Size: px
Start display at page:

Download ""

Transcription

1

2

3

4

5

6 X G P G (X) G BG [X, BG] S 2

7

8

9 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x x x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ }

10 R 3 T x S 2 S 2 x x T x S 2 T x S 2 x 3 v(x) x 2 x T x S 2 x 1 S 2 S 2 S 2 v x T x S 2 T S 2 = x S T 2 x S 2 T S 2 R 3 R 3 T S 2 = { (x, ξ) R 3 R 3 x S 2, x ξ } T S 2 S 2 v : S 2 T S 2

11 x S 2 v(x) T x S 2 T x S 2 {x} p : T S 2 S 2 v(x) T x S 2 p(v(x)) = x S 2 v : S 2 T S T S 2 v p 8 S 2 = S 2 T S 2 T x S 2 T S 2 p : T S 2 S 2 S 2 T x S 2 2 x R 2 T S 2 R 2 S 2 F B E I = [0, 1] 2 D 2 = { (x, y) R 2 x 2 + y 2 1 } E = D 2 I

12 I D 2 A I S 1 A I S 1 = { (x, y) R 2 x 2 + y 2 = 1 } A S 1 I I S 1 A = S 1 I = I S 1 2 T 2

13 S 1 T 2 S 1 T 2 T 2 = {((2 + θ) φ, (2 + θ) φ, θ) 0 θ 2π, 0 φ 2π} R 3 T 2 S 1 S 1 T 2 S 1 S 1 T 2 = S 1 S 1 M M = {( (2 + t φ 2 ) φ, (2 + t φ 2 ) φ, t φ ) t 1 2, 0 φ 2π} R 3 M M M I [ 1 2, 1 2 ] S1 S 1 S+ 1 S 1 M M + M M + M S+ 1 I S 1 I M

14 S 1 I M = I M M + = I S 1 S 1 + S 1 S 1 + B E F p : E B x B U x φ x : p 1 (U x ) = U x F p 1 (U x ) p φ x U x U x F E B F p φ x p : E B (B, E, F ) F E p B E B F

15 x U x U x = U x φ x = φ x B E F p : E B B B = α A U α α φ α : p 1 (U α ) = U α F p 1 (U α ) p φ α U α U α F 1 φ α E = B F p : E B 1 S 1 [ 1 2, 1 2 ] I 1 2 [ 1 2, 1 2 ] p : M S 1 (x, y, z) = ( (2 + t φ 2 ) φ, (2 + t φ 2 ) φ, t φ 2 ) M

16 p(x, y, z) = ( φ, φ) S 1 S 1 U 1 = {( θ, θ) 0 < θ < 2π} = S 1 {(1, 0)} U 2 = {( θ, θ) θ π} = {( θ, θ) π < θ < 3π} = S 1 {( 1, 0)} y U 2 U 1 S 1 O x S 1 U 1 U 2 S 1 S 1 = U 1 U 2 p 1 (U 1 ) = { ((2 + t φ 2 ) φ, (2 + t φ 2 ) φ, t φ 2 ) 1 2 t 1 2, 0 < φ < 2π} p 1 (U 2 ) = { ((2 + t φ 2 ) φ, (2 + t φ 2 ) φ, t φ 2 ) 1 2 t 1 2, π < φ < 3π}

17 p 1 (U 1 ) = U 1 [ 1 2, 1 2 ] f 1 : (0, 2π) [ 1 2, 1 2] p 1 (U 1 ) g 1 : (0, 2π) U 1 f 1 (φ, t) = ( (2 + t φ 2 ) φ, (2 + t φ 2 ) φ, t φ 2 g 1 (φ) = ( φ, φ) f 1 g 1 φ 1 = (g 1 1 [ 1 2, 1 2 ] ) f1 1 : p 1 (U 1 ) U 1 [ 1 2, ] 1 2 φ 1 φ 2 : p 1 (U 2 ) U 2 [ 1 2, 1 2 p : M S 1 [ 1 2, 1 2 ] p f 1, g 1 φ 1 φ 2 : p 1 (U 2 ) U 2 [ 1 2, 1 2 ] 3 S 3 1 S 1 2 S 2 n S n S n = { (x 0,..., x n ) R n+1 x x 2 n = 1 } ] )

18 S 1 = { z C z 2 = 1 } S 2 = { (x, z) R C x 2 + z 2 = 1 } S 3 = { (z 1, z 2 ) C 2 z z 2 2 = 1 } p : S 3 S 2 p(z 1, z 2 ) = ( 2 z 1 2 1, 2z 1 z 2 ) p (z 1, z 2 ) S 3 p(z 1, z 2 ) S 2 p U + = S 2 {(1, 0)} U = S 2 {( 1, 0)} U + U S 2 S 2 = U + U S 2 U + U φ + : p 1 (U + ) U + S 1 φ : p 1 (U ) U S 1 (z 1, z 2 ) p 1 (U + ) ( ) φ + (z 1, z 2 ) = 2 z 1 2 1, 2z 1 z 2, z 2 z 2 ( 2 z1 2 1, 2z 1 z 2 ) U+ ( 2 z 1 2 1, 2z 1 z 2 ) (1, 0) z 2 0 φ + φ + ψ + : U + S 1 p 1 (U + ) ψ + (x, z, w) = zw 2 1 x 2 1 x, w 2

19 φ : p 1 (U ) U S 1 ψ : U S 1 p 1 (U ) p : S 3 S 2 S 1 p : E B S 2 p : T S 2 S 2 R 2

20

21 p : E B F B B = α A U α α φ α : p 1 (U α ) = U α F p 1 (U α ) p φ α U α U α F 1 p E = α A p 1 (U α ) p 1 (U α ) = U α F E E = U α F α A

22 U α F U β F U α F = p 1 (U α ) U β F = p 1 (U β ) p 1 (U α ) p 1 (U β ) φ α : p 1 (U α ) U α F φ β : p 1 (U β ) U β F (x, y) U α F (x, y ) U β F (x, y) (x, y ) E φ 1 α (x, y) = φ 1 β (x, y ) φ α φ β U α F U β F B U α F U β F (x, y) (x, y ) φ 1 α (x, y) = φ 1 β (x, y )

23 (U α F U β F )/ U α F U β F (x, y) (x, y ) φ β φ 1 α (x, y) = (x, y ) φ α φ β φ β φ 1 α φ β φ 1 α (U α U β ) F (U α U β ) F φ α φ β p 1 (U α U β ) (x, y) (x, y ) p 1 (U α U β ) φ β φ 1 α φ β φ 1 α (x, y) (U α U β ) F (φ β φ 1 α )(x, y) {x} F (x, y) (U α U β ) F φ β φ 1 α (x, y) {x} F 1 φ β φ 1 α (x, y) = x 1 φ β p 1 (U β ) U β F U α F p 1 (U α ) 1 1 p p U β U α φ α 1 φ β φ 1 α (x, y) = p φ 1 α (x, y) = 1 (x, y) = x

24 φ β φ 1 α (x, y) = ( x, Φ αβ (x)(y) ) Φ αβ (x) y F Φ αβ (x)(y) F Φ αβ (x)(y) = 2 φ β φ 1 α (x, y) x U α U β Φ αβ (x) : F F φ α φ β φ β p 1 (x) φ 1 α {x} F Φ αβ ( ) ( ) (x) = 2 φβ p 1 (x) φ 1 {x} F ix i x : F {x} F i x (y) = (x, y) x U α U β Φ αβ (x) U α U β X (X) = {f : X X } (X) Φ αβ : U α U β (F ) {Φ αβ } α

25 G (F ) (B, E, F ) G Φ αβ α, β G G (F ) Φ αβ Φ αβ U α U β Φ αβ G (F ) H (F ) G G H (F ) G H G U α U β U γ = (U α U β ) (U β U γ ) U α U β = U β U α (X) G (X) Φ αβ

26 E = B F B E = B F B F B F F F M S 1 S 1 S 1 = U 1 U 2 U 1 = {( θ, θ) 0 < θ < 2π} = S 1 {(1, 0)} U 2 = {( θ, θ) π < θ < 3π} = S 1 {( 1, 0)} φ 1 : p 1 (U 1 ) U 1 [ 1 2, 1 2 ] φ 2 : p 1 (U 2 ) U 2 [ 1 2, 1 2 ] A A B φ 1 φ 2 B A B U 1 U 2 A B Φ 12 : U 1 U 2 ([ 1 2, 1 2 ]) (U 1 U 2 ) [ 1 2, 1 2 ] φ 1 1 p 1 (U 1 U 2 ) φ 2 (U 1 U 2 ) [ 1 2, 1 2 ]

27 A A B φ 1 φ 2 B A B t, x A t [ 1 Φ 12 2 (x)(t) =, 1 2 ] t, x B t [ 1 2, 1 2 ] g(t) = t g ([ 1 2, 1 2 ]) Φ12 {1 [ 1 2, 1 2 ], g} { } Φ 12 : U 1 U 2 1 [ 1 2, 1 2 ], g g g(t) = g( t) = ( t) = t { } 1 [ 1 2, 1 2 ], g 2 C 2 C 2 A M S 1 I = [ 1 2, 1 2] C 2 Φ αβ : U α U β (F ) Φ αβ U α U β Φ αβ φ α φ β (F ) (F ) G

28 G e G µ : G G G ν : G G g G µ(e, g) = µ(g, e) = g 1 G c e G G G G µ 8 G c e 1 G c e : G G e g, h, k G µ(µ(g, h), k) = µ(g, µ(h, k)) G G G µ 1 G G G 1 G µ G G µ G µ g G µ(ν(g), g) = µ(g, ν(g)) = e G G G G G G µ 1 G ν c e ν 1 G c e G G G e µ(g, h) = g h g h ν(g) = g 1 g µ ν G µ

29 G G µ ν G G = R e = 0 µ(x, y) = x + y ν(x) = x R G = R = {x R x 0} e = 1 µ(x, y) = xy ν(x) = 1 x R R R >0 = {x R x > 0} C = {z C z 0} S 1 = {z C z = 1} M n (R) = { n n } M n (R) = R n2 M n (R) e = O 0 µ(a, B) = A + B ν(a) = A M n (R) n = 1

30 n (R) = {A M n (R) A 0} M n (R) e = E n µ(a, B) = AB ν(a) = A 1 n (R) n n = 1 n (R) µ ν n (R) = {A M n (R) A = 1} µ ν n (R) µ( n (R) n (R))) n (R) ν( n (R)) n (R) µ, ν n (R) n O(n) = {A M n (R) t AA = E n } O(n) n (n) = {A O(n) A = 1} = O(n) n (R) n O(n) (n) M n (C) = { n n} n (C) = {A M n (C) A 0} n (C) = {A M n (C) A = 1} U(n) = {A M n (C) t } AA = E n (n) = {A U(n) A = 1} M n (C) n (C) n (C) U(n) (n)

31 U(n) H R {1, i, j, k} 1 i 2 = 1 j 2 = 1 k 2 = 1 ij = ji = k jk = kj = i ki = ik = j H 0 H = H {0} H M n (H) n (H) n (H) n (H) = {A M n (H) } (n) = {A M n (H) t AA = A t } A = E n a + bi + cj + dk H a + bi + cj + dk = a bi cj dk n (H) (n) H C j j 2 = 1 R i C l 2 = 1 H 8 O

32 O = O {0} n (O) SL n (R) n (R) n (R) G H G H H G H G H G µ ν G H G µ(h H) H ν(h) H R >0 R S 1 C n (R) n (R) (n) O(n) n (R) n (C) n (C) U(n) n (C) (n) U(n) (n) n (H) n (R) n (C) n (H) O(n) U(n) (n) R C H G G G

33 G, H G H f : G H G G f f H H µ G µ H G, H G H f f g : H G µ G µ H G H f f g = 1 H, g f = 1 G f G H G = H G, H f g G H G, H f : G H f f G, H f : G H f R δ R R f : R δ R f f f : R R >0 f(x) = e x f f

34 f : R S 1 f(x) = e 2πix f : n (R) R r : S 1 (2) r(e iθ ) = θ θ θ θ (2) θ θ r θ θ A M n (C) A 0, A 1 A = A 0 + A 1 i r(a) = A 0 A 1 A 1 A 0 r : M n (C) M 2n (R) r r : n (C) 2n (R) r n (C) 2n (R) n (C) 2n (R) n (H) 2n (C) U(n) O(2n) (n) U(2n)

35 (2) = (1) (2) = a b b a a, b C, a 2 + b 2 = 1 (2) S 3 (2) (3) 2 p : E B F Φ αβ : U α U β (F ) (F ) G Φ αβ G Φ αβ (F ) (F ) (F ) (F ) Φ αβ (F ) Φ αβ (x) : F F

36 (U α U β ) F φ 1 α p 1 (U α U β ) φ β (U α U β ) F 2 F Φ αβ (x)(y) = 2 φ β φ 1 α (x, y) 2 φ β φ 1 α Φ αβ (x) : F F φ : X Y Z x X (φ)(x) : Y Z (φ)(x)(y) = φ(x, y) φ : X Y Z x X (φ)(x) : Y Z (φ)(x) Y y (φ)(x)(y) U y V (φ)(x)(v ) U (φ)(x)(y) = φ(x, y) φ(x, y) U φ (x, y) X Y W V φ(w V ) U (x, y) x y

37 (φ)(x)(v ) = φ({x} V ) φ(w V ) U (φ)(x) X Y (X, Y ) = {f : X Y } φ : X Y Z x X (φ)(x) (Y, Z) (φ) : X (Y, Z) φ Φ αβ : U α U β (F ) (U α U β ) F φ 1 α p 1 (U α U β ) φ β (U α U β ) F 2 F Φ αβ = ( 2 φ β φ 1 α ) : U α U β (F, F ) Φ αβ (F ) (F ) φ : X Y Z (φ) : X (Y, Z) (Y, Z)

38 Y, Z K Y U X W (K, U) = {f : X Y f(k) U } B = {W (K, U) K X : U Y : } B (Y, Z) K Y U Z W (K, U) (Y, Z) (X, Y ) (Y, Z) φ : X Y Z (φ) : X (Y, Z) x X (φ) x (φ)(x) W (φ)(v ) W x V W Y C Z U W (C, U) (φ)(x) W (C, U)

39 (φ)(v ) W (C, U) x V (φ)(x) W (C, U) (φ)(x)(c) U φ({x} C) U y C φ(x, y) U φ U x V y y W y φ(v y W y ) U C y C C W y W y C W y1 W yn n V = x V, y C y W yi i i=1 V yi (x, y) V W yi V yi W yi (φ)(x)(y) = φ(x, y) φ(v yi W yi ) U (φ)(v )(C) U (φ)(v ) W (C, U) F (F ) (F, F ) Φ αβ : U α U β (F )

40 (F ) µ : (F ) (F ) (F ) ν : (F ) (F ) F X x X V x U U U V X, Y, Z Y µ : (Y, Z) (X, Y ) (X, Z) X µ : (X) (X) (X) X X x X A X x A X U, V x U A V U V = ϕ

41 A V U x X (f, g) (Y, Z) (X, Y ) µ(f, g) W (f, g) W µ(w ) W (f, g) W µ 1 (W ) C X U Z W = W (C, U) µ(f, g) W µ(f, g) W (C, U) f g W (C, U) f(g(c)) U g(c) f 1 (U) y Y f 1 (U) y g(c) Y Y y g(c) y V y Y f 1 (U) W y V y W y = ϕ V y Y W y f 1 (U)

42 Y W y V y Y W y f 1 (U) Y V x y g(c) y V y V y : V y f 1 (U) y g(c) g(c) V y V y f 1 (U) y g(c) y g(c) C g g(c) n g(c) y 1,..., y n g(c) n V = i=1 i=1 V yi V yi V V g(c) V, f(v ) U W g W (C, V ), f W (V, U) µ(w (V, U) W (C, V )) W (C, U) W = W (V, U) W (C, V ) (f, g) W µ 1 (W (C, U)) (f, g) µ (f, g) ν : (X) (X)

43 X, Y B S = {W (K, U) K X U Y K Y U } B S (X, Y ) K X (X) X (X) ν : (X) (X) X (X) W (K, U) ν 1 (W (K, U)) f ν 1 (W (K, U)) f 1 (K) U K f(u) X K f(x U) f 1 (X K) X U ν 1 (W (K, U)) = W (X U, X K) ν X (X) ν ν : (X) (X) X (X) X (X) (X)

44 (X) X = R n (X) n (R) (R n ) n (R) ν : (X) (X) X e X µ : X X X µ (µ 1 X ) = µ (1 X µ) µ (1 X c e ) = µ (c e 1 X ) = 1 X X (X, X) (X) (R n ) n (R) n (R) (X)

45 f : [a, b] R [a, b] f([a, b]) R X X f(x) g(x) f : X R f, g : X R X f, g (X, R) d(f, g) = f(x) g(x) x X (X, R) d f = x X f(x) X Y = R (X, Y ) R X (Y, δ) f, g (X, Y ) d(f, g) = δ(f(x), g(x)) x X (X, Y ) d

46 (X, C) C(X) C C (X, Y ) X X (Y, δ) (X, Y ) {f n } n N (X, Y ) f ε > 0 N x X n > N δ(f(x), f n (x)) < ε (X, Y ) X (X, Y ) X x X δ(f(x), g(x)) X (Y, δ) (X, Y ) X K (K, Y ) Y K i K : (X, Y ) (K, Y ) K (X, Y ) ε > 0 f (K, Y ) Uε K (f) = {g (K, Y ) δ(f(x), g(x)) < ε x K} { (i K ) 1 (U K ε (f)) K X :, f (K, Y ), ε > 0 } X Y X Y (X, Y )

47 K X V Y W (K, V ) f W (K, V ) x K f(x) V V ε x > 0 U εx (f(x)) V U εx (f(x)) f(x) Y ε f(k) x K U ε x 2 (f(x)) K f(k) n i=1 U ε x i 2 (f(x i )) ε = ε xi i U = (i K) 1 (U K ε 2 (i K(f))) U K ε (i 2 K (f)) (K, Y ) i K (f) ε 2 g U x K f U W (K, V ) x K δ(f(x), g(x)) < ε 2 i δ(f(x), f(x i )) < ε x i 2 δ(g(x), f(x i )) < δ(g(x), f(x)) + δ(f(x), f(x i )) < ε 2 + ε x i 2 < ε x i 2 + ε x i 2 = ε xi g(x) U εxi (f(x i )) V g(k) V

48 U f W (K, V ) W (K, V ) U (X, Y ) U f U X K ε > 0 (i K) 1 ( U K ε (i K(f)) ) U K x K f 1 (U ε 3 (f(x))) X x K x X V x V x f 1 (U ε 3 (f(x))) V x K x K K K g n i=1 W (K i, U i ) n i=1 V x V xi U i = U ε 3 (f(x i)) K i = V xi K i K(g) U K ε (i K(f)) K = x K x K i i n i=1 K i δ(f(x), g(x)) δ(f(x), f(x i )) + δ(f(x i ), g(x)) < ε K 3 + δ(f(x i), g(x))

49 V xi f 1 (U ε 3 (f(x i))) V xi U 2ε 3 (f(x i)) δ(f(x), g(x)) < ε 3 + 2ε 3 = ε i K( n i=1w (K i, U i )) U K ε (i K(f)) U X, Y : (X, Y ) X Y (f, x) = f(x) X ev (X, Y ) [n] = {1, 2,..., n} e : ([n], X) X n e(f) = (f(1), f(2),..., f(n)) M n (R) m n M m,n (R) R mn R mn A M m,n (R) A : R n R m M m,n (R) (R n, R m )

50 (R n, R m ) (F ) (F ) (F ) F G X G X µ : G X X x X µ(e, x) = x g, h G x X X c e 1 X = G X X µ(g, µ(h, x)) = µ(gh, x) µ G G X 1 G µ G X µ G 1 X G X µ G : G G G G µ X µ µ(g, x) = g x X G X

51 G G µ : G G G µ G G µ G µ G G G R n G G G H G µ µ H G : H G G H G G µ c : G G G (g, h) G G µ c (g, h) = ghg 1 G G G = n (R) X = R n G X µ(a, v) = Av n (R) R n X Σ n n µ : X n Σ n X n

52 (x 1,, x n ) X n σ Σ n µ((x 1,, x n ), σ) = (x σ(1),, x σ(n) ) Σ n X n Σ n G X µ X : G X X µ X : X G X µ X (x, g) = (g 1, x) G = O(n), X = S n 1 O(n) n (R) S n 1 R n n (R) R n O(n) S n 1 A O(n), v S n 1 Av S n 1 v S n 1 v 2 = 1 v, v = 1 t vv = 1 v n 1 Av S n 1 t (Av)(Av) = 1 t (Av)(Av) = t v t AAv O(n) t AA = E n

53 G X µ : G X X H G A X µ(h A) A µ H A H A n = 2 O(2) S 1 S 1 O(2) A O(2) A = ±1 : O(2) {±1} O(2)/ = {±1} = (2) T O(2) (2) O(2) = (2) T (2) A O(2) A (2) B (2) A = T B (2) = θ θ θ θ 0 θ < 2π T = y O(2) S 1 y (2) xy (n) (n) R n

54 O(2) l R 2 T l l y T l (v) l v 0 x T l T l O(2) T l T (2) 0 θ < 2π R θ = θ θ θ θ n 3 D 2n = R 2π n T O(2) D 2n O(2) R 2 D 2n y n D 2n 2n D 2n O(2) µ : G X X (µ) : G (X, X)

55 y R 2π n 2π n 0 x G X µ : G X X G X µ (µ) : G (X, X) (X) (µ) (µ) : G (X) g G, x X gx = µ(g, x) g G (µ)(g) : X X (µ)(g 1 )

56 x X (µ)(g 1 ) (µ)(g)(x) = (µ)(g 1 )(µ(g, x)) = (µ)(g 1 )(gx) = µ(g 1, gx) = g 1 (gx) = (g 1 g)x = ex = x (µ)(g 1 ) (µ)(g) = 1 X (µ)(g) (µ)(g 1 ) = 1 X (µ)(g) G X µ : G X X (µ) : G (X) (µ) (µ) g, h G (µ)(gh) = (µ)(g) (µ)(h) x X (µ)(gh)(x) = µ(gh, x) = (gh)x (µ)(g) (µ)(h)(x) = (µ)(g)(µ(h, x)) = (µ)(g)(hx) = µ(g, hx) = g(hx) = (gh)x

57 (µ)(gh) = (µ)(g) (µ)(h) G X X G (X) G X φ : X (Y, Z) 1 (φ) : X Y Z 1 (φ)(x, y) = φ(x)(y) 1 : (X Y, Z) (X, (Y, Z)) 1 (X Y, Z) (X, (Y, Z)) : (X Y, Z) (X, (Y, Z)) Y φ : X (Y, Z) 1 (φ) : X Y Z

58 U Z (x 0, y 0 ) ( 1 (φ)) 1 (U) = {(x, y) X Y φ(x)(y) U} ( 1 (φ)) 1 (U) φ(x0 ) : Y Z φ(x 0 ) 1 (U) Y φ(x 0 ) 1 (U) y 0 Y Y y 0 V V (Y φ(x 0 ) 1 (U)) = φ(x 0 )(V ) U Y V φ 1 (W (V, U)) V (x 0, y 0 ) 1 (φ) φ 1 (W (V, U)) V ( 1 (φ)) 1 (U) G X φ : G (X) 1 (φ) : G X X G X X 1 (φ) 1 (φ) X 1 X (X) X 1 (X) : (X) (X) (X) X

59 X G X G (X) F G G (F ) F G F G (F ) G F G (F ) (B, E, F ) G {Φ αβ } α, β G (F ) Φ αβ Φ αβ U α U β Φ αβ S 3 p S 2 S 1 U + = S 2 {(1, 0)} U = S 2 {( 1, 0)}

60 φ + : p 1 (U + ) U + S 1 φ : p 1 (U ) U S 1 φ 1 + : U + S 1 p 1 (U + ) φ + (z 1, z 2 ) = φ (z 1, z 2 ) = φ 1 + (x, z, w) = ( ) 2 z 1 2 z 2 1, 2z 1 z 2, z 2 ( ) 2 z 1 2 z 1 1, 2z 1 z 2, z 1 zw 1 x, w x 2 φ φ 1 + : (U + U ) S 1 (U + U ) S 1 φ φ 1 + (x, z, w) = φ zw 2 = = = 2 zw 2 4( 1 x 1 x 2 1 x, w 2 2 ) 1, 2 zw 2 ( z 2 1 x 1, z, z ( ) x, z, z z w ) z w 1 x 2 1 x w, 2 zw 2 1 x 2 zw 2 1 x 2 Φ + : U + U (S 1 ) Φ + (x, z)(w) = z z w z z S1 Φ + (x, z) = z z Φ + : U + U S 1 (µ) S 1 (S 1 ) Φ + Φ + U + U

61 (µ) : S 1 (S 1 ) S 1 S 1 S 1 (x, z) U + U z z S1 H H G G ξ = (B, E, F ) G Φ αβ : U α U β G G H ξ H G X X/G X/G = {Gx x X} Gx = {gx g G} X x G p : X X/G p(x) = Gx X/G O O = {U X/G p 1 (U) X } U X/G p 1 (U) X X/G X G

62 G G\X X/G X/G H G G H G G H G H X X X/ X/ = {[x] x X} p : X X/ p(x) = [x] x X [x] x X/ O O = {U X/ p 1 (U) X } X/ X O G X X G x, x X x G x g G x = gx G G X X/ G = X/G x X x [x] [x] = {x X x G x } = {gx g G} = Gx

63 X/ G = {[x] x X} = {Gx x X} = X/G X/G X G X/G = X G X/G X = S 1 = {z C z = 1} G = C 2 = {e, g} 2 e G G X e z = z g z = z X/G g z S 1 z S S 1 C 2 S 1 S 1 S 1 = S 1 + S 1 {1} { 1} g S+ 1 S G S+ 1 S S 1 /G = S 1

64 S 1 /G S 1 f : S 1 /G S 1 f([z]) = z 2 f f f f 1 z, z X z G z z = z z = z f f U S 1 f 1 (U) S 1 /G S 1 /G p 1 (f 1 (U)) p 1 (f 1 (U)) = (f p) 1 (U) f p : S 1 S 1 (f p)(z) = z 2 p 1 (f 1 (U)) f f : X Y f U Y U f 1 (U)

65 f : X Y X f x f x f(x) = f(x ) Y = X/ f π π X Y f g Z g f f [z], [z ] S 1 /G f([z]) = f([z ]) z 2 = (z ) 2 z = ±z z G z f f w S 1 0 θ < 2π w = e iθ z = e iθ 2 z S 1 f([z]) = w f f f 1 f X Y f : X Y f f S 1 /G X X X X/

66 S 1 /G = S 1 X = S 1 G = C p = {e, g, g 2,..., g p 1 } p G X X/G = S 1 g k x = e 2πik p x 2 C 2 S n = { (x 0,..., x n ) R n+1 x x 2 n = 1 } g(x 0,, x n ) = ( x 0,, x n ) R n n S 3 S 2n+1 = { (z 0,, z n ) C n+1 z z n 2 = 1 } S 2n+1 C n+1 g C p C p S 2n+1 (z 0,, z n ) S 2n+1 g(z 0,, z n ) = L 2n+1 p ) (e 2πi p z0,, e 2πi p zn S 1 S 2n+1 ω S 1 (z 0,, z n ) S 2n+1 ω(z 0,, z n ) = (ωz 0,, ωz n ) C n n C 1 S 2 S 3 /S 1 = S 2 p : S 3 S 2

67 R n C n R C R n+1 {0} C n+1 {0} R (R n+1 {0}) R n+1 {0} C (C n+1 {0}) C n+1 {0} ω (x 0,, x n ) = (ωx 0,, ωx n ) (R n+1 {0})/R = R n (C n+1 {0})/C = C n R 3 = (3) O(n) = {A M n (R) t } AA = 1 n S n 1 = {(x 1,, x n ) R n x x 2 n = 1 } O(n) S n 1 O(n) S n 1 S n 1 n = 2O(2) S 1 O(2) S 1 S 1

68 S 1 /O(2) O(2) (2) = {A O(2) A = 1} = θ θ θ θ 0 θ < 2π R θ = θ θ θ θ v, w S 1 v w θ R θ v = w R θ w v θ θ S 1 2 O(2) S 1 S 1 /O(2) = { } O(2) (2) S 1 /(2) = { } S n 1 /SO(n) = { }

69 G X x, y X x = gy g G G G G X X/G G H G G/H µ : G G/H G/H µ(g, g H) = gg H µ µ µ G G µ G 1 G p G G/H µ p G/H p µ 1 G p µ p 1 G 1 G p Q R Q N N p : Q Q/ N 1 Q p : Q Q Q (Q/ N ) 1 G p

70 f : X Y f 1 (f(v )) = V V X x V X U x U U = f 1 (f(u)) U U V g : X Y f g : X X Y Y X Y f : X Y g : Z W f g : X Z Y W X f : Y Z 1 X f : X Y X Z G G/H G G G/H G G/H R/Q G H G/H X G X G/H

71 G X µ : G X X x 0 X H = {g G gx 0 = x 0 } H G φ(gh) = gx 0 φ : G/H X G X µ X 1 G φ φ G G/H µ G/H G/H µ G/H G X X G G/H H φ : G X φ(g) = gx 0 φ H = φ 1 ({x 0 }) X H G h, h H (hh )x 0 = h(h x 0 ) = hx 0 = x 0 hh H h H hx 0 = x 0 h 1 (hx 0 ) = h 1 x 0 x 0 = h 1 x 0 h 1 H H G H φ φ φ G x X gx 0 = x g G g φ(gh) = gx 0 = x

72 φ φ(gh) = φ(g H) gx 0 = g x 0 x 0 = g 1 g x 0 g 1 g H gh = g H φ φ = φ p G p G/H φ φ p φ 1 φ X H = {g G gx 0 = x 0 } G x 0 x0 (G) O(n) O(n) M n (R) = R n2 O(n) R n2 A O(n) A = (a ij ) t A = (b ij ) A t A = E n n 1 i = k a ij b jk = 0 i k j=1

73 b ij = a ji n 1 i = k a ij a kj = 0 i k j=1 i n a 2 ij = 1 j=1 n a 2 ij = n i,j=1 O(n) R n2 n f(a) = A t A f : M n (R) M n (R) O(n) = f 1 ({E n }) M n (R) = R n2 O(n) {E n } O(n) S n 1 µ : O(n) S n 1 S n 1 (A, v) µ(a, v) = Av S n 1 R n O(n) v S n 1 v R n {a 1, a 2,, a n 1, a n = v} A = t a 1 t a n

74 a 1,, a n 1 n t a 1 A t A = (a 1,, a n ) = t a n t a 1 a t 1 a 1 a 2 t a 1 a n t a 2 a t 1 a 2 a n t a n a t 1 a n a 2 t a n a n {a 1,, a n } t a i a j a i a j t 1 i = j a i a j = 0 i j A t A = 1 n A O(n) A t a 1 v t a 1 a n Av = = t a n v t a n a n 0 = e n = 0 1 v S n 1 A O(n) Av = e n u S n 1 Bu = e n B O(n) A 1 Bu = A 1 e n = v A 1 B O(n) O(n) S n 1 v S n 1 v (O(n)) = {A O(n) Av = v}

75 S n 1 = O(n)/v (O(n)) v (O(n)) v S n 1 v = e n A = (a ij ) en (O(n)) Ae n = e n a 11 a 1n a n 11 a n 1n a n1 a nn = a 1n a n 1n a nn = A = a 11 a 1n 1 0 a n 11 a n 1n 1 0 a n1 a nn 1 1 A t A = E n a 11 a 1n 1 0 a n 11 a n 1n 1 0 a n1 a nn 1 1 a 11 a n 11 a n1 a 1n 1 a n 1n 1 a nn = a 2 n1 + + a 2 nn = 1 a n1 = = a nn 1 = 0

76 0 A = A a 11 a 1n A = At A = E n A t A = a n 11 a n 1n 1 E n 1 A en (O(n)) A O(n 1) 0 A = A A O(n 1) 0 A en (O(n)) A 0 A O(n 1) O(n) en (O(n)) = O(n 1) S n 1 = O(n)/O(n 1) e n S n 1 en (O(n)) G X x, y X x (G) y (G) G

77 U(n) = {A M n (C) A t A = E n } S 2n 1 = { (z 1,, z n ) C n z z n 2 = 1 } U(n) S 2n 1 U(n) U(n) S 2n 1 U(n)/U(n 1) = S 2n 1 G H G G/H H O(n) O(n)/O(n 1) = S n 1 O(n)/O(n 1) = S n 1 p : O(n) S n 1 p(a) = Ae n e n = t (0,, 0, 1) p(a) = Ae n p : O(n) S n 1 O(n 1) S n 1 {U α } s α : U α p 1 (U α ) p s α = 1 Uα α φ α (A) = (p(a), s α (p(a)) 1 A) φ α : p 1 (U α ) U α O(n 1)

78 φ α ψ α : U α O(n 1) p 1 (U α ) ψ α (x, A) = s α (x)a φ α φ α : p 1 (U α ) U α O(n 1) φ α (A) = (p(a), s α (p(a)) 1 A) s α U α O(n) s α (p(a)) 1 A O(n 1) s α (p(a)) 1 A en (O(n)) s α (p(a))e n Ae n p p s α = 1 Uα s α (p(a))e n = p(s α (p(a))) = p(a) = Ae n s α (p(a)) 1 Ae n = e n s α (p(a)) 1 A O(n 1) = en (O(n)) ψ α p(ψ α (x, A)) = s α (x)ae n = s α (x)e n = p(s α (x)) = x ψ α (x, A) p 1 (U α ) (x, A) U α O(n 1) φ α ψ α (x, A) = φ α (s α (x)a) = (p(s α (x)a), s α (p(s α (x)a) 1 s α (x)a)) A O(n 1) = en (O(n)) p(s α (x)a) = s α (x)ae n = s α (x)e n = p(s α (x)) = x φ α ψ α (x, A) = (x, s 1 α s α (x)a) = (x, A)

79 A p 1 (U α ) ψ α φ α (A) = ψ α (p(a), s α (p(a)) 1 A) = s α (p(a))s α (p(a)) 1 A = A φ α S n 1 U + = S n 1 {e n } U = S n 1 { e n } s + : U + p 1 (U + ) x = (x 1,, x n ) U + s + (x) = 1 x 1x 1 1 x n x 1x 2 1 x n x 1x n 1 1 x n x 1 x2x1 1 x n 1 x2x2 1 x n x 2 xn 1x1 1 x n 1 xn 1xn 1 1 x n x n 1 x 1 x 2 x n 1 x n s + (x) O(n) p s + (x) = s + (x)e n = x s + s s + 1 C = x U s (x) = C 1 s + (Cx) s + (x) O(n) s +

80 s α : U α p 1 (U α ) p s α = 1 Uα G H p : G G/H s : G/H G p s = 1 G/H φ(g) = (p(g), s(p(g)) 1 g) φ : G G/H H G s φ p : E B s : B E p s = 1 B p p : G G/H p s ± = 1 U± s ± : U ± p 1 (U ± ) p : E B p x B U x s x : U x p 1 (U x ) p s x = 1 Ux

81 G H p : G G/H H O(n) O(n)/O(n 1) G H G G/H G G H p : G G/H p : G G/H p : G G/H U α U β G/H U α U β ϕ s α, s β p 1 (U α U β ) s α : U α p 1 (U α ) s β : U β p 1 (U β ) φ α : p 1 (U α ) U α H φ β : p 1 (U β ) U β H x U α U β h H y φ 1 α (x, h) = s α (x)h φ β (y) = (p(y), s β (p(y)) 1 y) φ β φ 1 α (x, h) = φ β (s α (x)h) = (p(s α (x)h), s β (p(s α (x)h)) 1 s α (x)h) = (x, s β (x) 1 s α (x)h)

82 Φ αβ : U α U β (H) Φ αβ (x)(h) = s β (x) 1 s α (x)h (µ H ) : H (H) H Φ αβ : U α U β H Φ αβ (x) = s β (x) 1 s α (x) H Φ αβ (µ H ) U α U β (H) Φ αβ H H G H p : G G/H G G/H H H H H H G p : E B G G G G G H p : G G/H H O(n) O(n)/O(n 1) O(n)/O(n 1) = S n 1 O(n) S n 1 O(n 1)

83 p : S 3 S 2 S 1 G = S 1 = {z C z = 1} H = C 2 = {1, 1} G S 1 /C 2 = S 1 C 2 p : S 1 S 1 /C 2 = S 1 p S 1 C 2 C 2 S 1

84 G G p : E B G F B {U α } φ α : p 1 (U α ) = U α F Φ αβ : U α U β G U α F Φ αβ : U α U β G G F p : E B B {U α } Φ αβ : U α U β G G F G (F ) G G G G G G (G)

85 G p : P B B {U α } Φ αβ : U α U β G G E B G P B G G F F G G G F G (F ) {B G } {B F G } G G p : P B G G P P G P {φ α : p 1 (U α ) U α G} α A x P, g G x p 1 (U α ) φ α (x) = (p(x), φ α (x)) x g = φ 1 α (φ α (x)g) = φ 1 α (p(x), φ α (x)g) g x p 1 (U α ) G p 1 (U α ) p 1 (U α ) G φα id (U α G) G = U α (G G) id µ U α G φ 1 α p 1 (U α ) P = α A p 1 (U α ) P G P

86 x p 1 (U α ) p 1 (U β ) φ α φ β x g x p 1 (U α ) p 1 (U β ), g G φ α : p 1 (U α ) U α G φ β : p 1 (U β ) U β G φ α (x) = (p(x), φ α (x)) φ β (x) = (p(x), φ β (x)) p 1 (U α ) x g = φ 1 α (p(x), φ α (x)g) p 1 (U β ) x g = φ 1 β (p(x), φ β(x)g) φ β φ 1 α (p(x), φ α (x)g) = (p(x), φ β (x)g) Φ αβ : U α U β G (y, h) (U α U β ) G φ β φ 1 α (y, h) = (y, Φ αβ (y)h), φ β φ 1 α (p(x), φ α (x)g) = (p(x), Φ αβ (p(x))φ α (x)g) φ β (x) = Φ αβ (p(x))φ α (x) φ β φ 1 α (p(x), φ α (x)) = φ β φ 1 φ α (x) = φ β (x) = (p(x), φ β (x)) φ β φ 1 α (p(x), φ α (x)) = (p(x), Φ αβ (p(x))φ α (x)) α X Y f : X Y X X = α A U α f U α f Uα f

87 G φ α : p 1 (U α ) U α G G G U α G (x, h) g = (x, hg) P G P /G P /G p : P B G p p : P /G = B π : P P /G p : P B P = P π P /G p B p p : P /G B p([x]) = p(x) [x] x P P /G p p p p p p [x] = [y] x = yg g G p(y) U α φ α = p φ α : p 1 (U α ) U α G

88 yg yg = φ 1 α (p(y), φ α (y)g) p 1 (U α ) p φ 1 α U α U α G 1 1 p(x) = p(yg) = p φ 1 α (p(y), φ α (y)g) = 1 (p(y), φ α (y)g) = p(y) p p p p p p x, y P p([x]) = p([y]) p(x) = p(y) b = p(x) = p(y) b g = φ α (y) 1 φ α (x) φ α = p φ α : p 1 (U α ) U α G φ α (yg) = (p(yg), φ α (yg)) = (p(y), φ α (y)g) = (b, φ α (x)) = φ α (x) φ α x = yg [x] = [y] p p p : E B p : S 3 S 2 S 1 S 1 S 3 S 2 U + = S 2 {(1, 0)} U = S 2 {( 1, 0)} p

89 φ + : p 1 (U + ) U + S 1 φ : p 1 (U ) U S 1 φ + (z 1, z 2 ) = φ (z 1, z 2 ) = ( ) 2 z 1 2 1, 2z 1 z 2, z2 z 2 ( ) 2 z 1 2 1, 2z 1 z 2, z 1 z 1 S 1 S 3 x p 1 (U ± ), w S 1 x w = φ 1 ± (p(x), φ ± (x)w) φ ± φ ± (x) = (p(x), φ ± (x)) x w x p 1 (U + ) x = (z 1, z 2 ) C 2 φ 1 + (x, z, w) = φ + (z 1, z 2 ) = z 2 z 2 zw 2 (z 1, z 2 ) p 1 (U + ), w S 1 1 x 2 1 x, w 2 (z 1, z 2 ) w = φ 1 + (p(z 1, z 2 ), φ + (z 1 )w) ( ) = φ z 1 2 1, 2z 1 z 2, z 2 z 2 w = 2z z 1z 2 2 z 2 w z 2 1, 1 (2 z ) z 2 w (2 z1 2 1) 2 2 ( ) z 1 z 2 w = 1 z1, z 2 2 z 2 w 1 z 1 2 = (z 1 w, z 2 w) S 1 p 1 (U + ) S 1 p 1 (U ) S 3 /S 1 = C 1

90 S 3 /S 1 = S 2 C 1 = S 2 G p : P B G P G + G F = G F G P B G F G P F G F G G P F G P F µ : G (P F ) P F µ(g, x, y) = (xg 1, gy) P G F (x, y) P F P G F [x, y] µ(g, x, y) = (xg, gy) p : P B G F G p : P G F B p([x, y]) = p(x) F G {B G } {B F G } (P B) (P G F B)

91 G p : P B {φ α : p 1 (U α ) U α G} p : P G F B {ψ α : p 1 (U α ) U α F } p 1 (U α ) = {[x, y] P G F p([x, y]) U α } = {[x, y] P G F p(x) U α } = p 1 (U α ) G F p 1 (U α ) = p 1 (U α ) G F φα Gid (U α G) G F [(x, g), y] (x, gy) 1 Uα µ : (U α G) G F U α F µ G F (x, y) [(x, e), y] ψ α : p 1 (U α ) U α F p 1 (U α ) = p 1 (U α ) G F φ α G id (U α G) G F µ U α F φ α 1 Uα µ ψ α ψ α p 1 (U α ) p ψ α U α U α F pr 1 p : P G F B

92 (x, y) (U α U β ) F ψ β ψ 1 α (x, y) = ψ β (φ 1 α G id) ( µ) 1 (x, y) = ψ β (φ 1 α G id)(x, e, y) = ψ β (φ 1 α (x, e), y) = ( µ) (φ β G id)(φ 1 α (x, e), y) = ( µ)(φ β φ 1 α (x, e), y) = ( µ)(x, Φ αβ (x)e, y) = (x, Φ αβ (x)y) Φ αβ : U α U β G p : P B p : P G F B Φ αβ G (P B) (P G F B) P B F C 2 p : S 1 S 1 /C 2 = S 1 S 1 = { z C z 2 = 1 } p(z) = z 2 C 2 = {1, 1} S 1 C 2 [ 1 2, 1 2 ] 1 t = t ( 1) t = t S 1 C2 [ 1 2, 1 2 ] = M S 1 [ 1 2, 1 2 ] C 2 ( 1)(z, t) = ( z, t)

93 S 1 [ 1 2, 1 2 ] C 2 S 1 C2 [ 1 2, 1 2 ] S 1 C2 [ 1 2, 1 2 ] S1 M S 1 S 1 C2 [ 1 2, 1 2 ]

94 = = G G/H H G p : P B G s : B P P = B G S 1

95 I M S 1

96

97 {B G} {B F G } {B G} B G B B B ξ = (F E p B) ξ = (F E p B ) ξ ξ B B,

98 E E, F F ξ = (p : E B) ξ = (p : E B ) ξ ξ f : E E f : B B f E E p p f B B ( f, f) : (E, B) (E, B ) f = ( f, f) : ξ ξ x B f x p 1 (x) f(x) p 1 (f(x)) p 1 (x) E B f p 1 (x) p 1 (f(x)) f E f B

99 p : E B p : E B {φ λ : p 1 (U λ ) U λ F } {ψ µ : p 1 (V µ ) V µ F } Φ λλ : U λ U λ (F ) Ψ µµ : V µ V µ (F ) ( f, f) : (E, B) (E, B ) ( f, f) f f : U λ U λ f 1 (V µ V µ ) V µ V µ Φ λλ U λ U λ f 1 (V µ V µ ) (F ) f Ψ µµ V µ V µ (F ) (F ) (F ) f f F : F F

100 x U λ U λ f 1 (V µ V µ ) Φ λλ Φ λλ (x) : F F Ψ µµ (f(x)) : F F f F Φ λλ (x) F f F Ψ µµ (f(x)) f F F F f F Ψ µµ (f(x)) = ( f F ) Φ λλ (x) ( f F ) 1 f : X Y c f : (X) (Y ) c f (φ) = f φ f 1 c f φ f 1 φ f f : E E f F : F F c f F : (F ) (F )

101 ξ = (p : E B) ξ = (p : E B ) F ξ ξ ξ ξ ( f, f) : (E, B) (E, B ) f x B f p 1 (x) : p 1 (x) p 1 (f(x)) ξ = (p : E B) ξ = (p : E B ) F G G F µ : G F F ξ ξ ξ ξ B {U λ } λ Λ B {V µ } µ M U λ V µ φ λ : p 1 (U λ ) U λ F ψ µ : p 1 (Vµ ) V µ F (U λ f 1 (V µ )) F φ 1 λ p 1 (U λ f 1 (V µ )) (F ) f p 1 (f(uλ ) V µ ) ψµ (f(u λ ) V µ ) F 2 F L f U λ V µ : U λ f 1 (V µ ) (F ) G (µ) G (F ) Lf U λ Vµ U λ f 1 (V µ ) L f U λ Vµ

102 2 ψ µ f φ 1 λ ( 2 ψ µ f φ 1 λ ) : U λ f 1 (V µ ) (F, F ) (F ) G ξ = (p : E B) ξ = (p : E B ) G f = ( f, f) : (E, B) (E, B ) E G f 1 G E G f E E G G G X Y G f : X Y G G G X 1 G f G Y X f Y G ξ = (p : E B) ξ = (p : E B) F B f = ( f, f) : (E, B) (E, B)

103 f = 1 B ξ ξ f ξ = ξ ξ ξ G G F f G = (F ) = ξ ξ = ξ ξ = η η = ξ ξ = ζ ζ = η ξ = η ξ = (p : E B) E = E B p = B p ξ ξ = (p : E B) ζ = (p : E B) η = (p = E B) f E E E E p p p p = = B B B B ξ ζ ζ η g f E E g B p = B p ξ η

104 f E E B p = B p ξ = (p : E B) η = (p : E B) E g E B p = B p g = f 1 f f 1 f 1 B = α A U α B U α ξ η φ α : p 1 (U α ) U α F ψ α : p 1 (Uα ) U α F U α E = p 1 (Uα ) α A p 1 (U α ) f 1 U α F φ 1 α p 1 f (U α ) p 1 (Uα ) ψα U α F ψ α f φ 1 α (x, y) = (x, Φ(x)(y)) Φ : U α (F ) x U α Ψ(x) = Φ(x) 1 Φ(x) 1 Φ(x) (F ) Ψ Ψ : U α Φ ν (F ) (F ) ν G Ψ g α : U α F U α F

105 g α (x, y) = (x, Ψ(x)(y)) ψ α f φ 1 α (x, y) = (x, Φ(x)(y)) p 1 (Uα ) ψ α U α F f 1 p 1 (U α ) φ α g α U α F f 1 f 1 ( f, 1 B ) : (E, B) (E, B) ( f 1, 1 B ) ( f, 1 B ) : (E, B) (E, B) f : E E M 0 M 2 2π M 2 M 0 = { (2 φ, 2 φ, t) 1 2 t 1 2, 0 φ 2π} M 2 = { ((2 + t φ) φ, (2 + t φ) φ, t φ) 1 2 t 1 2, 0 φ 2π} p 0 : M 0 S 1 p 2 : M 2 S 1 I [ 1 2, 1 2 ] M 0 M 2

106 M 0 M 2 AB CD M 2 E 1 E 2 M 0 A B C D E 1 E 2 A D A D B C B C M 2 M 0 M 2 ABDC A B C D f 1 : E 1 E 1 f 2 : E 2 E 2 AB CD f 1 f 2 M 2 M 0 p 2 p 0 = S 1 S 1 M n nπ p n : M n S 1 M 2n = M 2n+1 =

107 M 2 M 0 f 1 f 2 M 2 M 0 M 2 M 0 f 1 f 2 M 2 3 R 3 R 3 E p B E p B F G G F {U α } α A B U α E E { Φ αβ : U α U β G } { Ψ αβ : U α U β G } E E E E α A α, β A x U α U β λ α : U α G λ β (x) 1 Ψ αβ (x)λ α (x) = Φ αβ (x) E, E φ α : p 1 (U α ) U α F ψ α : p 1 (Uα ) U α F

108 f : E E x U α U β, y F 1 ψ β fφ α (x, y) = (x, λ αβ (x)(y)) λ αβ = (µ) λ αβ λ αβ : U α U β G λ α = λ αα (U α U β ) F (U α U β ) F φ α ψ β p 1 f (U α U β ) p 1 (Uα U β ) φ β ψ α (U α U β ) F (U α U β ) F p 1 (U α U β ) ψ α ψ β f φ 1 α (x, y) = ψ β ψα 1 ψ α f φ 1 α (x, y) = ψ β ψα 1 (x, λ α (x)(y)) = (x, Ψ αβ (x)λ α (x)(y)) ψ β f φ 1 α (x, y) = ψ β f φ 1 β φ β φ 1 α (x, y) = ψ β f φ 1 β (x, Φαβ (x)(y)) = (x, λ β (x)φ αβ (x)(y)) λ β (x)φ αβ (x) = Ψ αβ (x)λ α (x) Φ αβ (x) = λ β (x) 1 Ψ αβ (x)λ α (x) λ α : U α G f α : p 1 (U α ) p 1 (Uα )

109 p 1 (U α ) φα U α F Λα U α F ψ 1 α p 1 (Uα ) Λ α (x, y) = (x, λ α (x)(y)) x p 1 (U α U β ) λ β (x)φ αβ (x) = Ψ αβ (x)λ α (x) f : E E f : X Y X {U α } α A f Uα f Y V f 1 (V ) = f 1 (V ) U λ = (f Uα ) 1 (V ) α A α A U α X (f Uα ) 1 (V ) U α (f Uα ) 1 (V ) X f 1 (V ) X ξ = (p : E B) f : X B f (E) = {(x, e) X E f(x) = p(e)} f (p) : f (E) X p (f) : f (E) E

110 f (p)(x, e) = x p (f)(x, e) = e f (E) f (p) X p (f) f E B p f (E) f (p) : f (E) X f (ξ) ξ f f (p) : f (E) X p : E B F G {U α } α A B U α p : E B φ α : p 1 (U α ) U α F φ α (e) = (p(e), φ α (e)) f (E) X V α = f 1 (U α ) {V α } α A X ψ α : f (p) 1 (V α ) V α F ψ α (x, e) = (x, φ α (e)) f (p) 1 (V α ) V α p 1 (U α ) ψ α f (p) 1 (V α ) V α p 1 (U α ) 1 Vα φ α V α F f (E) γ α (x, y) = (x, φα 1 (f(x), y)) γ α : V α F f (p) 1 (V α ) γ α : V α F 1 F V α V α F 1 Vα f 1 F V α U α F 1 Vα φ 1 α V α p 1 (U α ) p(φ 1 α (f(x), y)) = f(x)

111 γ α (x, y) f (E) γ α : V α F f (p) 1 (V α ) γ α ψ α (x, e) = γ α (x, φ α (e)) = (x, φ 1 α (f(x), φ α (e))) = (x, φ 1 α (p(e), φ α (e))) = (x, φ 1 α = (x, e) φ α (e)) ψ α γ α (x, y) = ψ α (x, φ 1 α (f(x), y)) = (x, φ α φ 1 α (f(x), y)) = (x, y) γ α ψ α ψ α (x, y) (V α V β ) F ψ β ψα 1 (x, y) ψ β ψ 1 α (x, y) = ψ β γ α (x, y) = ψ β (x, φ 1 α (f(x), y)) = (x, φ β (φ 1 α (f(x), y))) Φ αβ : U α U β (F ) p : E B φ β (φ 1 α (f(x), y)) = Φ αβ (f(x))(y) ψ β ψα 1 (x, y) = (x, Φ αβ (f(x))(y)) G M 0 M 1 M n nπ M n S 1 ξ n φ n : S 1 S 1

112 z S 1 = {z C z = 1} φ n (z) = z n ξ 1 φ n ξ n p : E B f : X B p (f) : f (E) E x X x x = f (p) 1 (x) = {(x, e) f (E) f (p)(x, e) = x} = {(x, e) X E f(x) = p(e)} = {e E f(x) = p(e)} = p 1 (f(x)) = f(x) (x, e) e p (f) p (f) x f(x) p : E B G f (p) V α V β = f 1 (U α ) f 1 (U β ) f Φ U α U αβ β (F ) p G f (p) V α V β U α U Φαβ β G (µ) (F ) f U α U β Φαβ G (µ) (F ) p (f) p : E B p : E X

113 E f E p X f B p E p X f (E) f (p) X ( f, f) : (E, X) (E, B) p f = f p e E p( f(e)) = f(p (e)) f (E) (p (e), f(e)) f (E) f : E f (E) f(e) = (p (e), f(e)) p E X f = f (E) X f (p) f E f f (E) p (f) E f p (f) f f {φ λ : p 1 (U λ ) U λ F } λ Λ {φ γ : p 1 (V γ ) V γ F } γ Γ p : E B p : E X {V γ } γ Γ f(v γ ) U λ f (E) X {f 1 (U λ )} λ Λ {ψ λ : p (f) 1 (U λ ) f 1 (U λ ) F } λ Λ G f(v γ ) U λ ( 2 ψ λ f φ γ 1 ) U λ (F ) (µ) G

114 φ λ (e) = (p(e), ( 2 φ λ )(e)) f (E) ψ λ : f (p) 1 (U λ ) U λ F ψ λ (x, e) = (x, ( 2 φ λ )(e)) V γ F φ 1 λ p 1 f (Uλ ) f (p) 1 (U λ ) ψ λ U λ F (x, y) (x, 2 (φ λ ( f(φ γ 1 (x, y))))) = (x, (2 φ λ f φ γ 1 )(x)(y)) ( 2 ψ λ f φ γ 1 ) = (2 φ λ f φ γ 1 ) f ( 2 φ λ f φ γ 1 ) ( 2 φ λ f φ γ 1 ) U α (F ) (µ) G f X ξ = (p : E B) f : X B g : Y X (f g) (ξ) = g (f (ξ)) ξ = (p : E B) 1 B(ξ) = ξ

115 p (1 B ) : 1 B(E) E p : E B A B i : A B i (E) E A E A p : E B Y X f g Z X Z Y = {(x, y) X Y f(x) = g(y)} W f Y g X f Z g W f X Z Y g Y f Z g : W X Z Y f Y Z g

116 ξ B f, g : X B f (ξ) = g (ξ) f g f (ξ) = g (ξ) f g f (ξ) = g (ξ) f 0, f 1 : X Y H : X [0, 1] Y x X H(x, 0) = f 0 (x) H(x, 1) = f 1 (x) f 0 f 1 f 0 f 1 H f 0 f 1 H f 0 f 1 t [0, 1] x X f t : X Y f t (x) = H(x, t) f t = (H)(t) t [0, 1] f t : X Y t 0 1 f 0 f 1 f 0 f 1 f 0 f 1

117 C C D C f D D C C f(z) dz = f(z) dz C C D p : E Y p : E X ( f 0, f 0 ) : (E, X) (E, Y ) H : X [0, 1] Y x X H(x, 0) = f 0 (x) X H E [0, 1] p 1 [0,1] X [0, 1] H H E Y p e E H(e, 0) = f 0 (e)

118 E {0} E [0, 1] = E X {0} X [0, 1] = X f 0 f 0 H H H X p : E Y H E = Y F f0 (e) = ( f 0(e), f 0 (e)) H(e, t) = (H(p (e), t), f 0 (e)) E Y E X H X E Y

119 X W W X W W X u : X [0, 1] u(w ) = 1 u(x W ) = 0 X W W u : X [0, 1] X [0, 1] E [0, 1] X [0, 1] [0, 1] (X, d) {U λ } λ Λ σ > 0 d(a) < σ λ Λ A U λ d(a) = {d(a, a ) a, a A} A τ {U λ } λ Λ X X [0, 1] {V α } α A [0, 1] 0 < 1 l < 2 l < < l 1 l < 1 X U 1,1,..., U n1,1,..., U 1,l,..., U nl,l X

120 W 1 = [0, 4 3l ) W 2 = ( 2 3l, 7 3l )... W l = ( 3l 4 3l, 1] l nk k=1 i=1 U i,k W k = X [0, 1] (i, k) U i,k W k V α α A (x, t) X [0, 1] (x, t) U x,t V x,t V α α U x,t X V x,t [0, 1] t [0, 1] {U x,t } x X X X U x1,t... U xnt,t X n t i=1 V t = n t i=1 V x i,t U xi,t V t = X V t {V t } t [0,1] [0, 1] [0, 1] σ 5 3l < σ l N W 1 = [0, 4 3l ) W 2 = ( 2 3l, 7 3l )... W l = ( 3l 4 3l, 1] d(w k) 5 3l k W k V tk t k k 1 i n tk n tk i=1 U xi,t k V tk = X V tk [0, 1] X U xi,t k W k U xi,t k V xi,t k V α 0 < 1 l < 2 l < < l 1 l {V α } α A V α E Y Y V α φ α : p 1 (V α ) V α F < 1

121 {H 1 (V α )} α A X [0, 1] [0, 1] 0 < 1 l < 2 l < < l 1 l < 1 U 1,1,..., U n1,1,..., U 1,l,..., U nl,l X l n k k=1 i=1 U i,k W k = X [0, 1] (i, k) U i,k W k H 1 (V α ) α A W 1 = [0, 4 3l ) W 2 = ( 2 3l, 7 3l )... W l = ( 3l 4 3l, 1] t k = k l t k W k W k+1 k k H E [0, t k ] k = 0 E {0} f 0 E [0, t k ] E [0, t k+1 ] E [t k, t k+1 ] H X [t k, t k+1 ] X x U i,k+1 x O, O O, O U i,k+1 X (O, O) X {(O j, O j)} j=1,...,s X = s j=1 O j [0, 1] [t k, t k+1 ] (O j, O j) u j : X [t k, t k+1 ] u j (O j ) = t k+1 u j (X O j) = t k x X τ 0 (x) = t k τ j (x) = {u 1 (x),, u j (x)} t k = τ 0 (x) τ 1 (x)... τ s (x) = t k+1 X j = {(x, t) X [t k, t k+1 ] t τ j (x)} X [t k, t k+1 ] X 0 = X {t k } X 1 X 2 X s = X [t k, t k+1 ] E [0, 1] X j E j E 0 = E {t k } E 1 E s = E [t k, t k+1 ]

122 E j 1 H j 1 H j : E j [0, 1] E X j X j 1 1 j s { } X j 1,j = (x, t) O j [t k, t k+1 ] τ j 1 (x) x τ j (x) X j = X j 1 X j 1,j U i,k+1 V α X j 1,j O j [t k, t k+1 ] O j [t k, t k+1 ] U i,k+1 [t k, t k+1 ] H(U i,k+1 [t k, t k+1 ]) V α t k+1 u j τ j 1 X j 1,j t k O j O j X X [0, 1] E j 1,j = E Xj 1,j E j = E j 1 E j 1,j V α E Y φ α (e) = (p(e), φ α (e)) (e, t) E j 1,j H j (e, t) = φ 1 α (H(p (e), t), φ α ( H j 1 (e, τ j 1 (p (e))))) E j 1,j H j E j 1 [0,1] = H j 1

123 E j 1,j E j 1 t = τ j 1(p (e)) = φ 1 α (H(p (e), t), φ α ( H(e, t))) = φ 1 α (p H(e, t), φ α ( H(e, t))) = φ 1 α = H(e, t) φ α ( H(e, t)) H j 1 H j 1 E j H E [0, 1] H X [0, 1] X A B f A B = g A B f : A Y g : B Y f g : A B Y (f g) A = f (f g) B = g τ j X {U α } α A 1 f γ : X [0, 1] (γ Γ) {(f γ )} γ Γ X X = γ Γ (f γ )

124 x X x U (f γ ) (f γ ) = {x X f γ (x) 0} x X f γ (x) = 1 γ Γ γ Γ (f γ ) U α α A 1 {U α } α A B p : E B U α p X X B p : E B p : E B f : X B f : X E X f 8 f E p B

125 H : X [0, 1] B f H(x, 0) = f(x) B H : X [0, 1] E H(x, 0) = f(x) E H 8 H X [0, 1] B p X {0} X [0, 1] H f H E B p H E X X = X X X {U α } α A X {V β } β B β B V β U α α A x X x U U V β

126 B p : E B X X p : E X [0, 1] X p : E X p : E X [0, 1] p 1 [0,1] : E [0, 1] X [0, 1] i 0 : X = X {0} X [0, 1] E = i 0(E) p E i 0 E X X [0, 1] E E p p H H = 1 X [0,1] : X [0, 1] p = X [0, 1] H(x, 0) = (x, 0) = i 0 (x) E [0, 1] H E p 1 [0,1] p H X [0, 1] X [0, 1] H p : E Y f 0, f 1 : X Y f 0 f 1 X f0 (E) = f 1 (E) X = X

127 H : X [0, 1] Y f 0 f 1 E H H (E) X [0, 1] X E X H (E) = E [0, 1] t [0, 1] i t : X = X {t} X [0, 1] f 0 = H i 0 f 1 = H i 1 f 0 (E) = (H i 0 ) (E) = i 0(H (E)) = i 0(E [0, 1]) f 1 (E) = (H i 1 ) (E) = i 1(H (E)) = i 1(E [0, 1]) t [0, 1] E = E {t} E [0, 1] X = X {t} i t X [0, 1] E = i 1(E [0, 1]) f 0 (E) = i 0(E [0, 1]) = E = i 1 (E [0, 1]) = f 1 (E) X X X x 0 X H : X [0, 1] X

128 x X H(x, 0) = x H(x, 1) = x 0 X 1 X x 0 c x0 H X x 0 x 0 n D n = {(x 1,, x n ) R n x x 2 n 1 } R n R n X p : E X F X E X F = E X = X X x 0 X 1 X c x0 H : X [0, 1] X 1 X(E) = c x 0 (E)

129 1 X(E) = {(x, e) X E 1 X (x) = p(e)} = {(x, e) X E x = p(e)} = {(p(e), e) X E e E} = E c x 0 (E) = {(x, e) X E c x0 (x) = p(e)} = {(x, e) X E x 0 = p(e)} = X {e E x 0 = p(e)} = X p 1 (x 0 ) = X F E = X F n D n S+ n = {(x 0,, x n ) S n x n 0} S n = {(x 0,, x n ) S n x n 0} n S n S n = S n + S n S n + S n D n G p : E S n F i + : S n + S n i : S n S n S n + S n E S n + S n i +(E) i (E) φ + : i +(E) = S n + F φ : i (E) = S n F

130 (S+ n S ) n F φ 1 + p 1 (S+ n S ) n φ (S+ n S ) n F B(p) p S n 1 = S n + S n (F ) p G S n + S n 0 < ε < 1 U +,ε = {(x 0,, x n ) S n x n ε} U,ε = {(x 0,, x n ) S n x n ε} i ±,ε : U ±,ε S n U ±,ε φ ±,ε : i ±,ε(e) = U ±,ε F Φ + : U +,ε U,ε (F ) φ ±,ε p G G (F ) Φ + Φ + U +,ε U,ε Φ + S n 1 = S+ n S n Φ + U +,ε U,ε G B(p) E S n + G S n G G U + U B(p) G p : E S n p : E S n

131 G E E 0 < ε < 1 ψ ±,ε : p 1 (U ±,ε ) U ±,ε G ψ ±,ε : (p ) 1 (U ±,ε ) U ±,ε G E E B(p) B(p ) B(p) B(p ) E p B E p B F G G F {F i } i=1,...,n B i F i U i U i E E U i 1 i, j n { Φ ij : F i F j G } { Ψ ij : F i F j G } E E E E 1 i n 1 i, j n x F i F j λ i : F i G λ j (x) 1 Ψ ij (x)λ i (x) = Φ ij (x) α f α : p 1 (U α ) p 1 (U α ) f : E E ( ) B(p) B(p ) f : E E f λ + : U +,ε G λ : U,ε G

132 B(p) B(p ) E E x S n 1 = S+ n S n B(p)(x) = λ (x) 1 B(p )(x)λ + (x) λ ± B(p) B(p ) S+ n S+ n x 0 = (1, 0,..., 0) S n 1 H + : S+ n [0, 1] S+ n x S+ n H + (x, 0) = x H + (x, 1) = x 0 H + (x, t) S+ n [0, 1] h + (x, t) = λ + (H + (x, t)) S n x 0 H : S n [0, 1] S n h (x, t) = λ (H (x, t)) (x, t) S n 1 [0, 1] F (x, t) = h (x, t) 1 B(p )(x)h + (x, t) F (x, 0) = h (x, 0) 1 B(p )(x)h + (x, 0) = λ (x) 1 B(p )(x)λ + (x) = B(p)(x) F (x, 1) = h (x, 1) 1 B(p )(x)h + (x, 1) = λ (x 0 ) 1 B(p )(x)λ + (x 0 ) B(p) x λ (x 0 ) 1 B(p )(x)λ + (x 0 ) B(p λ (x 0 ) e ) G λ + (x 0 ) e

133 w : [0, 1] G e G (x, t) w + : [0, 1] G S n 1 [0, 1] G(x, t) = w (t) 1 B(p )(x)w + (t) G(x, 0) = F (x, 1) G(x, 1) = B(p )(x) B(p) B(p ) ( ) B(p) B(p ) x S n 1 L(x) = B(p )(x) 1 B(p)(x) B(p) B(p ) L c e H : S n 1 [0, 1] G c e G e H(S n 1 {1}) = c e (S n 1 ) = {e} H H : S n 1 [0, 1]/S n 1 {1} G S n 1 [0, 1]/S n 1 {1} S n + = S n 1 [0, 1]/S n 1 {1} S n +

134 H λ + : S n + G λ = c e : U,ε G Φ + Φ + E E x S n + S n λ (x) 1 Φ + (x)λ + (x) = e Φ + (x) H(x, 1) = Φ + (x)l(x) = B(p )(x)b(p )(x) 1 B(p)(x) = B(p)(x) E E G S 1 f : X Y c y0 f f : X [0, 1]/X {1} Y f([x, 1]) = y 0 X = X {0} X [0, 1]/X {1} X X [0, 1]/X {1} X CX X CX CS n 1 D n S n +

135 D n S n X X {φ λ : D n λ X} λ Λ λ φ λ : D n λ X e λ = φ λ (D n λ ) X = λ Λ e λ e λ e λ = φ λ (D n ) e λ = n r X (r) = µ Λ eµ r X r e λ = n e µ φ λ ( D n ) = φ λ (S n 1 ) X (n 1) {φ λ } λ Λ {e λ } λ Λ X = λ Λ e λ e λ φ λ e λ n n n S 1 S 1 S 2 = e 0 + e 0 e 1 + e 1 e 2 + e 2 S 2 n S n S n = e 0 + e 0 e 1 + e 1 e n + e n S n

136 e 1 + e 0 e 0 + e 1 S 1 = e 0 + e 0 e 1 + e 1 e 1 e 2 + e 0 e 0 + e 2 e 1 + S 1 0 S n e 0 S n e n = S n {e 0 } e n n S n = e 0 e n S n e 0 S n S n {e 0 } R n (D n ) X

137 e 1 + e 0 e 0 + e 1 S 1 S n {e 0 } = (D n ) S n n (n 1) X n e n X = X (n 1) e n = X (n 1) e n X (n 1) e n e n e n φ φ S n 1 : D n = S n 1 X (n 1) φ((d n )) = e n X (n 1) X D n φ S n 1 X (n 1) n n 0 (n 1) n

138 D n = φ S n 1 X n 1 X Y A Y f : A X f Y X X f Y X f Y = (X Y )/ f f a A a f f(a) X f Y X Y = D n A = D n = S n 1 f : S n 1 X f Y = f D n = D n / D n S n n φ n : D n S n φ n ( D n ) = e 0 φ n : D n / D n S n

139 D n / D n S n X X = e λ λ Λ φ λ : D n X e λ n X (n) = X (n 1) φλ n 1 S Dλ n λ e λ =n D n λ Dn X (n 1) X (n) n φ λ X (n 1) φλ S n 1 X (n) e λ =n X (n) X X 0 X = {x} x X x X D0 x X X = λ Λ e λ e λ e λ D n λ A X X A e λ λ Λ e λ A X : A e λ e λ

140 C R (n 1) n X X = e λ λ Λ φ λ : D n X e λ n 0 p n : X (n 1) φλ S n 1 e λ =n D n λ X (n) X (n 1) n p n p : X (n 1) A X (n 1) φλ S n 1 X (n 1) φλ S n 1 Dλ n Dλ n e λ =n e λ =n e λ =n D n λ : p 1 (A) : ( ) p 1 (A) = (X (n 1) A) D n λ p 1 (A) A X (n 1) A Dλ n p 1 (A) p n (A) X (n) X (n) X n e µ p n (A) e µ e µ ( p n (A) ē µ = p n (X (n 1) A) ) p n (D λ p 1 (A)) ē µ λ

141 ē µ e λ1,..., e λk p n (A) ē µ = = ( ) p n (X (n 1) A) p n (Dλ n 1 p 1 (A)) p n (Dλ n k p 1 (A)) ē µ ( ) p n (X (n 1) A) φ λ1 (Dλ n 1 p 1 (A)) φ λk (Dλ n k p 1 (A)) ē µ p n X (n 1) X (n 1) p n (X (n 1) A) φ λi (D n λ i p 1 (A)) p n (A) ē µ X φ λ : D n ē λ D n X φ λ φ λ : D n e λ X n X (n) X X (n) X S n X { e λ e λ X : }, X =, X X X X A X X A X

142 G G X G P G (X) G X P G (X) X X Y (X, Y ) [X, Y ] X Y G BG G p : EG BG X [f] f (EG) B : [X, BG] P G (X) X G E X f : X BG f (EG) = E E f (EG) EG X = f f, g f g G G p : EG BG BG

143 D n = S n 1 X n n k n k X [S k, X] = { } k n f, g : S k X f g 0 X 0 X 0 x 0, x 1 X f : S 0 X g : S 0 X f(1) = x 0, f( 1) = x 0 g(1) = x 0, g( 1) = x 1 S 0 = { x R x 2 = 1 } = {1, 1} f g X 0 f g H : S 0 [0, 1] X

144 f g w(t) = H( 1, t) w(0) = H( 1, 0) = f( 1) = x 0 w(1) = H( 1, 1) = g( 1) = x 1 w x 0 x 1 X X 0 X x 0 X (X, x 0 ) x 0 X (X, x 0 ) (Y, y 0 ) (X, x 0 ) (Y, y 0 ) f : X Y f(x 0 ) = y 0 f : (X, x 0 ) (Y, y 0 ) g : (X, x 0 ) (Y, y 0 ) f g f g H : X [0, 1] Y t [0, 1] H(x 0, t) = y 0 f g X Y ((X, x 0 ), (Y, y 0 )) (X, Y )

145 [(X, x 0 ), (Y, y 0 )] = [X, Y ] = (X, Y )/ X Y X = S n e 0 = (1, 0,..., 0) R n+1 S n (X, x 0 ) π n (X, x 0 ) = [(S n, e 0 ), (X, x 0 )] n 1 X n π n (X) n (X, x 0 ) X n k n [S k, X] = { } k n π k (X, x 0 ) = { } k n f : S k X F S k = f F : D k+1 X f : S k X D k+1 k n x 0 X c x0 : S k X x 0 X n f : S k X (X, Y )

146 c x0 H : S k [0, 1] X c x0 f H(S k {0}) = c x0 (S k ) = {x 0 } H H : S k [0, 1]/S k {0} X S k [0, 1]/S k {0} = D k+1 H F S k = f F : D k+1 X = S k [0, 1]/S k {1} D k+1 f, g : S k X f g f F : D k+1 X p : S k [0, 1] S k [0, 1]/S k {0} H : S k [0, 1] X x S k S k [0, 1] p S k [0, 1]/S k {0} = D k+1 F X H(x, 0) = F (0) H(x, 1) = F S k(x) = f(x)

147 H(x, 0) x 0 = F (0) H f c x0 g g c x1 G h : S 0 X h(1) = x 0 h( 1) = x 1 h : D 1 = [0, 1] X h c x0 c x1 H G f g e 0 S n S n [0, 1]/S n {0} {e 0 } [0, 1] = D n+1 (X, x 0 ) X [0, 1]/(X {1} {x 0 } [0, 1]) X CX X n 1 π n (X, x 0 ) X Y X Y X Y X Y x 0 y 0 X Y X Y X Y = X {y 0 } {x 0 } Y X Y k 1 : S k S k S k

148 X Y S k S k S k E = { (x 0,..., x k ) S k x k = 0 } S k X : X X X X x, x = x (x, x 0 ) = x, x = x 0 X f, g : S k X f + g : S k X

149 S k S k S k f g X X X S k S k S k + X A (X, A) (Y, B) f : X Y f(a) B f f : (X, A) (Y, B) g : (X, A) (Y, B) f g f g H : X [0, 1] Y a A t [0, 1] H(a, t) B (X, A) (Y, B) ((X, A), (Y, B)) [(X, A), (Y, B)] A B

150 (X, x 0 ) [([0, 1] n, [0, 1] n ), (X, x 0 )] = π n (X, x 0 ) R n R n { } τ : [0, 1] n / [0, 1] n R n { } ( 2πx 1 1 2,..., 2πx ) n 1 2, (x1,..., x n ) [0, 1] n τ([x 1,..., x n ]) =, (x 1,..., x n ) [0, 1] n π : (([0, 1] n, [0, 1] n ), (X, x 0 )) (S n, X) f : ([0, 1] n, [0, 1] n ) (X, x 0 ) f( [0, 1] n ) = {x 0 } f : [0, 1] n / [0, 1] n X S n = R n { } S n = [0, 1] n / [0, 1] n f π(f) : S n X π : [([0, 1] n, [0, 1] n ), (X, x 0 )] π n (X, x 0 ) f : S n X [0, 1] n [0, 1] n / [0, 1] n = S n f X ([0, 1] n, [0, 1] n ) (X, x 0 ) π [f], [g] [([0, 1] n, [0, 1] n ), (X, x 0 )] π([f]) = π([g]) f ḡ H [0, 1] n [0, 1] n / [0, 1] n H X f g [f] = [g]

151 h : (X, x 0 ) (Y, y 0 ) [([0, 1] n, [0, 1] n ), (X, x 0 )] π n (X, x 0 ) π h [([0, 1] n, [0, 1] n ), (X, x 0 )] π n (Y, y 0 ) h h π n (X, x 0 ) + f, g : ([0, 1] n, [0, 1] n ) (X, x 0 ) f(t 1,..., t n 1, 2t n ), 0 t n 1 2 (f + g)(t 1,..., t n ) = 1 g(t 1,..., t n 1, 2t n 1), 2 t n 1 φ : [0, 1] n / [0, 1] n = S n ( n ) i=1 2 2πt i π 2 1, 2πt 2 1 π n i=1 φ([t 1,..., t n ]) = 2 2πt i π 2,..., 2πtn π n i=1 2 2πt i π n, (t i=1 2 2πt i π 1,..., t n ) [ e 0, (t 1,..., t n ) [0 ((x 0,..., x n 1, 1 2x n ), e 0 ), 0 x n 1 (x 0,..., x n ) = (e 0, (x 0,..., x n 1, 2x n + 1)), 1 x n 0 k : π k (X) π k (X) π k (X) f 0, f 1, g 0, g 1 : S k X π h f 0 f 1, g 0 g 1 f 0 + g 0 f 1 + g 1 k 1 π k (X, x 0 ) : S k X

152 k 2 π k (X, x 0 ) 0 k 2 π k (X) f, g : S k X f + g g + f t [0, 1] F t : S k S k S k e 0 e 0 l πt t F : S k [0, 1] S k 1 S k l π H : S k [0, 1] F S k f+g X H Sk {0} = f + g H S k {1} = g + f H f + g g + f X Y f : X Y g : X Y g X n Y n g(x (n) ) Y (n) f g

153 X Y f : X Y n 0 f(x (n) ) Y (n) f S n (n 1) k n 1 π k (S n ) = 0 k n 1 f : S k S n S k S n S n S n = { } (S n { }) = e 0 e n f g g : S k S n k n 1 g(s k k) = g(s k ) S n k = e 0 = { } g f : S k S n X A p : E Y f : X Y f : X E

154 X f 8 f E p Y H : X [0, 1] Y f H(x, 0) = f(x) G : A [0, 1] E G A {0} = f A A [0, 1] X [0, 1] G H E Y p H : X [0, 1] E A [0, 1] X {0} G H E p X [0, 1] H Y H : X [0, 1] E X {0} A [0, 1] f G E p X [0, 1] H Y

155 G : A [0, 1] E X X X X Y p : E Y f : X Y f : X E X f 8 f E p Y H : X [0, 1] Y f x X t [0, 1] H(x, 0) = f(x) H(, t) = H : X [0, 1] E H(x, 0) = f(x) E H 8 H X [0, 1] Y p A = { }

156 G EG BG B : [X, BG] P G (X) G EG BG G G p : E B [X, B] P G (X) G E B E (n 1) G X X < n f f (E) [X, B] P G (X) E X X G f : X B f (E) = E X f r = 0, 1, 2,..., n 1 i r : X (r) X f r : X (r) B f r : i r(e ) = f r (E)

157 X (r 1) i r 1 r X (r) f r 1 f r B B r f r f r : i r(e ) E r = 0 X 0 X (0) X 0 0 X (0) 0 X (0) f 0 f 0 (E) = X (0) G = i 0(E ) f r 1 X (r) = X (r 1) (r) r f r f r 1 e r X r φ : D r X e r D r φ (E ) j : S r 1 D r φ (E ) = D r G j φ (E ) = (φ j) (E ) = S r 1 G S r 1 G = j φ (E ) i r 1(E ) = f r 1 (E) E S r 1 = S r 1 φ j X (r 1) = X (r 1) f r 1 f r 1 : S r 1 G E B

158 h : S r 1 E h(x) = f r 1 (x, e) e G E (n 1) r < n h h : D r E p : E B G G E µ : E G E F (x, g) = µ( h(x), g) F : D r G E F : D r B F (x) = p F (x, e) D r G D r F F p E B f r : X (r) B r e r x e r x = φ(y) y D r f r (x) = F (y) X (r 1) f r 1 h h D r F S r 1 f r 1 y f r : X (r) B F f r i r(e ) E i r(e ) = f r (E)

159 f = f n 1 f (E) = f n 1(E) = i n 1(E ) = E f f (E) [X, B] P G (X) X X (0) X [X, B] P G (X) f (E) = g (E) f g H : X [0, 1] B X [0, 1] [0, 1] = {0} (0, 1) {1} [0, 1] X Y X Y X Y X Y X X Y X X Y G p : E B E n G X X < n f f (E) [X, B] P G (X)

160 f, g : X B f (E) = g (E) f g H : X [0, 1] B E = f (E) f (p) 1 [0,1] : E [0, 1] X [0, 1] X {0} f (E) X {1} g (E) X [0, 1] G X < n X [0, 1] X [0, 1] < n + 1 E n H : X [0, 1] B H (E) = E [0, 1] f g : X {0} X {1} B H H f g G G E B n n E (n 1) G n n G G G G G G G G

161 p : E B E B F E B p : E B f : X Y f : π k (X) π k (Y ) [g] π k (X) f ([g]) = [f g] [g] g : S k X f f k 1 f f : X Y g : Y Z (g f) = g f 1 X : X X (1 X ) = 1 πk (X) π k (E) π k (B) p : π k (E) π k (B) V W f : V W f = f 1 (0) f = W / f

162 f f = 0 f = 0 f : G H f G H f = {g G f(g) = e} f = H/ f f H f f f f 1 f 2 G 1 G2 G3 G 2 f 1 = f 2 f 2 f 1 = 0 f 2 (x) = 0 y G 1, x = f 1 (y) f k 1 f k G k 1 Gk Gk+1 k f k 1 G k 1 Gk f k Gk+1 G k

163 F p : E B B i : F = p 1 ( ) E n 1 π n (F ) i π n (E) p π n (B) p i = 0 p ([f]) = 0 [g] π n (F ), i ([g]) = [f] F = p 1 ( ) p i(f ) = { } p i = p i = 0 [f] π n (E) p ([f]) = 0 p f H : S n [0, 1] B H Sn {0} = p f S n f 8 p f E B p H : S n I E p H = H H Sn {0} = f

164 g = H Sn {1} p(g(s n )) = { } p g = p H Sn {1} = H Sn {1} = g(s n ) p 1 ({ }) = F [g] π n (F ) H f i g [f] = i ([g]) g : S n F n π n (F ) i π n (E) p π n (B) p : E B i : F E p i π n (S n ) = Z π n (D n+1 ) = 0 D n+1 S n = D n+1 i : S n D n+1 i : π n (S n ) = Z 0 = π n (D n+1 ) F i E p B i : π n (F ) π n (E)

165 i [f] π n (F ) i ([f]) = 0 i ([f]) = 0 f E f : D n+1 E f D n+1 = f f : S n F (p f)( S n ) = { } p f f : D n+1 / D n+1 = S n+1 B i π n+1 (B) p : E B F B n 1 : π n (B) π n 1 (F ) [f] π n (B) f f : S n B S n = D n / D n f : D n B f( D n ) = { } D n = S n 1 [0, 1]/S n 1 {0} { } [0, 1] π : S n 1 [0, 1] S n 1 [0, 1]/S n 1 {0} { } [0, 1] = D n

166 x S n 1, t [0, 1] H : S n 1 [0, 1] π D n f B H(x, 0) = H(, t) = H H : S n 1 [0, 1] E p H = H H S n 1 {0} = g = H S n 1 {1} : S n 1 E p g = p H S n 1 {1} = H S n 1 {1} = f D n = g(s n 1 ) p 1 ( ) = F [g] π n 1 (F ) : π n (B) π n 1 (F ) ([f]) = [g] H n 2 i n 2 π n (B) π n 1 (F ) i π n 1 (E)

167 H : S n 1 I E g E i ([f]) = i ([g]) = 0 i = 0 [g] π n 1 (F ) i ([g]) = 0 g E G : S n 1 [0, 1] E G = p G : S n 1 [0, 1] B H S n 1 {0} = H S n 1 {0} = H H H f : D n = S n 1 [0, 1]/S n 1 {0} { } [0, 1] B f S n 1 = H S n 1 {1} = p g = f π n (B) [f] = [g] n 2 π n (E) p π n (B) π n 1 (F ) p = 0 [f] π n (E) f : D n E f( D n ) = { } p f H S n 1 [0, 1] π D n f E

168 ([p f]) = [ H S n 1 {1}] = [f S n 1] = [ ] = 0 p = 0 [f] π n (B) ([f]) = 0 H : S n 1 [0, 1] E S n 1 [0, 1] π D n f B F H S n 1 {1} G : S n 1 {1} [0, 1] F E G : (S n 1 {0} { } [0, 1]) [0, 1] E H : S n 1 [0, 1] {0} E G G : (S n 1 {0, 1} { } [0, 1]) [0, 1] E X = S n 1 [0, 1] A = S n 1 {0, 1} { } [0, 1] K = G G H A {0} = K A {0} H : X [0, 1] B H(x, t, s) = p H(x, t) X {0} A [0, 1] H K E X [0, 1] H B p

169 K H K : X [0, 1] E K(S n 1 {0} { } [0, 1]) = { } K : D n [0, 1] = (S n 1 [0, 1]/S n 1 {0} { } [0, 1]) [0, 1] E g = K D n {1} [g] π n (E) p [g] = [f] g(s n 1 ) = K(S n 1 {1} {1}) = { } π n (F ) i π n (E) p π n (B) π n 1 (F ) π 1 (B) E B F [l] π 1 (B) l p : π 1 (E) π 1 (B) l : [0, 1] B l(0) = l(1) = [0, 1] = { } [0, 1] l B x 0 p 1 ( ) { } {0} E x 0 { } {0} { } I l E B p

170 { } {0} { } I l l E B p l : [0, 1] E ω l x 0 l l(1) = x 0 F F = p 1 ( ) l(0) = x 0 l(1) [ˆl] π 1 (E) ω : [0, 1] E l(2t) 0 t ˆl(t) 1 2 = 1 ω(2t 1) 2 t 1 p ([ˆl]) = [l] f : G H 0 f G f H 0

171 π n (F ) i π n (E) p π n (B) π n 1 (F ) π 1 (B) 0 E B p : E B G π 0 (G) G π n (G) i π n (E) p π n (B) π n 1 (G) π 1 (B) π 0 (G) E π n (G) i π n (E) p π n (B) π n 1 (G) π 1 (B) π 0 (G) 0 F E B π 1 (B) π 0 (F ) π 0 (E) π 0 (B) G G EG BG EG EG 0 EG G EG EG/G G BG = EG/G EG G { }

172 EG S n (n 1) n S { } S = (x 0, x 1,...) x i R, 0, x 2 i = 1 S n = { (x 0, x 1,..., x n ) R n+1 x x 2 n = 1 } i=0 i n : S n S n+1 i n (x 0,..., x n ) = (x 0,..., x n, 0) i n S n S n+1 S n S n+1 S S = S A S : A S n S n X {X α } α A X X A X : A X α X α n=1 S n

173 X {X α } α A X = A X : A X α X α X X {X α } α A α A S = n=1 X α S S n S X {X n } X X n X n+1 X = n=1x n X {X n } K X K X n n K X n K (X n X n 1 ) ϕ n n {n 1, n 2, } K (X nk X nk 1) x k A = {x 1, x 2, } n A X n X A X A K K A A i = A {x i } {x i }, n = n i A i X n = ϕ, n {n 1, n 2,...}

174 A i {x i } A A A = {x i } i=1 A i π i (S ) = 0 S f : S i S f(s i ) S n f(s i ) S n n > i S n f H : S i I S n S i I H S n S f S G S G G 2 C 2 S n R n = S n /C 2 n S n R n C 2 S n S n+1 R n R n+1

175 R = R n n=1 C 2 S R S R C 2 X [X, R ] = P C2 (X) H (X; Z/2Z) X Z/2Z H 1 (X; Z/2Z) = [X, R ] X C 2 X 1 2 C 2 ξ = (E p X) P C2 (X) = [X, R ] = H 1 (X; Z/2Z) H 1 (X; Z/2Z) w 1 (ξ) ξ C 2 G C 2 S S C 2 S S

176 S S n (n 1) C 2 S n S n = O(n + 1)/O(n) S n O(n + 1) O(n) O(n) S n (n 1) O(n) O(n + 1) O(n) O(n + k) A A 0 0 I k O(n) O(n + k) n,k (R) = O(n + k)/o(n) n,k (R) (n 1) G H G G/H H K G/K G/H H/K G G/H HH H H/K µ : H H/K H/K

177 µ(h, h K) = hh K H/K G H H/K G/H G/K G/H G H H/K G/K (g, hk) ghk G H H/K G/K G/H = G/H k k = 1 n,1 (R) = S n n n,k (n 1) n,k+1 (R) (n 1) O(n + k + 1)/O(n) O(n + k + 1)/O(n + 1) O(n + 1)/O(n) S n n,k+1 (R) n+1,k (R) π i (S n ) π i ( n,k+1 (R)) π i ( n+1,k (R)) i < n π i (S n ) = 0 π i ( n+1,k (R)) = 0

178 i < n 0 π i ( n,k+1 (R)) 0 i < n π i ( n,k+1 (R)) = 0 0 G 0 G = 0 n O(n + k) O(n + k + 1) A A n,k (R) = O(n + k)/o(n) O(n + k + 1)/O(n + 1) = n+1,k (R) E(k) = n,k (R) n=1 E(k) E(k) C 2 = O(1) S = E(1) O(k) E(k) S S n R n+1 C 2 E(k) (A, B) A 0 0 B O(n) O(k) O(n + k) n,k (R) = O(n + k)/o(n) O(k)

179 n,k (R) = O(n + k)/o(n) O(n + k)/o(n) O(k) = n,k (R) O(n) O(k)/O(n) = O(k) O(k) n,k (R) n,k (R) A 1 n 0 0 A O(k) O(n + k) O(k) O(n + k) O(n) O(k) O(n + k) O(n + k) O(k) O(n + k)/o(n) O(n + k)/o(n) O(k) O(n + k) O(n + k + 1) n,k (R) n+1,k (R) B(k) = n,k (R) n=1 E(k) B(k) O(k) O(k)

180 X [X, B(k)] = P O(k) (X) O(k) O(k) O(1) = C 2 O(k) = 1 2k(k 1) O(1) = 0 O(k) G G O(k) BG = O(n + k)/o(n) G = E(k)/G n=1 E(k) BG G G O(k) X [X, BG] = P G (X) O(k) G G e U U G {e} G O(k) O(n + k)

181 O(k) G G O(k) Z Z Z f : R S 1 f(x) = e 2πix Z R f : R S 1 Z f : R S 1 Z G G X Y X Y X Y X Y = X I Y / x, x X, y, y Y (x, 0, y) (x, 0, y) (x, 1, y) (x, 1, y )

182 X 1,..., X n X 1 X 2 X n = ( ((X 1 X 2 ) X 3 ) ) X n X 1,..., X n X 1 X 2 X n = {(t1, x 1,..., t n, x n ) I X I X t t n = 1} / (t 1, x 1,..., 0, x i,..., t n, x n ) (t 1, x 1,..., 0, x i,..., t n, x n ) X X (n + 1) (n 1) i < n π i (X } {{ X } ) = 0 n+1 (n 1) G G G X G X = G

183 G n E n G = G G }{{} n+1 G E n G µ : G E n G E n G µ(g; t 1, g 1, t 2, g 2,..., t n+1, g n+1 ) = (t 1, gg 1, t 2, gg 2,..., t n+1, gg n+1 ) B n G = E n G/G n = BG = B G EG = E G E n G (n 1) p n : E n G B n G G n E n G, B n G X 1,..., X n 1 i n i t i : X 1 X n [0, 1] t i ([s 1, x 1,..., s n, x n ]) = s i a i : t 1 i (0, 1] X i a i ([s 1, x 1,..., s n, x n ]) = x i X 1 X n t i, a i

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c

,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c 29 2 1 2.1 2.1.1.,., 5.,. 2.1.1,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c v., V = (u, w), = ( / x, / z). 30 2.1.1: 31., U p(z),

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information

30 I .............................................2........................................3................................................4.......................................... 2.5..........................................

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1 1 Ricci V, V i, W f : V W f f(v = Imf W ( f : V 1 V k W 1 {f(v 1,, v k v i V i } W < Imf > < > f W V, V i, W f : U V L(U; V f : V 1 V r W L(V 1,, V r ; W L(V 1,, V r ; W (f + g(v 1,, v r = f(v 1,, v r

More information

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h 009 IA I, 3, 4, 5, 6, 7 7 7 4 5 h fx) x x h 4 5 4 5 1 3 1.1........................... 3 1........................... 4 1.3..................................... 6 1.4.............................. 8 1.4.1..............................

More information

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1) 7 2 2.1 A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x 1 2.1.1 A (1) A = R x y = xy + x + y (2) A = N x y = x y (3) A =

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

webkaitou.dvi

webkaitou.dvi ( c Akir KANEKO) ).. m. l s = lθ m d s dt = mg sin θ d θ dt = g l sinθ θ l θ mg. d s dt xy t ( d x dt, d y dt ) t ( mg sin θ cos θ, sin θ sin θ). (.) m t ( d x dt, d y dt ) = t ( mg sin θ cos θ, mg sin

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 2, S 1 N 1 = S 2 N 2 2 (chemical potential) µ S N

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

°ÌÁê¿ô³ØII

°ÌÁê¿ô³ØII July 14, 2007 Brouwer f f(x) = x x f(z) = 0 2 f : S 2 R 2 f(x) = f( x) x S 2 3 3 2 - - - 1. X x X U(x) U(x) x U = {U(x) x X} X 1. U(x) A U(x) x 2. A U(x), A B B U(x) 3. A, B U(x) A B U(x) 4. A U(x),

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63) 211 12 1 19 2.9 F 32 32: rot F d = F d l (63) F rot F d = 2.9.1 (63) rot F rot F F (63) 12 2 F F F (63) 33 33: (63) rot 2.9.2 (63) I = [, 1] [, 1] 12 3 34: = 1 2 1 2 1 1 = C 1 + C C 2 2 2 = C 2 + ( C )

More information

prime number theorem

prime number theorem For Tutor MeBio ζ Eite by kamei MeBio 7.8.3 : Bernoulli Bernoulli 4 Bernoulli....................................................................................... 4 Bernoulli............................................................................

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc + .1 n.1 1 A T ra A A a b c d A 2 a b a b c d c d a 2 + bc ab + bd ac + cd bc + d 2 a 2 + bc ba + d ca + d bc + d 2 A a + d b c T ra A T ra A 2 A 2 A A 2 A 2 A n A A n cos 2π sin 2π n n A k sin 2π cos 2π

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

04.dvi

04.dvi 22 I 4-4 ( ) 4, [,b] 4 [,b] R, x =, x n = b, x i < x i+ n + = {x,,x n } [,b], = mx{ x i+ x i } 2 [,b] = {x,,x n }, ξ = {ξ,,ξ n }, x i ξ i x i, [,b] f: S,ξ (f) S,ξ (f) = n i= f(ξ i )(x i x i ) 3 [,b] f:,

More information

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

2017 II 1 Schwinger Yang-Mills 5. Higgs 1 2017 II 1 Schwinger 2 3 4. Yang-Mills 5. Higgs 1 1 Schwinger Schwinger φ 4 L J 1 2 µφ(x) µ φ(x) 1 2 m2 φ 2 (x) λφ 4 (x) + φ(x)j(x) (1.1) J(x) Schwinger source term) c J(x) x S φ d 4 xl J (1.2) φ(x) m 2

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information