1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

Size: px
Start display at page:

Download "1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct"

Transcription

1 N Z = {, ±1, ±2,... }, R =, R + = [, + ), R = [, ], C =. a b = max{a, b}, a b = mi{a, b}, a a, a a. f : X R [a < f < b] = {x X; a < f(x) < b}. X [f] = [f ], [f ] = {x X; f(x) } X A (idicator fuctio) { 1 if x A, 1 A (x) = otherwise. 1

2 1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arcta x x = ± y = ±π/2 R (exteded real lie) R = [, + ] A sup A, if A R A B = sup(a) sup(b), if(a) if(b). sup =, if = + {a } 1 sup{a ; 1} sup{a ; 2}... lim sup a {a } (upper limit) (lower limit) lim if a lim if{a k ; k } R 1.1. {a } lim if a lim sup a a = lim a lim if a = a = lim sup for a R. {a } a j a k (j k) (icreasig sequece) a j a k (j k) (decreasig sequece) {a } a a a {a } a a a 2

3 . a j < a k (j < k) {a i } i I a i = sup{ a i ; F I } [, + ] i I i F {a i } i I (summable) (sum) a i = a i ( a i ) R i I i I i I I I = j J I j j J {a i } i Ij { i I j a i } j J a i = a i. j J i Ij i I 1. i I a i < + {i I; a i } [a, b] [a, b] : a = x < x 1 < < x = b (mesh) = mi{x 1 x, x 2 x 1,..., x x 1 } f i = sup{f(x); x [x i 1, x i ]}, f i = if{f(x); x [x i 1, x i ]} S(f, ) = f i (x i x i 1 ), S(f, ) = f i (x i x i 1 ). i=1 i=1 1.2., S(f, ) S(f, ) S(f, ) S(f, ). S(f) = if{s(f, ); }, S(f) = sup{s(f, ); } Darboux (upper ad lower itegrals) S(f) S(f) 3

4 1.3. f : [a, b] R S(f) = S(f) b a f(x) dx f (Riemaia itegral). Riema (1857) Darboux (1875) 2 Riema f 1.4. f : [a, b] R b a f(x) dx = lim i=1 f(x j )(x j x j 1 ). (improper itegral) f(x) dx < + R f(x) dx = + R lim R f(x) dx 1.5. (i) (ii) (i) (ii) si x 1 + x 2 dx. si x 1 + x dx. 4

5 2 2.1 (Bolzao). {a } 1 N N k k {a k } k R K K K x = (x 1,..., x ) R x = (x 1 ) (x ) 2 x, y R d(x, y) = x y R lim x () = x lim x () x =. B r (a) = {x X; d(x, a) < r}, B r (a) = {x X; d(x, a) r} a R r > (ope ball) (closed ball) U R (ope set) a U, r >, B r (a) U F R (closure) F = {a R ; r >, B r (a) F } F = F (closed set) B R (bouded) a R, r >, B B r (a) R X f : X R (cotiuous) x X, ɛ >, δ >, y B δ (x) = f(x) f(y) ɛ f, g : X R Φ : R 2 R Φ(f, g) : x Φ(f(x), g(x)) f + g, fg, f g, f g 2. (a, b) a b, a b R X f (support) [f] [f ] f(x) = (x X \ [f]) [f + g] [f g] [f g] [f] [g], [fg] [f] [g]. 5

6 3. (i) (ii) R f, g [fg] [f] [g] 4. f f(x) = (x F ) F X R X X C c (X) C c (X) f, g C c (X) = f g, f g, fg C c (X). C c C Cotiuous c compact 2.3. X R f : X R δ > f (the degree of uiform cotiuity) C f (δ) = sup{ f(x) f(y) ; d(x, y) δ} 5. f : R R M = sup{ f (x) ; x R} C f (δ) Mδ. 2.4 (H.Heie). f : X R (uiform cotiuity) Proof. δ = 1/ lim C f (δ) =. δ ɛ >, δ >, x, y X, d(x, y) δ, f(x) f(y) > ɛ. x, y X, d(x, y ) 1, f(x ) f(y ) ɛ. {x } 1 x a y a f f(x ) f(y ) ɛ lim f(x ) = f(a) = lim f(y ) 6. R R (rectagular solid) [a, b] = [a 1, b 1 ] [a, b ] f : [a, b] R f(x) dx [a, b] [a,b] S(f, ) S(f, ) C f ( ) (b 1 a 1 )... (b a ) 6

7 7. * [a, b] f C c (R ) [f] [a, b] f(x) dx = f(x) dx R [a,b] [a, b] (i) C c (R ) f R f(x) dx (ii) f R f(x) dx. (iii) y R (iv) T : R R f(x + y) dx = R R f(t x) dx = 1 det(t ) f(x) dx. R f(x) dx. R 8. * [a, b] R Φ : [a, b] R f : [a, b] R lim j=1 f(x j )(Φ(x j ) Φ(x j 1 )) = b a f(t)dφ(t) Stieltjes X f : X R {f : X R} 1 x X, lim f (x) = f(x) f f (coverge poit-wise) f {f } (limit fuctio) {f } x {f (x)} (mootoe sequece) {f } f f f f f {f } f f : X R f = sup{ f(x) ; x X} [, + ] f f < + f f (coverge uiformly) lim f f = f (x) f(x) f f. lim ( a 1 p + + a p ) 1/p = a 1 a p + 7

8 2.5. f : [a, b] R f(x) dx (b 1 a 1 ) (b a ) f. [a,b] 2.6. f f (uiformly) lim [a,b] f (x) dx = [a,b] f(x) dx *X R f (Dii). K {f } 1 x K, f (x) lim f = Proof. f r >, N 1, N, f > r. 1 < 2 <... f j > r (j 1) f j > r x j X, f j (x j ) > r {x j } j 1 x j x X m 1 j 1 j m f m (x) = f m (x) f m (x ) + f m (x ) f m (x) f m (x j ) + f j (x j ) > f m (x) f m (x j ) + r. f m x j x (j ) f m (x) r m f : R m R f lim R f (x) dx =. m 3 X L f, g L = f g, f g L X (vector lattice) (f g)(x) = max{f(x), g(x)}, (f g)(x) = mi{f(x), g(x)}. L L + = {f L; f }

9 (i) R C c (R ). (ii) * X f [f ] L. (iii) * S = {x = (x, x 1,..., x ) R +1 ; (x ) 2 + (x 1 ) (x ) 2 = 1} C(S ). 9. f = f f L. L = L + L + 1. X L (i) L (ii) f L f L. (iii) f L f L L I : L R L (Daiell itegral) (i) [Liearity] I(αf + βg) = αi(f) + βi(g), α, β R, f, g L. (ii) [Positivity] f = I(f). (iii) [Cotiuity] f = I(f ). L I (L, I) (itegratio system) 3.3. Dii (i) ρ : R [, + ) f C c (R ) I(f) = f(x)ρ(x) dx R C c (R ) ρ 1 (ii) * L = {f : X R; [f ] } I(f) = x X f(x) (iii) * L = C(S ) I(f) = < x 1 f ( ) x dx x 11. * Φ : R R L = C c (R) Stieltjes I(f) = f(t)dφ(t) 9

10 12. f g = I(f) I(g). 13. f f = I(f ) I(f). 14. * L + f {h } 1 f =1 h = I(f) I(h ) =1 h L 3.4. X L L = {f : X (, + ]; a sequecef L, f f}, L = {f : X [, + ); a sequecef L, f f} L + = {f L ; f } (i) L = L L L L. (ii) α, β R +, f, g L = αf + βg, f g, f g L. (iii) α, β R +, f, g L = αf + βg, f g, f g L.. (i) f(x) = ± f(x) = (ii) L L ± L = C c (R ) A R (i) 1 A L A (ii) 1 A L A 16. f(x) = x/(x 2 + 1) C c (R) C c (R) 3.7. L f, g lim f lim g lim f, lim g L lim I(f ) lim I(g ) 1

11 Proof. f m lim g f m = lim f m g. (f m f m g ) m 3.8. I : L (, + ] I(f m ) = lim I(f m g ) lim I(g ). I (f) = lim I(f ), f f, f L I : L [, + ) I (f) = lim I(f ), f f, f L 17. (well-defied) 3.9. L = C c (R ) I I (1 (a,b) ) = (b 1 a 1 )... (b a ) = I (1 [a,b] ). (a, b) = (a 1, b 1 ) (a, b ), [a, b] = [a 1, b 1 ] [a, b ] 18. * Φ : R R Stieltjes I : C c (R) R I (1 (a,b) ) = Φ(b ) Φ(a + ), I (1 [a,b] ) = Φ(b + ) Φ(a ) (i) I ( f) = I (f) for f L ( L = L (ii) I, I I f L L (f) = I(f) = I (f). I () = I () = (iii) I, I α, β R + f, g L f, g L I (αf + βg) = αi (f) + βi (g) I I (iv) f, g L, f g I (f) I (g). Proof. (iv) f f, g g f g f g = g 3.11 ( ). (i) L f f L I (f ) I (f) (ii) L f f L I (f ) I (f) Proof. (i) f L {f,m } m 1 f,m f {f,m } 1 g,m = f 1,m f 2,m f,m. 11

12 g 1,m = f 1,m g,m f,m m g,m m f,m g,m f 1 f 2 f = f g,m f {g, } 1 g, L g, f,m g,m g m,m f m, m m f lim m g m,m f f = lim m g m,m L I(f,m ) I(g m,m ) I (f m ), m m I (f ) I (f) lim m I (f m ) lim I (f ) = I (f) f L + f L + 1 I f = I (f ). 1 1 Proof. f f L + {f L + } 1 f = =1 f I (f) = I(f ) =1 {f,m L + } f = m f,m I (f ) = m I(f,m) f = m, f,m L + ( ) I f = I(f,m ) = ( ) I(f,m ) = I (f ) m, m 12

13 3.13. L = C c (R) Q = {q } 1 ɛ > A = 1(q ɛ/2, q + ɛ/2 ) R 1 A L. 1 A 1 1 (q ɛ/2,q +ɛ/2 ) I (1 A ) =1 2ɛ 2 = 2ɛ f : X R (upper itegral) (lower itegral) I(f) = if{i (g); g L, f g}, I(f) = sup{i (g); g L, g f} R = [, + ] if( ) = +, sup( ) = f g g L I(f) = Q R 1 Q Dirichlet I(1 Q ) = 19. (i) 1 Q (x) = lim m lim (cos(πm!x)) 2 (ii) Darboux S(1 Q [a,b] ) =, S(1 Q [a,b] ) = b a 4.3. (i) I(f) = I( f) for ay f. (ii) I(λf) = λi(f) for λ < +. I() = (iii) f g I(f) I(g). (iv) f + g f(x) = ± g(x) = x X I(f + g) I(f) + I(g). (v) I(f) I(f). (vi) f L L I(f) = I(f). f L f L I (f) I (f) Proof. (i) (iv) (v) (iv) g = f (i) (ii) I() = (vi) I(f) = I (f) (f L ) I(f) = Ī(f) (f L ) f L I(f) = I(f) = I(f). f L f f f L I (f) = lim I(f ) = lim I(f ) I(f). 13

14 f L I(f) = I (f) I(f) = I(f). 2. (i) (iv) 4.4. f : X R (Lebesgue itegrable) I(f) = I(f) R L 1 f L 1 I(f) = I(f) R I(f) I (ii) 4.3 (vi) - L 1 L 1 (R ) 21. [a, b] f : [a, b] R I(f) = b a f(t) dt. ɛ >, S(f) ɛ I(f) I(f) S(f) + ɛ. 22. f : X R g L 1 f(f + g) = I(f) + I(g) 4.5. f : X R ɛ, f L, f L, f f f, I (f ) I (f ) ɛ. f f f I (f ) I (f ) = I (f f ) f I (f ) I(f), I (f ) I(f). Proof. I (f ) I(f) I(f) I (f ) 4.6. (i) L 1 X L L (ii) I : L 1 R I(f) = I (f) = I (f) (f L L ). I : L 1 R I : L R Proof. f, g L 1 f, g L f, g L f f f, g g g f + g f + g f + g I (f + g ) I (f + g ) = (I (f ) I (f )) + (I (g ) I (g )) f + g L 1 I(f + g) = I(f) + I(g). λ > λf λf λf I (λf ) I (λf ) = λ(i (f ) I (f )) λf L 1 I(λf) = λi(f). f f f ( f L, f L ) I ( f ) I ( f ) = I (f ) I (f ) 14

15 f L 1 I( f) = I(f). L 1 I L 1 f L 1 = f L 1 f f f f f f f I (f ) I (f ) = I (f f ) I (f f ) f I(f) = I(f ) I (f ) I(f) f L L f f f f L 4.3 (vi) I(f) = I(f) [I(f ), I(f )] 4.7. f : R R f L 1 R lim f(t) dt < + R + R I(f) = R lim f(t) dt R + R f f f f C c (R) + f (t) = f(t) ( t R ) R f (t) dt f(t) dt R 1 si t t R si t dt lim dt = π R R t 23. α > ( ) 1 si t α dt 24. * ɛ >, f L 1, g L, I( f g ) ɛ X (L, I), Y (M, J) φ : X Y M φ L I(f φ) = J(f) (f M) M 1 φ L 1 I(f φ) = J(f) (f M 1 ) Proof. M φ L, I (f φ) = J

16 (i) φ : X Y L = M φ L 1 = M 1 φ I(f) = J(f φ) (f M 1 ) (ii) X (L, I), (M, J) L M, J L = I (M, J) (L, I) L 1 M 1 M 1 L 1 I 4.1. A R C c (A) C c (R ) L 1 (A) L 1 (A) L 1 (R ) L 1 (A) L 1 (R ) 1 A = (a, b) b f(x) dx = a R f(x)1 A(x) dx. 8 A f(x) dx = A f(x)1 A (x) dx f L 1 (R ) y R f(x + y) x R f(x + y) dx = f(x) dx. R R 25. f L 1 (R ) λ > f(λx) dx = λ R f(x) dx R (subadditivity of upper itegrals). f : X [, + ] f = =1 f (f ) I(f) I(f ). =1 Proof. I(f ) = + I(f ) < + ( 1) ɛ > g L + f g, I(g ) = I (g ) I(f ) + ɛ 2 f g 3.12 g L + I ( g ) = I (g ) ( ) I(f) I g = I (g ) I(f ) + ɛ 2 = I(f ) + ɛ 16

17 5.2 (Mootoe Covergece Theorem). f L 1 f : X R f lim I(f ) < + I(f) = lim I(f ). Proof. I(f ) = I(f ) I(f) lim I(f ) = + I(f) = + f L 1. lim I(f ) < + f f = =1 (f f 1 ) I(f f ) I(f f 1 ) = I(f f 1 ) = (I(f ) I(f 1 )) = lim I(f ) I(f ). =1 =1 =1 I(f) I(f ) + I(f f ) = I(f ) + I(f f ) lim I(f ) f f f L 1 I(f ) = I(f ) I(f) lim I(f ) I(f) I(f) lim I(f ) 5.3. I L 1 f L 1 f I(f ). (L, I) (L 1, I) 5.4 (Domiated Covergece Theorem). f L 1 g L 1 f g ( 1) if 1 f, sup 1 f, lim if f, lim sup f I(lim if f ) lim if I(f ) lim sup I(f ) I(lim sup f ) f = lim f f L 1 Proof. m I(f) = lim I(f ). g if f f m f f m f sup f g m m f m f if m f, f m f sup f m I if m f, sup m f L 1 I( if f ) = lim I(f m f ) lim I(f m ) I(f ) = if I(f m ) m I( sup f ) = lim I(f m f ) lim I(f m ) I(f ) = sup I(f ). m m 17

18 I(g) I( if f ) if I(f ) sup I(f ) I( sup f ) I(g) m m m m lim if f, lim sup f L 1 I(g) I(lim if f ) lim if I(f ) lim sup I(f ) I(lim sup f ) I(g). domiated covergece theorem 5.5. R [a, b] f(x, t) (i) t [a, b] f(x, t) x R (ii) x f(x, t) t (iii) g(x) f(x, t) g(x) (x R, t [a, b]) lim f(x, t) dx = t t R R f(x, t ) dx R (a, b) f(x, t) (i) t (a, b) f(x, t) x R (ii) x R f(x, t) t t (iii) g(x) f t (x, t) g(x) (x R, a < t < b) f t (x, t) x d f(x, t) dx = dt f (x, t) dx t Proof. f(x, t + h) f(x, t) h g(x) 5.7. (i) t e x2 +tx dx = = t! x e x2 dx. (ii) t > 26. t > d dt =1 e tx2 dx = ( 1) x 2 e tx2 dx. 1 t = 1 x t 1 Γ(t) e x 1 dx 18

19 27. f(x) ( x 1) lim f ( x ) e x dx 28. f L 1 (R ) f(x + y) f(x) dx y R 29. f L 1 (R ) R g fg 3. f L 1 (R) a > a a f a (x) = f(x t)e at2 dt = f(t)e a(t x)2 dt π π f a lim f a(x) =, x ± f a (x) dx f(x) dx 6 (L, I) (L 1, I 1 ) (L, I) (L 1, I 1 ) ((L 1 ) 1, (I 1 ) 1 ) (L 1 ) 1 = L 1, (I 1 ) 1 = I 1 (L 1 ) 1 L X (L, I) A X I- (I-measurable) 1 A L 1 I- L(I) L L(I) = {A X; 1 A L 1 }.. I (i) L. (ii) {A } 1 L A A 1 (iii) A, B L B \ A Proof. L 1 L (iii) A B 1 L 1 + ϕ 1 A, L 1 + ψ 1 B 19

20 ψ ψ ϕ m ψ m ψ ψ 1 A ψ 1 ψ ψ 1 A = ψ (1 1 A ) ψ (1 1 A ) 1 B (1 1 A ) = 1 B\A L 1 (ii) 3.11 (iii) A = A 1 \ A 1 \ A = A 1 \ 1 \ A ) 1 1(A (L, I) σ- (σ-fiite) 1 X L (L, I) σ- L σ- (σ-boolea algebra) (i), X L. (ii) {A } 1 L = 1 A, (iii) A L = X \ A L. A L σ- A I- A I = I 1(1 A) 6.6. (i) A I [, + ]. (ii) I =. (iii) A A I = A I Proof. (i) (ii) (iii) I 1 σ I σ- B 2 X [, + ] µ (measure) (i) µ( ) =, (ii) {A } 1 B A m A = (m ) µ A = µ(a ) 1 =1 2

21 σ- µ X = 1 X (µ(x ) < + ) σ- µ(x) < + (fiite measure) µ(x) = 1 (probability measure) X σ- B 2 X B µ (X, B, µ) (measure space). 2 X X (power set) X 6.9. ρ : R [, + ) ρ(x) dx R {A } 1 I A A I 1 1 σ f : X R (i) a R, f a L 1, f a L1. (ii) a R, f a L 1, f a L1. (iii) a R, [f > a] L(I). Proof. f f L 1 a >, [f > a] L [ ] f L 1 f f (f L 1 ) [f > a] = 1 [f > a] ϕ 1 X (ϕ L 1 +) ϕ l ((f aϕ m aϕ m )) ϕ l m ϕ l ((f a a)) L 1 + l 1 ((f a a)) L 1 1 ((f a a)) 1 [f>a] ( ) 3.11 [f > a] L [ ] f = 1 k<2 k 2 1 [k2 <f (k+1)2 ] + 1 [f>] [a < f b] = [f > a] \ [f > b] L f L 1 f f L 1 21

22 6.11. (ii) (L 1 ) + (i) (L, I) σ- I σ- = Proof. (i) X,m = [ϕ > 1/m] 1 m 1 X,m ϕ X,m I mi(ϕ ) < + X = m, 1 X,m (ii) a > [f α > a] = [f > a 1/α ] f g fg 1 A 1 B = 1 A B f g L 1 A f 1 A f f A I(1 A f) = f(x) µ(dx) 32. L(I) A f(x) µ(dx) R A A f L 1 + f L 1 I(f) = lim I(f ) = lim k 2 [k2 < f (k + 1)2 ] I + [f > ] I 1 k<2 I µ( ) = I (L, µ) µ L f : X C Rf If f I(f) = I(Rf) + ii(if) L 1 C f : X C f f f I(f) I( f ) Proof. I(f) = I(f) e iθ I(f) = I(Rf) cos θ + I(If) si θ = I ( (Rf) cos θ + (If) si θ ) I( f ) 6.14 ( ). {f } g L 1 f g ( 1) f = lim f I(f) = lim I(f ) e x2 +itx dx = πe t2 /4 22

23 34. f : R C a > x R a f a (x) = f(x t)e at2 dt π C 1 T T θ T θ 2π L L 1 2π 2π f(θ) dθ µ µ t 2 T H = {e 2πit ; Z} t Z e 2πit Z H T/H R R T = Z e2πit R R µ 1 = µ(t) = µ(e 2πit R) = µ(r) Z Z µ(r) = µ(r) > 7 (L, I) f ɛ >, f L, f L, f f f, I (f f ) ɛ. ɛ = 1/ ( = 1, 2,... ) f L f L f f f, I (f f ) f = lim f f = lim f f f L 1, f L1 I1 (f f) = 7.1. f : X R f L 1 I( f ) = (ull fuctio) A X (ull set) 1 A A A I = N(I) N 7.2. (i) N(I). 23

24 (ii) N N(I) (iii) {N } 1 =1 N (i) Dirichlet (ii) R (iii) Cator (iv) R 36. R 7.4. f : X R (i) f (ii) [f ] Proof. 1 [f ] = lim 1 ( f ), f = lim f (1 [f ]). I(1 f ) I( f ) = I( f ), I( f 1 [f ] ) I(1 [f ] ) = I(1 [f ] ) f(x) dx, (,1) [,1] f(x) dx 7.5. f : X R (X X) f L 1 N X \ X f (x) = f(x) ( x X \ N) f (almost everywhere) L 1 f a.e. L 1 I(f ) I(f) f, g : X R [f g] f a.e. = g N 1, N 2 f j : X \ N j R (j = 1, 2) f 1 + f 2 X \ (N 1 N 2 ) f 1 (x) + f 2 (x). Lebesgue almost everywhere (a.e.) presque partout (p.p.) almost all (a.a.) almost surely (a.s.) 24

25 f a.e. L 1 f a.e. L 1 I(f) I( f ) f L 1 a.e. I1 (f) < + f L 1 Proof. f f (f L 1 ) f f f 1 f N = [f = + ] a a1 N f ai(1 N ) I(f) = I (f) < + I(1 N ) = N N(I) f 1 N L 1 f 1 X\N f1 X\N f f 1 N L 1 f1 X\N L 1 f a.e. = f1 X\N 7.7. {f } 1 I( f ) < + 1 N (i) X \ N f (ii) x X \ N f(x) < +. f(x) = f (x) (x N) f I(f) = I(f ) Proof. f j N j f j (x) = f j (x) (x j N j ) f j L 1 f L 1 1 I f = I( f ) = I( f ) < f (x) = + 1 x N N = N j x N f(x) = 1 f (x) = 1 f (x) 25

26 7.8. {q ; 1} f(x) = 1 e 3 (x q ) 2 x R f(x) dx = π 3 < +. (i) L 1 L f 1 = I( f ) (ii) L 1 = L 1 L L 1 L f L 1 f ± L 1 L N f(x) = f + (x) f (x) (x N) Proof. (ii) L f f I(f f) 1/2 f,m L f,m f (m ), I(f f,m ) 1 2 m+ I(f,m f,m 1 ) = I(f f,m 1 ) I(f f,m ) 1 2 m+ 1 + = 2 2 m+ m, 1 (f 1,m f 1,m 1 ) lim f = f + (f f 1 ) 1 = f, + (f,m f,m 1 ) +, f 1, ) m 1 1(f + (f,m f,m 1 ) (f 1,m f 1,m 1 ) m, 1 m, 1 I( f, f 1, ) I( f, f ) + I( f f 1 ) + I( f 1 f 1, ) 6 2 f, = f, ( f, ), f, f 1, = (f, f 1, ) (f 1, f, ) f(x) = lim f (x) (a.e. x X) (ii) f ± L 1 L f + = f, + (f,m f,m 1 ) + (f, f 1, ) + (f,m f,m 1 ) m 1 1 m, 1 f = ( f, ) + (f 1, f, ) + (f 1,m f 1,m 1 ) 1 m, 1 26

27 (i) f L 1 lim m lim sup I( f m f ) =. { k } k 1 I( f k f k+1 ) 1/2 k f = lim k f k = f f f k f f + (f k f k+1 ) k= f k f k+1 L 1 k= = lim lim k I( f f k ) = lim I( f f ). Riesz L 1 L = {f; f L, f f, sup I(f ) < + }, 1 I(f ) I(f) (ii) L 1 f = f + f I(f) = I(f + ) I(f ) 1 [Riesz-Nagy] [ ] [ ] 7.1. (L 1 ) 1 = L 1 Proof. f (L 1 ) 1 f f (f L 1 ) lim I (f ) < + f a.e. L 1 f a.e. L 1 f f L 1 8 σ- π : Ω X Ω σ- F X (L, µ) x X (L x, µ x ) f F (i) x X, f L x (ii) f(ω) µ x (dω) x L 27

28 (F, (L, µ), {(L x, µ x )}) (fibered itegratio system) F I(f) = X µ(dx) µ x (dω) f(ω) 8.1. π : R m+ R (repeated itegratio system) 8.2. (π : Ω X, F, (L, µ), {(L x, µ x )}) (i) f F x X f (L x ) f(ω) µ x (dω) x L ( ) I (f) = f(ω) µ x (dω) µ(dx). X (ii) f F 1 N X x X \ N f L 1 x L 1 X \ N x I(f) = X ( f(ω) µ x (dω) f(ω) µ x (dω) ) µ(dx). Proof. (i) f F f f (f F ) x X, f f f L x f (L x ) f(ω) µ x (dω) = lim f (ω) µ x (dω). 1, x f (ω) µ x (dω) L x f(ω) µ x (dω) L I (f) = lim I(f ) = lim µ(dx) X = µ(dx) X µ x (dω)f (ω) = µ x (dω) lim f (ω) = X X µ(dx) lim µ(dx) µ x (dω)f (ω) µ x (dω) f(ω) 28

29 (ii) f F 1 {f } F {f } F f f f, I (f f ) 1 (i) h (x) = L + I (f f) = X µ x (dω)(f (ω) f (ω)) µ(dx)h (x) 7.6 h a.e. L 1 N X µ x (dω)(f(ω) f(ω)) = for x N. lim x N f (L x ) 1 f(ω) µ x (dω) = lim f(ω) µ x (dω) = lim f(ω) µ x (dω) I (f) I(f) 7.6 x f(ω) µ x (dω) L 1 f(ω) µ x (dω) x L 1 (X, µ) I(f) = lim I (f) = lim µ(dx) µ x (dω) f(ω) X = µ(dx) lim µ x (dω) f(ω) = µ(dx) X X µ x (dω) f(ω) Ω = R 2, X = R, X = R, π : Ω (t, x) t X, F = C c (Ω), L = C c (X), π 1 (t) = {t} R = R L t = C c ({t} R) = C c (R), { 1 µ t (dx) = 4πt e x2 /4t dx if t >, δ(x) otherwise, I(f) = dt R f(t, x) µ t(dx). 8.4 (). f L 1 (R m+ ) N R m x R m \N f(x, ) L 1 (R ) R m \ N x f(x, y) dy R L 1 (R m ) ( ) f(x, y) dxdy = f(x, y) dy m+ R R m R dx. 29

30 x y ( ) ( ) f(x, y) dy dx. = f(x, y) dx R m R R m R dy 8.5. C = e t e tx2 dtdx = e t e tx2 dxdt = C e y2 dy = x dx = π 2, e t 1 t dt = 2C 2. e t 1 t dt. 4. t > 41. * α R, β > R e x β t x α dx = e xy si x dxdy tx si x e x dx = π 2 arcta t ( ) βγ(/2) Γ α β if α <, + if α. { 2π / dxdy < + x y α α 43. f : R C a > a f a (x) = f(x t)e at2 dt π lim x ± f a (x) = lim f(x) f a (x) dx =. a + 3

Peano-Jordan-Borel Lebesgue Archimedes Gallilei, Pascal, Torricelli, Fermat Newton Leibniz Cauchy Daniell (1963) ( 4,200) 1

Peano-Jordan-Borel Lebesgue Archimedes Gallilei, Pascal, Torricelli, Fermat Newton Leibniz Cauchy Daniell (1963) ( 4,200) 1 2007 5 23 Peao-Jorda-Borel Lebesgue Archimedes Gallilei, Pascal, Torricelli, Fermat Newto Leibiz Cauchy Daiell (1963) ( 4,200) 1 (1965) ( 2,600) (1966) (1972) ( 2,700) (1980) (1995) (2000) ( 2,500) (2000)

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/005431 このサンプルページの内容は, 初版 1 刷発行時のものです. Lebesgue 1 2 4 4 1 2 5 6 λ a

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0 III 2018 11 7 1 2 2 3 3 6 4 8 5 10 ϵ-δ http://www.mth.ngoy-u.c.jp/ ymgmi/teching/set2018.pdf http://www.mth.ngoy-u.c.jp/ ymgmi/teching/rel2018.pdf n x = (x 1,, x n ) n R n x 0 = (0,, 0) x = (x 1 ) 2 +

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

3 6 I f x si f x = x cos x + x x = x = /π =,,... x f x = f f x = f..4. [a, b] f a, b fb fa b a c.4 = f c, a < c < b.5. f a a + h θ fa + h = fa + f a +

3 6 I f x si f x = x cos x + x x = x = /π =,,... x f x = f f x = f..4. [a, b] f a, b fb fa b a c.4 = f c, a < c < b.5. f a a + h θ fa + h = fa + f a + I 6 I. I. f a I 3. fx = fa I a. fx fx 45 + I f I I I I f I a 6 fx fa. x a f a f a I I 7.. f a f a F, G F x = α, Gx = β F x ± Gx = α ± β, F xgx = αβ * 5 /5 5 5 a iterval; a ope a closed iterval. a fuctio.

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

I

I I io@hiroshima-u.ac.jp 27 6 A A. /a δx = lim a + a exp π x2 a 2 = lim a + a = lim a + a exp a 2 π 2 x 2 + a 2 2 x a x = lim a + a Sic a x = lim a + a Rect a Gaussia Loretzia Bilateral expoetial Normalized

More information

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) ( + + 3 + 4 +... π 6, ( ) 3 + 5 7 +... π 4, ( ). ( 3 + ( 5) + 7 + ) ( 9 ( ( + 3) 5 + ) ( 7 + 9 + + 3 ) +... log( + ), ) +... π. ) ( 3 + 5 e x dx π.......................................................................

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

untitled

untitled 1 kaiseki1.lec(tex) 19951228 19960131;0204 14;16 26;0329; 0410;0506;22;0603-05;08;20;0707;09;11-22;24-28;30;0807;12-24;27;28; 19970104(σ,F = µ);0212( ); 0429(σ- A n ); 1221( ); 20000529;30(L p ); 20050323(

More information

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ A S1-20 http://www2.mth.kyushu-u.c.jp/ hr/lectures/lectures-j.html 1 1 1.1 ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1)

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( )

I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( ) I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( ) 1 (Introduction) 1 1.1... 1 1.2 Riemann Lebesgue... 2 2 (Measurable sets and Measures) 4 2.1 σ-... 4 2.2 Borel... 5 2.3...

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) ( B 4 4 4 52 4/ 9/ 3/3 6 9.. y = x 2 x x = (, ) (, ) S = 2 = 2 4 4 [, ] 4 4 4 ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, 4 4 4 4 4 k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) 2 2 + ( ) 3 2 + ( 4 4 4 4 4 4 4 4 4 ( (

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

Lebesgue Fubini L p Banach, Hilbert Höld

Lebesgue Fubini L p Banach, Hilbert Höld II (Analysis II) Lebesgue (Applications of Lebesgue Integral Theory) 1 (Seiji HIABA) 1 ( ),,, ( ) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF 2

2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF     2 2 ( 28 8 (http://nalab.mind.meiji.ac.jp/~mk/lecture/tahensuu2/ 2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF http://nalab.mind.meiji.ac.jp/~mk/lecture/tahensuu2/ http://nalab.mind.meiji.ac.jp/~mk/lecture/tahensuu/

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

koji07-01.dvi

koji07-01.dvi 2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?

More information

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a φ + 5 2 φ : φ [ ] a [ ] a : b a b b(a + b) b a 2 a 2 b(a + b). b 2 ( a b ) 2 a b + a/b X 2 X 0 a/b > 0 2 a b + 5 2 φ φ : 2 5 5 [ ] [ ] x x x : x : x x : x x : x x 2 x 2 x 0 x ± 5 2 x x φ : φ 2 : φ ( )

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

Chap9.dvi

Chap9.dvi .,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x I 5 2 6 3 8 4 Riemnn 9 5 Tylor 8 6 26 7 3 8 34 f(x) x = A = h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t)

More information

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia B2 ( 19) Lebesgue ( ) ( 19 7 12 ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purposes. i Riemann f n : [0, 1] R 1, x = k (1 m

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information