i 18 2H 2 + O 2 2H 2 + ( ) 3K

Size: px
Start display at page:

Download "i 18 2H 2 + O 2 2H 2 + ( ) 3K"

Transcription

1

2 i 18 2H 2 + O 2 2H 2 + ( ) 3K

3 ii (2.11)

4 iii

5 iv

6 C 1 C 1 C 1 C 1 C = nr (1.1) n R = /nr (1.1) (1.1)

7 1 2 (1.1) = (1.2a) 1787 α = αt, : C : t C α 1 t ( ) = (αt + 1) = α (t + α 1 ) (1.2b) α α = (1.2a) (1.2b) R = R (t + α 1 ) (1.3) 182 (1.2b) t + α 1 = t (1.4) 1 (mol) C L R = J/mol K n (1.3) R = nr (1.1) (1.4)

8 A B A B A B A B A A 1 B B 1 (cal) 1 1g 14.5 C 15.5 C C

9 1 4 1g 1 C 1 25 C (cal/g) g cal=4.1855J J 1.6 (,, ) f (,, ) = (1.1) [ ( n ) 2 ] + a ( nb) nr = (a b ) (1.5) (1.1) (1.5)

10 N A = /mol 1.8 C (, ) 2 2 C (, ) C (, ) 1 1

11 W W W F S F = S (1.6) x S x x + x x F W = F x = S x = ( S x) (1.7) x ( x dx) d W = d (1.8) d d W C ( 1, 1 ) ( 2, 2 ) (1.8) W = 2 1 d = (, ) 1 1 C (, ) 2 2 (, ) W = = = C I I d d + d II II = d d (II ) C II I II (, ) 1 1 (, ) 2 2

12 y x y f (x, y) f (x, y) f x f (x, y) x lim x f (x + x, y) f (x, y) x (2.1) y x f (x, y)/ x (x, y) +x C 1 A 2.1 C (gradient) x y ( f (x, y) grad f (x, y), x f (x, y) x = ( ) f x y ) f (x, y) y 2 x (2.2) (2.3) f (x, y) = x 2 y f (x, y) x = 2xy, f (x, y) y = x 2

13 A C 1 C C 1 O C s r(s) = (x(s), y(s)) (s s s 1 ) (2.4) r(s) = (cos s, sin s) ( s 2π) (2.4) C s1 f ds f (x(s), y(s)) ds (2.5) C s s = x C f dx x1 x f (x, y(x)) dx 2.3 d f F x (x, y) dx + F y (x, y) dy = F (r) dr, { F (r) (Fx (x, y), F y (x, y)) dr (dx, dy). (2.6) F (r) r d f r r + dr F F (r) r d f dr F d f 2.1 A C 1 C 2 d C 1 C 2 h C 1 C 2 C F dr r+dr r O

14 2 9 d f A B(1, 1) C 1 C 2 1 y B 1. F (r) = (2y, x) (1) C 1 (, ) (1, ) r = (x, ), x 1 dr = (dx, ) F = (2, x) = (, x) d f = dx + x = C 2 A C 1 1 x (1, ) (1, 1) r = (1, y), y 1 dr = (, dy) F = (2y, 1) d f = 2y + 1dy = dy f d f = + C 1 1 dy = 1 (2.7a) (2) C 2 (, ) (, 1) r = (, y), y 1 dr = (, dy) F = (2y, ) d f = F dr = 2y + dy = (, 1) (1, 1) r = (x, 1), x 1 dr = (dx, ) F = (2 1, x) = (2, x) f d f = + C 2 1 (2.8) (2.7a) d f = F dr = 2dx + x = 2dx 2dx = 2 (2.8)

15 F (r) = (2xy, x 2 ) (1) C 1 (, ) (1, ) r = (x, ), x 1 dr = (dx, ) F = (, x 2 ) d f = (1, ) (1, 1) r = (1, y), y 1 dr = (, dy) F = (2y, 1) d f = dy f d f = + C 1 1 dy = 1 (2.9a) (2) C 2 (, ) (, 1) r = (, y), y 1 dr = (, dy) F = (, ) d f = (, 1) (1, 1) r = (x, 1), x 1 dr = (dx, ) F = (2x, x 2 ) d f = 2xdx f d f = + C 2 1 2x dx = 1 (2.1) (2.1) (2.9a) d f C 2.4 B A F (r) dr F x(r) y = F y(r) x (2.11) 1 2

16 F (r) = (2y, x) (2.8) (2.7a) (2.11) F x (r) y = 2, F y (r) x = 1, F x (r) y F y(r) x (2.12a) 2. F (r) = (2xy, x 2 ) (2.1) (2.9a) (2.11) F x (r) y = 2x, F y (r) x = 2x, F x (r) y = F y(r). (2.12b) x (2.11) 1 2 d f F x (r)dx + F y (r)dy F x(r) = F y(r) y x d f d f d f d f d f d f A f (B) = B A d f (2.13) B 2 F (r) = (2xy, x 2 ) (2.13) y d f = 2xydx + x 2 dy (2.14a) (2.12b) A(, ) B(x 1, y 1 ) f (x 1, y 1 ) C t r = (x 1 t, y 1 t), t 1 dr = (x 1 dt, y 1 dt) F = (2x 1 y 1 t 2, x 2 1 t2 ) y 1 C A x 1 d f = F dr = 3x 2 1 y 1t 2 dt B x

17 2 12 B f (x 1, y 1 ) = d f = 3x1 2 y 1 C 1 t 2 dt = x 2 1 y 1 (x, y) f = f (x, y) f (x, y) = x 2 y (2.14b) (2.14a) (2.14b) (1, 1) (2.14b) f (1, 1) = 1 (2.9a) (2.14b) f (x, y) x = 2xy, f (x, y) y = x 2 (2.14a) dx dy d f = F x (x, y)dx + F y (x, y)dy, F y (x, y) x = F x(x, y) y (2.15a) f = f (x, y) f (x, y) f (x, y) F x (x, y) =, F y (x, y) = (2.15b) x y ( ) f (x, y) f (x, y) F = (F x, F y ) f grad f (x, y), x y (2.15a) f 2 f (x, y) x y = 2 f (x, y) y x (2.15c) f (x, y) 2.5 (2.11) (2.11) (i) (ii) (2.11) 2.5.1

18 2 13 ( Fy (F x dx + F y dy) = dxdy x F ) x y C R (2.16) C R y R (region) C (contour) x (2.16) R x y x dxdy F x(x, y) y = = = R x2 x 1 dx Y2 (x) Y 1 (x) dy F x(x, y) y y x2 x 1 dx [ F x (x, Y 2 (x)) F x (x, Y 1 (x)) ] x1 x 2 dxf x (x, Y 2 (x)) + x2 x 1 dxf x (x, Y 1 (x)) C = F x (x, y)dx (2.17a) C (2.16) R y x y = R y2 dxdy F y(x, y) x = y2 y 1 dy X2 (y) X 1 (y) y 1 dy [ F y (X 2 (y), y) F y (X 1 (y), y) ] y2 = dyf y (X 2 (y), y) + y 1 = F y (x, y)dy C y1 y 2 dyf y (X 1 (y), y) dx F y(x, y) x (2.17b) y x=x 1 (y) (2.17a) (2.17b) y 2 y 1 y y=y 2 (x) y=y 1 (x) x 1 x 2 x x=x 2 (y) x

19 x y = Y 1 (x), Y 2 (x) x = x C 4 L C C 1 C 2 L C 1 C 2 C = C 1 + C (2.11) y x C C 1 C C 2 L x (2.16) C C 1 C 2 C 2 C (2.16) (F x dx + F y dy) C 1 (F x dx + F y dy) = C 2 R ( Fy x F ) x y (2.18) (2.18) C ( R F y x = F x y ) ( C 1 = A C 2 C C C 2 C 1 C 2 ) C 1 B 2.6 ( ) z x y ( ) x y z ( ) y = 1 (2.19) z x z = z(x, y) y = y(x, z) z = z(x, y) (x, y) x dz = ( ) z dx + x y ( ) z dy y x ( ) z y x y ( ) z y x

20 2 15 dy dz dy = ( ) z dx x y dy + ( ) z y x z = (x, y) (x + dx, y + dy) = ( ) z x y ( ) x + y z ) ( y z 2.7 ( ) z y x x ( ) z x y ( ) x = y z ( ) z y x (2.19) (, ) (, ) (, ) (,, ) = (, ) = (, ) = (, ) (2.19) ( ) ( ) ( ) = 1 (2.2) = nr = nr/ = /nr = nr/ ( ) ( ) ( ) = nr nr nr = nr 2 = 1 (i) (ii) (i) (ii)

21 16 3 (i) (ii) 3.1 du = d Q + d W (3.1) d Q d W du ( ) U ( ) d'q U U+dU d'w d d d W d W

22 U = U(, ) (gradient) gradu du = (( ) ( ) ) U U, ( ) U d + ( ) U d (3.2) d W = d (3.3) (3.1) d Q = du d W d Q = ( ) U d + [( ) ] U + d (3.4) (3.4) d = d d ( ) Q U d = n C 1 ( ) Q = 1 ( ) U n n (3.5) d Q/d d Q (, ) d Q d ( ) Q Q d

23 (3.5) (3.4) n d Q = nc d + [( ) ] U + d (3.6) F (3.6) d n C C 1 n ( ) [( ) Q U = C + ] 1 + n ( ) (3.7) (186 ) (1844 ) U(, 1 ) = U(, ) ( ) U = (3.8) U = U() (3.5) C = C () C ()

24 3 19 (3.5) U() = n C ( )d + U( ) (3.9) (3.8) = nr (3.8) ) = nr/ ( = nr/ (3.8) (3.7) C = C + R (3.1) (3.4) (3.9) (3.5) = nr d Q = du() d + d d = nc d + nrd = n(c + R)d d Q nc d nrd C C 1842 C C 3.58J/cal (3.6) d Q = (3.8) = nr/ = nc d + nr d nc R = C C d + ( C C 1 ) d = (3.11)

25 3 2 γ C C = 1 + R C (3.12) (3.11) d + (γ 1) d = ln + (γ 1) ln = ln = log e ln γ 1 = γ 1 = (3.13a) = /nr γ = (3.13b) He Ar γ C = 3 2 R, γ = 5 3 (3.14) (, ) (3.13) 3.4 (, ) ( 1, 1 ) (, ) 1 1 (, ) 4 4 ( 2, 2) (, ) 3 3

26 γ (3.3) d W = d 1 3 II I (3.13a) 3 γ 1 3 = 1 γ 1 2, 3 γ 1 4 = 1 γ 1 1 ( 3 / 4 ) γ 1 = ( 2 / 1 ) γ = 2 1 (3.15) I = 1 1 = nr 1 I W I 2 2 nr [ ] 2 1 W I = d = 1 1 d = nr 1 ln = nr 1 ln 2 = 1 1 (3.16a) III W III W III = nr 3 ln 4 3 = nr 3 ln 3 4 = nr 3 ln 2 1 (3.16b) (3.15) II (3.13b) γ = 3 γ 3 = 3 γ 3 /γ II W II 3 W II = 2 = 3 γ 3 γ 1 3 d = 1 γ γ 1 2 γ 3 3 γ d = 3 γ ] 3 3 [ 1 γ γ 1 = 2 = γ 1 = nr 3 nr 1 γ 1 (3.16c)

27 γ 3 = 2 γ 2 I W I W I = γ 1 = nr 1 nr 3 γ 1 = W II (3.16d) W (3.16a)-(3.16d) W = ( W I + W II + W III + W I ) = nr( 1 3 ) ln 2 1 (3.17) W Q 1 η W Q 1 (3.18) I Q 1 U 1 = Q 1 + W 1 U 1 = (3.16a) Q 1 = W 1 = nr 1 ln 2 1 > (3.19) (3.17) (3.19) (3.18) η Carnot = = (3.2) 1 1 Q 1 Q 1 W W Q 3 Q Q 1 W (3.17) (3.19) III Q 3 (3.19) Q 3 = W 3 = nr 3 ln 3 4 = nr 3 ln 2 1 > (3.21)

28 3 23 Q 1 = W Q 3 W

29 24 4 (i) ( ) (ii) 4.1 d Q ds (4.1) d'q ds S 1865 du = d Q + d W (4.2) du d W d Q d Q (4.1)

30 (4.1) (4.1) d Q ds = ds (4.2) = du = d Q + d W d Q = d W du W W d W = d Q W (4.1) 4.3 (4.1)

31 (4.2) B1 B3 = du = d Q + d W = d Q + d Q A 1 du A 3 1 A 1 B 1 B 3 Q Q 3 A 3 (4.1) A i B i ( j = 1, 2) = B1 B3 B1 B3 d Q + d Q 1 ds + 3 ds = 1 [S (B 1 ) S (A 1 )] + 3 [S (B 3 ) S (A 3 )] A 1 A 3 A 1 A 3 S (B 3 ) = S (A 1 ) S (A 3 ) = S (B 1 ) ( 1 3 )[S (B 1 ) S (A 1 )] (4.3a) 1 < Q = B1 B1 d Q 1 ds = 1 [S (B 1 ) S (A 1 )] A 1 A 1 S (B 1 ) S (A 1 ) > (4.3b) (4.3a) (4.3b) 1 3 (4.4) 4.4

32 Q 1 Q 1 W W Q 3 Q 3 3 Q 1 W Q 3 > W + Q 1 + Q 3 = η W Q 1 = Q 1 + Q 3 Q 1 = 1 Q 3 Q 1 (4.5a) W Q 3 Q 1 W Q W Q = Q 3 Q 3, W = W + W (4.5b) W = Q (4.5c) W (4.5d) (4.5d) (4.5c) (4.5b) W = Q = Q 3 Q 3 Q 3 Q 3 (4.5e) (4.5e) (4.5a) η 1 Q 3 Q 1 1 Q 3 Q 1 η (4.5f)

33 4 28 η η (4.5f) η = η 4.5 η Carnot = (4.6) (4.5f) η 1 Q 3 Q (4.7) K K = C K 1 3 Q 1 Q Q 3 Q (4.7) = Q Q < Q/ Q > K 4.6 (4.1)

34 4 29 (4.1) (4.7) Q 3 / Q / 1 Q 1 / 3 Q Q 3 3 (4.8) n (4.9) n j=1 Q j j (4.9) n n Q 1 Q 2 Q n 1 2 n Q 1 Q 2 Q n n n Q 1 Q 2 Q n E j ( j = 1, 2,, n) Q j j Q j Q j Q j (4.9) Q j + Q j j = Q j = Q j j j ( j = 1, 2,, n) Q j n E

35 4 3 Q Q = n Q j = j=1 W W = Q W n j=1 W = Q = n (4.9) (4.9) Q i n (4.9) lim n n j=1 Q j j = j=1 Q j j Q j j d Q d Q (4.1) (4.1) ds d Q (4.11) ds = (4.12) S (4.1) (reversible) (general) (R) B A(G) d Q B A(R) d Q A B (G)

36 4 31 (4.11) B A(G) d Q B A(R) ds (4.13) A B d Q ds 4.7 (a) Q 1 W Q 3 W 1 Q 1 Q Q 3 3 Q 3 Q 1 Q 3 1 Q 1 W 1 Q + Q 3 1 Q 3 3 (b) Q 1 W = Q 1 Q 3 Q 1 + Q 3 Q 3 (4.1)

37 (4.13) AB S (B) S (A) B A(G) d Q (4.14) (d Q = ) S (B) S (A) (4.15) S (B) S (A) (i) (ii) (4.1) d Q = ds d W = d (4.2) du = ds d ds = 1 du + d (4.16) 1/ / du d S

38 4 33 (i = 1, 2) U i i U = U 1 + U 2, = S = S 1 + S 2 U 1 1 U 2 2

39 d'q d'w du = d Q + d W (5.1a) U U+dU d Q ds (5.1b) du d W d Q d Q (5.1b) 5.2 (5.1b) (d Q = ds ) d W d d W = d (5.2) (5.1a) (5.1b) (5.2) du = ds d (5.3)

40 5 35 du ( ) ( ) = S S (5.4) (5.3) (, ) S = S (, ) ds = ( ) ( ) S S d + d ( S / ) ( S / ) (5.3) du = ( ) [ ( ) ] S S d + d du [ ] S (, ) = [ ] S (, ) (5.5a) (5.5b) 2 S (, ) = 2 S (, ) + S (, ) (, ) ( ) ( ) S = (5.6) (5.5b) d Q = ds C 1 n ( ) Q = ( ) S n n (5.5a) (5.5b) ds = n C d + [ du = nc d + ( ) d ( ) ] d (5.7) (5.8a) (5.8b)

41 5 36 C (, ) d = (, ) S (, ) U(, ) (5.8a) (5.8b) ( ) C = ( 2 ) n 2 = (, ) (5.9) C (, ) C = C (, ) = (, ) (5.9) (5.9) (5.5) ( S/ ) (5.6) = (, ) ( / ) 5.3 = nr (5.1) C C = (3/2)R C = (5/2)R (5.8a) (5.1) ds = n C d + nr d (5.11) C (, ) ( 1, 1 ) S ( 1, 1 ) = nc 1 d + nr 1 = nc ln 1 + nr ln 1 = nc ( ln 1 + R C ln 1 d + S (, ) + S (, ) = nc [ ln 1 + (γ 1) ln 1 = nc ln 1 γ S ( γ 1, ) ) + S (, ) ] + S (, ) ( R C = C C C = γ 1 )

42 5 37 ( 1, 1 ) (, ) S (, ) = nc ln γ 1 + S ( γ 1, ) = nc ln γ 1 + (5.12) γ 1 = = d Q = ds = nr (5.8b) ( ) U ( ) = nr = (5.13) U = U() (5.13) 19 - (5.13) (5.8b) du = nc d (5.14) 1 2 C U() = nc d + U( ) = nc ( ) + U( ) = nc + (5.15)

43 5 38 (5.13) S (5.11) (d = ) d S = nr 1 = nr ln > (5.16) (5.1b) d Q = ds (, ) (5.3) ds = 1 du + d (5.17) ( ) S = 1 ( ) S U, U = (5.18) U j = 1, 2 U j j U 1 + U 2 = U, = (5.19) S S j = S j (U j, j ) S = S 1 (U 1, 1 ) + S 2 (U 2, 2 ) (5.2)

44 5 39 (U j, j ) (U j, j ) (U j + δu j, j + δ j ) δ d (5.19) δu 1 + δu 2 =, δ 1 + δ 2 = (5.21) S S (δu j, δ j ) 2 [S j (U j + δu j, j + δ j ) S j (U j, j )] (5.22) j=1 2 ( ) ( ) S j S j = δu j + δ j U j=1 j j j U j 2 ( 1 = δu j + ) j δ j j=1 j j ( 1 = 1 ) ( 1 δu 1 + ) 2 δ 1 (5.23) (5.18) j j (5.19) (U, ) (5.21) (5.23) (δu 1, δ 1 ) 1 = 2, 1 = 2 (5.24) 1 2 S = S (U, ) (, )

45 4 6 du = d Q + d W (6.1a) d Q ds (6.1b) du d W d Q d Q (6.1b) (6.1b) d Q = (6.1b) ds (6.2)

46 (6.1a) (6.1b) d = d W = du + d Q du + ds = d(u S ) F U S (6.3) d W df (6.4) d W F F (6.3) U S d W = d = (6.4) df (6.5) F (6.4) (6.3) d W = d d = df + d W = df d = d(f + ) G F + (6.6) dg (6.7)

47 6 42 G G 6.2 (6.1a) (6.1b) d W = d du = ds d (6.8) U = U(S, ) = ( U/ S ) (6.3) S U S ( ) U, S F(, ) = U(S, ) S (6.9) F df = du d(s ) (6.8) d(s ) = ds + S d (, ) df = S d d (6.1) v L p L/ v H p v L 6.3 U = U(S, ) F = U S F U = U(S, ) du = ds d (6.11) ( ) ( ) U U =, = S S (6.12)

48 6 43 du ( ) ( ) = (6.13) S S (6.12) U 2 U(S, ) S = 2 U(S, ) S U = U(S, ) ( ) U, S H(S, ) = U(S, ) + (6.14) dh (6.11) d() = d + d dh = ds + d (6.15) ( ) ( ) H H =, = S S dh ( ) ( ) = S S (6.16) (6.17) U = U(S, ) ( ) U, F(, ) = U(S, ) S (6.18) S df (6.11) d(s ) = S d + ds df = S d d (6.19)

49 6 44 F = F(, ) S ( ) ( ) F F S =, = (6.2) df ( ) ( ) S = (6.21) du F = F(, ) ( ) F, G(, ) = F(, ) + (6.22) dg (6.19) d() = d + d dg = ds + d (6.23) G = G(, ) S G ( ) ( ) G G S =, = dg ( ) ( ) S = (6.24) (6.25)

50 W = 1 d 2 d = 1 ( 1 ) W U 2 U 1 U 2 U 1 = U = U H = U µ J ( ) H (6.26) H (6.15) dh = ds + d (6.27) ( ) ( ) S S ds = d + d = nc ( ) d d (6.28) C = ( S/ ) /n G (6.25) (6.27) [ dh = nc d + ( ) ] d d dh = (6.26) - ( ) ( ) µ J = (6.29) H nc

51 6 46 = (, ) - = nr/ µ J = nr nc = µ J -

52 47 7 H 2 O 7.1 du = ds d 1 1 N 1 N 2 2 N 2 du = ds d + µdn (7.1) dn ( ) U µ N S, (7.2) (7.1) ds = 1 du + d µ dn (7.3)

53 U N U 1 + U 2 = U, =, N 1 + N 2 = N (7.4a) (7.3) S (,, N) = S 1 ( 1, 1, N 1 ) + S 2 ( 2, 2, N 2 ) (7.4b) (U j, j, N j ) (U j, j, N j ) (U j + δu j, j + δ j, N j + δn j ) δ d (7.4a) δu 1 + δu 2 =, δ 1 + δ 2 =, δn 1 + δn 2 =, (7.5) S S 2 [S j (U j + δu j, j + δ j, N j + δn j ) S j (U j, j, N j )] (7.6) j=1 (δu j, δ j, δn j ) 2 ( ) ( ) ( ) S j S j S j = δu j + δ j + δn j U j=1 j j,n j j U j,n j N (7.3) j U j, j 2 ( 1 = δu j + j δ j µ ) j δn j (7.5) j=1 j j j ( 1 = 1 ) ( 1 δu 1 + ) ( 2 µ1 δ 1 µ ) 2 δn 1 (7.7) (δu 1, δ 1, δn 1 ) 1 = 2, 1 = 2 µ 1 = µ 2 (7.8) 1 2 S = S (U,, N) (,, µ)

54 G F + = U S + dg = S d + d + µdn (7.9) G (,, N) N (7.9) G (, ) x G x G(,, xn) = xg(,, N) (7.1) x N x xn G(,, N x ) N x dn x dx = G(,, N) x = 1 ( ) G N, N = G(,, N) (7.9) ( G/ N), = µ G = µn µ = G N (7.11) (7.11) dg = µdn + Ndµ (7.9) - S d + d Ndµ = dµ = S N d + d (7.12) N µ = µ(, ) ( ) µ = S ( ) µ N, = N (7.13)

55 (7.8) µ - (7.12) µ = µ(, ) µ 1 (, ) µ 2 (, ) = (7.14) + d + d µ 1 ( + d, + d) µ 2 ( + d, + d) = (7.14) d d [( ) ( ) ] [( ) ( ) ] µ1 µ2 µ1 µ2 d + d = (7.15) N A (7.13) ( S 1 S 2 )d + ( 1 2 )d = (7.16) S j j L 12 ( S 1 S 2 ) (7.17) - d d = L 12 ( 1 2 ) (7.18) dg = S d + d + µdn F G

56 7 51 df = S d d + µdn (7.19) F F N Ω ( ) F µ, Ω(,, µ) = F(,, N) µn (7.2) N, dω (7.19) d(µn) = Ndµ+µdN dω = S d d Ndµ (7.21) 7.6 j = 1,, 2, n α = 1, 2,, ν ν S = S α (U α, α, N α1,, N αn ) (7.22) α=1 (U α, α, N α j ) α j (U α, α, N α j ) (U α +δu α, α +δ α, N α j +δn α j ) S δs = ν S α = δu α + S n α S α δ α + δn α j U α=1 α α N j=1 α j ν 1 = δu α + n α µ α j δ α δn α j α α α (7.23) α=1 j=1

57 7 52 δu δ δn j ν δu α = α=1 ν δ α = α=1 (7.24a) (7.24b) ν δn α j = ( j = 1, 2,, n) (7.24c) α=1 (7.24a) (7.24b) (7.24c) λ U λ λ N j (7.23) ν ( ) ( ) 1 α + λ U ) δu α + + λ δ α α α α=1 n j=1 ( ) µα j λ N j δn α j α = (7.25) (δu α, δ α, δn α j ) 1 α = λ U α 1 α = λ α 1 µ α j = λ N j (7.23) (7.24) (7.25) 7.7 n ν f f = n ν + 2 (7.26) n 1 (number of variables) N v = ν(n 1) + 2 (7.27a)

58 7 53 j µ 1 j = µ 2 j = µ ν j (number of equations) N e = (ν 1)n (7.27b) (7.27a) (7.27b) f f = N v N e = ν n n = 1 (H 2 O) ν = 2 f = = 1 - n = 1 (H 2 O) ν = 3 f = =

59 54 8 d Q ds (d Q = d W = ) ds µ C n ( ) S >, κ 1 ( ) >, C > C, κ > κ S (8.1) κ κ S 8.1 S S f (x) x = x x x δx f (x + δx) f (x ) >

60 8 55 f (x + δx) x = x f (x )δx + 1 2! f (x )(δx) 2 + > δx f (x ) =, f (x ) > f (x, y) (x, y) = (x, y ) δx δy f (x + δx, y + δy) f (x, y ) > f (x + δx, y + δy) (x, y ) (x, y ) ( ) ( ) f f δx + δy + 1 {( 2 ) [( f (δx) 2 2 ) ( f 2 ) ] ( f 2 ) } f + + δxδy + (δy) 2 + > x y 2! x 2 x y y x y 2 ( 2 ) ( f 2 ) f ( ) ( ) f f δx + δy + 1 [ ] x 2 [ ] x y δx δx δy ( x y 2! 2 ) ( f 2 ) + > (8.2) f δy y x y 2 δx δy ( 2 ) f x 2 H ( 2 ) f y x ( ) ( ) f f = = x y ( 2 ) f x y ( 2 ) (8.3) f y 2 f H (Hessian matrix) (8.3) H ( 2 ) ( f 2 ) ( f 2 ) [( f 2 ) ] 2 f >, deth = > (8.4) x 2 x 2 y 2 x y

61 f (x, y) g(x, y) f ( f, g) (x, y) det x f y g x g y = f g x y f g y x (8.5a) ( f, g) (x, y) (u, v) ( f, g) (x, y) = ( f, g) (u, v) (x, y) (u, v) = f g u v f g v u x y u v x y v u (8.5b) 8.2 du = ds d ds = 1 du + d (8.6) ( ) S = 1 ( ) S U, U = (8.7) U j = 1, 2 U j j U 1 + U 2 = U, = (8.8) S S j = S j (U j, j ) S = S 1 (U 1, 1 ) + S 2 (U 2, 2 ) (8.9)

62 8 57 (U j, j ) (U j, j ) (U j + δu j, j + δ j ) δ d (8.8) δu 1 + δu 2 =, δ 1 + δ 2 = (8.1) S (U j, j ) 2 [ S j (U j + δu j, j + δ j ) + S j (U j, j )] > (8.11) j=1 δu j δ j (8.2) 2 ( ) ( ) S j S j 2 δu j + δ j U j=1 j j + 1 [ ] δu j δ j j U j 2! j=1 2 S j U 2 j 2 S j j U j 2 S j U j j 2 S j 2 j [ ] δu j + > δ j (8.12) (δu j, δ j ) (8.7) (8.1) δu 2 = δu 1 δ 2 = δ 1 2 ( ) ( ) S j S j 2 ( 1 = δu j + δ j U j j = δu j + ) ( j 1 δ j = 1 ) ( 1 δu 1 + ) 2 δ 1 j U j j j j=1 j=1 (δu 1, δ 1 ) 1 = 2 1 = 2 (8.12) (8.4) 2 S 2 S 2 S U >, det U 2 U >. (8.13) 2 2 S 2 S U 2 j = 1, 2 j (8.7) (8.13) ( U/ ) = nc 2 S U = ( ) ( ) S (1/) = 2 U U U 2 S = ( ) ( ) S (/) = 2 U = 1 ( ) = 1 1 ( 2 U 2 U U ) = ( ) 1 2 U = 1 nc 2 ( ) U (8.14a) (8.14b)

63 S U = ( ) ( ) S (1/) = U U = 1 ( ) 2 U ( / ) U ( / ) U (8.5) ( ) ( ) (, U) U U ( ) (, U) = U (, U) = (, ) = ( ) = (, U) U nc (, ) ( ) (, U) = U (, U) = (, U) (, ) (, U) (, ) = ( ) ( ) U ( U ( ) ) ( ) U = ( ) ( ) nc (8.14c) (8.15a) ( ) U (8.15b) (8.14b) (8.14c) ( U/ ) = ( / ) ( ) ( ) ( ) U U 2 S = 1 ( ) 2 2 nc nc = 1 ( ) + 1 nc 2 ( ) [ U ( ) ] = 1 2 S U = 1 ( ) = 1 2 U nc 2 ( ) + ( ) U (8.12) 2 S 2 S U det 2 U = 2 S 2 [ S 2 ] 2 2 S U 2 S 2 U U 2 S 2 = 1 nc 2 = 1 nc 3 = 1 nc 3 1 ( ) ( ) 1 1 ( ) + 1 nc 2 1 nc 2 [( ) ] 2 [ U [( ) ] 2 U (8.16a) 1 nc 2 (8.16b) ( ) ] 2 U (8.17) (8.14a) (8.17) (8.12) > C >, κ 1 ( ) > (8.18) κ

64 (8.5) C > C C = C + R n ( ) ( ) n S S (C (S, ) (S, ) C ) = = (, ) (, ) = = = ( ) S [( ) ( ) ( ) ] 2 ( ( S ) ) ( ) ( ) S = (S, ) (, ) (, ) (, ) (S, ) (, ) ( ) ( ) S ( ) ( ) S df = S d d = ( ) [( ) = ( ) ] 2 [( ) ] 2 = κ > (8.19) κ (8.18) C > C ( ) > ( ) S ( / S ) > ( / S ) C > C κ > κ S

65 8 6 (κ κ S ) = = ( ) ( ) = nc ( ) S = ( ) ( ) S [( ) ( S / ) = nc / κ (, ) (, ) (, S ) (, ) = (, S ) (, ) ( ) ) ( S ( ) S dg = S d + d (, S ) (, ) (, S ) (, ) ( ) S ( ) = ( ) S ( ) S = ( ) ] 2 < (8.2) > κ S ( ) S > ( ) 1/( ) S < 1/( ) > < 1/( ) S < 1/( ) / > 1 ( / ) S < 1 ( / ) κ S < κ

66 ds = d Q (9.1) d Q 1 S (, α) = S (, α) + (9.2) 1 α, S (, α) F = U S = U d Q 1 1 S (, α) S (, α) 195 F G

67 C α = n ( ) S α α =, n/ S ( = ) = S (, α) = C α ( 1 ) 1 d 1 C α () ν ν > D 1K Nk B R 3R C/3Nk B / D α α 1 ( ) (, ) dg = S d + d α 1 ( ) = 1 ( ) S (9.3)

68 ( ) (9.4) (, ) df = S d d ( ) ( ) S =

69 (a) nb (1.1a) n b (b)

70 1 65 N/ N n = nr = nr a ( n a ( n ) 2 + a (1.1b) = nr (1.1) [ ( n ) 2 ] + a ( nb) = nr (1.2) ) = (, ) ( ) ( 2 ) = = c 2 ( c, c, c ) c (1.3) = nr/ (1.3) (1.2) c = nr c c nb a n2 2 c (1.4a) = = ( ) = nr c n2 + 2a c ( c nb) 2 c 3 ( 2 ) 2 c nr c n2 = 2 6a ( c nb) 3 c 4 (1.4b) (1.4c) (1.4) ( c, c, c ) (1.4b) 2/( c nb) (1.4c) ( 2a n2 2 c 3 c nb 3 ) = c

71 1 66 c = 3nb (1.5a) (1.4b) c c = 2an2 3 c ( c nb) 2 nr = 2an2 27(nb) 3 4(nb) 2 nr = 8a 27bR (1.4a) c c = nr 2nb 8a 27bR a n2 9(nb) = 2 a 27b 2 (1.5b) (1.5c) (a, b) n R ( c, c, c ) = ( 3nb, a 27b 2, ) 8a 27bR (1.6a) 1 nr/ nr c c c = 8 3 = 2.67 (1.6b) 1 nr c / c c nr c / c c c ( C) c (atm) N/ c (g/cm 3 ) nr c / c c H 2 O O He nr c / c c 188 (,, ) = ( c r, c r, c r ) (1.7) ( r, r, r ) (1.6a) (1.7) (1.2) ( a 27b n 2 2 r + a 9n 2 b 2 r 2 ) (3nb r nb) = nr 8a 27bR r ( r + 3 ) ( r 2 r 1 ) = r (1.8) ( c, c, c ) ( r, r, r )

72 1 67 r = r ( r,,r ) ( r,,r, r ) = (1, 1, 1) r < 1 r 1 r < 1 r = r ( r ) κ 1 ( ) r r (1.8) K 1.3 S U ds du ds = nc ( ) d + d (1.9a) [ du = nc d + ( ) ] d (1.9b) (1.2) = nr nb a n2 2 ( ) = nr nb (1.1a) (1.1b)

73 1 68 (1.1) (1.9) ds = nc d + nr nb d (1.11a) du = nc d + a n2 2 d (1.11b) (1.11a) (1.11b) ( ) C = (1.12) C = C () (1.11) C ( 1 ) S = n d 1 + nr ln( nb) + (1.13a) 1 U = n C ( 1 )d 1 a n2 + (1.13b) c = (, ) B D ( / ) > B C D κ 1 ( / ) A B C D E = A A E A B E A C D - A E A - (, ) ABC CDE A A B C D E A S U d Q = U, = S = ds = = 1 d Q = Q

74 1 69 W = W = d = (ABC ) (CDE ) ( 1 > 2 ) µ J ( ) = H ( ) ( = ) nc nc ( ) (1.14) µ J > µ J = (boundary) = () r = 3 8 ( r + 3 ) ( r 2 r 1 ) 3 (1.15) r ( ) = = 3 {( + 3 ) ( 1 ) [ 6 ( 1 ) + ( + 3 )]} = 3 [ 1 ( + 3 ) + 6 ( 1 )] = = () () = 9 ± 9(9 ) (1.16)

75 1 7 (1.15) = () µ J > (, ) r µ > r

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2 3 3.1 ( 1 m d2 x(t dt 2 = kx(t k = (3.1 d 2 x dt 2 = ω2 x, ω = x(t = 0, ẋ(0 = v 0 k m (3.2 x = v 0 ω sin ωt (ẋ = v 0 cos ωt (3.3 E = 1 2 mẋ2 + 1 2 kx2 = 1 2 mv2 0 cos 2 ωt + 1 2 k v2 0 ω 2 sin2 ωt = 1

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

Acrobat Distiller, Job 128

Acrobat Distiller, Job 128 (2 ) 2 < > ( ) f x (x, y) 2x 3+y f y (x, y) x 2y +2 f(3, 2) f x (3, 2) 5 f y (3, 2) L y 2 z 5x 5 ` x 3 z y 2 2 2 < > (2 ) f(, 2) 7 f x (x, y) 2x y f x (, 2),f y (x, y) x +4y,f y (, 2) 7 z (x ) + 7(y 2)

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2 1 1 2 2 2 1 1 P F ext 1: F ext P F ext (Count Rumford, 1753 1814) 0 100 H 2 O H 2 O 2 F ext F ext N 2 O 2 2 P F S F = P S (1) ( 1 ) F ext x W ext W ext = F ext x (2) F ext P S W ext = P S x (3) S x V V

More information

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 { 7 4.., ], ], ydy, ], 3], y + y dy 3, ], ], + y + ydy 4, ], ], y ydy ydy y y ] 3 3 ] 3 y + y dy y + 3 y3 5 + 9 3 ] 3 + y + ydy 5 6 3 + 9 ] 3 73 6 y + y + y ] 3 + 3 + 3 3 + 3 + 3 ] 4 y y dy y ] 3 y3 83 3

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

2014 S hara/lectures/lectures-j.html r 1 S phone: , 14 S1-1+13 http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r 1 S1-1+13 14.4.11. 19 phone: 9-8-4441, e-mail: hara@math.kyushu-u.ac.jp Office hours: 1 4/11 web download. I. 1. ϵ-δ 1. 3.1, 3..

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

現代物理化学 2-1(9)16.ppt

現代物理化学 2-1(9)16.ppt --- S A, G U S S ds = d 'Q r / ΔS = S S = ds =,r,r d 'Q r r S -- ds = d 'Q r / ΔS = S S = ds =,r,r d 'Q r r d Q r e = P e = P ΔS d 'Q / e (d'q / e ) --3,e Q W Q (> 0),e e ΔU = Q + W = (Q + Q ) + W = 0

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r 2 1 (7a)(7b) λ i( w w ) + [ w + w ] 1 + w w l 2 0 Re(γ) α (7a)(7b) 2 γ 0, ( w) 2 1, w 1 γ (1) l µ, λ j γ l 2 0 Re(γ) α, λ w + w i( w w ) 1 + w w γ γ 1 w 1 r [x2 + y 2 + z 2 ] 1/2 ( w) 2 x2 + y 2 + z 2

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

応力とひずみ.ppt

応力とひずみ.ppt in yukawa@numse.nagoya-u.ac.jp 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

notekiso1_09.dvi

notekiso1_09.dvi 39 3 3.1 2 Ax 1,y 1 Bx 2,y 2 x y fx, y z fx, y x 1,y 1, 0 x 1,y 1,fx 1,y 1 x 2,y 2, 0 x 2,y 2,fx 2,y 2 A s I fx, yds lim fx i,y i Δs. 3.1.1 Δs 0 x i,y i N Δs 1 I lim Δx 2 +Δy 2 0 x 1 fx i,y i Δx i 2 +Δy

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r) ( : December 27, 215 CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x f (x y f(x x ϕ(r (gradient ϕ(r (gradϕ(r ( ϕ(r r ϕ r xi + yj + zk ϕ(r ϕ(r x i + ϕ(r y j + ϕ(r z k (1.1 ϕ(r ϕ(r i

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1

September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1 September 25, 2017 1 1.1 1.2 p = nr = 273.15 + t : : K : 1.3 1.3.1 : e.g. 1.3.2 : 1 intensive variable e.g. extensive variable e.g. 1.3.3 Equation of State e.g. p = nr X = A 2 2.1 2.1.1 Quantity of Heat

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( ) 2 9 2 5 2.2.3 grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = g () g () (3) grad φ(p ) p grad φ φ (P, φ(p )) y (, y) = (ξ(t), η(t)) ( ) ξ (t) (t) := η (t) grad f(ξ(t), η(t)) (t) g(t) := f(ξ(t), η(t))

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

2013 25 9 i 1 1 1.1................................... 1 1.2........................... 2 1.3..................................... 3 1.4..................................... 4 2 6 2.1.................................

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0 2010 II 6 10.11.15/ 10.11.11 1 1 5.6 1.1 1. y = e x y = log x = log e x 2. e x ) = e x 3. ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0 log a 1 a 1 log a a a r+s log a M + log a N 1 0 a 1 a r

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30 2.4 ( ) 2.4.1 ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) I(2011), Sec. 2. 4 p. 1/30 (2) Γ f dr lim f i r i. r i 0 i f i i f r i i i+1 (1) n i r i (3) F dr = lim F i n i r i. Γ r i 0 i n i

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

( ) Loewner SLE 13 February

( ) Loewner SLE 13 February ( ) Loewner SLE 3 February 00 G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005)., Summer School 009 (009 8 7-9 ) . d- (BES d ) d B t = (Bt, B t,, Bd t ) (d

More information

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y 017 8 10 f : R R f(x) = x n + x n 1 + 1, f(x) = sin 1, log x x n m :f : R n R m z = f(x, y) R R R R, R R R n R m R n R m R n R m f : R R f (x) = lim h 0 f(x + h) f(x) h f : R n R m m n M Jacobi( ) m n

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

2009 June 8 toki/thermodynamics.pdf ) 1

2009 June 8   toki/thermodynamics.pdf ) 1 2009 June 8 http://www.rcnp.osaka-u.ac.jp/ toki/thermodynamics.pdf 1 6 10 23 ) 1 H download 2 http://www.rcnp.osaka-u.ac.jp/ toki/thermodynamics.pdf 2 2.1 [1] [2] [3] Q = mc (1) C gr Q C = 1cal/gr deg

More information

1 B () Ver 2014 0 2014/10 2015/1 http://www-cr.scphys.kyoto-u.ac.jp/member/tsuru/lecture/... 1. ( ) 2. 3. 3 1 7 1.1..................................................... 7 1.2.............................................

More information

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k 7 b f n f} d = b f n f d,. 5,. [ ] ɛ >, n ɛ + + n < ɛ. m. n m log + < n m. n lim sin kπ sin kπ } k π sin = n n n. k= 4 f, y = r + s, y = rs f rs = f + r + sf y + rsf yy + f y. f = f =, f = sin. 5 f f =.

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

1 2 1 No p. 111 p , 4, 2, f (x, y) = x2 y x 4 + y. 2 (1) y = mx (x, y) (0, 0) f (x, y). m. (2) y = ax 2 (x, y) (0, 0) f (x,

1 2 1 No p. 111 p , 4, 2, f (x, y) = x2 y x 4 + y. 2 (1) y = mx (x, y) (0, 0) f (x, y). m. (2) y = ax 2 (x, y) (0, 0) f (x, No... p. p. 3, 4,, 5.... f (, y) y 4 + y. () y m (, y) (, ) f (, y). m. () y a (, y) (, ) f (, y). a. (3) lim f (, y). (,y) (,)... (, y) (, ). () f (, y) a + by, a, b. + y () f (, y) 4 + y + y 3 + y..3.

More information

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx 1 1 1 1 1. U(x, t) U(x, t) + c t x c, κ. (1). κ U(x, t) x. (1) 1, f(x).. U(x, t) U(x, t) + c κ U(x, t), t x x : U(, t) U(1, t) ( x 1), () : U(x, ) f(x). (3) U(x, t). [ U(x, t) Re u k (t) exp(πkx). (4)

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

Fubini

Fubini 3............................... 3................................ 5.3 Fubini........................... 7.4.............................5..........................6.............................. 3.7..............................

More information

6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1

6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1 6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) (e) Γ (6.2) : Γ B A R (reversible) 6-1 (e) = Clausius 0 = B A: Γ B A: Γ d Q A + d Q (e) B: R d Q + S(A) S(B) (6.3) (e) // 6.2 B A: Γ d Q S(B) S(A) = S (6.4) (e) Γ (6.5)

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b. 2009 7 9 1 2 2 2 3 6 4 9 5 14 6 18 7 23 8 25 9 26 10 29 11 32 12 35 A 37 1 B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t),

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

: α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ

: α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ 17 6 8.1 1: Bragg-Brenano x 1 Bragg-Brenano focal geomer 1 Bragg-Brenano α α 1 1 α < α < f B α 3 α α Barle 1. 4 α β θ 1 : α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ Θ θ θ Θ α, β θ Θ 5 a, a, a, b, b, b

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information