<4D F736F F D B4389F D985F F4B89DB91E88250>

Size: px
Start display at page:

Download "<4D F736F F D B4389F D985F F4B89DB91E88250>"

Transcription

1 電気回路理論 II 演習課題 H 図 の回路で =0 で SW を on 接続 とする時 >0 での i, 並びに を求め 図示しなさい ただし <0 で i=0 とする. 図 の回路で =0 で SW を on とする時 >0 での i, 並びに を求めなさい ただし <0 で =Q0 >0 とする 3. 図 3の回路で =0 で SW を下向きに瞬時に切り替える時 >0 での i, 並びに を求め の関数として求めなさい ただし <0 で =0 とする また >0 で に蓄積されているエネルギー W を時間の関数として求めなさい 4. 図 4の回路で =0 で SW を下向きに瞬時に切り替える時 >0 での i, 並びに を求め の関数として図示しなさい ただし <0 で =0 とする また >0 で に蓄積されているエネルギー W を時間の関数として求め 図示しなさい

2 電気回路理論 II 演習課題 答え H 回路の方程式は di d i で与えられ この微分方程式の一般解は i cxp で与えられる ここで c は未定係数である 初期条件は 0 で i=0 であるから i { xp } となり これよ り i { xp } di d xp 波形は 右図の通り 図中 = I = である. 回路の方程式は d d で与えられ この微分方程式の一般解は cxp で与えられる ここで c は未定係数である 初期条件は 0 で =Q0 であるから Q0 xp となり これより Q0 xp i d d Q xp i Q0 xp 0 3. 回路の方程式は di d i 0 で与えられ この微分方程式の一般解は i cxp で与えられる ここで c は未定係数である 初期条件は 0 で =0 であるから = 即ち i= である これより i xp となり i xp, di d xp また に蓄えられてい るエネルギーは W i xp で与えられる 4. 回路の方程式は d d 0 で与えられ この微分方程式の一般解は cxp で与えられる ここで c は未定係数である 初期条件は 0 で =0 であるから = 即ち = である これより xp となり i d d xp xp i xp また に蓄えられているエネルギー は W xp で与えられる 波形は右図の通り 図中 Q0= W0= = である なお i= - なので 図から省略している

3 電気回路理論 II 演習課題 H 図 の回路で =0 で SW を上向きとし =T で SW を再び下向きとする この時 >0 での を求めなさい また = が T より充分に小さい場合 ほぼ等しい場合 T より充分に大きい場合に分けて の概要を の関数として図示しなさい ただし <0 で =0 とする 図. 図 の回路で =0 で SW を上向きとし =T で SW を再び下向きとする この時 >0 での を求めなさい また = が T より充分に小さい場合 ほぼ等しい場合 T より充分に大きい場合に分けて の概要を の関数として図示しなさい ただし <0 で に蓄積された電荷 は零とする 図 3. 図 3の回路で =0 で SW を on とした それ以降での 両端の電圧 c を求めなさい ただし <0 で に蓄積されている電荷をそれぞれ Q 0 とする 図 3

4 電気回路理論 II 演習課題 解答 H xp. xp T xp{ T } 以下に示す T =0.T T 0T の場合の計算結果を T xp. { xp T }xp{ T } を以下に示す T =0.T T 0T の場合の計算結果 T 3. 系を支配する方程式は d d であるから を消去する と d d となる ただし SW を入れた瞬間に と の両端の電圧 が等しくなるように と の間に電流が流れる 即ち Q の条件から =0 + で Q となるから これより >0 では Q xp{ } が得られ c Q xp{ }

5 電気回路理論 II 演習課題 3 H 図 の回路で =0 で SW を on とし その後 =T で SW を off とした時 >0 での 両端の電圧 を求めなさい ただし <0 でインダクタを流れる電流 i は 0 とする 図. 図 の回路で =0 で SW を on とした時 >0 での 両端の電圧 並びに回路を流れる電流 i を求めなさい ただし <0 でコンデンサ上部電極上の電荷 は 0 とする また を適当な値に設定すれば SW on した際の過渡応答は発生しない その条件を求めなさい 図 3. 図 3の回路で =0 で SW を on とした時 >0 での 両端の電圧 を求めなさい ただし <0 で回路を流れる電流 i は 0 とする また 通常 SW を off した際に SW 両端に放電 スパーク が発生するが 適当な >0 で SW を off した場合に限り スパークが発生しない その様な を与える条件式を示しなさい 図 3 4. 図 4の回路で =0 で SW を on その後 =T >0 で SW off とした時 >0 での 両端の電圧 を求めなさい ただし <0 で回路を流れる電流 i は 0 とする 図 4

6 電気回路理論 II 演習課題 3 答え H SW on での定常解は in xp Im で与えられる ここで an である これより 0<<T では xp in in 一方 >T では T T T xp xp in in 0.SW on での定常解は in } xp{ Im co } xp{ Im で与えられる ここで an である =0 で c=0 であるから xp in in 従って xp in co で与えられる この結果より 過渡現象が発生しない条件 in=0 即ち n で与えられる ここで n は整数である 3.SW on での定常解は in } xp{ Im で与えられる ここで an である これより >0 では xp in in スパークは SW off 時にも i が連続であることが要請されることに起因している このため i=0 =0 となる瞬間に SW を off とすればスパークは発生しない 上式より その条件は次式で与えられる xp in in 4.SW on 状態での定常解は I S で与えられる このため 0<<T では S S xp I で与えられる 一方 >T では } xp{ xp S S T T I

7 電気回路理論 II 演習課題 4 H 図 の回路で =0 で SW on とした この時 >0 での 両端の電圧 を求めなさい ただし <0 でコンデンサ上部電極上の電荷 とインダクタを流れる電流 i は 0 とする また 重根の場合とそうでない場合を分けて記載すること 図. 図 の回路で =0 で SW を off とした時 >0 での 両端の電圧 を求めなさい ただし =0 の時点では SW on から大部時間が経過しており 過渡応答は終了していると仮定する また =4 とする 図 3. 図 3の回路で =0 で SW を off とした時 >0 での 両端の電圧 を求めなさい ただし =0 の時点では SW on から大部時間が経過しており 過渡応答は終了していると仮定する また =an - とし <4 とする 図 3

8 電気回路理論 II 演習課題 4 答え H SW on 後の一般解は a xp a xp, i d d で与えられる ここ で 4 で a は初期条件により定まる定数である 初期条件は a a, a a 0 より 0 i 0 が連続なことである すなわち 0 0 a これより d d a xp a xp xp xp 一方 重根の場合 =4 a bxp, i d d で与えられる ここで で a, b は初期条件により定まる定数である 初期条件は 0 i 0 より a b a 0 d d bxp a bxp 以上より xp 0.<0 での解は i で与えられる 一方 >0 での一般解は a bxp, i d d で与えられる ここで で a, b は初期条件により定まる定数である 初期条件は i 0 が連続なことである これより a b 0 となるので 最終的に i [ b a b]xp [ ]xp xp 3. <0 の解は in, i in で与えられる ここで =an - である 一方 >T での一般解は a xp a xp, i d d で与えられる ここで 4 で a は初期条件により定まる定数 である 初期条件は in i in 0 0 が連続なことである が この問題ではであるから a in 従って 最終的に次式 d in i a xp a xp xp xp d

9 電気回路理論 II 演習課題 5 H 図 の回路で SW を下向きとし 十分時間が経過した後に =0 で SW を再び上向きとした この時 >0 での を求めなさい ただし =4 とする 図. 図 の回路で =0 で SW on 上側 とし =T で SW off 下側 とした時の 両端の電圧 を ラプラス変換を利用して求めなさい ただし =0 で i=0 とする 図 3. 図 3の回路で =0 で SW on とした この時のコンデンサ 上部電極の電荷 を ラプラス変換を利用して求めなさい ただし =0 で =Q0 i=0 とする ただし 4 とする 図 3

10 電気回路理論 II 演習課題 5 解答 H >0 での微分方程式は di i d i であるから このラプラス変換は d d Q I i I 0 I Q 0 となる これを整理すると i 0 0 I ただし i 0 0 であり =4 なので i i I となり これより xp i. xp T I I から xp T { xp T } - これより xp u xp{ T } u T di d 3. i i から これらをラプラス変換すると d d Q [ I I0] I I Q Q0 となる ただし I0=0 である これよ 4 り Q Q0 を定義すれば Q Q0 Q0 Q0 であるから >0 で Q0 xp Q0 xp

11 電気回路理論 II 演習課題 6 H 図 の回路で =0 で SW を off とした時 >0 での 両端の電圧 をラプラス変換を利用して求めなさい ただし =0 の時点では SW on から大部時間が経過しており 過渡応答は終了していると仮定する また =4 とする 図. 図 の回路で =0 + でスイッチを閉じた ON, における上部電極上の電荷, とする時 >0 での をラプラス変換を利用して求めなさい ただし =0 - での, をそれぞれ 0, 0 とする 図 3. 図 3の回路で =0 で SW on とした この時 >0 での をラプラス変換を利用して求めなさい ただし =0 で =0 で に蓄積された電荷 を 0 とする 図

12 電気回路理論 II 演習課題 6 解答 H i d di d d i i であるから これをラプラス変換すると 0] [ I i I Q ] 0 [ Q I I となる i0= 0= であるから 0 0 i さらに =4 であるから であり この逆変換は xp で与えられる. i d d i 0 0 であるから これをラプラス変換すると 0] [ Q Q Q Q Q 0 0 となる これを整理すると Q であるから ラプラス逆変換より xp 3. i id in i であるから これをラプラス変換すると これを逆変換すると an co xp

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

s とは何か 2011 年 2 月 5 日目次へ戻る 1 正弦波の微分 y=v m sin ωt を時間 t で微分します V m は正弦波の最大値です 合成関数の微分法を用い y=v m sin u u=ωt と置きますと dy dt dy du du dt d du V m sin u d dt

s とは何か 2011 年 2 月 5 日目次へ戻る 1 正弦波の微分 y=v m sin ωt を時間 t で微分します V m は正弦波の最大値です 合成関数の微分法を用い y=v m sin u u=ωt と置きますと dy dt dy du du dt d du V m sin u d dt とは何か 0 年 月 5 日目次へ戻る 正弦波の微分 y= in を時間 で微分します は正弦波の最大値です 合成関数の微分法を用い y= in u u= と置きますと y y in u in u (co u co になります in u の は定数なので 微分後も残ります 合成関数の微分法ですので 最後に u を に戻しています 0[ra] の co 値は [ra] の in 値と同じです その先の角

More information

Microsoft PowerPoint - ›žŠpfidŠÍŁÏ−·“H−w5›ñŒÚ.ppt

Microsoft PowerPoint - ›žŠpfidŠÍŁÏ−·“H−w5›ñŒÚ.ppt 応用電力変換工学舟木剛 第 5 回本日のテーマ交流 - 直流変換半端整流回路 平成 6 年 月 7 日 整流器 (cfr) とは 交流を直流に変換する 半波整流器は 交直変換半波整流回路 小電力用途 入力電源側の平均電流が零にならない あんまり使われていない 全波整流回路の基本回路 変圧器が直流偏磁しやすい 変圧器の負荷電流に直流分を含むと その直流分により 鉄心が一方向に磁化する これにより 鉄心の磁束密度の増大

More information

Microsoft PowerPoint - H22制御工学I-2回.ppt

Microsoft PowerPoint - H22制御工学I-2回.ppt 制御工学 I 第二回ラプラス変換 平成 年 4 月 9 日 /4/9 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し

More information

Microsoft PowerPoint - H22パワエレ第3回.ppt

Microsoft PowerPoint - H22パワエレ第3回.ppt パワーエレトクロニクス ( 舟木担当分 ) 第三回サイリスタ位相制御回路逆変換動作 平成 年 月 日月曜日 限目 誘導負荷 位相制御単相全波整流回路 導通期間 ( 点弧角, 消弧角 β) ~β( 正の半波について ) ~ β( 負の半波について ) β> となる時に連続導通となる» この時, 正の半波の導通期間は~» ダイオードでは常に連続導通 連続導通と不連続導通の境界を求める オン状態の微分方程式

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://orito-buturi.com/ NO.3 今日の目的 : 1 微分方程式をもう一度 三角関数の近似について学ぶ 3 微分の意味を考える 5. 起電力 の電池, 抵抗値 の抵抗, 自己インダクタンス のコイルとスイッチを用いて右図のような回路をつくった 始めスイッチは 開かれている 時刻 t = でスイッチを閉じた 以下の問に答えよ ただし, 電流はコイルに

More information

微分方程式による現象記述と解きかた

微分方程式による現象記述と解きかた 微分方程式による現象記述と解きかた 土木工学 : 公共諸施設 構造物の有用目的にむけた合理的な実現をはかる方法 ( 技術 ) に関する学 橋梁 トンネル ダム 道路 港湾 治水利水施設 安全化 利便化 快適化 合法則的 経済的 自然および人口素材によって作られた 質量保存則 構造物の自然的な性質 作用 ( 外力による応答 ) エネルギー則 の解明 社会的諸現象のうち マスとしての移動 流通 運動量則

More information

Microsoft Word - 付録1誘導機の2軸理論.doc

Microsoft Word - 付録1誘導機の2軸理論.doc NAOSIE: Nagaaki Univity' Ac itl パワーエレクトロニクスと電動機制御入門 Autho( 辻, 峰男 Citation パワーエレクトロニクスと電動機制御入門 ; 15 Iu Dat 15 U http://hl.hanl.nt/169/55 ight hi ocumnt i ownloa http://naoit.lb.nagaaki-u.ac.jp 付録 1 誘導機の

More information

s と Z(s) の関係 2019 年 3 月 22 日目次へ戻る s が虚軸を含む複素平面右半面の値の時 X(s) も虚軸を含む複素平面右半面の値でなけれ ばなりません その訳を探ります 本章では 受動回路をインピーダンス Z(s) にしていま す リアクタンス回路の駆動点リアクタンス X(s)

s と Z(s) の関係 2019 年 3 月 22 日目次へ戻る s が虚軸を含む複素平面右半面の値の時 X(s) も虚軸を含む複素平面右半面の値でなけれ ばなりません その訳を探ります 本章では 受動回路をインピーダンス Z(s) にしていま す リアクタンス回路の駆動点リアクタンス X(s) と Z の関係 9 年 3 月 日目次へ戻る が虚軸を含む複素平面右半面の値の時 X も虚軸を含む複素平面右半面の値でなけれ ばなりません その訳を探ります 本章では 受動回路をインピーダンス Z にしていま す リアクタンス回路の駆動点リアクタンス X も Z に含まれます Z に正弦波電流を入れた時最大値 抵抗 コイル コンデンサーで作られた受動回路の ラプラスの世界でのインピーダンスを Z とします

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://oritobuturi.co/ NO.5(009..16) 今日の目的 : 1 物理と微分 積分について 微分方程式について学ぶ 3 近似を学ぶ 10. 以下の文を読み,[ ア ]~[ ク ] の空欄に適当な式をいれよ 物体物体に一定の大きさの力を加えたときの, 物体の運動について考え よう 右図のように, なめらかな水平面上で質量 の物体に水平に一定の大きさ

More information

1 演習 :3. 気体の絶縁破壊 (16.11.17) ( レポート課題 3 の解答例 ) ( 問題 3-4) タウンゼントは平行平板電極間に直流電圧を印加し, 陰極に紫外線を照射して電流 I とギ ャップ長 d の関係を調べ, 直線領域 I と直線から外れる領域 II( 図 ) を見出し, 破壊前前駆電流を理論的 に導出した 以下の問いに答えよ (1) 領域 I における電流 I が I I expd

More information

Taro-F25理論 印刷原稿

Taro-F25理論 印刷原稿 第 種理論 A 問題 ( 配点は 問題当たり小問各 点, 計 0 点 ) 問 次の文章は, 真空中の静電界に関する諸法則の微分形に関する記述である 文中の に当てはまるものを解答群の中から選びなさい 図のように, 直交座標系において電界の z 軸成分が零となるような電界について, y 平面の二次元で電位や電界を考える ここで,4 点 (h,0),(0,h), (- h,0),(0,-h) の電位がそれぞれ

More information

1 (1) X = AB + AB, Y = C D + C D, Z = AD + AD P A, B, C, D P = (XY + X Y + X Y )(Y Z + Y Z + Y Z )(ZX + Z X + Z X ) (2) Q A, B, C, D Q = AB C D + AB C

1 (1) X = AB + AB, Y = C D + C D, Z = AD + AD P A, B, C, D P = (XY + X Y + X Y )(Y Z + Y Z + Y Z )(ZX + Z X + Z X ) (2) Q A, B, C, D Q = AB C D + AB C 平成 28 年度 10 月期入学 / 平成 29 年度 4 月期入学京都大学大学院情報学研究科修士課程システム科学専攻入学者選抜試験問題 専門科目 試験日時 : 平成 28 年 8 月 8 日 ( 月 ) 午後 1 時 00 分より同 4 時 00 分 問題冊子頁数 ( 表紙 中表紙 裏表紙を除いて ): 15 頁 選択科目 : 下記の科目のうち 2 科目を選択し解答すること 注意 : 論理回路 (3)

More information

第1章 様々な運動

第1章 様々な運動 自己誘導と相互誘導 自己誘導 自己誘導起電力 ( 逆起電力 ) 図のように起電力 V V の電池, 抵抗値 R Ω の抵抗, スイッチS, コイルを直列につないだ回路を考える. コイルに電流が流れると, コイル自身が作る磁場による磁束がコイルを貫く. コイルに流れる電流が変化すると, コイルを貫く磁束も変化するのでコイルにはこの変化を妨げる方向に誘導起電力が生じる. この現象を自己誘導という. 自己誘導による起電力は電流変化を妨げる方向に生じるので逆起電力とも呼ばれる.

More information

Microsoft PowerPoint - パワエレH20第4回.ppt

Microsoft PowerPoint - パワエレH20第4回.ppt パワーエレトクロニクス ( 舟木担当分 ) 第 4 回 サイリスタ変換器 ( 相ブリッジ ) 自励式変換器 平成 年 7 月 7 日月曜日 限目 位相制御単相全波整流回路 転流重なり角 これまでの解析は交流電源の内部インピーダンスを無視 考慮したらどうなるか? 電源インピーダンスを含まない回路図 点弧時に交流電流は瞬時に反転» 概念図 電源インピーダンスを含んだ回路図 点弧時に交流電流は瞬時に反転できない»

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

喨微勃挹稉弑

喨微勃挹稉弑 == 全微分方程式 == 全微分とは 変数の関数 z=f(, ) について,, の増分を Δ, Δ とするとき, z の増分 Δz は Δz z Δ+ z Δ で表されます. この式において, Δ 0, Δ 0 となる極限を形式的に dz= z d+ z d (1) で表し, dz を z の全微分といいます. z は z の に関する偏導関数で, を定数と見なし て, で微分したものを表し, 方向の傾きに対応します.

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション PID 制御の基礎 ON/OFF 制御 PID 制御 P 制御 過渡特性を改善しよう PD 制御と P-D 制御 定常特性を改善しよう PI-D 制御 4.2 節 I-PD 制御 角度制御実験装置 0 [deg] 30 [deg] 角度制御実験装置 目標値 コントローラ ( マイコン ) アクチュエータ (DC モータ ) 制御対象 ( アーム ) 角度 センサ ( ロータリエンコーダ ) ON/OFF

More information

PowerPoint Presentation

PowerPoint Presentation 応用数学 Ⅱ (7) 7 連立微分方程式の立て方と解法. 高階微分方程式による解法. ベクトル微分方程式による解法 3. 演算子による解法 連立微分方程式 未知数が複数個あり, 未知数の数だけ微分方程式が与えられている場合, これらを連立微分方程式という. d d 解法 () 高階微分方程式化による解法 つの方程式から つの未知数を消去して, 未知数が つの方程式に変換 のみの方程式にするために,

More information

高校電磁気学 ~ 電磁誘導編 ~ 問題演習

高校電磁気学 ~ 電磁誘導編 ~ 問題演習 高校電磁気学 ~ 電磁誘導編 ~ 問題演習 問 1 磁場中を動く導体棒に関する問題 滑車 導体棒の間隔 L m a θ (1) おもりの落下速度が のとき 導体棒 a に生じる誘導起電力の 大きさを求めよ 滑車 導体棒の間隔 L m a θ 導体棒の速度 水平方向の速度 cosθ Δt の時間に回路を貫く磁束の変化 ΔΦ は ΔΦ = ΔS = LcosθΔt ΔΦ ファラデーの法則 V = N より

More information

Microsoft Word - 第9章 PID制御.doc

Microsoft Word - 第9章 PID制御.doc NAOSITE: Nagaak Unry' Ac Tl 自動制御の理論と応用 Auhr() 辻, 峰男 Can 自動制御の理論と応用 ; 5 Iu Da 5 URL h://hdl.handl.n/69/35886 Rgh Th dcumn dwnladd h://na.lb.nagaak-u.ac.j 第 9 章 PID 制御 これまで, どのような制御器を用いるかということはあまり触れなかったが,

More information

Microsoft PowerPoint - 熱力学Ⅱ2FreeEnergy2012HP.ppt [互換モード]

Microsoft PowerPoint - 熱力学Ⅱ2FreeEnergy2012HP.ppt [互換モード] 熱力学 Ⅱ 第 章自由エネルギー システム情報工学研究科 構造エネルギー工学専攻 金子暁子 問題 ( 解答 ). 熱量 Q をある系に与えたところ, 系の体積は膨張し, 温度は上昇した. () 熱量 Q は何に変化したか. () またこのとき系の体積がV よりV に変化した.( 圧力は変化無し.) 内部エネルギーはどのように表されるか. また, このときのp-V 線図を示しなさい.. 不可逆過程の例を

More information

Microsoft Word - 第2章 ブロック線図.doc

Microsoft Word - 第2章 ブロック線図.doc NAOSIE: Nagaaki Univriy' Ac il ディジタル制御システム Auhor() 辻, 峰男 Ciaion ディジタル制御システム ; 06 Iu Da 06 URL hp://hdl.handl.n/0069/3686 Righ hi documn i downloadd hp://naoi.lb.nagaaki-u.ac.jp 第 章ブロック線図. インパルス列を用いた z

More information

2016年度 京都大・文系数学

2016年度 京都大・文系数学 06 京都大学 ( 文系 ) 前期日程問題 解答解説のページへ xy 平面内の領域の面積を求めよ x + y, x で, 曲線 C : y= x + x -xの上側にある部分 -- 06 京都大学 ( 文系 ) 前期日程問題 解答解説のページへ ボタンを押すと あたり か はずれ のいずれかが表示される装置がある あたり の表示される確率は毎回同じであるとする この装置のボタンを 0 回押したとき,

More information

OCW-iダランベールの原理

OCW-iダランベールの原理 講義名連続体力学配布資料 OCW- 第 2 回ダランベールの原理 無機材料工学科准教授安田公一 1 はじめに今回の講義では, まず, 前半でダランベールの原理について説明する これを用いると, 動力学の問題を静力学の問題として解くことができ, さらに, 前回の仮想仕事の原理を適用すると動力学問題も簡単に解くことができるようになる また, 後半では, ダランベールの原理の応用として ラグランジュ方程式の導出を示す

More information

問 の標準解答 () 遮へい失敗事故 : 雷が電力線を直撃してアークホーンにフラッシオーバが発生する 逆フラッシオーバ事故 : 架空地線あるいは鉄塔への雷撃によって架空地線あるいは鉄塔の電位が上昇し, 架空地線と導体間, 又はアークホーンにフラッシオーバが発生する () 架空地線の弛度を電力線のそれ

問 の標準解答 () 遮へい失敗事故 : 雷が電力線を直撃してアークホーンにフラッシオーバが発生する 逆フラッシオーバ事故 : 架空地線あるいは鉄塔への雷撃によって架空地線あるいは鉄塔の電位が上昇し, 架空地線と導体間, 又はアークホーンにフラッシオーバが発生する () 架空地線の弛度を電力線のそれ 平成 4 年度第二種電気主任技術者二次試験標準解答 配点 : 一題当たり 3 点 電力 管理科目 4 題 3 点 = 点 機械 制御科目 題 3 点 = 6 点 < 電力 管理科目 > 問 の標準解答 () 電動機出力 ( ポンプ入力 )= 電動機入力 電動機効率なので, A P M = P Mi h M B 又はC P Mi = M f M D 又はE P G = G f G 3 () G M なので,

More information

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63>

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63> - 第 章たわみ角法の基本式 ポイント : たわみ角法の基本式を理解する たわみ角法の基本式を梁の微分方程式より求める 本章では たわみ角法の基本式を導くことにする 基本式の誘導法は各種あるが ここでは 梁の微分方程式を解いて基本式を求める方法を採用する この本で使用する座標系は 右手 右ネジの法則に従った座標を用いる また ひとつの部材では 図 - に示すように部材の左端の 点を原点とし 軸線を

More information

Microsoft Word - NumericalComputation.docx

Microsoft Word - NumericalComputation.docx 数値計算入門 武尾英哉. 離散数学と数値計算 数学的解法の中には理論計算では求められないものもある. 例えば, 定積分は, まずは積分 ( 被積分関数の原始関数をみつけること できなければ値を得ることはできない. また, ある関数の所定の値における微分値を得るには, まずその関数の微分ができなければならない. さらに代数方程式の解を得るためには, 解析的に代数方程式を解く必要がある. ところが, これらは必ずしも解析的に導けるとは限らない.

More information

Laplace2.rtf

Laplace2.rtf =0 ラプラスの方程式は 階の微分方程式で, 一般的に3つの座標変数をもつ. ここでは, 直角座標系, 円筒座標系, 球座標系におけるラプラスの方程式の解き方を説明しよう. 座標変数ごとに方程式を分離し, それを解いていく方法は変数分離法と呼ばれる. 変数分離解と固有関数展開法. 直角座標系における 3 次元の偏微分方程式 = x + y + z =0 (.) を解くために,x, y, z について互いに独立な関数の積で成り立っていると考え,

More information

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ 数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は

More information

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 1 分量子力学とクライン ゴルドン方程式 ( 学部 3 年次秋学期向 ) 量子力学とクライン ゴルドン方程式 素粒子の満たす場 y ( x,t) の運動方程式 : クライン ゴルドン方程式 : æ 3 ö ç å è m= 0

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 1 分量子力学とクライン ゴルドン方程式 ( 学部 3 年次秋学期向 ) 量子力学とクライン ゴルドン方程式 素粒子の満たす場 y ( x,t) の運動方程式 : クライン ゴルドン方程式 : æ 3 ö ç å è m= 0 /7 平成 9 年 月 5 日 ( 土 午前 時 分量子力学とクライン ゴルドン方程式 ( 学部 年次秋学期向 量子力学とクライン ゴルドン方程式 素粒子の満たす場 (,t の運動方程式 : クライン ゴルドン方程式 : æ ö ç å è = 0 c + ( t =, 0 (. = 0 ì æ = = = ö æ ö æ ö ç ì =,,,,,,, ç 0 = ç Ñ 0 = ç Ñ 0 Ñ Ñ

More information

Microsoft PowerPoint - 第7章(自然対流熱伝達 )_H27.ppt [互換モード]

Microsoft PowerPoint - 第7章(自然対流熱伝達 )_H27.ppt [互換モード] 第 7 章自然対流熱伝達 伝熱工学の基礎 : 伝熱の基本要素 フーリエの法則 ニュートンの冷却則 次元定常熱伝導 : 熱伝導率 熱通過率 熱伝導方程式 次元定常熱伝導 : ラプラスの方程式 数値解析の基礎 非定常熱伝導 : 非定常熱伝導方程式 ラプラス変換 フーリエ数とビオ数 対流熱伝達の基礎 : 熱伝達率 速度境界層と温度境界層 層流境界層と乱流境界層 境界層厚さ 混合平均温度 強制対流熱伝達 :

More information

<4D F736F F D2091E631348FCD B838A83478B C982E682E982D082B882DD946782CC89F090CD2E646F63>

<4D F736F F D2091E631348FCD B838A83478B C982E682E982D082B882DD946782CC89F090CD2E646F63> NAOSI: Ngski Uivrsiy's Ac il 電気回路講義ノート Auhor(s 辻, 峰男 Ciio 電気回路講義ノート ; 4 Issu D 4-4 U hp://hdl.hdl./69/3466 igh his docum is dowlodd hp://osi.lb.gski-u.c.jp 第 4 章フーリエ級数によるひずみ波の解析 フーリエ級数 (Fourir sris 周期関数

More information

PFC回路とAC-DC変換回路の研究

PFC回路とAC-DC変換回路の研究 第 2 回電気学会東京支部栃木 群馬支所合同研究発表会 2012/2/29 EG1112 PFC 回路と ACDC 変換器 村上和貴小堀康功邢林高虹 小野澤昌徳小林春夫高井伸和新津葵一 ( 群馬大学 ) Outline 研究背景と目的 PFCについて 従来 PFC 付 ACDC 変換器 新提案 PFC 付 ACDC 変換器 シミュレーションによる検討 まとめ Outline 研究背景と目的 PFCについて

More information

Microsoft Word - Chap17

Microsoft Word - Chap17 第 7 章化学反応に対する磁場効果における三重項機構 その 7.. 節の訂正 年 7 月 日. 節 章の9ページ の赤枠に記載した説明は間違いであった事に気付いた 以下に訂正する しかし.. 式は 結果的には正しいので安心して下さい 磁場 の存在下でのT 状態のハミルトニアン は ゼーマン項 と時間に依存するスピン-スピン相互作用の項 との和となる..=7.. g S = g S z = S z g

More information

Microsoft Word - H26mse-bese-exp_no1.docx

Microsoft Word - H26mse-bese-exp_no1.docx 実験 No 電気回路の応答 交流回路とインピーダンスの計測 平成 26 年 4 月 担当教員 : 三宅 T A : 許斐 (M2) 齋藤 (M) 目的 2 世紀の社会において 電気エネルギーの占める割合は増加の一途をたどっている このような電気エネルギーを制御して使いこなすには その基礎となる電気回路をまず理解する必要がある 本実験の目的は 電気回路の基礎特性について 実験 計測を通じて理解を深めることである

More information

2017年度 金沢大・理系数学

2017年度 金沢大・理系数学 07 金沢大学 ( 理系 前期日程問題 解答解説のページへ 次の問いに答えよ ( 6 z + 7 = 0 を満たす複素数 z をすべて求め, それらを表す点を複素数平面上に図 示せよ ( ( で求めた複素数 z を偏角が小さい方から順に z, z, とするとき, z, z と 積 zz を表す 点が複素数平面上で一直線上にあることを示せ ただし, 偏角は 0 以上 未満とする -- 07 金沢大学

More information

構造力学Ⅰ第12回

構造力学Ⅰ第12回 第 回材の座屈 (0 章 ) p.5~ ( 復習 ) モールの定理 ( 手順 ) 座屈とは 荷重により梁に生じた曲げモーメントをで除して仮想荷重と考える 座屈荷重 偏心荷重 ( 曲げと軸力 ) 断面の核 この仮想荷重に対するある点でのせん断力 たわみ角に相当する曲げモーメント たわみに相当する ( 例 ) 単純梁の支点のたわみ角 : は 図 を仮想荷重と考えたときの 点の支点反力 B は 図 を仮想荷重と考えたときのB

More information

Microsoft PowerPoint - 基礎電気理論 07回目 11月30日

Microsoft PowerPoint - 基礎電気理論 07回目 11月30日 基礎電気理論 7 回目 月 30 日 ( 月 ) 時限 次回授業 時間 : 月 30 日 ( 月 )( 本日 )4 時限 場所 : B-3 L,, インピーダンス教科書 58 ページから 64 ページ http://ir.cs.yamanashi.ac.jp/~ysuzuki/kisodenki/ 授業評価アンケート ( 中間期評価 ) NS の授業のコミュニティに以下の項目について記入してください

More information

状態平均化法による矩形波 コンバータの動作特性解析

状態平均化法による矩形波 コンバータの動作特性解析 状態平均化法による矩形波 コンバータの動作特性解析 5 年 8 月 7 日群馬大学客員教授落合政司 内容. 状態方程式. 状態平均化法と状態平均化方程式 - コンバータ等のスイッチを含む回路は 非線形であるためにその動作解析は非常に困難で複雑になる しかし スイッチング周波数が十分に高いと電圧や電流の一周期間の平均値を変数にすることにより 線形的な取り扱いをすることができる このような線形解析を状態平均化法という

More information

スライド 1

スライド 1 パワーエレクトロニクス工学論 10. 各種シングル インダクタデュアル アウトプット (SIDO) 電源 10-1 降圧形 昇圧形 SIDO 電源 10-2 リプル制御 SIDO 電源 10-3 ZVS-PWM 制御 SIDO 電源 10-4 ソフトスイッチングSIDO 電源 SIDO: Single Inductor Dual Output 10-1 10.1 降圧形 昇圧形 SIDO 電源 (1)

More information

降圧コンバータIC のスナバ回路 : パワーマネジメント

降圧コンバータIC のスナバ回路 : パワーマネジメント スイッチングレギュレータシリーズ 降圧コンバータ IC では スイッチノードで多くの高周波ノイズが発生します これらの高調波ノイズを除去する手段の一つとしてスナバ回路があります このアプリケーションノートでは RC スナバ回路の設定方法について説明しています RC スナバ回路 スイッチングの 1 サイクルで合計 の損失が抵抗で発生し スイッチングの回数だけ損失が発生するので 発生する損失は となります

More information

<4D F736F F D FCD B90DB93AE96402E646F63>

<4D F736F F D FCD B90DB93AE96402E646F63> 7 章摂動法講義のメモ 式が複雑なので 黒板を何度も修正したし 間違ったことも書いたので メモを置きます 摂動論の式の導出無摂動系 先ず 厳密に解けている Schrödiger 方程式を考える,,,3,... 3,,,3,... は状態を区別する整数であり 状態 はエネルギー順に並んでいる 即ち は基底状態 は励起状態である { m } は相互に規格直交条件が成立する k m k mdx km k

More information

Microsoft Word - 知能機械実験・実習プリント_ docx

Microsoft Word - 知能機械実験・実習プリント_ docx 018 年 5 月 1 日版 知能機械実験 実習 Ⅳ Ⅳ-1. 制御工学実験 1. 実験概要と目的 ロボットをはじめとするメカトロニクス機器において 高度な動作を実現している背景には 制御技術がある 制御とは 物体の運動を意図した位置や速度で動かす技術である 精度の高い制御を行うためには 正しく制御理論を理解した上に 物体の運動を正しく解析し モデル化する技術や 制御を行うためのパラメータの同定方法を身につける必要がある

More information

断面の諸量

断面の諸量 断面の諸量 建設システム工学科高谷富也 断面 次モーメント 定義 G d G d 座標軸の平行移動 断面 次モーメント 軸に平行な X Y 軸に関する断面 次モーメント G X G Y を求める X G d d d Y 0 0 G 0 G d d d 0 0 G 0 重心 軸に関する断面 次モーメントを G G とし 軸に平行な座標軸 X Y の原点が断面の重心に一致するものとする G G, G G

More information

Microsoft PowerPoint - バスゼミ_ ppt [互換モード]

Microsoft PowerPoint - バスゼミ_ ppt [互換モード] 電気 電子システムと複素数 東京工業大学大学院理工学研究科電子物理工学専攻 松澤昭 4/4/3 4/4/3 講演の狙い 電気電子工学や制御工学では 複素数 がやたら多く出てくる 複素数を使うと, 複雑なことが簡単になるのだが, 虚数 という一見存在しないような数を使うので, 最初はとまどってしまう そこで, なぜ電気電子工学では複素数を使うのか, どんな意味があるかについて説明したい 今後学習を進めるための参考にしてほしい

More information

2014年度 名古屋大・理系数学

2014年度 名古屋大・理系数学 04 名古屋大学 ( 理系 ) 前期日程問題 解答解説のページへ空間内にある半径 の球 ( 内部を含む ) を B とする 直線 と B が交わっており, その交わりは長さ の線分である () B の中心と との距離を求めよ () のまわりに B を 回転してできる立体の体積を求めよ 04 名古屋大学 ( 理系 ) 前期日程問題 解答解説のページへ 実数 t に対して 点 P( t, t ), Q(

More information

線積分.indd

線積分.indd 線積分 線積分 ( n, n, n ) (ξ n, η n, ζ n ) ( n-, n-, n- ) (ξ k, η k, ζ k ) ( k, k, k ) ( k-, k-, k- ) 物体に力 を作用させて位置ベクトル A の点 A から位置ベクトル の点 まで曲線 に沿って物体を移動させたときの仕事 W は 次式で計算された A, A, W : d 6 d+ d+ d@,,, d+ d+

More information

RLC 共振回路 概要 RLC 回路は, ラジオや通信工学, 発信器などに広く使われる. この回路の目的は, 特定の周波数のときに大きな電流を得ることである. 使い方には, 周波数を設定し外へ発する, 外部からの周波数に合わせて同調する, がある. このように, 周波数を扱うことから, 交流を考える

RLC 共振回路 概要 RLC 回路は, ラジオや通信工学, 発信器などに広く使われる. この回路の目的は, 特定の周波数のときに大きな電流を得ることである. 使い方には, 周波数を設定し外へ発する, 外部からの周波数に合わせて同調する, がある. このように, 周波数を扱うことから, 交流を考える 共振回路 概要 回路は ラジオや通信工学 などに広く使われる この回路の目的は 特定の周波数のときに大きな電流を得ることである 使い方には 周波数を設定し外へ発する 外部からの周波数に合わせて同調する がある このように 周波数を扱うことから 交流を考える 特に ( キャパシタ ) と ( インダクタ ) のそれぞれが 周波数によってインピーダンス *) が変わることが回路解釈の鍵になることに注目する

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

2014年度 東京大・文系数学

2014年度 東京大・文系数学 014 東京大学 ( 文系 ) 前期日程問題 1 解答解説のページへ以下の問いに答えよ (1) t を実数の定数とする 実数全体を定義域とする関数 f ( x ) を f ( x) =- x + 8tx- 1x+ t - 17t + 9t-18 と定める このとき, 関数 f ( x ) の最大値を t を用いて表せ () (1) の 関数 f ( x ) の最大値 を g( t ) とする t が

More information

交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし

交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし 交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし 積分定数を 0 とすること 1 f(t) = sin t 2 f(t) = A sin t 3 f(t)

More information

eq2:=m[g]*diff(x[g](t),t$2)=-s*sin(th eq3:=m[g]*diff(z[g](t),t$2)=m[g]*g-s* 負荷の座標は 以下の通りです eq4:=x[g](t)=x[k](t)+r*sin(theta(t)) eq5:=z[g](t)=r*cos(the

eq2:=m[g]*diff(x[g](t),t$2)=-s*sin(th eq3:=m[g]*diff(z[g](t),t$2)=m[g]*g-s* 負荷の座標は 以下の通りです eq4:=x[g](t)=x[k](t)+r*sin(theta(t)) eq5:=z[g](t)=r*cos(the 7. 制御設計の例 7.1 ローディングブリッジの制御装置 はじめに restart: ローディング ブリッジは 負荷をある地点から別の地点に運びます 台車の加速と減速は好ましくない振動を発生してしまいます そのため負荷はさらに安定し難くなり 時間もかかってしまいます 負荷がある地点から他の地点へ素早く移動し すみやかに安定するような制御装置を設計します 問題の定義 ローディング ブリッジのパラメータは以下の通りです

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

2018 年 5 月 31 日版 知能機械実験 実習 Ⅳ Ⅳ-1. 制御工学実験 1. 実験概要と目的 ロボットをはじめとするメカトロニクス機器において 高度な動作を実現している背景には 制御技術がある 制御とは 物体の運動を意図した位置や速度で動かす技術である 精度の高い制御を行うためには 正しく

2018 年 5 月 31 日版 知能機械実験 実習 Ⅳ Ⅳ-1. 制御工学実験 1. 実験概要と目的 ロボットをはじめとするメカトロニクス機器において 高度な動作を実現している背景には 制御技術がある 制御とは 物体の運動を意図した位置や速度で動かす技術である 精度の高い制御を行うためには 正しく 2018 年 5 月 31 日版 知能機械実験 実習 Ⅳ Ⅳ-1. 制御工学実験 1. 実験概要と目的 ロボットをはじめとするメカトロニクス機器において 高度な動作を実現している背景には 制御技術がある 制御とは 物体の運動を意図した位置や速度で動かす技術である 精度の高い制御を行うためには 正しく制御理論を理解した上に 物体の運動を正しく解析し モデル化する技術や 制御を行うためのパラメータの同定方法を身につける必要がある

More information

Microsoft Word - 2_0421

Microsoft Word - 2_0421 電気工学講義資料 直流回路計算の基礎 ( オームの法則 抵抗の直並列接続 キルヒホッフの法則 テブナンの定理 ) オームの法則 ( 復習 ) 図 に示すような物体に電圧 V (V) の直流電源を接続すると物体には電流が流れる 物体を流れる電流 (A) は 物体に加えられる電圧の大きさに比例し 次式のように表すことができる V () これをオームの法則 ( 実験式 ) といい このときの は比例定数であり

More information

Microsoft PowerPoint pptx

Microsoft PowerPoint pptx 4.2 小信号パラメータ 1 電圧利得をどのように求めるか 電圧ー電流変換 入力信号の変化 dv BE I I e 1 v be の振幅から i b を求めるのは難しい? 電流増幅 電流ー電圧変換 di B di C h FE 電流と電圧の関係が指数関数になっているのが問題 (-RC), ただし RL がない場合 dv CE 出力信号の変化 2 pn 接合の非線形性への対処 I B 直流バイアスに対する抵抗

More information

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ 以下 変数の上のドットは時間に関する微分を表わしている (e. d d, dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( や, などがすべて 次で なおかつそれらの係数が定数であるような微分方程式 ) に対して安定性の解析を行ってきた しかしながら 実際には非線形の微分方程式で記述される現象も多く存在する

More information

ディジタル信号処理

ディジタル信号処理 ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計.5 時間領域での FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ LI 離散時間システムの基礎式の証明 [ ] 4. ] [ ]*

More information

第 5 章復調回路 古橋武 5.1 組み立て 5.2 理論 ダイオードの特性と復調波形 バイアス回路と復調波形 復調回路 (II) 5.3 倍電圧検波回路 倍電圧検波回路 (I) バイアス回路付き倍電圧検波回路 本稿の Web ページ ht

第 5 章復調回路 古橋武 5.1 組み立て 5.2 理論 ダイオードの特性と復調波形 バイアス回路と復調波形 復調回路 (II) 5.3 倍電圧検波回路 倍電圧検波回路 (I) バイアス回路付き倍電圧検波回路 本稿の Web ページ ht 第 章復調回路 古橋武.1 組み立て.2 理論.2.1 ダイオードの特性と復調波形.2.2 バイアス回路と復調波形.2.3 復調回路 (II).3 倍電圧検波回路.3.1 倍電圧検波回路 (I).3.2 バイアス回路付き倍電圧検波回路 本稿の Web ページ http://mybook-pub-site.sakura.ne.jp/radio_note/index.html 1 C 4 C 4 C 6

More information

電磁気学 A 練習問題 ( 改 ) 計 5 ページ ( 以下の問題およびその類題から 3 題程度を定期試験の問題として出題します ) 以下の設問で特に断らない限り真空中であることが仮定されているものとする 1. 以下の量を 3 次元極座標 r,, ベクトル e, e, e r 用いて表せ (1) g

電磁気学 A 練習問題 ( 改 ) 計 5 ページ ( 以下の問題およびその類題から 3 題程度を定期試験の問題として出題します ) 以下の設問で特に断らない限り真空中であることが仮定されているものとする 1. 以下の量を 3 次元極座標 r,, ベクトル e, e, e r 用いて表せ (1) g 電磁気学 A 練習問題 ( 改 ) 計 5 ページ ( 以下の問題およびその類題から 題程度を定期試験の問題として出題します ) 以下の設問で特に断らない限り真空中であることが仮定されているものとする. 以下の量を 次元極座標,, ベクトル e, e, e 用いて表せ () gad () ot A (). 以下の量を 次元円柱座標,, z 位ベクトル e e, e, z 用いて表せ () gad ()

More information

数学.pdf

数学.pdf 1. 数学 1 次の不定積分を計算せよ ln x 1dx 2 次の定積分を計算せよ 1 0 x e x dx 3 次のベクトルの組は 1 次独立か 1 次従属かを判別せよ A 1, 2, 4, B 1,1, 3, B 1,1, 1 4 次の行列の固有値と固有ベクトルを求めよ 1 A 2 1 4 2. 工業力学 図のように 質量 m 長さ l の細長い棒 AB が 水平な床面上の 垂直な壁面に対して

More information

DVIOUT

DVIOUT 最適レギュレータ 松尾研究室資料 第 最適レギュレータ 節時不変型無限時間最適レギュレータ 状態フィードバックの可能な場合の無限時間問題における最適レギュレータについて確定系について説明する. ここで, レギュレータとは状態量をゼロにするようなコントローラのことである. なぜ, 無限時間問題のみを述べるかという理由は以下のとおりである. 有限時間の最適レギュレータ問題の場合の最適フィードバックゲインは微分方程式の解から構成される時間関数として表現される.

More information

下記回路のスイッチを閉じた時の電流値 Iの値を求めなさい R[Ω] L[H] I[A] 前ページと同類の問題である 数値が全て一般値で与えられているのが前ページとの違い 学術的に左記の問題を解析すると次のようになる 電圧周波数は f[hz] とする 電源は交流電源であるから SIN 関数になる (C

下記回路のスイッチを閉じた時の電流値 Iの値を求めなさい R[Ω] L[H] I[A] 前ページと同類の問題である 数値が全て一般値で与えられているのが前ページとの違い 学術的に左記の問題を解析すると次のようになる 電圧周波数は f[hz] とする 電源は交流電源であるから SIN 関数になる (C 虚数 j を使った計算のからくり 50Hz 100V 下記回路のスイッチを閉じた時の 電流値 I の値を求めなさい ~ 4Ω 3Ω IA は抵抗素子を示す 新 JIS 記号 これをベクトル図で表すと次のようになる 基準となる電圧をベクトル表現したもの 16A 普段当たり前の様に使用している虚数 j であるが これを使って回路計算を行ってみよう 例えば左図の様な問題があったとする この回路に流れる電流は下記の様に計算すれば簡単に求める事が出来る

More information

% 32.3 DI DI

% 32.3 DI DI 2011 7 9 28.1 41.4 30.5 35.8 31.9% 32.3 DI 18.2 2.4 8.1 3.5 DI 9.4 32.2 0.0 25.9 2008 1 3 2 3 34.8 65.2 46.753.8 1 2 8.82.9 43.1 10 3 DI 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

More information

31, 21% 24, 17% 8, 5% 23, 16% 24, 16% 91, 62% 19, 13% 39, 27% 33, 23% 73 48 57 51 31 1 9 13.0% 7.4% 5.3% 12.5% 17.1% 13.2% 17.9% 4.5% 36.4% 56.5% 40.7% 36.8% 50.0% 67.1% 56.3% 65.8% 75.0% 26.0% 37.0%

More information

2 DI 28 7 1 37 28 4 18 27 11 21 5 2 26 4 5 1 15 2 25 3 35 4 17 7 5 48 76 31 47 17 2 92 12 2 2 4 6 8 1 12 1 2 4 1 12 13 18 19 3 42 57 57 1 2 3 4 5 6 1 1 1 3 4 4 5 5 5.5 1 1.5 2 2.5 3 3.5 4 4.5 5

More information

37 27.0% 26 19.0% 74 54.0% 9 6.4% 13 9.2% 28 19.9% 26 18.4% 37 26.2%. 24 17.0% 99 69 75 59 39 1 6 4.5% 1.4% 7.7% 2.9% 25.0% 17.9% 20.8% 50.0% 41.7% 47.0% 51.4% 54.3% 61.5% 57.1% 55.6% 42.4% 50.0% 58.3%

More information

3 DI 29 7 1 5 6 575 11 751, 13 1,1,25 6 1,251,5 2 1,51,75 1,752, 1 2,2,25 2,252,5 2,53, 3,3,5 3,5 5 1 15 2 25 3 5 6 575 12 751, 21 1,1,25 27 1,251,5 9 1,51,75 1,752, 1 2,2,25 2 2,252,5 2,53, 2 3,3,5

More information

電気基礎

電気基礎 電気基礎 Ⅰ 1. 電流 電圧 電力 2. オームの法則 直流回路 3. 抵抗の性質 4. キルヒホッフの法則 5. 電力 6. 磁気の性質 7. 電流の磁気作用 8. 鉄の磁化 9. 磁気と電流の間に働く力 10. 電磁誘導作用とインダクタンス 11. 静電気の性質 12. 静電容量とコンデンサ 参考文献 : 新編電気理論 Ⅰ [ 東京電機大学出版局 ] 1. 電流 電圧 電力. 電荷の電気量電荷の持っている電気の量を電荷量といい

More information

<8AEE B43979D985F F196DA C8E323893FA>

<8AEE B43979D985F F196DA C8E323893FA> 基礎電気理論 4 回目 月 8 日 ( 月 ) 共振回路, 電力教科書 4 ページから 4 ページ 期末試験の日程, 教室 試験日 : 月 4 日 ( 月 ) 時限 教室 :B-4 試験範囲 : 教科書 4ページまでの予定 http://ir.cs.yamanashi.ac.jp/~ysuzuki/kisodenki/ 特別試験 ( 予定 ) 月 5 日 ( 水 ) 学習日 月 6 日 ( 木 )

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 電磁波工学 第 5 回平面波の媒質への垂直および射入射と透過 柴田幸司 Bounda Plan Rgon ε μ Rgon Mdum ( ガラスなど ε μ z 平面波の反射と透過 垂直入射の場合 左図に示す様に 平面波が境界面に対して垂直に入射する場合を考える この時の入射波を とすると 入射波は境界において 透過波 と とに分解される この時の透過量を 反射量を Γ とおくと 領域 における媒質の誘電率に対して透過量

More information

物理学 II( 熱力学 ) 期末試験問題 (2) 問 (2) : 以下のカルノーサイクルの p V 線図に関して以下の問題に答えなさい. (a) "! (a) p V 線図の各過程 ( ) の名称とそのと (& きの仕事 W の面積を図示せよ. # " %&! (' $! #! " $ %'!!!

物理学 II( 熱力学 ) 期末試験問題 (2) 問 (2) : 以下のカルノーサイクルの p V 線図に関して以下の問題に答えなさい. (a) ! (a) p V 線図の各過程 ( ) の名称とそのと (& きの仕事 W の面積を図示せよ. #  %&! (' $! #!  $ %'!!! 物理学 II( 熱力学 ) 期末試験問題 & 解答 (1) 問 (1): 以下の文章の空欄に相応しい用語あるいは文字式を記入しなさい. 温度とは物体の熱さ冷たさを表す概念である. 物体は外部の影響を受けなければ, 十分な時間が経過すると全体が一様な温度の定常的な熱平衡状態となる. 物体 と物体 が熱平衡にあり, 物体 と物体 が熱平衡にあるならば, 物体 と物体 も熱平衡にある. これを熱力学第 0

More information

Microsoft Word - 微分入門.doc

Microsoft Word - 微分入門.doc 基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,

More information

微分方程式補足.moc

微分方程式補足.moc Bernoulli( ベルヌーイ ) の微分方程式 ' + P( ) = Q() n ( n 0,) 微分方程式の形の補足 ( 階 ) 注意 : n =0 のときは 階線形微分方程式 n = のときは変数分離形となる 解法 : z = -n とおいて関数 z の微分方程式を解く z' =( - n) -n ' よりこれを元の微分方程 式に代入する - n z' + P() = Q() n 両辺を n

More information

航空機の運動方程式

航空機の運動方程式 過渡応答 定常応答 線形時不変のシステムの入出力関係は伝達関数で表された. システムに対する基本的な 入力に対する過渡応答と定常応答の特性を理解する必要がある.. 伝達関数の応答. 一般的なシステムの応答システムの入力の変化に対する出力の変化の様相を応答 ( 時間応答, 動的応答 ) という. 過渡応答 システムで, 入力がある定常状態から別の定常状態に変化したとき, 出力が変化後の定常状態に達するまでの応答.

More information

Microsoft PowerPoint - 第3回2.ppt

Microsoft PowerPoint - 第3回2.ppt 講義内容 講義内容 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 ベクトルの直交性 3

More information

Microsoft PowerPoint - 第06章振幅変調.pptx

Microsoft PowerPoint - 第06章振幅変調.pptx 通信システムのモデル コミュニケーション工学 A 第 6 章アナログ変調方式 : 振幅変調 変調の種類振幅変調 () 検波出力の信号対雑音電力比 (S/N) 送信機 送信メッセージ ( 例えば音声 ) をアナログまたはディジタル電気信号に変換. 変調 : 通信路で伝送するのに適した周波数帯の信号波形へ変換. 受信機フィルタで邪魔な雑音を除去し, 処理しやすい電圧まで増幅. 復調 : もとの周波数帯の電気信号波形に変換し,

More information

Chap2

Chap2 逆三角関数の微分 Arcsin の導関数を計算する Arcsin I. 初等関数の微積分 sin [, ], [π/, π/] cos sin / (Arcsin ) 計算力の体力をつけよう π/ π/ E. II- 次の関数の導関数を計算せよ () Arccos () Arctan E. I- の解答 不定積分あれこれ () Arccos n log C C (n ) n e e C log (log

More information

2018年度 2次数学セレクション(微分と積分)

2018年度 2次数学セレクション(微分と積分) 08 次数学セレクション問題 [ 東京大 ] > 0 とし, f = x - x とおく () x で f ( x ) が単調に増加するための, についての条件を求めよ () 次の 条件を満たす点 (, b) の動きうる範囲を求め, 座標平面上に図示せよ 条件 : 方程式 f = bは相異なる 実数解をもつ 条件 : さらに, 方程式 f = bの解を < < とすると > である -- 08 次数学セレクション問題

More information

2015年度 信州大・医系数学

2015年度 信州大・医系数学 05 信州大学 ( 医系 ) 前期日程問題 解答解説のページへ 放物線 y = a + b + c ( a > 0) を C とし, 直線 y = -を l とする () 放物線 C が点 (, ) で直線 l と接し, かつ 軸と共有点をもつための a, b, c が満 たす必要十分条件を求めよ () a = 8 のとき, () の条件のもとで, 放物線 C と直線 l および 軸とで囲まれた部

More information

ボイラ制御が容易 起動バイパス系統が不要 ドラムでの給水処理 薬品注入やブロー が可能なため, 復水脱塩装置などの高度な水質管理対策が不要 保有水量が多いのでボイラが万一消火しても各種パラメータに注意すれば若干の時間は低負荷による運転継続が可能 保有水量が多いので負荷の急変などの変動に強い 使用圧力

ボイラ制御が容易 起動バイパス系統が不要 ドラムでの給水処理 薬品注入やブロー が可能なため, 復水脱塩装置などの高度な水質管理対策が不要 保有水量が多いのでボイラが万一消火しても各種パラメータに注意すれば若干の時間は低負荷による運転継続が可能 保有水量が多いので負荷の急変などの変動に強い 使用圧力 平成 年度第二種電気主任技術者二次試験標準解答 配点 : 一題当たり 点 電力 管理科目 題 点 = 点 機械 制御科目 題 点 = 6 点 < 電力 管理科目 > 問 の標準解答 [ 原理 ] 汽水ドラムを有し, 高温ガスから熱を吸収した水管内の汽水混合体と, 火炉外部に設置された降水管内の水の密度差から生じる循環力を利用してボイラ水を循環させながら蒸気を得るボイラ [ 適用範囲 ] 自然循環ボイラは臨界圧力より低い亜臨界圧での適用となる

More information

2018年度 東京大・理系数学

2018年度 東京大・理系数学 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ関数 f ( ) = + cos (0 < < ) の増減表をつくり, + 0, 0 のと sin きの極限を調べよ 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ n+ 数列 a, a, を, Cn a n = ( n =,, ) で定める n! an qn () n とする を既約分数 an p として表したときの分母

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 回転型クレーン / 倒立振子の制御 回転型クレーンの制御 状態方程式 コントローラ設計 ( 極配置法 ) コントローラ設計 ( 最適レギュレータ ) 回転型倒立振子の制御 状態方程式 コントローラ設計 コントローラの形式 : 状態フィードバック P-D コントローラ アームの P-D 振子の P-D 目標値 状態フィードバック制御 回転型クレーン コントローラ で 状態フィードバック制御 回転型クレーン

More information

前期募集 令和 2 年度山梨大学大学院医工農学総合教育部修士課程工学専攻 入学試験問題 No.1/2 コース等 メカトロニクス工学コース 試験科目 数学 問 1 図 1 は, 原点 O の直交座標系 x,y,z に関して, 線分 OA,OB,OC を 3 辺にもつ平行六面体を示す. ここで, 点 A

前期募集 令和 2 年度山梨大学大学院医工農学総合教育部修士課程工学専攻 入学試験問題 No.1/2 コース等 メカトロニクス工学コース 試験科目 数学 問 1 図 1 は, 原点 O の直交座標系 x,y,z に関して, 線分 OA,OB,OC を 3 辺にもつ平行六面体を示す. ここで, 点 A No.1/2 数学 問 1 図 1 は, 原点 O の直交座標系 x,y,z に関して, 線分 OA,OB,OC を 3 辺にもつ平行六面体を示す. ここで, 点 A,B,C の座標はそれぞれ A (,6,-2), B (4,-5,3),C (-5.1,4.9,.9) である. 次の問いに答えよ. (1) を求めよ. (2) および の向きを解答用紙の図 1 に描け. (3) 図 1 の平行六面体の体積

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E6398FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E6398FCD2E646F63> 9-1 第 9 章静定梁のたわみ ポイント : 梁の微分方程式を用いて梁のたわみを求める 静定梁のたわみを計算 前章では 梁の微分方程式を導き 等分布荷重を受ける単純梁の解析を行った 本節では 導いた梁の微分方程式を利用し さらに多くの静定構造物の解析を行い 梁の最大たわみや変形状態を求めることにする さらに を用いて課題で解析した構造を数値計算し 解析結果を比較 検討しよう 9.1 はじめに キーワード梁の微分方程式単純梁の応力解析片持ち梁の応力解析

More information

2011年度 筑波大・理系数学

2011年度 筑波大・理系数学 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ

More information

スライド 1

スライド 1 パワーエレクトロニクス工学論 10. 各種シングル インダクタデュアル アウトプット (SIDO) 電源 10-1 降圧形 昇圧形 SIDO 電源 10-2 リプル制御 SIDO 電源 10-3 ZVS-PWM 制御 SIDO 電源 10-4 ソフトスイッチングSIDO 電源 SIDO: Single Inductor Dual Output H28 群馬大学大学院講義パワーエレクトロニクス工学論

More information

2018年度 神戸大・理系数学

2018年度 神戸大・理系数学 8 神戸大学 ( 理系 ) 前期日程問題 解答解説のページへ t を < t < を満たす実数とする OABC を 辺の長さが の正四面体とする 辺 OA を -t : tに内分する点を P, 辺 OB を t :-tに内分する点を Q, 辺 BC の中点を R とする また a = OA, b = OB, c = OC とする 以下の問いに答えよ () QP と QR をt, a, b, c を用いて表せ

More information

航空機の運動方程式

航空機の運動方程式 オブザーバ 状態フィードバックにはすべての状態変数の値が必要であった. しかしながら, システムの外部から観測できるのは出力だけであり, すべての状態変数が観測できるとは限らない. そこで, 制御対象システムの状態変数を, システムのモデルに基づいてその入出力信号から推定する方法を考える.. オブザーバとは 次元 m 入力 r 出力線形時不変システム x Ax Bu y Cx () の状態変数ベクトル

More information

長尾谷高等学校レポート 回目 全枚. 関数 f() = について, 次の各問いに答えよ ( 教科書 p6~7, 副読本 p97) () 微分係数 f ( ) を定義に従って求めよ ただし, 求める過程を必ず書くこと () グラフ上の (, ) における接線の傾きを求めよ. 関数 ( ) = 4 f

長尾谷高等学校レポート 回目 全枚. 関数 f() = について, 次の各問いに答えよ ( 教科書 p6~7, 副読本 p97) () 微分係数 f ( ) を定義に従って求めよ ただし, 求める過程を必ず書くこと () グラフ上の (, ) における接線の傾きを求めよ. 関数 ( ) = 4 f 長尾谷高等学校レポート 回目 全枚 レポート作成にあたり諸注意. 数学 Ⅲ のレポートは 問題用紙と解答用紙に分かれています この用紙を含め 問題用紙は 提出する必要はありません もし提出用紙の表面に解答が書ききれない場合は 裏面を使用しても構いません ( 裏面の記述方法については後述 ). どの問題も 番号順に問題番号を書くことを忘れないでください また 解けなかった問題は 問題番号を書き 横に

More information

Microsoft PowerPoint - 第2回半導体工学

Microsoft PowerPoint - 第2回半導体工学 17 年 1 月 16 日 月 1 限 8:5~1:15 IB15 第 回半導体工学 * バンド構造と遷移確率 天野浩 項目 1 章量子論入門 何故 Si は光らず GN は良く光るのか? *MOSFET ゲート SiO / チャネル Si 界面の量子輸送過程 MOSFET には どのようなゲート材料が必要なのか? http://www.iue.tuwien.c.t/ph/vsicek/noe3.html

More information

解答編 第 7 章実数型の計算と標準数学関数 演習問題 7.1 文法事項 1 ) 暗黙の型変換とは何か答えなさい 代入演算子 (=) や算術演算子 (+,-,*,/,%) では 2 つの演算項のデータ型が揃っている事が必要です 2 つの演算項のデータ型が異なる場合 可能ならば 演算項のデータ型を変換

解答編 第 7 章実数型の計算と標準数学関数 演習問題 7.1 文法事項 1 ) 暗黙の型変換とは何か答えなさい 代入演算子 (=) や算術演算子 (+,-,*,/,%) では 2 つの演算項のデータ型が揃っている事が必要です 2 つの演算項のデータ型が異なる場合 可能ならば 演算項のデータ型を変換 解答編 第 7 章実数型の計算と標準数学関数 演習問題 7.1 文法事項 1 ) 暗黙の型変換とは何か答えなさい 代入演算子 (=) や算術演算子 (+,-,*,/,%) では 2 つの演算項のデータ型が揃っている事が必要です 2 つの演算項のデータ型が異なる場合 可能ならば 演算項のデータ型を変換しデータ型を揃える操作が暗黙のうちに実行されます これを 暗黙の型変換と呼びます 2 ) 暗黙の型変換のルールを

More information

<4D F736F F D F2095A F795AA B B A815B837D839382CC95FB92F68EAE2E646F63>

<4D F736F F D F2095A F795AA B B A815B837D839382CC95FB92F68EAE2E646F63> 1/8 平成 3 年 3 月 4 日午後 6 時 11 分 10 複素微分 : コーシー リーマンの方程式 10 複素微分 : コーシー リーマンの方程式 9 複素微分 : 正則関数 で 正則性は複素数 z の関数 f ( z) の性質として導き出しまし た 複素数 z は つの実数, で表され z i 数 u, v で表され f ( z) u i 複素数 z と つの実数, : z + i + です

More information

重要例題113

重要例題113 04_ 高校 数学 Ⅱ 必須基本公式 定理集 数学 Ⅱ 第 章式の計算と方程式 0 商と余り についての整式 A をについての整式 B で割ったときの商を Q, 余りを R とすると, ABQ+R (R の次数 ) > 0

More information

宿泊産業活性化のための実証実験

宿泊産業活性化のための実証実験 121 32 10 12 12 19 2 15 59 40 33 34 35 36 37 38 3637 20 39 12 19 OFF 2008/12/19 2008/12/25 3 1 1 72,000 2008/12/19 2008/12/26 2 1 1 36,000 2008/12/28 2009/1/5 2 1 1 24,000 2009/1/6 2009/1/16 3 1 1 25,200

More information