V Ron: 19.8mΩ (Ron A: 1.98mΩcm 2 ) 高耐圧 低オン抵抗を実現

13 GaN パワーデバイスのノーマリオフ動作 伝導度変調を用いた AlGaN/GaN トランジスタ - Gate Injection Transistor (GIT)

14 従来のノーマリオフ型 AlGaN/GaN HFET Charge distribution -σ AlGaN -5.1x10-6 Ccm -2-0 σ : Fixed charge N S (GaN) >1x10 13 cm -2 2DEG -σ GaN +σ AlGaN 5.1x10-6 Ccm x10-6 Ccm -2 +σ GaN + 2.9x10-6 Ccm -2 Band diagram P SP(AlGaN) P SP(GaN) N σ V s p = φ ΔE b c V AlGaN AlGaN = φ ΔE 2 = + σ / e ( ε ε / d e ) φ 0 AlGaN = PPE ( Alx 1 b c qn sd ε ε 0 AlGaN AlGaN [ e + E ΔE ] Ga1 xn) + PSP ( AlxGa xn) PSP ( GaN) O.Ambacher et al, J.A.P. vol.85, no.6, p.3222, 1999 従来のノーマリオフ化技術 b F c Schottky metal P PE(AlGaN) ΔE C E C AlGaN 薄層化 Al 組成の低減 ドレイン電流の減少 フッ素添加 Al 0.25 Ga 0.75 N GaN E F P PE : Piezoelectric polarization P SP : Spontaneous polarization F の安定性確認が必要

15 新規ノーマリオフ型 GaN トランジスタ -GIT - Gate Injection Transistor (GIT) Source Gate p-algan i-algan Drain i-gan μ h << μ e ノーマリオフ化 p 型ゲートによりチャネルのポテンシャル障壁を増加 低オン抵抗化 p 型ゲートからチャネルへホール注入伝導度変調によりオン抵抗低減

16 GIT におけるノーマリオフ化 Energy [ev] Gate Ohmic バンド図 Gate Ohmic p-algan i-algan i-gan Depth [um] p-algan i-algan i-gan E C E F E V ノーマリオフ化 p 型ゲートによりチャネルのポテンシャル障壁を増加

17 GIT の動作原理 Vgs 5V 0V Vgs off on on off Vg = 0V P 型ゲートがゲート下チャネルを空乏化 ドレイン電流が流れない Source Gate p-algan Drain i-algan i-gan Vg > Vf of GaN-PN junction ホール注入 電子発生 ドレイン電流増大 (conductivity modulation)

18 GIT と MESFET の I ds -V gs 特性比較 300 Lg=2µm, Lgd=7.5µm Ids (GIT) 100 Ids (ma/mm) Ids (MESFET) gm (MESFET) gm (GIT) gm (ms/mm) Vgs (V) ホール注入により 2つめのg m ピークが発生 0

19 GIT の DC 特性 Ids (ma/mm) [ma/mm] Lg=2µm, Lgd=7.5µm Vgs=5V Vgs=4V Vgs=3V Ids Ids[mA/mm] (ma/mm) Lg=2µm, Lgd=7.5µm Vgs=0V 50 Vgs=2V Vgs=1V Vds (V) [V] Vds Vds[V] (V) しきい値電圧 Vp : +1.0V 最大ドレイン電流 Imax : 200mA/mm オン抵抗 RonA : 2.6mΩcm 2 オフ耐圧 : 800V

20 GIT オン抵抗 - 耐圧特性 Specific On-Resistance RonA (mωcm 2 ) GaN HFET (normally-off) Si Limit [3] [4] Si Super Junction MOSFET Si IGBT (commercial) This work GIT GaN Limit Breakdown voltage (V)

21 超高耐圧 GaN パワーデバイス 10000V 耐圧 AlGaN/GaN HFET

22 AlGaN/GaN HFET 高耐圧化に向けての課題 高電圧 ソース フィールドプレートを有する高耐圧 AlGaN/GaN HFET フィールドプレート ゲート SiN Passivation i-algan i-gan 高電界 バッファ層 ドレイン これまでに報告されている耐圧と Lgd の関係 Breakdown Voltage (V) Y. Dora, et al EDL, vol.27, pp713, 2006 N. Tipirneni, et al EDL, vol.27, pp716, 2006 基板 Lgd (μm) フィールドプレート構造により高耐圧化が可能 これまでの報告では耐圧は最高で1900Vにとどまる パッシベーション膜での絶縁破壊により耐圧が低下している可能性あり

23 超高耐圧 AlGaN/GaN HFET 厚膜多結晶 AlNパッシベーション従来のSiNと比較して大きな絶縁破壊電界強度高い熱伝導率 (SiNの200 倍以上 ) ドレイン電流増加 電流コラプス抑制 サファイア基板へのビアホール形成高電圧配線を排除しよりコンパクトなチップレイアウトを実現 超高耐圧 AlGaN/GaN HFET の断面図 高電界 フィールドプレート 厚膜 AlN パッシベーション SiN ソース ゲート i-algan サファイア基板へのビアホール i-gan バッファ層 サファイア基板 ドレイン

24 AlN による絶縁破壊電界の向上 MIM(Metal-Insulator-Metal) 構造の電流 - 電圧特性 1.E+03 1.E MV/cm Current [A/cm2] 1.E+01 1.E+00 1.E-01 SiN 1μm 5.7MV/cm 1.E-02 AlN 1μm 1.E Voltage [V]

25 AlN による放熱改善ーシミュレーション結果 2DEG でのチャネル温度分布 最大チャネル温度のパッシベーション膜厚依存性 Temperature ( ) SiN:500nm ~ 10µm S G D position (µm) AlN: 500nm 1µm 2µm 5µm 10µm 4 Max. temperature ( ) SiN 230 AlN Thickness (µm)

26 AlN による熱抵抗低減 熱抵抗のパッシベーション膜厚依存性 Thermal resistance, Rth ( /W) Wg : 4.8mm SiN AlN AlN thickness (µm)

27 レーザドリルによるサファイアへのビアホール形成 高出力短パルスレーザ照射によって生じる多光子吸収 レーザアブレーションを利用し熱的 化学的に非常に安定なサファイア基板にビアホールを形成 多光子吸収 (Multi-photon ionization) サファイア 導電帯 バンドギャップ 9eV レーザドリル SEM 写真 Depth=250μm 価電子帯 ビアホール形成プロセス 高出力短パルスレーザ照射 金メッキ 裏面研磨裏面電極形成

28 作製したサファイア基板への貫通ビアホール 断面 SEM 写真 ビアホール サファイア 裏面電極 100μm

29 超高耐圧 AlGaN/GaN HFET の構造 断面構造 ソース ソース ゲート SiN AlN i-algan i-gan ゲート バッファ層 サファイア基板 ドレイン チップレイアウト ソース ビアドレイン ゲート ゲート ソース

30 作製した超高耐圧 AlGaN/GaN HFET チップ写真 断面 SEM 写真 Source-FP Gate Source Gate-FP SiN Poly-AlN AlGaN/GaN Drain AlN-buffer 1mm Viahole source 5μm sapphire gate 10μm

31 オフ耐圧のゲート - ドレイン間距離 (L gd ) 依存性 Breakdown Voltage [V] Vg= -5V Thick poly-aln Passivation SiN Passivation Lgd [um]

32 超高耐圧 HFET の DC 特性 Drain Current [A/mm] Drain Current [A/mm] Lg=2µm, Lgd=125µm Vgs= 1V 0V -1V -2V -3V -4V Drain Current [ma/mm] Drain Current [ma/mm] Lg=2µm, Lgd=125µm Vgs= -5V 10400V Drain Voltage [V] Drain Voltage [V] Drain Voltage [V] Drain Voltage [V] RonA=186mΩcm 2 BVds=10400V Imax=150mA/mm Vp= - 4.0V

33 超高耐圧 AlGaN/GaN HFET オン抵抗 - 耐圧特性 10 4 Specific On-Resistance RonA [mωcm 2 ] GaN HFET Normally-Off Si Limit Si Super Junction MOSFET GaN HFET Normally-On Si IGBT This Work UHV-HFET GaN Limit GIT Normally-off Breakdown voltage [V] 10 5

34 まとめ GaN パワーデバイスの実用化に向けて 低コスト化 6インチSi 上 MOCVD 結晶成長技術 大電流 AlGaN/GaN HFET(150A/350V) ノーマリオフ動作 伝導度変調を用いたAlGaN/GaNトランジスタ Gate Injection Transistor (GIT) を提案 超高耐圧実現 しきい値電圧 Vp=+1.0V オン抵抗 Ron A = 2.6 mωcm 2 オフ耐圧 BV ds = 800V 新規デバイス構造により 10000V 耐圧を確認 オン抵抗 Ron A = 186 mωcm 2 オフ耐圧 BV ds = 10400V

<4D F736F F F696E74202D208FE393635F928289BB95A894BC93B191CC8CA48B8689EF5F47614E F815B835E5F88F38DFC97702E707074>

<4D F736F F F696E74202D208FE393635F928289BB95A894BC93B191CC8CA48B8689EF5F47614E F815B835E5F88F38DFC97702E707074> 21 年 6 月 24 日第 8 回窒化物半導体応用研究会 GaN 系電子デバイスの現状とその可能性 GaN パワーデバイスのインバータ応用 パナソニック株式会社 セミコンダクター社半導体デバイス研究センター 上田哲三 講演内容 GaNインバータによる省エネルギー化 GaNパワーデバイス技術 低コストSi 基板上 GaN 結晶成長 ノーマリオフ化 : Gate Injection Transistor

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 第 12 回窒化物半導体応用研究会 2011 年 11 月 10 日 ノーマリオフ型 HFET の高性能化 前田就彦 日本電信電話株式会社 NTT フォトニクス研究所 243-0198 神奈川県厚木市森の里若宮 3-1 E-mail: maeda.narihiko@lab.ntt.co.jp 内容 (1) 電力応用におけるノーマリオフ型デバイス (2) / HFETにおけるノーマリオフ化 - デバイス構造のこれまでの展開

More information

untitled

untitled 213 74 AlGaN/GaN Influence of metal material on capacitance for Schottky-gated AlGaN/GaN 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1 1 AlGaN/GaN デバイス ① GaNの優れた物性値 ② AlGaN/GaN HEMT構造 ワイドバンドギャップ半導体 (3.4eV) 絶縁破壊電界が大きい

More information

第 1 回窒化物半導体応用研究会平成 20 年 2 月 8 日 講演内容 1. 弊社の概要紹介 2. 弊社における窒化物半導体事業への展開 3. 知的クラスター創生事業での取り組み Si 基板上 HEMT 用 GaN 系エピ結晶結晶成長成長技術技術開発

第 1 回窒化物半導体応用研究会平成 20 年 2 月 8 日 講演内容 1. 弊社の概要紹介 2. 弊社における窒化物半導体事業への展開 3. 知的クラスター創生事業での取り組み Si 基板上 HEMT 用 GaN 系エピ結晶結晶成長成長技術技術開発 第 1 回窒化物半導体応用研究会 平成 20 年 2 月 8 日 GaN 結晶成長技術の開発 半導体事業部 伊藤統夫 第 1 回窒化物半導体応用研究会平成 20 年 2 月 8 日 講演内容 1. 弊社の概要紹介 2. 弊社における窒化物半導体事業への展開 3. 知的クラスター創生事業での取り組み Si 基板上 HEMT 用 GaN 系エピ結晶結晶成長成長技術技術開発 弊社社名変更について 2006

More information

窒化アルミニウムによる 高効率フィールドエミッションを実現 ディスプレイパネル実用レベルのフィールドエミッション特性

窒化アルミニウムによる 高効率フィールドエミッションを実現 ディスプレイパネル実用レベルのフィールドエミッション特性 Copyright NTT Basic Research Laboratories, NTT Corporation. All rights reserved. ダイヤモンド 高周波電力デバイスの開発とマイクロ波 ミリ波帯電力増幅器への応用 (614314) 研究代表者嘉数誠 (1) NTT 物性科学基礎研究所 研究分担者植田研二 (2) 小林康之 中川匡夫 NTT 物性科学基礎研究所 NTT 未来ねっと研究所

More information

Microsoft PowerPoint - semi_ppt07.ppt [互換モード]

Microsoft PowerPoint - semi_ppt07.ppt [互換モード] 1 MOSFETの動作原理 しきい電圧 (V TH ) と制御 E 型とD 型 0 次近似によるドレイン電流解析 2 電子のエネルギーバンド図での考察 理想 MOS 構造の仮定 : シリコンと金属の仕事関数が等しい 界面を含む酸化膜中に余分な電荷がない 金属 (M) 酸化膜 (O) シリコン (S) 電子エ金属 酸化膜 シリコン (M) (O) (S) フラットバンド ネルギー熱平衡で 伝導帯 E

More information

AlGaN/GaN HFETにおける 仮想ゲート型電流コラプスのSPICE回路モデル

AlGaN/GaN HFETにおける 仮想ゲート型電流コラプスのSPICE回路モデル AlGaN/GaN HFET 電流コラプスおよびサイドゲート効果に関する研究 徳島大学大学院先端技術科学教育部システム創生工学専攻電気電子創生工学コース大野 敖研究室木尾勇介 1 AlGaN/GaN HFET 研究背景 高絶縁破壊電界 高周波 高出力デバイス 基地局などで実用化 通信機器の発達 スマートフォン タブレットなど LTE LTE エンベロープトラッキング 低消費電力化 電源電圧を信号に応じて変更

More information

Microsoft PowerPoint - H30パワエレ-3回.pptx

Microsoft PowerPoint - H30パワエレ-3回.pptx パワーエレクトロニクス 第三回パワー半導体デバイス 平成 30 年 4 月 25 日 授業の予定 シラバスより パワーエレクトロニクス緒論 パワーエレクトロニクスにおける基礎理論 パワー半導体デバイス (2 回 ) 整流回路 (2 回 ) 整流回路の交流側特性と他励式インバータ 交流電力制御とサイクロコンバータ 直流チョッパ DC-DC コンバータと共振形コンバータ 自励式インバータ (2 回 )

More information

Microsoft PowerPoint - semi_ppt07.ppt

Microsoft PowerPoint - semi_ppt07.ppt 半導体工学第 9 回目 / OKM 1 MOSFET の動作原理 しきい電圧 (V( TH) と制御 E 型と D 型 0 次近似によるドレイン電流解析 半導体工学第 9 回目 / OKM 2 電子のエネルギーバンド図での考察 金属 (M) 酸化膜 (O) シリコン (S) 熱平衡でフラットバンド 伝導帯 E c 電子エネルギ シリコンと金属の仕事関数が等しい 界面を含む酸化膜中に余分な電荷がない

More information

untitled

untitled 20101221JST (SiC - Buried Gate Static Induction Transistor: SiC-BGSIT) SOURCE GATE N source layer p + n p + n p + n p+ n drift layer n + substrate DRAIN SiC-BGSIT (mωcm 2 ) 200 100 40 10 4 1 Si limit

More information

Microsoft PowerPoint 修論発表_細田.ppt

Microsoft PowerPoint 修論発表_細田.ppt 0.0.0 ( 月 ) 修士論文発表 Carrier trasort modelig i diamods ( ダイヤモンドにおけるキャリヤ輸送モデリング ) 物理電子システム創造専攻岩井研究室 M688 細田倫央 Tokyo Istitute of Techology パワーデバイス基板としてのダイヤモンド Proerty (relative to Si) Si GaAs SiC Ga Diamod

More information

電子回路I_4.ppt

電子回路I_4.ppt 電子回路 Ⅰ 第 4 回 電子回路 Ⅰ 5 1 講義内容 1. 半導体素子 ( ダイオードとトランジスタ ) 2. 基本回路 3. 増幅回路 電界効果トランジスタ (FET) 基本構造 基本動作動作原理 静特性 電子回路 Ⅰ 5 2 半導体素子 ( ダイオードとトランジスタ ) ダイオード (2 端子素子 ) トランジスタ (3 端子素子 ) バイポーラトランジスタ (Biolar) 電界効果トランジスタ

More information

PowerPoint Presentation

PowerPoint Presentation 半導体電子工学 II 神戸大学工学部 電気電子工学科 12/08/'10 半導体電子工学 Ⅱ 1 全体の内容 日付内容 ( 予定 ) 備考 1 10 月 6 日半導体電子工学 I の基礎 ( 復習 ) 11/24/'10 2 10 月 13 日 pn 接合ダイオード (1) 3 10 月 20 日 4 10 月 27 日 5 11 月 10 日 pn 接合ダイオード (2) pn 接合ダイオード (3)

More information

untitled

untitled 2013 74 Tokyo Institute of Technology AlGaN/GaN C Annealing me Dependent Contact Resistance of C Electrodes on AlGaN/GaN, Tokyo Tech.FRC, Tokyo Tech. IGSSE, Toshiba, Y. Matsukawa, M. Okamoto, K. Kakushima,

More information

Microsoft PowerPoint - 9.菅谷.pptx

Microsoft PowerPoint - 9.菅谷.pptx 超多積層量子ドット太陽電池と トンネル効果 菅谷武芳 革新デバイスチーム 量子ドット太陽電池 電子 バンド3:伝導帯 E23 E13 E12 正孔 バンド2:中間バンド 量子ドット超格子 ミニバンド 量子ドットの井戸型 ポテンシャル バンド1:価電子帯 量子ドット太陽電池のバンド図 量子ドット超格子太陽電池 理論上 変換効率60%以上 集光 A. Luque et al., Phys. Rev. Lett.

More information

13 2 9

13 2 9 13 9 1 1.1 MOS ASIC 1.1..3.4.5.6.7 3 p 3.1 p 3. 4 MOS 4.1 MOS 4. p MOS 4.3 5 CMOS NAND NOR 5.1 5. CMOS 5.3 CMOS NAND 5.4 CMOS NOR 5.5 .1.1 伝導帯 E C 禁制帯 E g E g E v 価電子帯 図.1 半導体のエネルギー帯. 5 4 伝導帯 E C 伝導電子

More information

Conduction Mechanism at Low Temperature of 2-Dimensional Hole Gas at GaN/AlGaN Heterointerface (低温におけるGaN/AlGaN ヘテロ界面の2 次元正孔ガスの伝導機構)

Conduction Mechanism at Low Temperature of 2-Dimensional Hole Gas at GaN/AlGaN Heterointerface  (低温におけるGaN/AlGaN ヘテロ界面の2 次元正孔ガスの伝導機構) 2014/03/19 応用物理学会 2014 年春季学術講演会 コンダクタンス法による AlGaN/GaN ヘテロ 接合界面トラップに関する研究 Investigation on interface traps in AlGaN/GaN heterojunction by conductance method 劉璞誠 1, 竇春萌 2, 角嶋邦之 2, 片岡好則 2, 西山彰 2, 杉井信之 2,

More information

AlN 基板を用いた高Al 組成AlGaN HEMTの開発

AlN 基板を用いた高Al 組成AlGaN HEMTの開発 エレクトロニクス Drain Current I D [ma] 9 8 7 6 5 4 3 2 2 4 6 8 12 14 1618 2 Drain Voltage V DS [V] A l N 基板を用いた高 A l 組成 A l G a N H E M T の開発 秋 田 勝 史 * 橋 本 信 山 本 喜 之 矢 船 憲 成 徳 田 博 邦 葛 原 正 明 岩 谷 素 顕 天 野 浩 Development

More information

Microsoft Word - sp8m4-j.doc

Microsoft Word - sp8m4-j.doc 4V 駆動タイプ Nch+Pch MOS FET 構造シリコン N チャネル / P チャネル MOS 型電界効果トランジスタ 外形寸法図 (Unit : mm) SOP8 5..4.75 (8) (5) 特長 ) 新ライン採用により 従来品よりオン抵抗大幅低減 2) ゲート保護ダイオード内蔵 3) 小型面実装パッケージ (SOP8) で省スペース pin mark () (4).27 3.9 6..2.4Min.

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 加工 Si 基板上への 非極性 GaN 結晶成長 1) 名古屋大学工学研究科 赤崎記念研究センター 2) 愛知工業大学工学研究科 1) 本田善央 1) 谷川智之 1) 鈴木希幸 1) 山口雅史 2) 澤木宣彦 豊田講堂時計台 赤崎研究センター auditorium Akasaki research center 常圧 MOVPE 減圧 MOVPE (2inch) HVPE MOVPE #3 MOVPE

More information

MOSFET HiSIM HiSIM2 1

MOSFET HiSIM HiSIM2 1 MOSFET 2007 11 19 HiSIM HiSIM2 1 p/n Junction Shockley - - on-quasi-static - - - Y- HiSIM2 2 Wilson E f E c E g E v Bandgap: E g Fermi Level: E f HiSIM2 3 a Si 1s 2s 2p 3s 3p HiSIM2 4 Fermi-Dirac Distribution

More information

1-2 原子層制御量子ナノ構造のコヒーレント量子効果 Coherent Quantum Effects in Quantum Nano-structure with Atomic Layer Precision Mutsuo Ogura, Research Director of CREST Pho

1-2 原子層制御量子ナノ構造のコヒーレント量子効果 Coherent Quantum Effects in Quantum Nano-structure with Atomic Layer Precision Mutsuo Ogura, Research Director of CREST Pho 1-2 原子層制御量子ナノ構造のコヒーレント量子効果 Coherent Quantum Effects in Quantum Nano-structure with Atomic Layer Precision Mutsuo Ogura, Research Director of CREST Photonics Research Institute, AIST TBAs) AlGaAs/GaAs TBAs)

More information

大口径電子デバイス用エピ基板の開発

大口径電子デバイス用エピ基板の開発 GaN/Si 半導体の研究 技術動向 江川孝志名古屋工業大学極微デバイス機能システム研究センター e-mail:egawa.takashi@nitech.ac.jp 発表内容 1.MOCVD 法を用いたヘテロエピタキシャル成長 (1) 各種基板上の GaN の比較 Si 基板の利点 (2)Si 基板上の GaN 結晶成長 厚膜化及び高品質化 (3) ピットの発生 (4) 国内外の研究開発動向 2.Si

More information

PowerPoint Presentation

PowerPoint Presentation 半導体電子工学 II 神戸大学工学部電気電子工学科 小川真人 09/01/21 半導体電子工学 II 日付内容 ( 予定 ) 備考 1 10 月 1 日半導体電子工学 I の基礎 ( 復習 ) 2 10 月 8 日半導体電子工学 I の基礎 ( 復習 ) 3 10 月 15 日 pn 接合ダイオード (1) 4 10 月 22 日 pn 接合ダイオード (2) 5 10 月 29 日 pn 接合ダイオード

More information

Microsoft PowerPoint - 2.devi2008.ppt

Microsoft PowerPoint - 2.devi2008.ppt 第 2 章集積回路のデバイス MOSトランジスタダイオード抵抗容量インダクタンス配線 広島大学岩田穆 1 半導体とは? 電気を通す鉄 アルミニウムなどの金属は導体 電気を通さないガラス ゴムなどは絶縁体 電気を通したり, 通さなかったり, 条件によって, 導体と絶縁体の両方の性質を持つことのできる物質を半導体半導体の代表例はシリコン 電気伝導率 広島大学岩田穆 2 半導体技術で扱っている大きさ 間の大きさ一般的な技術現在研究しているところナノメートル

More information

Microsoft Word - プレリリース参考資料_ver8青柳(最終版)

Microsoft Word - プレリリース参考資料_ver8青柳(最終版) 別紙 : 参考資料 従来の深紫外 LED に比べ 1/5 以下の低コストでの製造を可能に 新縦型深紫外 LED Ref-V DUV LED の開発に成功 立命館大学総合科学技術研究機構の黒瀬範子研究員並びに青柳克信上席研究員は従来 の 1/5 以下のコストで製造を可能にする新しいタイプの縦型深紫外 LED(Ref-V DUV LED) の開発に成功した 1. コスト1/5 以下の深紫外 LED 1)

More information

Figure 1. Center and Edge comparison of a HEMT epi measured by PCOR-SIMS SM 図 1 は直径 150mm の Si ウェハ上に成長させた GaN HEMT 構造全体の PCOR-SIMS による深さプ ロファイルを示しています

Figure 1. Center and Edge comparison of a HEMT epi measured by PCOR-SIMS SM 図 1 は直径 150mm の Si ウェハ上に成長させた GaN HEMT 構造全体の PCOR-SIMS による深さプ ロファイルを示しています PCOR-SIMS による Si 基板上 GaN HEMT エピ構造の解析 Temel H. Buyuklimanli (temel@eag.com), Charles W. Magee, Ozgur Celik, Wei Ou, Andrew Klump, Wei Zhao, Yun Qi and Jeffrey Serfass 810 Kifer Road, Sunnyvale, CA 94086

More information

パナソニック技報

パナソニック技報 67 Next-generation Power Switching Devices for Automotive Applications: GaN and SiC Tetsuzo Ueda Yoshihiko Kanzawa Satoru Takahashi Kazuyuki Sawada Hiroyuki Umimoto Akira Yamasaki GaNSiCGaNSiGate Injection

More information

Microsoft PowerPoint - 14.菅谷修正.pptx

Microsoft PowerPoint - 14.菅谷修正.pptx InGaAs/系量子ドット太陽電池の作製 革新デバイスチーム 菅谷武芳 電子 バンド3:伝導帯 E3 E3 E 正孔 バンド:中間バンド 量子ドット超格子 ミニバンド 量子ドットの井戸型 ポテンシャル バンド:価電子帯 量子ドット太陽電池のバンド図 6%を超える理想的な量子ドット太陽 電池実現には E3として1 9eVが必要 量子ドット超格子太陽電池 理論上 変換効率6%以上 集光 を採用 MBE

More information

低転位GaN 基板上縦型トランジスタの開発

低転位GaN 基板上縦型トランジスタの開発 エレクトロニクス 低転位 GaN 基板上縦型トランジスタの開発 岡 田 政 也 * 斎 藤 雄 横 山 満 徳 中 田 健 八重樫 誠 司 片 山 浩 二 上 野 昌 紀 木 山 誠 勝 山 造 中 村 孝 夫 Development of Vertical Heterojunction Field-Effect Transistors on Low Dislocation Density GaN

More information

Microsoft PowerPoint - 4.1I-V特性.pptx

Microsoft PowerPoint - 4.1I-V特性.pptx 4.1 I-V 特性 MOSFET 特性とモデル 1 物理レベルの設計 第 3 章までに システム~ トランジスタレベルまでの設計の概要を学んだが 製造するためには さらに物理的パラメータ ( 寸法など ) が必要 物理的パラメータの決定には トランジスタの特性を理解する必要がある ゲート内の配線の太さ = 最小加工寸法 物理的パラメータの例 電源配線の太さ = 電源ラインに接続されるゲート数 (

More information

Microsoft PowerPoint - tft.ppt [互換モード]

Microsoft PowerPoint - tft.ppt [互換モード] 薄膜トランジスター 九州大学大学院 システム情報科学研究科 服部励治 薄膜トランジスターとは? Thin Film Transistor: TFT ソース電極 ゲート電極 ドレイン電極ソース電極ゲートドレイン電極 n poly 電極 a:h n n ガラス基板 p 基板 TFT 共通点 電界効果型トランジスター nmosfet 相違点 誘電膜上に作成される スタガー型を取りうる 薄膜トランジスター

More information

600 V系スーパージャンクション パワーMOSFET TO-247-4Lパッケージのシミュレーションによる解析

600 V系スーパージャンクション パワーMOSFET TO-247-4Lパッケージのシミュレーションによる解析 [17.7 White Paper] 6 V 系スーパージャンクションパワー MOSFET TO-247-4L パッケージのシミュレーションによる解析 MOSFET チップの高速スイッチング性能をより引き出すことができる 4 ピン新パッケージ TO-247-4L 背景 耐圧が 6V 以上の High Voltage(HV) パワー半導体ではオン抵抗と耐圧のトレードオフの改善を行うためスーパージャンクション

More information

内 容 1. パワーデバイスの基礎 1) パワーデバイスの仕事 2) 次世代パワーデバイス開発の位置づけ 2.SiC パワーデバイスの最新技術と課題 1) なぜ SiC が注目されているのか 2) 高温動作ができると何がいいのか 3)SiC-MOSFET の課題 4)SiC トレンチ MOSFET

内 容 1. パワーデバイスの基礎 1) パワーデバイスの仕事 2) 次世代パワーデバイス開発の位置づけ 2.SiC パワーデバイスの最新技術と課題 1) なぜ SiC が注目されているのか 2) 高温動作ができると何がいいのか 3)SiC-MOSFET の課題 4)SiC トレンチ MOSFET SiC GaN パワー半導体の最新技術 課題 ならびにデバイス評価技術の重要性 2016 年 7 月 12 日 筑波大学数理物質系物理工学域 教授岩室憲幸 1 内 容 1. パワーデバイスの基礎 1) パワーデバイスの仕事 2) 次世代パワーデバイス開発の位置づけ 2.SiC パワーデバイスの最新技術と課題 1) なぜ SiC が注目されているのか 2) 高温動作ができると何がいいのか 3)SiC-MOSFET

More information

XP233P1501TR-j.pdf

XP233P1501TR-j.pdf P-channel MOSFET -3V, -1.5A JTR114-1 特長オン抵抗 駆動電圧環境への配慮 : RDS(on)=.19Ω@VGS =-1V : -4.5V : EU RoHS 指令対応 鉛フリー 用途 スイッチング用 内部接続図 端子配列 SOT-23(TO-236) Drain Gate Source 製品名 PRODUCT NAME PACKAGE ORDER UNIT * SOT-23(TO-236)

More information

高耐圧SiC MOSFET

高耐圧SiC MOSFET エレクトロニクス 高耐圧 S i C M O S F E T 木村錬 * 内田光亮 日吉透酒井光彦 和田圭司 御神村泰樹 SiC High Blocking Voltage Transistor by Ren Kimura, Kousuke Uchida, Toru Hiyoshi, Mitsuhiko Sakai, Keiji Wada and Yasuki Mikamura Recently,

More information

SiC 高チャネル移動度トランジスタ

SiC 高チャネル移動度トランジスタ エレクトロニクス SiC 高チャネル移動度トランジスタ 日吉透 * 増田健良 和田圭司 原田真 築野孝 並川靖生 SiC MOSFET with High Channel Mobility by Toru Hiyoshi, Takeyoshi Masuda, Keiji Wada, Shin Harada, Takashi Tsuno and Yasuo Namikawa SiC (silicon

More information

研究成果報告書

研究成果報告書 MIS HEMT MIS HEMT MIS HEMT AlGaN/GaN MIS ALD AlGaN/GaN MIS-HEMT (1)MIS MIS AlGaN/GaN MIS-HEMT BCl 3 Cl 2 Ti/Al/Mo/Au (15/60/35/50 nm) 850 ºC AlGaN Ni/Au (100/150 nm) 300 ºC Lg=3m Lgd=5 mwg=100 m ALD Al

More information

SiC JFET による高速スイッチング電源

SiC JFET による高速スイッチング電源 エレクトロニクス S i C J F E T による高速スイッチング電源 初 川 聡 * 築 野 孝 藤 川 一 洋 志 賀 信 夫 ウリントヤ 和 田 和 千 大 平 孝 High-Speed Switching Power Supply Using SiC RESURF JFETs by Satoshi Hatsukawa, Takashi Tsuno, Kazuhiro Fujikawa, Nobuo

More information

Microsystem Integration & Packaging Laboratory

Microsystem Integration & Packaging Laboratory 2015/01/26 MemsONE 技術交流会 解析事例紹介 東京大学実装工学分野研究室奥村拳 Microsystem Integration and Packaging Laboratory 1 事例紹介 1. 解析の背景高出力半導体レーザの高放熱構造 2. 熱伝導解析解析モデルの概要 3. チップサイズの熱抵抗への影響 4. 接合材料の熱抵抗への影響 5. ヒートシンク材料の熱抵抗への影響 Microsystem

More information

スライド 1

スライド 1 パワーデバイスの故障解析 あらゆるサイズ 形状のダイオード MOS FET IGBT 等のパワーデバイスに対し最適な前処理を行い 裏面 IR-OBIRCH 解析や裏面発光解析により不良箇所を特定し観察いたします 解析の前処理 - 裏面研磨 - 平面研磨 各種サンプル形態に対応します Si チップサイズ :200um~15mm 角 ヒートシンク チップ封止樹脂パッケージ状態の裏面研磨 開封済みチップの裏面研磨

More information

Acrobat Distiller, Job 2

Acrobat Distiller, Job 2 2 3 4 5 Eg φm s M f 2 qv ( q qφ ) = qφ qχ + + qφ 0 0 = 6 p p ( Ei E f ) kt = n e i Q SC = qn W A n p ( E f Ei ) kt = n e i 7 8 2 d φ( x) qn = A 2 dx ε ε 0 s φ qn s 2ε ε A ( x) = ( x W ) 2 0 E s A 2 EOX

More information

<4D F736F F F696E74202D2091E F BB95A894BC93B191CC899E97708CA48B8689EF E9197BF>

<4D F736F F F696E74202D2091E F BB95A894BC93B191CC899E97708CA48B8689EF E9197BF> 1 豊田合成の GaN 系 LED の開発と製品化 豊田合成株式会社オプト E 事業部柴田直樹 Outline 2 A. TG LED チップの歴史と特性の紹介 PC タブレット向けチップ 照明向けチップ B. TG の結晶成長技術について AlN バッファ層上 GaN 層成長メカニズム C. TG の最新 LED チップの紹介 GaN 基板上 LED 非極性 m 面 GaN LED A-1. 省エネ

More information

hν 688 358 979 309 308.123 Hz α α α α α α No.37 に示す Ti Sa レーザーで実現 術移転も成功し 図 9 に示すよ うに 2 時間は連続測定が可能な システムを実現した Advanced S o l i d S t a t e L a s e r s 2016, JTu2A.26 1-3. 今後は光周波 数比計測装置としてさらに改良 を加えていくとともに

More information

Microsoft PowerPoint - 集積デバイス工学7.ppt

Microsoft PowerPoint - 集積デバイス工学7.ppt 集積デバイス工学 (7 問題 追加課題 下のトランジスタが O する電圧範囲を求めよただし T, T - とする >6 問題 P 型 MOS トランジスタについて 正孔の実効移動度 μ.7[m/ s], ゲート長.[μm], ゲート幅 [μm] しきい値電圧 -., 単位面積あたりの酸化膜容量

More information

XP231P0201TR-j.pdf

XP231P0201TR-j.pdf Pchannel MOSFET 3V,.2A JTR11381 特長オン抵抗 駆動電圧環境への配慮 : RDS(on)=5Ω@VGS =4.5V : 2.5V : EU RoHS 指令対応 鉛フリー 用途 スイッチング用 内部接続図 端子配列 SOT23(TO236) Drain Gate Source 製品名 PRODUCT NAME PACKAGE ORDER UNIT * SOT23(TO236)

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 1 次世代パワーデバイスの 自動車への応用について 2012.7.9 トヨタ自動車 ( 株 ) 第 3 電子開発部 長尾勝 本日の内容 2 1. 自動車を取り巻く環境 2. 自動車用パワーエレクトロニクス 3. 次世代パワーデバイスと自動車 今後の自動車産業 ~ 自動車用エレクトロニクス開発 ~ 3 究極 201X 年 2010 年 20XX 年 ゼロエミッション 大気並の排気 環境 代替エネルギーへの対応

More information

2004/4/16 (Power Technology) O 2 ( ) (Information Technology) ( ) Gas (4H) GaN andgap (ev) Electron mobility (cm 2 /Vs)

2004/4/16 (Power Technology) O 2 ( ) (Information Technology) ( ) Gas (4H) GaN andgap (ev) Electron mobility (cm 2 /Vs) ontents semicon.kuee.kyoto-u.ac.jp P 5.47 ev 1.12 ev Ge 0.66 ev Sn 0.08 ev DVD LSI, 3.20 ev GaN 3.42 ev ZnO 2004/4/16 (Power Technology) O 2 ( ) (Information Technology) ( ) Gas (4H) GaN andgap (ev) 1.12

More information

Microsoft PowerPoint - 集積デバイス工学5.ppt

Microsoft PowerPoint - 集積デバイス工学5.ppt MO プロセスフロー ( 復習 集積デバイス工学 ( の構成要素 ( 抵抗と容量 素子分離 -well 形成 ゲート形成 拡散領域形成 絶縁膜とコンタクト形成 l 配線形成 6 7 センター藤野毅 MO 領域 MO 領域 MO プロセスフロー ( 復習 素子分離 -well 形成 ゲート形成 拡散領域形成 絶縁膜とコンタクト形成 l 配線形成 i 膜 ウエルポリシリコン + 拡散 + 拡散コンタクト

More information

スライド 1

スライド 1 2014 年 9 月 17 日 ( 水 ) 第 75 回応用物理学会秋季学術講演会 TiC 電極,TiSi 2 電極と SiC 基板の Schottky ダイオード特性評価 Schottky diode characteristics of TiC and TiSi 2 electrodes on SiC substrates 東工大フロンティア研 1, 東工大総理工 2, 鈴木智之 1, 岡本真里

More information

無線アクセス用ミリ波帯無線伝送システムの実現のための基盤技術の研究開発 パナソニック株式会社富士通株式会社独立行政法人情報通信研究機構

無線アクセス用ミリ波帯無線伝送システムの実現のための基盤技術の研究開発 パナソニック株式会社富士通株式会社独立行政法人情報通信研究機構 無線アクセス用ミリ波帯無線伝送システムの実現のための基盤技術の研究開発 パナソニック株式会社富士通株式会社独立行政法人情報通信研究機構 電波資源拡大のための研究開発 無線アクセス用ミリ波帯無線伝送システムの実現のための基盤技術の研究開発 研究開発概要 3 GHz 以下の周波数帯を利用している無線アクセス用伝送システムを未利用周波数帯へ移行するため ミリ波帯において高耐圧特性を有する窒化ガリウム (GaN)

More information

スライド 1

スライド 1 2015 年 2 月 17 日 ( 火 ) 学士卒業論文発表会 TiC 及び TiSi 2 電極と SiC ショットキーダイオードの電気特性評価 (Electrical Characteristics of SiC Schottky Diodes with TiC and TiSi 2 Electrodes) Iwai and Kakushima Laboratory Tomoyuki Suzuki

More information

FC8V2215

FC8V2215 ゲート抵抗内蔵デュアル N チャネル MOSFET リチウムイオン 2 次電池保護回路用 2.9 Unit: mm 0.3 0. 特長 低ドレイン ソース間オン抵抗 :Rds(on)typ. = 9.0 m (VGS = 4. V) ゲート抵抗内蔵 ハロゲンフリー 鉛フリー対応パッケージ (EU RoHS / UL-94 V-0 / MSL:Level 適合 ) 2.4 2. 形名表示記号 : 3

More information

Electrical contact characteristics of n-type diamond with Ti, Ni, NiSi2, and Ni3P electrodes

Electrical contact characteristics of n-type diamond with Ti, Ni, NiSi2, and Ni3P electrodes Electrical contact characteristics of n-type diamond with Ti, Ni, NiSi 2, and Ni 3 P electrodes 杉井 岩井研究室 12M36240 武正敦 1 注目を集めるワイドギャップ半導体 パワーエレクトロニクス ( 半導体の電力変換分野への応用 ) に期待 ワイドギャップ半導体に注目 Properties (relative

More information

窒化ガリウム系電界効果型トランジスタの 光応答とその応用に関する研究

窒化ガリウム系電界効果型トランジスタの 光応答とその応用に関する研究 窒化ガリウム系電界効果型トランジスタの光応答とその応用に関する研究 徳島大学大学院 工学研究科物質材料工学専攻 岡田政也 2008/2/4 博士論文公聴会 第一章序論 論文の構成と発表内容 研究背景 目的第二章深い準位による I-V 特性の過渡応答のシミュレーション 発表では省略 第三章 AlGaN/GaN HFET 用エピタキシャル基板 2DEG シート抵抗の光応答 第四章深い準位によるしきい値電圧の光照射および温度依存性

More information

Microsoft PowerPoint - 集積回路工学(5)_ pptm

Microsoft PowerPoint - 集積回路工学(5)_ pptm 集積回路工学 東京工業大学大学院理工学研究科電子物理工学専攻 松澤昭 2009/0/4 集積回路工学 A.Matuzawa (5MOS 論理回路の電気特性とスケーリング則 資料は松澤研のホームページ htt://c.e.titech.ac.j にあります 2009/0/4 集積回路工学 A.Matuzawa 2 インバータ回路 このようなインバータ回路をシミュレーションした 2009/0/4 集積回路工学

More information

Microsoft Word - 第9章発光デバイス_

Microsoft Word - 第9章発光デバイス_ 第 9 章発光デバイス 半導体デバイスを専門としない方たちでも EL( エレクトロルミネッセンス ) という言葉はよく耳にするのではないだろうか これは電界発光の意味で ディスプレイや LED 電球の基本的な動作原理を表す言葉でもある 半導体は我々の高度情報社会の基盤であることは言うまでもないが 情報端末と人間とのインターフェースとなるディスプレイおいても 今や半導体の技術範疇にある この章では 光を電荷注入により発することができる直接遷移半導体について学び

More information

<4D F736F F F696E74202D2094BC93B191CC82CC D B322E >

<4D F736F F F696E74202D2094BC93B191CC82CC D B322E > 半導体の数理モデル 龍谷大学理工学部数理情報学科 T070059 田中元基 T070117 吉田朱里 指導教授 飯田晋司 目次第 5 章半導体に流れる電流 5-1: ドリフト電流 5-: 拡散電流 5-3: ホール効果第 1 章はじめに第 6 章接合の物理第 章数理モデルとは? 6-1: 接合第 3 章半導体の性質 6-: ショットキー接合とオーミック接触 3-1: 半導体とは第 7 章ダイオードとトランジスタ

More information

MTM13227

MTM13227 シリコン N チャネル MOSFET スイッチング回路用 Unit: mm 特長 低ドレイン ソース間オン抵抗 :RDS(on) typ. = 85 mω (VGS = 4. V) 低電圧駆動 : 2.5 V 駆動 ハロゲンフリー 鉛フリー対応パッケージ (EU RoHS / UL-94 V- / MSL:Level 適合 ) 形名表示記号 : ET 包装仕様 エンボスタイプ ( 熱圧着方式 ) :

More information

<4D F736F F D2097CA8E718CF889CA F E F E2E646F63>

<4D F736F F D2097CA8E718CF889CA F E F E2E646F63> 量子効果デバイス第 11 回 前澤宏一 トンネル効果とフラッシュメモリ デバイスサイズの縮小縮小とトンネルトンネル効果 Si-CMOS はサイズの縮小を続けることによってその性能を伸ばしてきた チャネル長や ゲート絶縁膜の厚さ ソース ドレイン領域の深さ 電源電圧をあるルール ( これをスケーリング則という ) に従って縮小することで 高速化 低消費電力化が可能となる 集積回路の誕生以来 スケーリング側にしたがって縮小されてきたデバイスサイズは

More information

AN504 Through-hole IRED/Right Angle Type 特長 パッケージ 製品の特長 φ3.6 サイドビュ - タイプ 無色透明樹脂 光出力 : 5mW TYP. (I F =50mA) 鉛フリーはんだ耐熱対応 RoHS 対応 ピーク発光波長指向半値角素子材質ランク選別はん

AN504 Through-hole IRED/Right Angle Type 特長 パッケージ 製品の特長 φ3.6 サイドビュ - タイプ 無色透明樹脂 光出力 : 5mW TYP. (I F =50mA) 鉛フリーはんだ耐熱対応 RoHS 対応 ピーク発光波長指向半値角素子材質ランク選別はん 特長 パッケージ 製品の特長 φ3.6 サイドビュ - タイプ 無色透明樹脂 光出力 : 5mW TYP. (I F =50mA) 鉛フリーはんだ耐熱対応 RoHS 対応 ピーク発光波長指向半値角素子材質ランク選別はんだ付け方法 ESD 出荷形態 950nm 60 deg. GaAs 放射強度選別を行い ランクごとに選別 半田ディップ マニュアルはんだ実装工程に対応 はんだ付けについては はんだ付け条件をご参照ください

More information

予定 (川口担当分)

予定 (川口担当分) 予定 ( 川口担当分 ) (1)4 月 13 日 量子力学 固体の性質の復習 (2)4 月 20 日 自由電子モデル (3)4 月 27 日 結晶中の電子 (4)5 月 11 日 半導体 (5)5 月 18 日 輸送現象 金属絶縁体転移 (6)5 月 25 日 磁性の基礎 (7)6 月 1 日 物性におけるトポロジー 今日 (5/11) の内容 ブロッホ電子の運動 電磁場中の運動 ランダウ量子化 半導体

More information

2013 1 9 1 2 1.1.................................... 2 1.2................................. 4 1.3.............................. 6 1.4...................................... 8 1.5 n p................................

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 2-1 情報デバイス工学特論 第 2 回 MOT の基本特性 最初に半導体の電子状態について復習 2-2 i 結晶 エネルギー 分子の形成 2-3 原子 エネルギー 反結合状態結合状態反結合状態 分子 結合状態 波動関数.4 電子のエネルギー.3.2.1 -.1 -.2 結合エネルギー 反結合状態 2 4 6 8 結合状態 原子間の距離 ボンド長 結晶における電子のエネルギー 2-4 原子間距離大

More information

スライド タイトルなし

スライド タイトルなし 2011. 3. 2 高等研究院 インテックセンター成果報告会 極限を目指した 新しい半導体デバイスの実現 京都大学工学研究科電子工学専攻 木本恒暢 須田淳 光 電子理工学 エネルギー 環境問題や爆発的な情報量増大解決へ 物理限界への挑戦と新機能の創出 自在な光子制御 フォトニック結晶 シリコンナノフォト二クス ワイドバンドギャップ光半導体 極限的な電子制御 ワイドバンドギャップ (SiC) エレクトロニクス

More information

化合物半導体デバイス―限りなき可能性を求めて(その2)―

化合物半導体デバイス―限りなき可能性を求めて(その2)― 特別論文 化合物半導体デバイス 限りなき可能性を求めて ( その 2) 林秀樹 Development of Common Platform for ITS Devices II by Hideki Hayashi Many different compound semiconductors can be formed by changing the combination of constituent

More information

電子回路I_8.ppt

電子回路I_8.ppt 電子回路 Ⅰ 第 8 回 電子回路 Ⅰ 9 1 講義内容 1. 半導体素子 ( ダイオードとトランジスタ ) 2. 基本回路 3. 増幅回路 小信号増幅回路 (1) 結合増幅回路 電子回路 Ⅰ 9 2 増幅の原理 増幅度 ( 利得 ) 信号源 増幅回路 負荷 電源 電子回路 Ⅰ 9 3 増幅度と利得 ii io vi 増幅回路 vo 増幅度 v P o o o A v =,Ai =,Ap = = vi

More information

電子回路I_6.ppt

電子回路I_6.ppt 電子回路 Ⅰ 第 6 回 電子回路 Ⅰ 7 講義内容. 半導体素子 ( ダイオードとトランジスタ ). 基本回路 3. 増幅回路 バイポーラトランジスタの パラメータと小信号等価回路 二端子対回路 パラメータ 小信号等価回路 FET(MOFET) の基本増幅回路と等価回路 MOFET の基本増幅回路 MOFET の小信号等価回路 電子回路 Ⅰ 7 増幅回路の入出力インピーダンス 増幅度 ( 利得 )

More information

(4.15a) Hurwitz (4.15a) {a j } (s ) {a j } n n Hurwitz a n 1 a n 3 a n 5 a n a n 2 a n 4 a n 1 a n 3 H = a n a n 2. (4.16)..... a Hurwitz H i H i i H

(4.15a) Hurwitz (4.15a) {a j } (s ) {a j } n n Hurwitz a n 1 a n 3 a n 5 a n a n 2 a n 4 a n 1 a n 3 H = a n a n 2. (4.16)..... a Hurwitz H i H i i H 6 ( ) 218 1 28 4.2.6 4.1 u(t) w(t) K w(t) = Ku(t τ) (4.1) τ Ξ(iω) = exp[ α(ω) iβ(ω)] (4.11) (4.1) exp[ α(ω) iβ(ω)] = K exp( iωτ) (4.12) α(ω) = ln(k), β(ω) = ωτ (4.13) dϕ/dω f T 4.3 ( ) OP-amp Nyquist Hurwitz

More information

開発の社会的背景 パワーデバイスは 電気機器の電力制御に不可欠な半導体デバイスであり インバーターの普及に伴い省エネルギー技術の基盤となっている 最近では高電圧 大電流動作が技術的に可能になり ハイブリッド自動車のモーター駆動にも使われるなど急速に普及し 市場規模は 2 兆円に及ぶといわれる パワー

開発の社会的背景 パワーデバイスは 電気機器の電力制御に不可欠な半導体デバイスであり インバーターの普及に伴い省エネルギー技術の基盤となっている 最近では高電圧 大電流動作が技術的に可能になり ハイブリッド自動車のモーター駆動にも使われるなど急速に普及し 市場規模は 2 兆円に及ぶといわれる パワー ダイヤモンドパワーデバイスの高速 高温動作を実証 - 次世代半導体材料としての優位性を確認 - 平成 22 年 9 月 8 日独立行政法人産業技術総合研究所国立大学法人大阪大学 ポイント ダイヤモンドダイオードを用いたパワーデバイス用整流素子の動作を世界で初めて確認 高速かつ低損失の動作を確認でき 将来の実用化に期待 将来のパワーデバイスとして省エネルギー効果に期待 概要 独立行政法人産業技術総合研究所

More information

2015 OEG セミナー 次世代パワーデバイスの評価 解析 2015 年 7 月 14 日 信頼性解析事業部 解析センタ 長谷川覚 Copyright 2015 Oki Engineering Co., Ltd.

2015 OEG セミナー 次世代パワーデバイスの評価 解析 2015 年 7 月 14 日 信頼性解析事業部 解析センタ 長谷川覚 Copyright 2015 Oki Engineering Co., Ltd. 2015 OEG セミナー 次世代パワーデバイスの評価 解析 2015 年 7 月 14 日 信頼性解析事業部 解析センタ 長谷川覚 Copyright 2015 Oki Engineering Co., Ltd. 目次 1. 次世代パワーデバイス評価 解析の背景 はじめに 良品解析とは 良品解析から劣化を考慮した良品解析へ 2. SiC デバイスの劣化を考慮した良品解析 ( 加速試験による劣化を考慮した

More information

α α α α α α

α α α α α α α α α α α α 映像情報メディア学会誌 Vol. 71, No. 10 2017 図 1 レーザビーム方式 図 3 PLAS の断面構造 図 3 に PLAS の断面構造を示す PLAS はゲート電極上の チャネル部の部分的な領域のみをフォトマスクとエッチン グなしに結晶化することが可能である 従来のラインビー ム装置はゲート電極上 テーパー上 ガラス上などの表面 の結晶性制御の課題がある

More information

低損失V溝型SiCトレンチMOSFET 4H-SiC V-groove Trench MOSFETs with the Buried p+ regions

低損失V溝型SiCトレンチMOSFET 4H-SiC V-groove Trench MOSFETs with the Buried p+ regions エレクトロニクス 低損失 V 溝型 SiC トレンチ MOSFET 4H-SiC V-groove Trench MOSFETs with the Buried p + regions * 斎藤雄和田圭司日吉透 Yu Saitoh Keiji Wada Toru Hiyoshi 増田健良築野孝御神村泰樹 Takeyoshi Masuda Takashi Tsuno Yasuki Mikamura 我々はワイドバンドギャップ半導体である炭化珪素

More information

Microsoft PowerPoint - 9.Analog.ppt

Microsoft PowerPoint - 9.Analog.ppt 9 章 CMOS アナログ基本回路 1 デジタル情報とアナログ情報 アナログ情報 大きさ デジタル信号アナログ信号 デジタル情報 時間 情報処理システムにおけるアナログ技術 通信 ネットワークの高度化 無線通信, 高速ネットワーク, 光通信 ヒューマンインタフェース高度化 人間の視覚, 聴覚, 感性にせまる 脳型コンピュータの実現 テ シ タルコンヒ ュータと相補的な情報処理 省エネルギーなシステム

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション Drain Voltage (mv) 4 2 0-2 -4 0.0 0.2 0.4 0.6 0.8 1.0 Gate Voltage (V) Vds [V] 0.2 0.1 0.0-0.1-0.2-10 -8-6 -4-2 0 Vgs [V] 10 1000 1000 1000 1000 (LSI) Fe Catalyst Fe Catalyst Carbon nanotube 1~2 nm

More information

モバイルWiMAX基地局向け 高効率GaN-HEMT増幅器

モバイルWiMAX基地局向け 高効率GaN-HEMT増幅器 High Efficiency GaN-HEMT Amplifier for Mobile WiMAX Base Station あらまし 富士通は, モバイルWiMAX(Worldwide Interoperability for Microwave Access) 基地局向け送信用小型電力増幅器を実現するための高効率窒化ガリウム (GaN) 高電子移動度トランジスタ (HEMT:High Electron

More information

Slide 1

Slide 1 SPring-8 利用推進協議会第 4 回次世代先端デバイス研究会 / 第 13 回 SPring-8 先端利用技術ワークショップ 2017.3.21 AP 品川京急第 2 ビル 先進パワーデバイスにおける 新規ゲート絶縁膜開発と 放射光利用 MOS 界面評価事例 大阪大学大学院工学研究科 渡部平司 転載不可 大阪大学大学院工学研究科渡部研究室 1/60 概要 ワイドバンドギャップ半導体パワーデバイス

More information

Superjunction MOSFET

Superjunction MOSFET 富士時報 Vol.82 No.6 2009 特集Superjunction MOSFET Superjunction MOSFET 大西泰彦 Yasuhiko Oonishi 大井明彦 Akihiko Ooi 島藤貴行 Takayuki Shimatou 不純物濃度制御に優れた多段エピタキシャル技術を適用し, 定格 600 V/0.16 Ω( パッケージ :TO - 220) の Superjunction(SJ)MOSFET

More information

devicemondai

devicemondai c 2019 i 3 (1) q V I T ε 0 k h c n p (2) T 300 K (3) A ii c 2019 i 1 1 2 13 3 30 4 53 5 78 6 89 7 101 8 112 9 116 A 131 B 132 c 2019 1 1 300 K 1.1 1.5 V 1.1 qv = 1.60 10 19 C 1.5 V = 2.4 10 19 J (1.1)

More information

この講義のねらい ナノ 量子効果デバイス 前澤宏一 本講義は 超高速 超高周波デバイスの基盤となる化合物半導体 へテロ接合とそれを用いたデバイスに関して学ぶ 特に高電子移動度トランジスタ (HEMT) やヘテロバイポーラトランジスタ (HBT) などの超高速素子や これらを基礎とした将来デバイスであ

この講義のねらい ナノ 量子効果デバイス 前澤宏一 本講義は 超高速 超高周波デバイスの基盤となる化合物半導体 へテロ接合とそれを用いたデバイスに関して学ぶ 特に高電子移動度トランジスタ (HEMT) やヘテロバイポーラトランジスタ (HBT) などの超高速素子や これらを基礎とした将来デバイスであ この講義のねらい ナノ 量子効果デバイス 前澤宏一 本講義は 超高速 超高周波デバイスの基盤となる化合物半導体 へテロ接合とそれを用いたデバイスに関して学ぶ 特に高電子移動度トランジスタ (HEMT) やヘテロバイポーラトランジスタ (HBT) などの超高速素子や これらを基礎とした将来デバイスである 量子効果 ナノデバイスとその応用について学ぶ 2 年 量子力学 1,2 電子物性工学 1 半導体デバイス

More information

低転位GaN 基板上の低抵抗・高耐圧GaNダイオード

低転位GaN 基板上の低抵抗・高耐圧GaNダイオード エレクトロニクス 低転位 G a N 基板上の低抵抗 高耐圧 G a N ダイオード 住 吉 和 英 * 岡 田 政 也 上 野 昌 紀 木 山 誠 中 村 孝 夫 Low On-Resistance and High Breakdown Voltage GaN SBD on Low Dislocation Density GaN Substrates by Kazuhide Sumiyoshi,

More information

Title

Title SIMS のアーティファクトについて ナノサイエンス株式会社 永山進 1 artifact( アーティファクト ) とは? 辞書を調べると Artifact ( 考古学 ), 人工品 人工遺物 ( 先史時代の単純な器物 宝石 武器など ) 出土品 Artifact ( 技術的なエラー ), 技術的な側面から入り込むデーターにおける望ましくない変化 ( 測定や解析の段階で発生したデータのエラーや解析のゆがみ

More information

SSM3K7002KFU_J_

SSM3K7002KFU_J_ MOSFET シリコン N チャネル MOS 形 1. 用途 高速スイッチング用 2. 特長 (1) ESD(HBM) 2 kv レベル (2) オン抵抗が低い : R DS(ON) = 1.05 Ω ( 標準 ) (@V GS = 10 V) R DS(ON) = 1.15 Ω ( 標準 ) (@V GS = 5.0 V) R DS(ON) = 1.2 Ω ( 標準 ) (@V GS = 4.5

More information

TPC8107

TPC8107 TPC87 東芝電界効果トランジスタシリコン P チャネル MOS 形 (U-MOSIII) TPC87 リチウムイオン 2 次電池用 ノートブック PC 用 携帯電子機器用 単位 : mm 小型 薄型で実装面積が小さい スイッチングスピードが速い オン抵抗が低い : R DS (ON) = 5.5 mω ( 標準 ) 順方向伝達アドミタンスが高い : Y fs = 3 S ( 標準 ) 漏れ電流が低い

More information

PowerPoint Presentation

PowerPoint Presentation 半導体電子工学 II 1 全体の内容 日付内容 ( 予定 ) 備考 1 10 月 6 日半導体電子工学 I の基礎 ( 復習 ) 11/01/1 10 月 13 日 接合ダイオード (1) 3 10 月 0 日 4 10 月 7 日 5 11 月 10 日 接合ダイオード () 接合ダイオード (3) 接合ダイオード (4) MOS 構造 (1) 6 11 月 17 日 MOS 構造 () 7 11

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 半極性バルク GaN 基板上への LED の開発 実用レベルの発光効率と面内偏光の実現 船戸充講師, 川上養一助教授, 上田雅也 (D1) 京都大学 工学研究科 電子工学専攻 成川幸男, 小杉卓生, 高橋正良, 向井孝志日亜化学工業株式会社 謝辞 : 京都ナノテク事業創造クラスター 背 景 III 族窒化物半導体 :AlN,GaN,InN 紫外域 (AlN) から可視域 (GaN) を通って赤外域

More information

untitled

untitled /Si FET /Si FET Improvement of tunnel FET performance using narrow bandgap semiconductor silicide Improvement /Si hetero-structure of tunnel FET performance source electrode using narrow bandgap semiconductor

More information

事務連絡

事務連絡 二酸化炭素排出抑制に資する革新的技術の創出 平成 21 年度採択研究代表者 H23 年度 実績報告 橋詰保 北海道大学量子集積エレクトロニクス研究センター 教授 研究課題 異種接合 GaN 横型トランジスタのインバータ展開 1. 研究実施体制 (1) 北大 グループ 1 研究代表者 : 橋詰保 ( 北海道大学量子集積エレクトロニクス研究センター 教授 ) 2 研究項目 ドライエッチ面を含む Al 2

More information

   

    特別賞 酸化ガリウムパワーデバイスの研究開発 1 独立行政法人情報通信研究機構 2 株式会社タムラ製作所 3 株式会社光波 1 2,1 東脇正高佐々木公平倉又朗人 3 2 増井建和山腰茂伸 2 1. 諸言 近年 温室効果ガス削減 化石燃料に替わる新エネルギーの創出などの革新的省エネルギー技術の開発が 将来に向けた地球規模の命題となっている 加えて 現在我が国では東日本大震災の影響もあり 電力需要を減らす努力がこれまで以上に強く求められている

More information

hetero

hetero ヘテロ接合型太陽電池の原理 構造 製造プロセス及び研究開発 / 技術動向 ( その 1) 平成 29 年 11 月 APT 代表 村田正義 ヘテロ接合型太陽電池の原理 構造 あ ( 出典 )https://www.panasonic.com/jp/corporate/technology-design/technology/hit.html ヘテロ接合型太陽電池セルの歴史 1980 年に当時の三洋電機

More information

( ) : 1997

( ) : 1997 ( ) 2008 2 17 : 1997 CMOS FET AD-DA All Rights Reserved (c) Yoichi OKABE 2000-present. [ HTML ] [ PDF ] [ ] [ Web ] [ ] [ HTML ] [ PDF ] 1 1 4 1.1..................................... 4 1.2..................................

More information

反転型チャージポンプ IC Monolithic IC MM3631 反転型チャージポンプ IC MM3631 概要 MM3631XN は反転型のチャージポンプ IC です 入力電圧範囲の 1.8V ~ 3.3V を 2 個の外付けコンデンサを使用して負電圧を生成します パッケージは 6 ピンの S

反転型チャージポンプ IC Monolithic IC MM3631 反転型チャージポンプ IC MM3631 概要 MM3631XN は反転型のチャージポンプ IC です 入力電圧範囲の 1.8V ~ 3.3V を 2 個の外付けコンデンサを使用して負電圧を生成します パッケージは 6 ピンの S 反転型チャージポンプ IC Monolithic IC MM3631 概要 MM3631X は反転型のチャージポンプ IC です 入力電圧範囲の 1.8V ~ 3.3V を 2 個の外付けコンデンサを使用して負電圧を生成します パッケージは 6 ピンの SOT-26B (2.9 2.8 1.15mm) の小型パッケージを採用しています CE 端子を内蔵しており スタンバイ時は 1 μ A 以下と待機時電流を低減しています

More information

TPCP8406_J_

TPCP8406_J_ MOSFET シリコン P/N チャネル MOS 形 (U-MOS/U-MOS-H) 1. 用途 携帯電話用 モータドライブ用 2. 特長 (1) オン抵抗が低い PチャネルR DS(ON) = 33 mω ( 標準 ) (V GS = -10 V) NチャネルR DS(ON) = 24 mω ( 標準 ) (V GS = 10 V) (2) 漏れ電流が低い Pチャネル I DSS = -10 µa

More information

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef 4 213 5 8 4.1.1 () f A exp( E/k B ) f E = A [ k B exp E ] = f k B k B = f (2 E /3n). 1 k B /2 σ = e 2 τ(e)d(e) 2E 3nf 3m 2 E de = ne2 τ E m (4.1) E E τ E = τe E = / τ(e)e 3/2 f de E 3/2 f de (4.2) f (3.2)

More information

記者発表資料

記者発表資料 2012 年 6 月 4 日 報道機関各位 東北大学流体科学研究所原子分子材料科学高等研究機構 高密度 均一量子ナノ円盤アレイ構造による高効率 量子ドット太陽電池の実現 ( シリコン量子ドット太陽電池において世界最高変換効率 12.6% を達成 ) < 概要 > 東北大学 流体科学研究所および原子分子材料科学高等研究機構 寒川教授グループはこの度 新しい鉄微粒子含有蛋白質 ( リステリアフェリティン

More information

スライド 0

スライド 0 Copyright 2014 Oki Engineering Co., Ltd. 2014 OEG セミナー SiC デバイスの良品構造解析 2014 年 7 月 8 日 信頼性解析事業部 解析センタ 久保田英久 はじめに ~ 市場の動向 ~ カ-エレクトロニクス分野を中心に パワーデバイスのニーズに増加が見られる 弊社の解析実施件数においても パワーデバイスが増加傾向にある 2011 年度解析の比率

More information

Microsoft PowerPoint - 4.CMOSLogic.ppt

Microsoft PowerPoint - 4.CMOSLogic.ppt 第 4 章 CMOS 論理回路 (1) CMOS インバータ 2008/11/18 広島大学岩田穆 1 抵抗負荷のインバータ V dd ( 正電源 ) R: 負荷抵抗 In Vin Out Vout n-mos 駆動トランジスタ グランド 2008/11/18 広島大学岩田穆 2 抵抗負荷のインバータ V gs I d Vds n-mos 駆動トランジスタ ドレイン電流 I d (n-mos) n-mosの特性

More information

平成 30 年 8 月 6 日 報道機関各位 東京工業大学 東北大学 日本工業大学 高出力な全固体電池で超高速充放電を実現全固体電池の実用化に向けて大きな一歩 要点 5V 程度の高電圧を発生する全固体電池で極めて低い界面抵抗を実現 14 ma/cm 2 の高い電流密度での超高速充放電が可能に 界面形

平成 30 年 8 月 6 日 報道機関各位 東京工業大学 東北大学 日本工業大学 高出力な全固体電池で超高速充放電を実現全固体電池の実用化に向けて大きな一歩 要点 5V 程度の高電圧を発生する全固体電池で極めて低い界面抵抗を実現 14 ma/cm 2 の高い電流密度での超高速充放電が可能に 界面形 平成 30 年 8 月 6 日 報道機関各位 東京工業大学 東北大学 日本工業大学 高出力な全固体電池で超高速充放電を実現全固体電池の実用化に向けて大きな一歩 要点 5V 程度の高電圧を発生する全固体電池で極めて低い界面抵抗を実現 14 ma/cm 2 の高い電流密度での超高速充放電が可能に 界面形成直後に固体電解質から電極へのリチウムイオンが自発的に移動 概要 東京工業大学の一杉太郎教授らは 東北大学の河底秀幸助教

More information

SSM6J505NU_J_

SSM6J505NU_J_ MOSFET シリコン P チャネル MOS 形 (U-MOS) 1. 用途 パワーマネジメントスイッチ用 2. 特長 (1) 1.2 V 駆動です (2) オン抵抗が低い : R DS(ON) = 61 mω ( 最大 ) (@V GS = -1.2 V) R DS(ON) = 30 mω ( 最大 ) (@V GS = -1.5 V) R DS(ON) = 21 mω ( 最大 ) (@V GS

More information

Microsoft PowerPoint _DT_Power calculation method_Rev_0_0_J.pptx

Microsoft PowerPoint _DT_Power calculation method_Rev_0_0_J.pptx Fuji Power MOSFE 電力計算方法 Design ool Cher. 概要 MOSFE を使用する上で許容される損失を超えていないか確認する必要があります しかし MOSFE の損失は電力計などによる測定ができないため オシロスコープなどによりドレイン ソース間電圧 ドレイン電流 D 波形から計算しなくてはなりません 本資料では MOSFE の損失計算方法を提示します また付属として損失計算補助ツールの使用方法も併せて提示します

More information