OHP.dvi

Size: px
Start display at page:

Download "OHP.dvi"

Transcription

1

2 7 2

3 1. 10/ / /25 2, / / / / / / 6 skyline /13 ALE /20 3

4 . F dx u X x dx 1: X, x : u : (= x X) F : C : Cauchy Green B : Cauchy Green E : Green-Lagrange T : Cauchy Π : 1 Piola Kirchhoff S : 2 Piola Kirchhoff (1) 4

5 , e i,, J =detf. F x i e i e j X j (2) C F T F (3) B F F T (4) E 1 (C I) 2 (5) Π JF 1 T (6) S JF 1 T F T (7) 5

6 1, W. S ij = W (8) E ij E = 1 2 (C I) S ij =2 W C ij (9) W C., W C. I C trc (10) II C 1 { (trc) 2 tr(c 2 ) } (11) 2 III C det C (12) S ij =2 ( W I C + W II C + W ) III C I C C ij II C C ij III C C ij (13) 6

7 2 I C = δ ij C ij (14) II C = I C δ ij C ij C ij (15) III C = III C (C 1 ) ij C ij (16) S ij =2 {( W + W ) I C δ ij W C ij + W } III C (C 1 ) ij I C II C II C III C S C. Cauchy T kl = 2 {( W II B + W ) III B J II B III B δ kl + W B kl W } III B (B 1 ) kl I B II B (17) (18) T B. 7

8 3,,.,,.,,., ( )., III C = III B =1,J =1 {( W T kl = pδ ij +2 II B + W ) δ kl + W B kl W } (B 1 ) kl II B III B I B II B, p. 2 Piola-Kirchhoff. S ij = p(c 1 ) ij +2 {( W + W ) I C δ ij W C ij + W } (C 1 ) ij I C II C II C III C (19) (20) 8

9 Mooney-Rivlin 1 W Mooney-Rivlin. W M c 1 (I C 3) + c 2 (II C 3) (21), c 1, c 2. Mooney-Rivlin, 2 Piola-Kirchhoff. } S ij = p(c 1 ) ij +2 {(c 1 + c 2 I C )δ ij c 2 C ij (22), C ij = δ ij, p 2c 1 +4c 2. T ij = S ij = 0 (23) S ij = pδ ij +(2c 1 +4c 2 )δ ij (24), W M. W M R c 1 (ĨC 3) + c 2 (ĨI C 3) (25) Ĩ C I C III C 1 3 (26) ĨI C II C III C 2 3 (27) 9

10 Mooney-Rivlin 2 ĨC, ĨI C (reduced invariants). W M R 2 Piola-Kirchhoff W M R I C = W M R ĨC ĨC I C = c 1 III 1 3 C (28) W M R II C = W M R ĨI C W M R III C = W M R ĨC ĨI C II C = c 2 III 2 3 C (29) ĨC III C + W M R ĨI C ĨI C = 1 III C 3 c 1I C III 4 3 C 2 3 c 2II C III 5 3 C (30) { S ij = p(c 1 ) ij +2 (c 1 + c 2 I C )δ ij c 2 C ij + ( 13 c 1I C 23 ) } c 2II C (C 1 ) ij (31), p. T ij = S ij = 0 (32) S ij = pδ ij (33) 10

11 Mooney-Rivlin 3,.,. F. F = J 1 3F (34), F Flory, det F =1. Cauchy-Green C. C = F T F (35) C 1, 2, ĨC =3, ĨI C =3. 11

12 Mooney-Rivlin, - S. Mooney-Rivlin c 1, c 2., I C, II C 2, Stress[MPa] Strain 2: - W H = c 1 (I C 3) + c 2 (II C 3) + c 3 (I C 3) 2 + c 4 (I C 3)(II C 3) + c 5 (II C 3) 2 + c 6 (I C 3) 3 + c 7 (I C 3) 2 (II C 3) + c 8 (I C 3)(II C 3) 2 + c 9 (II C 3) 3 (36). 12

13 Mooney-Rivlin 2, W H W M, p. WR H = c 1(ĨC 3) + c 2 (ĨI C 3) + c 3 (ĨC 3) 2 + c 4 (ĨC 3)(ĨI C 3) + c 5 (ĨI C 3) 2 + c 6 (ĨC 3) 3 + c 7 (ĨC 3) 2 (ĨI C 3) + c 8 (ĨC 3)(ĨI C 3) 2 + c 9 (ĨI C 3) 3 (37) 13

14 1, c 1,c / l x 2 l 1/ l x 3 x 1 3: 14

15 , F, B, II B l 0 0 F = 0 1/ l / (38) l l B = FF T = 0 1/l 0 (39) 0 0 1/l 1/l B 1 = 0 l 0 (40) 0 0 l II B =2l + 1 l 2 (41) 15

16 2 W W H R W H R I B W H R II B = WH R ĨB = III 1 3 B = WH R ĨI B = III 2 3 B ĨB I { B ) c 1 +2c 3 (ĨB 3 ) + c 4 (ĨI B 3 2 ) +3c 6 (ĨB 3) +2c7 (ĨB 3)(ĨI B 3 ĨI B II { B c 2 + c 4 (ĨB 3 ) ) +2c 5 (ĨI B 3 2 ) +c 7 (ĨB 3) +2c8 (ĨB 3)(ĨI B 3 ) } 2 + c 8 (ĨI B 3 ) } 2 +3c 9 (ĨI B 3 W H R III B = WH R ĨB = 1 3 I BIII 4 3 B ĨB + WH R III B ĨI B 2 3 II BIII 5 3 B ĨI B III B { c 1 +2c 3 (ĨB 3 ) ) + c 4 (ĨI B 3 2 ) +3c 6 (ĨB 3) +2c7 (ĨB 3)(ĨI B 3 { ) ) c 2 + c 4 (ĨB 3 +2c 5 (ĨI B 3 2 ) +c 7 (ĨB 3) +2c8 (ĨB 3)(ĨI B 3 ) } 2 + c 8 (ĨI B 3 ) } 2 +3c 9 (ĨI B 3 16

17 2 Cauchy { W H T kl = pδ kl +2 R (2l + 1 H } II B l )+ W R III B δ kl + W H R I B l /l 0 W R H II B 0 0 1/l 1/l l l x 1, T 22 = T 33 =0 { 1 WR H p =2 l I B T 11 =2 { (l 2 1 l ) W H R I B +(l + 1 l 2) W H R II B + W R H } III } B +(l 1 l 2) W H R II B (42) (43) l =1+ε ε 2 T 11 =6(c 1 + c 2 )ε (44) 6(c 1 + c 2 ) E. 17

18 3,. u x x 1 x 3 1 4: F, B,I B,II B 18

19 1 u 0 F = (45) u 2 u 0 B = u 1 0 (46) u 0 B 1 = u 1+u 2 0 (47) I B =trb =3+u 2 (48) II B = 1 2 { (trb) 2 tr(b 2 ) } =3+u 2 (49) 19

20 4 Cauchy { W H T kl = pδ kl +2 R (3 + u 2 )+ W H } R II B III B δ kl + W H R I B 1+u 2 u 0 u 1 0 W R H II B u 0 u 1+u T 33 =0 { W H p =2 R I B +(2+u 2 ) W H R II B + W R H } III B (50) ( W H T 12 = T 21 =2u R + W H ) R I B II B u 2, (51) T 12 = T 21 =2(c 1 + c 2 )u (52), u., 2(c 1 + c 2 ) G. 20

21 . A Ω, Ω Ω, Ω D Ω. t, ρ 0 g, u V p Q. V, Q,.. find (u,p) (V, Q) such that X (S F T) + ρ 0 g = 0 (53) ( ) S F T T N = t (54) C = F T F (55) S ij = p(c 1 ) ij +2 W C ij (56) III C = 1 (57) (53), (54), (55), (56) ( ) (57)., W, (53) (57). 21

22 W Φ. Φ = W dω t u ds ρ 0 g u dω (58) Ω Ω λ Lagrange, Φ. Φ = Φ + λg(iii C )dω (59) Ω g, g(iii C ),III C =1 g =0, =1. III C, Lagrange Q., u V, λ Q δu V, δλ Q. δ Φ = = Ω Ω W δc ij dω + C ij ( W + λ g C ij C ij Ω ( λ g ) δc ij dω ) δc ij + δλg dω C ij t δu ds Ω Ω Ω Ω t δu ds ρ 0 g δu dω Ω ρ 0 g δu dω + δλ g dω = 0 (60) Ω (60),. (60),. 22

23 Lagrange 1 (59) Lagrange λ, (56) p., (60). δc ij = δf ki F kj + F ki δf kj C, W/ C ij, g/ C ij i, j. (60) 1 ( W + λ g ) δc ij dω Ω C ij C ( ij W = + λ g ) (δf ki F kj + F ki δf kj )dω Ω C ij C ( ij W = 2 + λ g ) δf ki F kj dω ( ) (61) C ij C ij Ω, u = x X δu = δx δf ki = δx k X i = δu k X i (62) ( ) = Ω { ( δu k W F kj 2 + λ g )} dω (63) X i C ij C ij 23

24 Lagrange 2 X i { ( W 2 = X i + λ g C ij { 2 C ij ) F kj δu k } ( W C ij + λ g C ij ) } { ( W F kj δu k λ g ) } δuk F kj (64) C ij C ij X i ( ) = Ω X i { ( W 2 + λ g ) } F kj δu k dω C ij C ij Ω X i { ( W 2 + λ g ) } F kj δu k dω (65) C ij C ij (65) 1 V divb dv = n b ds (66) S ( ) = Ω (60) Ω [ X i ( W n i {2 + λ g ) } F kj δu k ds C ij C ij Ω { ( W 2 + λ g ) } ] F kj + ρ 0 g k δu k dω C ij C ij + Ω X i { ( W 2 + λ g ) } F kj δu k dω (67) C ij C ij { ( W [n i 2 + λ g ) } ] F kj t k δu k ds + δλ g(iii C )dω = 0 (68) C ij C ij Ω 24

25 Lagrange 3 (68) δu V, δλ Q, (69), (70), (71). { ( W 2 + λ g ) } F kj + ρ 0 g k = 0 (69) X i C ij C ( ij W n i {2 + λ g ) } F kj t k = 0 (70) C ij C ij g(iii C ) = 0 (71), (69) (53), (70) (54), (71) (57). ( W S ij =2 + λ g ) (72) C ij C ij g III C, (16) g = g III C C ij III C C ij = g ( III ) C C 1 (73) III ij C (72). (56) S ij =2 W C ij +2λ g III C III C ( C 1 ) ij (74) p = 2λ (75), λ. 25

26 , (53) (57),. find (u,λ) (V, Q) such that ( W + λ g ) δc ij dω = t k δu k ds + ρ 0 g k δu k dω Ω C ij C ij Ω Ω (76) δλg dω = 0 (77) Ω for (δu,δλ) (V, Q), λ = 1 2 p 26

27 Newton-Raphson,. Ω.. Ω = e Ω e (78),,. dω = dω (79) Ω e Ω e ds = ds (80) Ω e Ω e u N (i), u i. u i = N (n) u (n) i (81), u (i) i, (n). Lagrange λ M (m), λ., λ (m). λ = M (m) λ (m) (82) 27

28 Ω ( W C ij + λ g C ij ) δc ij dω = δλg dω =0 Ω Ω t k δu k ds + Ω ρ 0 g k δu k dω Ω δe ij S ij dω = δr (83) δe ij, S ij i, j, δe ij S ij = δe 11 S 11 + δe 22 S 33 + δe 33 S 33 +2δE 12 S 12 +2δE 23 S 23 +2δE 31 S 31 =(δe 11 δe 22 δe 33 2δE 12 2δE 23 2δE 31 )(S 11 S 22 S 33 S 12 S 23 S 31 ) T (84),. {δe} = {δe 11 δe 22 δe 33 2δE 12 2δE 23 2δE 31 } T (85) {S} = {S 11 S 22 S 33 S 12 S 23 S 31 } T (86) 28

29 2 (83), δe ij S ij dω = {δe} T {S} dω Ω Ω = {δe} T {S} dω = δr e Ω e δe ij = 1 ( δui + δu j + δu k u k + u ) k δu k 2 X j X i X i X j X i X j, (87),. [Z 1 ] 1+ u 1 u X u X X u 0 1 X u 2 u X X 2 0 u u X X u 3 X 3 u 1 X 2 1+ u 1 X u 2 u 2 u X 2 X u 3 X 2 X 1 0 u 0 1 u 1 u X 3 X X 3 1+ u 2 X u 3 u 3 X 3 X 2 u 1 X u 1 u 2 u X 1 X X 1 1+ u 3 u X X 1 } { δu X { δu1 X 1 δu 1 X 2 δu 1 X 3 δu 2 X 1 δu 2 X 2 δu 2 X 3 δu 3 X 1 δu 3 X 2 δu 3 X 3 {δe} =[Z 1 ] { } δu X (88) } T (89) (90) 29

30 3 { } δu X δu 1 X 1 δu 1 X 2 δu 1 X 3 δu 2 X 1 δu 2 X 2 δu 2 X 3 δu 3 X 1 δu 3 X 2 δu 3 X 3 = N (1) X 1 N (1) X 2 N (1) X 3 N (1) X 1 N (1) u i X j = N(n) X j u (n) i (91) N (n) X 1 N (n) X 2 N (n) X 3 N (n) X 1 X 2 N (n) N (1) X 3 N (1) X 1 N (1) X 2 N (1) X 3 X 2 N (n) X 3 N (n) X 1 N (n) X 2 N (n) X 3 δu (1) 1 δu (1) 2 δu (1) 3. δu (n) 1 δu (n) 2 δu (n) 3 (92). 9 3n [Z 2 ], { } δu =[Z 2 ]{δu (n) } (93) X, [B] [B] [Z 1 ][Z 2 ] (94) 30

31 {δe} =[B]{δu (n) } (95) 31

32 4 [B] [B (n) ] u 1 N (n) X 2 X 2 + ( 1+ u 1 X 1 ) N (n) X 1 u 2 X 1 N (n) X 1 u 3 X 1 N (n) X 1 ( ) u 1 N (n) X 2 X 2 1+ u 1 N (n) u 3 N (n) X 2 X 2 ( X 2 X ) 2 u 1 N (n) u 2 N (n) X 3 X 3 X 3 X 3 1+ u 3 N (n) ( ) ( ) X 3 X 3 1+ u 1 N (n) X 1 X 2 1+ u 2 N (n) X 2 X 1 + u 2 N (n) u 3 N (n) X 1 X 2 X 2 X 1 + u 3 N (n) ( ) ( ) X 1 X 2 1+ u 2 N (n) X 2 X 3 1+ u 3 N (n) X 3 X 2 + u 3 N (n) X 2 X 3 u 1 N (n) X 3 X 2 + u 1 N (n) u 2 N (n) X 2 X 3 X 3 X 2 + ( 1+ u 1 X 1 ) N (n) X 3 + u 1 X 3 N (n) X 1 u 2 X 1 N (n) X 3 + u 2 X 3 N (n) X 1 u 3 X 1 N (n) X 3 + ( 1+ u 3 X 3 ) N (n) X 1 (96) 6 3 [B (n) ], [ ] [B] = [B (1) ] [B (n) ]., e Ω e {δe}{s} dω = e ] [{δu (n) } T [B] T {S} dω Ω e. (??), (98), (76) ] [{δu (n) } T [B] T {S} dω = e Ω e e [ ]] [{δu (n) } T [N] T {t} ds + ρ 0 [N] T {g} dω Ω e Ω e (97) (98) (99). 32

33 , (77). {M} = {M (1) M (2) M (m) } T (100) {δλ (m) } = {δλ (1) δλ (2) δλ (m) } T (101), (77). δλgdω = δλg dω (102) Ω e Ω e = ] [{δλ (m) } T {M}g dω = 0 (103) e Ω e 33

34 , {δu (n) δλ (m) } = { δu (1) 1 δu (1) 2 δu (1) 3 δu (n) 1 δu (n) 2 δu (n) 3 δλ (1) δλ (m) } T (104), (99), (103). [ ] ] [{δu (n) δλ (m) } T [B] T {S} dω e Ω e {M}g = [ [ ] [{δu (n) δλ (m) } T [N] e Ωe T {t} ds + 0 Ω e [ ] ]] ρ 0 [N] T {g} dω 0,, (105) Q = F = u = [ ] [B] T {S} dω (105) Ω e {M}g [ ] [N] T [ ] {t} ρ 0 [N] T {g} ds + dω (106) Ω e 0 Ω e 0 } {u (n) λ (m) (107) [ T δuh (Q(u h ) F ) ] = 0 (108)., e 34

35 find u h V h such that [ T δuh (Q(u h ) F ) ] = 0 (109) e for δu h V h, Newton-Raphson. 35

36 Newton-Raphson, K = Q u, dq dt = Q du u dt = K u (110), (76), (77),.,. (76) Ω {( W + λ g ) ( W δc ij + + λ g ) C ij C ij C ij C ij [ {( 2 W 2 ) g = + λ Ċ kl + Ω C ij C kl C ij C kl ( W + + λ g ) ( δf ki C ij C ij { ( 2 W 2 ) g = + λ Ċ kl δc ij Ω C ij C kl C ij C kl ( + 2 W +2λ g C ij C ij δċij } dω } g λ δc ij C ij F kj + F ki δf kj ) ] dω ) δf ki F kj + } g λ δc ij dω (111) C ij 36

37 , (77) δλ ġ dω = Ω Ω δλ g C kl Ċ kl dω (112) 37

38 (111). 2 Ċ kl =2Ėkl (113). ( 2 W 2 ) g D ij kl =4 + λ (114) C ij C kl C ij C kl, (72), (??), (114) (111) ( δe ij D ij kl Ė kl + δf ki S ij F kj + δe ij 2 g ) λ dω (115) C ij. Ω S ij D ij kl Ė kl (116). Sij, δe ij i, j, δe ij D ij kl Ė kl = δe ij Sij = {δe 11 δe 22 δe 33 δ2e 12 δ2e 23 δ2e 31 } { } T S11 S22 S33 S12 S23 S31 (117) S ij, Ė kl k, l S ij = D ij 11 Ė 11 + D ij 22 Ė 22 + D ij 33 Ė (D ij 12 + D ij 21 )2Ė (D ij 23 + D ij 32 )2Ė (D ij 31 + D ij 13 )2Ė31 (118) 38

39 3 C ij kl 1 2 (D ij kl + D ij lk ) (119), S. S 11 C C C C C C S 22 C C C C C C S 33 = C C C C C C S 12 C C C C C C S 23 C C C C C C S 31 C C C C C C Ė 11 Ė 22 Ė 33 2Ė12 2Ė23 2Ė31 (120) C ijkl 6 6 [D 1 ].C ijkl, ij, kl, [D 1 ].,, { S} = { } T S11 S22 S33 S12 S23 S31 (121) {Ė} = { T Ė 11 Ė 22 Ė 33 2Ė12 2Ė23 2Ė31} (122), δe ij D ijkl Ė kl dω = δe ij Sij dω Ω Ω = {δe} T [D 1 ]{Ė} dω Ω = {δe} T [D 1 ]{Ė} dω (123) e Ω e 39

40 4 { } u (n), (95), (124). { } T u (1) 1 u (1) 2 u (1) 3 u (n) 1 u (n) 2 u (n) 3 (124) {Ė} { } =[B] u (n) (125), (115) 1 δe ij D ijkl Ė kl dω = Ω e. [ { δu (n) } T Ω e [B] T [D 1 ][B]dΩ { } ] u (n) (126) 40

41 , δf ki S ij 1 F kj = {δf 11 δf 12 δf 13 } [σ] = +{δf 21 δf 22 δf 23 } +{δf 31 δf 32 δf 33 } S 11 S 12 S 13 S 21 S 22 S 23 S 11 S 12 S 13 S 21 S 22 S 23 S 31 S 32 S 33 S 11 S 12 S 13 S 21 S 22 S 23 S 31 S 32 S 33 S 11 S 12 S 13 S 21 S 22 S 23 S 31 S 32 S 33 F 11 F 12 F 13 F 21 F 22 F 23 F 31 F 32 F 33 (127) (128) S 31 S 32 S 33 [σ] [Σ] = [σ] (129) [σ] {δf} = {F 11 F 12 F 13 F 21 F 22 F 23 F 31 F 32 F 33 } T (130) { F } = { F 11 F 12 F 13 F 21 F 22 F 23 F 31 F 32 F 33 } T (131) 41

42 , δf ki S ij F kj = {δf} T [Σ]{ F } (132) 42

43 2,, (93) δf ij = δx i = δu i X j X j (133) F ij = ẋ i = u i X j X j (134) { } δu } {δf} = =[Z 2 ] {δu (n) X { F { } } =[Z 2 ] u (n) (135) (136), δf ki S ij F kj = { } T { } δu (n) [Z2 ] T [Σ][Z 2 ] u (n) (137), [A ij ]= [A] = { N (i) X 1 N (i) X 2 N (i) } S 11 S 12 S 13 S X 21 S 22 S 23 3 S 31 S 22 S 33 [A 11 ] [A 12 ]... [A 1n ] [A 21 ] [A n1 ] [A nn ] N (j) X 1 N (j) X 2 N (j) X (138) (139) 43

44 3. [Z 2 ] T [Σ][Z 2 ]=[A] (140), (115) 2 δf ki S ij F kj dω = Ω e. [ { δu (n) } T Ω e [A]dΩ { } ] u (n) (141) 44

45 1 { λ } { (m) λ(1) λ(2) λ } T (m) (142) { {D 2 } 2 g 2 g 2 g 2 g 2 g 2 g } T C 11 C 22 C 33 C 12 C 23 C 31 (143), (115) 3 δe ij 2 g λ dω = C ij. Ω e = e {δe} T {D 2 }[M] Ω e [ { } T δu (n) { λ(m)} dω Ω e [B] T {D 2 }[M]dΩ { } ] λ(m) (144) 45

46 ( δe ij D ij kl Ė kl + δf ki S ij F kj + δe ij 2 g ) λ dω Ω C ij [ { } T ( δu (n) [B] T [D 1 ][B]+[A] ) { } dω u (n) e Ω e } T { } + {δu ] (n) [B] T {D 2 }[M]dΩ λ(m) (145) Ω e. 46

47 Ω δλ ġ dω = Ω δλ g C kl Ċ kl dω δλ g Ċ kl = δλ 2 g Ė kl C kl C { } kl T = δλ (m) [M] T {D 2 } T {Ė} { } T = δλ (m) [M] T {D 2 } T [B]{ u} (146) δλ g Ċ kl dω = [ { } T δλ (m) [M] T {D 2 } T [B]dΩ Ω C kl e Ω e. { } ] u (n) (147) 47

48 , { } (n) u λ(m) { u (1) 1 u (1) 2 u (1) 3 u (n) 1 u (n) 2 u (n) 3 λ (1) λ } T (m) (148) [K 1 ] [B] T [D 1 ][B]+[A] (149) [H] [B] T {D 2 }[M] (150) (145), (147) [ { } [ ] δu (n) δλ (m) [K 1 ] [H] dω [H] T 0 e Ω e, [K] =. Ω e { ] u (n) λ(m)} (151) [ ] [K 1 ] [H] dω (152) [H] T 0 48

49 Mooney-Rivlin 1 α Mooney-Rivlin W S = W H + α 2 W V (III C ) 2 (153) W V (III C ) III C III C =1 W V W V =2(J 1), III C 1 =0 WV III C =1 α 49

50 Mooney-Rivlin δ x 2 1+ε 1+δ x 3 x 1, F, B, II B ε, δ l + ε 0 0 F = 0 1+δ δ l +2ε 0 0 B = FF T = 0 1+2δ δ l 2ε 0 0 B 1 = 0 1 2δ δ (154) (155) (156) 50

51 Mooney-Rivlin 3 Cauchy T kl = 2 {( W II B + W ) III B δ kl + W B kl W } III B (B 1 ) kl J II B III B I B II B (157) W S I C = WS ĨC (158) ĨC I C { = c 1 +2c 3 (ĨC 3) + c 4 (ĨI C 3) (159) +3c 6 (ĨC 3) 2 +2c 7 (ĨC 3)(ĨI C 3) + c 8 (ĨI C 3) 2} III 1/3 C (160) W S II C = WS ĨI C = ĨI C II C (161) { c 2 + c 4 (ĨC 3) + 2c 5 (ĨI C 3) (162) +c 7 (ĨC 3) 2 +2c 8 (Ĩ 3)(ĨI 3) + 3c 9(ĨI 3)2} III 2/3 C (163) 51

52 W S = WH III C ĨC ĨC + WH ĨI C I C ĨI + αw V WV (164) C II C III C { c 1 + c 3 (ĨC 3) + c 4 (ĨI C 3) + 3c 6 (Ĩ 3)2} I C III 4/3 (165) = { c 2 + c 4 (ĨC 3) + 2c 5 3 (ĨI C 3+c 7 (ĨC 3) 2 (166) } +2c 8 (ĨC 3)(ĨI C 3) + 3c 9 (ĨI C 3) 2 II C III 5/3 (167) + αw V WV III (168) 52

53 Mooney-Rivlin 4 Ĩ C = I C III 1/3 C =(3+2ε +4δ) (1 23 ε 43 ) δ (169) = 3 (170) ĨI C = II C III 2/3 C =(3+4ε +8δ) (1 43 ε 83 ) δ (171) = 3 (172) W V W V = III C 1 αw V W V = α(iii 1) III (173) = α(2ε +4δ) (174) W V =2(J 1) αw V W V III = α2(j 1) 1 J (175) = α2(ε +2δ)(1 ε 2δ) (176) = α(2ε +4δ) (177) αw V W V III 53 = α(2ε +4δ) (178)

54 W S = c 1 (1 2 I C 3 ε 4 δ) 3 (179) W S = c 2 (1 4 II C 3 ε 8 δ) 3 (180) W S = (c 1 +2c 2 )(1 2ε 4δ)+2α(ε +2δ) III C (181) T kl T 22 = T 33 =0 δ = 3α (c 1 + c 2 ) 6α +(c 1 + c 2 ) ε (182) ν E α E =6(c 1 + c 2 ) ν = 3α (c 1 + c 2 ) 6α +(c 1 + c 2 ) (183) T 11 = 36(c 1 + c 2 )α 6α +(c 1 + c 2 ) ε (184) E = 36(c 1 + c 2 )α 6α +(c 1 + c 2 ) (185) 54

55 κ = E 3(1 2ν) =4α (186) 55

56 1 (R ) Φ= WdΩ+ α (W V ) 2 R (187) Ω 2 Ω α selective/reduced integration V Q αw V Q λ αw V λ P Ω ( W V λ ) δλdω =0 δλ Q (188) α P (αw V )=λ (189) 56

57 Q 57

58 2 P Φ = WdΩ+ α (PW V ) 2 R (190) Ω 2 Ω U V δ Φ W = δc ij dω+α (PW V )P (δw V )dω δr = 0 (191) Ω C ij Ω u λ Q Ω ( W V λ ) δλdω =0 δλ Q (192) α 58

59 3 u V,λ Q α Ω (PW V )P (δw V )dω = Ω λδw V dω δu V (193) δ Φ = Ω W δc ij dω+ λδw V dω δr = 0 (194) C ij Ω ( W V λ ) δλdω = 0 (195) α Ω W V III ( W + λ W V ) δc ij dω=δr (196) Ω C ij C ij ( W V λ ) δλdω = 0 (197) α Ω 59

60 Lagrange Ω ( W C ij + λ g C ij 4 W V λ α g(= W V ) Lagrange Q = Q = ) δc ij dω = t k δu k ds + ρ 0 g k δu k dω (198) Ω Ω δλg dω = 0 (199) Ω Ω e [ Ω e [ ] [B] T {S} dω (200) {M}g [B] T {S} {M} ( W V λ/α ) ] dω (201) Lagrange [ ] [K 1 ] [H] [K] = dω (202) [H] T 0 [K] = Ω e Ω e [ ] [K 1 ] [H] dω (203) [H] T [G] 60

61 α [G] = 1 α [M]T [M] (204) 61

62 ,,,, 62

63 (Hooke, ) t t t,,,,. 63

64 B A e e e p e (A), (B),,.,,,. 64

65 A B e e e p e e e e e p. e = e e + e p (205) σ E. σ = E(e e p ) (206), Hooke. σ ij = C e ijkl(e kl e p kl) (207), σ ij,e ij,e p ij 2 Cauchy,,, C e ijkl 4 Hooke. 65

66 , Hooke. σ ij = C e ijkl(e kl e p kl) (208),. σ ij = C e ijkl(ė kl e p kl) (209),. σ ij = C ep ijklė kl (210), (flow rule) 66

67 :. :. :. A B e e e p e 67

68 3 2, 9, vonmises Tresca B A e e e p e 68

69 ,, 3 A,, B. von Mises. A B e e e p e 69

70 Mises Mises σ σ ij σ ij σ = ( ) σ ijσ 2 ij (211) σ ijσ ij =σ σ 12 + σ +σ σ 22 + σ +σ σ 32 + σ (212) (213) (214) (215), σ ij. σ ij =σ ij 1 3 σ kkδ ij (216) =σ ij 1 3 (σ 11 + σ 22 + σ 33 ) δ ij (217) 70

71 F = σ σ y (218) σ y F =0 ( ) σ y σ ij σ ij 71

72 (associated flow rule),, λ Ψ ė p ij = λ Ψ σ ij (219) (associated flow rule), ė p F ij = λ (220) σ ij F = σ σ y (221) 72

73 (normality rule) σ ij / t ( ) F =0, F =0, ė p ij ė p σ ij ij t 0, F = λ σ ij (222) F σ ij = λ σ ij t (223) ė p ij σ ij = λ F (224) ė p ij σ ij = λ F = 0 (225), σ ij ė p ij 73

74 von Mises σ = ( ) σ ij σ ij F = σ σ y F = λ σ ij ė p ij A B e p e e e 74

75 , Hooke. σ ij = C e ijkl(e kl e p kl) (226),. σ ij = C e ijkl(ė kl e p kl) (227),. σ ij = C ep ijklė kl (228) 75

76 1 F =0 F =0 F = F σ ij = 0 (229) σ ij σ ij = C e ijkl(ė kl ė p ( kl ) ) (230) = C e F ijkl ė kl λ (231) σ kl F/ σ ij F σ ij = F C e ijklė kl F C e F ijkl λ (232) σ ij σ ij σ ij σ kl =0, λ λ = F σ ij C e ijklė kl F σ ij C e ijkl F (233) σ kl 76

77 2 λ σ ij = C e ijkl = σ ij = C e ijkl(ė kl ė p ( kl ) ) (234) = C e F ijkl ė kl λ (235) σ kl ( λ = ( F σ ij C e ijklė kl F σ ij C e ijkl F (236) σ kl ė kl F C e σ ab abcdė cd F F σ C e abcd F σ ab σ kl cd C e ijkl Ce ijcd F σ cd F σ ab C e abkl F σ C e abcd F ab σ cd ) ) (237) ė kl (238) 77

78 F/ σ ij 3, F = 3 σ ij 2 σ σ ij (239) σ ij = σ ij Ce ijklė kl σ ij Ce ijklσ kl λ = 2 σ 3 (240) ( ) C e ijkl Ce ijcdσ cd σ ab C e abkl σ ab C e ė kl abcdσ cd (241) 78

79 4 Hooke C e ijkl λ, μ Lamé C e ijkl = λδ ij δ kl +2μδ ik δ jl (242) μ G, σ ij = ( λ = σ klėkl σ C e ijkl 3Gσ ijσ kl σ 2 ) (243) ė kl (244) 79

80 von Mises σ = ( )1 3 2 σ ijσ 2 ij F = σ σ y F = λ σ ij ė p ij σ ij = ( ) C e ijkl 3Gσ ij σ kl σ 2 ė kl (245) 80

81 1, Hooke. Hooke. F Cauchy T (elastic material). T (t) =f(f (t)) (246) f. f(f )=f(q F )=Q f(f ) Q T (247) F, F O,O, O O Q., P f(f )=f(f P ) (248). V. T = f(v ) (249). f(v )=f(q V Q T )=Q f(v ) Q T (250) 81

82 V, V O,O, O O Q. f(v ) (isotropic tensor function). (250) T, V, T = f(v )=φ 0 I + φ 1 V + φ 2 V 2 (251)., φ i (i =0, 1, 2) V. (representation theorem). (249) V = B 1/2. T = g(b) (252) g(b )=g(q B Q T )=Q g(b) Q T (253), g(b),., B. T = ψ 0 I + ψ 1 B + ψ 2 B 2 (254) = ξ 0 I + ξ 1 B + ξ 1 B 1 (255) Hooke. V I + 1 {u x + x u} (256) 2 82

83 , E (L), (251) E (L) E (L) = 1 {u x + x u} (257) 2 T =(φ 0 + φ 1 + φ 2 )I +(φ 1 +2φ 2 )E (L) (258) = η 0 I + η 1 E (L) (259), η 0, η 1 E (L). T E (L), Hooke., λ, μ Lamé. T =(λtre (L) )I +2μE (L) (260) 83

84 , Hooke. 2 T = f(v ), T = g(b), B Almansi A A = 1 (I B) (261) 2, T = h(a) (262). h(a )=h(q A Q T )=Q h(a) Q T (263) A, A O,O, O O Q. h(a),. T = h(a) =ζ 0 I + ζ 1 A + ζ 2 A 2 (264) Hooke T =(λtra)i +2μA (265). A E (L) (266), λ, μ Lamé. 84

85 3 T =(λtra)i +2μA. Ṫ, Ȧ T = QT Q T (267) Ṫ = QT Q T + QṪQT + QT Q T (268) W, T, A T, Å. T = Ṫ W T + T W (269) Å = Ȧ W A + A W (270) Jaumann T (J) = Ṫ W T + T W (271) Oldroyd T (O) = Ṫ L T T LT (272) Cotter Rivlin T (C) = Ṫ + LT T + T L (273) Green Naghdi T (G) = Ṫ Ω T + T Ω (Ω = Ṙ RT ) (274). T =(λtrå)i +2μÅ (275) 85

86 ,, (, ), F t (τ) R t (τ), U t (τ) I (276),. T (J) T (O) T (C) T (G) (277) Å (J) Å(O) Å(C) Å(G) (278), T (J) = Ṫ W T + T W (279) T (J) = T (O) + D T + T D (280) T (J) = T (C) D T T D (281) T (G) = Ṫ Ω T + T Ω (282) W Ω (283), Å(C) = D, T =(λtrd)i +2μD (284). T Kirchhoff ˆT t (τ) =J t (τ)t (τ) ˆT t (t) =(λtrd)i +2μD (285) 86

87 ., ˆT t (t) (J) = T (J) + T trd (286) ˆT t (t) (O) = T (O) + T trd (287) ˆT t (t) (C) = T (C) + T trd (288) 87

88 . v v e v p v = v e + v p (289), L D. D = D e + D p (290) σ ij T ij, e p ij D p ij., C ep ijkl. T ij = C ep ijkld kl (291),,, (291), Cauchy Kirchhoff ˆT ij = C ep ijkld kl (292). Kirchhoff, Jaumann. 88

89 . C ep ijkl = ( C ijkl 3G T T ) ij kl σ 2 (293) T ij, T ij = T ij 1 3 T kk δ ij. pe = T kl D kl σ (294) λ = T kl D kl σ (295) 89

90 1,,., t t e p ij = t σ ij = = t 0 t 0 0 τė p ij dτ (296) τ σ ij dτ (297) τ C ep ijkl τ ė kl dτ (298) t t σ ij t σ ij = τ C ep ijkl τ ė kl dτ (299) t. t C ep ijkl, (298), (299),. 90

91 2,. Kirchhoff.,, (305) t C ep ijkl, t Cijkl e. t T ij = t T ij + = t T ij + = t T ij + = t T ij + = t T ij + t t t t t t t t t t τ T ij dτ (300) {τ ˆTτ ij (tr τ D) τ T ij } dτ (301) {τ ˆTτ ij + τ W ik τ ˆTτ kj τ ˆTτ ik τ W kj (tr τ D) τ T ij } {τ ˆTτ ij + τ W ik τ T kj τ T ik τ W kj (tr τ D) τ T ij } dτ (302) dτ (303) { τ C ep ijkl τ D kl + τ W ik τ T kj τ T ik τ W kj (tr τ D) τ T ij } dτ (304) = t T ij + {t C ep ijkl t D kl + t W ik t T kj t T ik t W kj (tr t D) t T ij } Δt (305) 91

92 . V,v, S, s. s t, u, v g.. T Cauchy. x T + ρg = 0 (306) T T n = t (307) u = u (308) D ij = 1 ( ui + u ) j (309) 2 x j x i ˆT ij = C ep ijkl D kl, T ij = t 0 T ij dt (310) 92

93 T : δa (L) dv = v δv t w ds + δa (L), w W Almange. δa (L)ij = 1 ( wi + w ) j 2 x j x i updated Lagrange v v ρg w dv (311) (312) δa ij T ij dv = {δu} T [B] T {T } dv (313) v Q = [B] T [T ]dv (314) v (δa ij S t (t) ij + δf ki T ij L kj )dv ([B] T [ ) D] [B]+[G] v = {δu} T v dv { u} (315) 93

94 1,. Ṡ ij = C ijkl D kl (316) D kl = D lk, C ijkl = 1 2 (C ijkl + C ijlk ) (317). D, D ij [ C]. Ṡ 11 Ṡ 22 Ṡ 33 Ṡ 12 Ṡ 23 Ṡ 31 = C 1111 C1122 C1133 C1112 C1123 C1131 C 2211 C2222 C2233 C2212 C2223 C2231 C 3311 C3322 C3333 C3312 C3323 C3331 C 1211 C1222 C1233 C1212 C1223 C1231 C 2311 C2322 C2333 C2312 C2323 C2331 C 3111 C3122 C3133 C3112 C3123 C3131 [ C], Cijkl = C klij,. D 11 D 22 D 33 2D 12 2D 23 2D 31 (318) 94

95 Hooke 1 Cijkl e = λδ ijδ kl +2μδ ik δ jl (319) C ijkl e = λδ ij δ kl + μ (δ ik δ jl + δ il δ jk ) (320) C e klij = λδ klδ ij + μ (δ ki δ lj + δ kj δ li ) (321) = λδ ij δ kl + μ (δ ki δ lj + δ il δ jk ) (δ mn = δ nm ) (322) = C e ijkl (323) [ C e ]= λ +2μ λ λ λ λ+2μ λ λ λ λ+2μ μ μ μ Lamé λ, μ E, ν. νe λ = (1 + ν)(1 2ν) E μ = 2(1+ν) (324) (325) (326) 95

96 1. C p ijkl = 3G σ ij σ kl σ 2 (327),. A = 3G σ 2 (328) C p ijkl = A σ ij σ kl (329), C p ijkl = 1 2 ( ) C p ijkl + Cp ijlk = C p ijkl (330), C p ijkl C p ijkl = C p klij (331) 6 6. A σ 11 σ 11 A σ 11 σ 22 A σ 11 σ 33 A σ 11 σ 12 A σ 11 σ 23 A σ 11 σ 31 A σ 22 σ 11 A σ 22 σ 22 A σ 22 σ 33 A σ 22 σ 12 A σ 22 σ 23 A σ 22 σ 31 [ C p A σ ]= 33 σ 11 A σ 33 σ 22 A σ 33 σ 33 A σ 33 σ 12 A σ 33 σ 23 A σ 33 σ 31 A σ 12 σ 11 A σ 12 σ 22 A σ 12 σ 33 A σ 12 σ 12 A σ 12 σ 23 A σ 12 σ 31 A σ 23 σ 11 A σ 23 σ 22 A σ 23 σ 33 A σ 23 σ 12 A σ 23 σ 23 A σ 23 σ 31 A σ 31 σ 11 A σ 31 σ 22 A σ 31 σ 33 A σ 31 σ 12 A σ 31 σ 23 A σ 31 σ 31 (332) 96

97 2, Kirchhoff Jaumann, D. t t ˆT (J) = C ep : D (C 4 ) (333) tṡ t = C : D. t tṡ = t t ˆT (J) D T T D (334) = C ep : D D T T D (335) t tṡij = C ep ijkl D kl D ik T kj T ik D kj (336) = C ep ijkl D kl δ il T kj D kl T ik δ jl D kl (337) { = C ep ijkl 1 2 (δ ijt kj + δ ik T lj ) 1 } 2 (T ikδ ij + T il δ jk ) D kl (338). C ep ijkl = Cep ijkl 1 2 (δ ilt kj + δ ik T lj ) 1 2 (T ikδ jl + T lj δ jk ) (339) 97

98 3 t tṡij t tṡ = C : D. 2T T 21 0 T 31 0 T 22 0 T 21 T T 22 T 21 T 23 T 31 T 12 T (T T 22 ) 2 T T 23 0 T 23 T T (T 22 + T 33 ) 1 2 T 12 T 31 0 T T T (T 11 + T 33 ) (340) 98

99 4 Kirchhoff Jaumann Truesdell t tṡ t tṡ = t t ˆT (J) D T T D (341) = C ep : D D T T D (342) t tṡ = t t ˆT (O) (343) = t t T (O) + (trd)t (344) = t t T (J) D T T D + (trd)t (345) = t t ˆT (J) D T T D (346) t t T (J) (trd)t S 11 = T 11 (D 11 + D 22 + D 33 ) S 22 = T 22 (D 11 + D 22 + D 33 ) S 33 = T 33 (D 11 + D 22 + D 33 ) S 12 = T 12 (D 11 + D 22 + D 33 ) (347) S 23 = T 23 (D 11 + D 22 + D 33 ) S 31 = T 31 (D 11 + D 22 + D 33 )

100 Mooney-Rivlin 6(c 1 + c +2), 2(c 1 + c 2 ) OHP p.25 Lagrange (152) (203) (245) (293) (305) (306) (347) 100

101 Program hyper.tar.gz (Linux intel fortran complier ) hyper Run 1.in Run 1 1.in Mooney-Rivlin 101

~nabe/lecture/index.html 2

~nabe/lecture/index.html 2 2001 12 13 1 http://www.sml.k.u-tokyo.ac.jp/ ~nabe/lecture/index.html nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/11 3. 10/18 1 4. 10/25 2 5. 11/ 1 6. 11/ 8 7. 11/15 8. 11/22 9. 11/29 10. 12/ 6 1 11. 12/13

More information

2002 11 21 1 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2002 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture nabe@sml.k.u-tokyo.ac.jp 2 1. 10/10 2. 10/17 3. 10/24 4. 10/31 5. 11/ 7 6. 11/14

More information

Report98.dvi

Report98.dvi 1 4 1.1.......................... 4 1.1.1.......................... 7 1.1..................... 14 1.1.................. 1 1.1.4........................... 8 1.1.5........................... 6 1.1.6 n...........................

More information

OHP.dvi

OHP.dvi t 0, X X t x t 0 t u u = x X (1) t t 0 u X x O 1 1 t 0 =0 X X +dx t x(x,t) x(x +dx,t). dx dx = x(x +dx,t) x(x,t) (2) dx, dx = F dx (3). F (deformation gradient tensor) t F t 0 dx dx X x O 2 2 F. (det F

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 12 12.1? finite deformation infinitesimal deformation large deformation 1 [129] B Bernoulli-Euler [26] 1975 Northwestern Nemat-Nasser Continuum Mechanics 1980 [73] 2 1 2 What is the physical meaning? 583

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

note1.dvi

note1.dvi (1) 1996 11 7 1 (1) 1. 1 dx dy d x τ xx x x, stress x + dx x τ xx x+dx dyd x x τ xx x dyd y τ xx x τ xx x+dx d dx y x dy 1. dx dy d x τ xy x τ x ρdxdyd x dx dy d ρdxdyd u x t = τ xx x+dx dyd τ xx x dyd

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m A f i x i B e e e e 0 e* e e (2.1) e (b) A e = 0 B = 0 (c) (2.1) (d) e

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0 1 2003 4 24 ( ) 1 1.1 q i (i 1,,N) N [ ] t t 0 q i (t 0 )q 0 i t 1 q i (t 1 )q 1 i t 0 t t 1 t t 0 q 0 i t 1 q 1 i S[q(t)] t1 t 0 L(q(t), q(t),t)dt (1) S[q(t)] L(q(t), q(t),t) q 1.,q N q 1,, q N t C :

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i i j ij i j ii,, i j ij ij ij (, P P P P θ N θ P P cosθ N F N P cosθ F Psinθ P P F P P θ N P cos θ cos θ cosθ F P sinθ cosθ sinθ cosθ sinθ 5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information

2003 12 11 1 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2003 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2002 nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 9 2. 10/16 3. 10/23 ( ) 4. 10/30 5. 11/ 6

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

第10章 アイソパラメトリック要素

第10章 アイソパラメトリック要素 June 5, 2019 1 / 26 10.1 ( ) 2 / 26 10.2 8 2 3 4 3 4 6 10.1 4 2 3 4 3 (a) 4 (b) 2 3 (c) 2 4 10.1: 3 / 26 8.3 3 5.1 4 10.4 Gauss 10.1 Ω i 2 3 4 Ξ 3 4 6 Ξ ( ) Ξ 5.1 Gauss ˆx : Ξ Ω i ˆx h u 4 / 26 10.2.1

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

2 1 1 (1) 1 (2) (3) Lax : (4) Bäcklund : (5) (6) 1.1 d 2 q n dt 2 = e q n 1 q n e q n q n+1 (1.1) 1 m q n n ( ) r n = q n q n 1 r ϕ(r) ϕ (r)

2 1 1 (1) 1 (2) (3) Lax : (4) Bäcklund : (5) (6) 1.1 d 2 q n dt 2 = e q n 1 q n e q n q n+1 (1.1) 1 m q n n ( ) r n = q n q n 1 r ϕ(r) ϕ (r) ( ( (3 Lax : (4 Bäcklud : (5 (6 d q = e q q e q q + ( m q ( r = q q r ϕ(r ϕ (r 0 5 0 q q q + 5 3 4 5 m d q = ϕ (r + ϕ (r + ( Hooke ϕ(r = κr (κ > 0 ( d q = κ(q q + κ(q + q = κ(q + + q q (3 ϕ(r = a b e br

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

housoku.dvi

housoku.dvi : 1 :, 2002 07 14 1 3 11 3 12 : 3 13 : 5 14 6 141 6 142 8 143 8 144 8 145 9 2 10 21 10 : 2 22 11 23 11 24 11 A : 12 B 14 C 15 ( ) ( ) ( ),, (,, ) 2,, : 1 3 1 11 (t),, ρv 0 (1) t (t) ( A ) ( ) ρ (t) t +ρ

More information

C (q, p) (1)(2) C (Q, P ) ( Qi (q, p) P i (q, p) dq j + Q ) i(q, p) dp j P i dq i (5) q j p j C i,j1 (q,p) C D C (Q,P) D C Phase Space (1)(2) C p i dq

C (q, p) (1)(2) C (Q, P ) ( Qi (q, p) P i (q, p) dq j + Q ) i(q, p) dp j P i dq i (5) q j p j C i,j1 (q,p) C D C (Q,P) D C Phase Space (1)(2) C p i dq 7 2003 6 26 ( ) 5 5.1 F K 0 (q 1,,q N,p 1,,p N ) (Q 1,,Q N,P 1,,P N ) Q i Q i (q, p). (1) P i P i (q, p), (2) (p i dq i P i dq i )df. (3) [ ] Q αq + βp, P γq + δp α, β, γ, δ [ ] PdQ pdq (γq + δp)(αdq +

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) , ,, 2010 8 24 2010 9 14 A B C A (B Negishi(1960) (C) ( 22 3 27 ) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 1 2 3 Auerbach and Kotlikoff(1987) (1987)

More information

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008) ,, 23 4 30 (i) (ii) (i) (ii) Negishi (1960) 2010 (2010) ( ) ( ) (2010) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 16 (2004 ) 2 (A) (B) (C) 3 (1987)

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

弾性定数の対称性について

弾性定数の対称性について () by T. oyama () ij C ij = () () C, C, C () ij ji ij ijlk ij ij () C C C C C C * C C C C C * * C C C C = * * * C C C * * * * C C * * * * * C () * P (,, ) P (,, ) lij = () P (,, ) P(,, ) (,, ) P (, 00,

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ Mindlin -Rissnr δ εσd δ ubd+ δ utd Γ Γ εσ (.) ε σ u b t σ ε. u { σ σ σ z τ τ z τz} { ε ε εz γ γ z γ z} { u u uz} { b b bz} b t { t t tz}. ε u u u u z u u u z u u z ε + + + (.) z z z (.) u u NU (.) N U

More information

τ τ

τ τ 1 1 1.1 1.1.1 τ τ 2 1 1.1.2 1.1 1.1 µ ν M φ ν end ξ µ ν end ψ ψ = µ + ν end φ ν = 1 2 (µφ + ν end) ξ = ν (µ + ν end ) + 1 1.1 3 6.18 a b 1.2 a b 1.1.3 1.1.3.1 f R{A f } A f 1 B R{AB f 1 } COOH A OH B 1.3

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1 (3.5 3.8) 03032s 2006.7.0 n (n = 0,,...) n n = δ nn n n = I n=0 ψ = n C n n () C n = n ψ α = e 2 α 2 n=0 α, β α n n (2) β α = e 2 α 2 2 β 2 n=0 =0 = e 2 α 2 β n α 2 β 2 n=0 = e 2 α 2 2 β 2 +β α β n α!

More information

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0 5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â = Tr Âe βĥ Tr e βĥ = dγ e βh (p,q) A(p, q) dγ e βh (p,q) (5.2) e βĥ A(p, q) p q Â(t) = Tr Â(t)e βĥ Tr e βĥ = dγ() e βĥ(p(),q())

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information