kou05.dvi

Size: px
Start display at page:

Download "kou05.dvi"

Transcription

1 2 C () 25

2 () () Castglano Müller Breslau ( ) (Bernoull-Euler )

3 () () () Euler

4 () () 1.,,, ,,, , [/],, , 4. (meda) Teachng Asstant patch meda center() : : : 2

5 1 1.1 () ( ). Hooke (2.1 ) () Hooke () = E () (1.1) E Young (1.1) N ( ) A () = (N) (A) N 1.3 δ() () = (δ) (l) (δ) = () (l) 1.2 (1.1) δ = Nl EA (1.2) 3

6 Dsplacement External force Reacton Pn wthout frcton Before deformaton After deformaton Reacton Fg (dsplacement) u ( u ) u ( ) I I n I = (1.3) I Fg 1.2 Fg δ 1 Fg 1.3 u 1 u 2 1 δ 1 (1.3) δ 1 = n 1 1 u 1 + n 2 1 u 2 (1.4) 4

7 ( ) n 11 1 u 1 u 1 n 11 1 n 21 2 u 2 u 2 n 21 Fg 1.3 (1.4) n n = n 2 1 (= n 1 1 ) () = nl = l () = nl + u 2 u 1 = (nl + u 2 u 1, nl + u 2 u 1 ) = l 2 + 2(u 2 u 1 ) nl + (u 2 u 1 ) (u 2 u 1 ) u 1 u 2 l () l (u 2 u 1 ) n l { l 1 + (u } 2 u 1 ) n l = l + (u 2 u 1 ) n δ 1 = (u 2 u 1 ) n δ 1 (1.4) I δ I δ I = I : n I u (1.5) 5

8 (1.3) n I n I = { ni I (1.6) (1.5) I () ( ) (1.5) δ I = n I u (1.7) (1.7) (nfntesmal deformaton theory) (1.7) (u, δ I ) 1Fg 1.4 u u x 2 2 u 2 x 1 Fg 1.4 (1.7) δ 1 = n 1 1 u 1 + n 2 1 u 2 ( ) ( ) 1/ 2 = 1/ u u 21 = u 11 + u 21 + u 12 u ( 1/ 2 1/ 2 ) ( u12 u 22 ) δ 2 = n 2 2 u 2 + n 3 2 u 3 ( ) ( 1/ 2 1/ 2 = 1/ u / 2 ) u 3 6

9 N ( ) () N () I f I N I j x x j I f I + f ji = x f I + x j f ji = f I f ji (x j x ) f ji = x j x f ji x j x f ji (= f I ) (f ji = )f I f ji f I f ji f I f ji (1.3) f I = n I N I (1.8) N I I N I f I f ji I ()N I Fg f 2 1 = n 2 1 N 1, f 1 1 = n 1 1 N 1 7

10 Fg F x 1 x 2 F 1 F 2 Fg (Fg 1.6 ) Fg f 1 1 f 1 3 f f 1 1 f 1 3 f 1 4 8

11 F 1 1 F 1 + ( f 1 1 ) + ( f 1 3 ) + ( f 1 4 ) = F 1 = f 1I = n 1I N I I: 1 I: 1 (1.8) F = n I N I I: (1.6) F = I n I N I (1.9) (1.9) (F, N I ) 2Fg 1.7 Fg (1.9) ( ) 1/ 2 F 1 = n 1 1 N 1 = 1/ N 1 2 ( ) 1/ 2 F 3 = n 3 2 N 2 = 1/ N 2 2 ( ) 1/ 2 F 2 = n 2 1 N 1 + n 2 2 N 2 = 1/ N ( 1/ 2 1/ 2 ) N 2

12 1.4 F = ( ) F1 F 2 u = ( ) u1 u 2 (boundary condtonb.c.) 3Fg 1.8 Fg : F 11 =, F 21 = P (u 11 =, u 21 = ) 2 : F 12 =, u 22 = (F 22 =, u 12 = ) 3 : F 13 =, F 23 = (u 13 =, u 23 = ) 4 : F 14 =, F 24 = (u 14 =, u 24 = ) 5 : u 15 =, u 25 = (F 15 =, F 25 = ) F N uδ 1

13 1. (F, N) (statcally admssbles.a.) 2. (u, δ) (knematcally admssblek.a.) 4Fg 1.9 N ( -P ) Fg ( ) ( ) 1/ 2 1/ 2 F 2 = 1/ N / N 2 2 (F 12, F 22 ) = (, P ) ( ) ( ) ( ) 1/ 2 1/ 2 N = P 1/ 2 1/ 1 2 N 2 ( ) N 1 = N 2 ( 1/ 2 1/ 2 1/ 2 1/ 2 ) ( P ) = ( P/ 2 P/ 2 ) 4 4 () () 5 () () () 11

14 5Fg 1.1 N Fg (F 12, F 22 ) = (, P ) ( ) ( ) ( ) 1/ 2 1/ 2 F 2 = 1/ N / N 2 + N 3 = 2 1 n 2 1 n 2 2 n 2 3 ( P (F, N) (F, N) N 3 N 1 N 2 ) ( 1/ 2 1/ 2 1/ 2 1/ 2 ) ( N 1 N 2 ) = ( P + N 3 ) ( N 1 N 2 ) = ( ) P N 3 / 2 ( ) P N 3 / 2 (u, δ) 6Fg 1.9 (u, δ) 12

15 (1.7) δ I = n I u δ 1 = n 1 1 u 1 + n 2 1 u 2 δ 2 = n 2 2 u 2 + n 3 2 u 3 u 1, u 3 = ( ) δ 1 1 = 2 1 ( ) 2 u12 δ u 22 u 2 δ 1 δ 2 4 N 1 N 2 δ 1 = δ 2 = P l 2AE u 2 = ( ) u12 u 22 ( ) = P l/ae 1.6 (Prncple of vrtual work) : (F, NI ) (u, δ I ) F u = I N I δ I (1.1) (F, N ) (u, δ) [] (F, N ) (1.9) (u, δ) (1.7) = F u = ( ) n I NI u = ( ) NI n I u = NI δ I = I I I 13 []

16 1.7 () (F, N) () (1.7.3 ) 1. () ((u, δ) ) 3. 1 ((F, N ) ) (F, N ) 2. (u, δ) 7Fg

17 1 2 3 P Fg 1.11 (Young EA) 1. (Fg 1.12 ) (4 ) Fg ((1.2) δ = Nl/AE) δ 1 = δ 2 = P l 2AE (Fg 1.13 ) Fg 1.13 ( ) 1 F 1. Fg 1.14 Fg

18 4. 2. ( ) F u = I = u 2 3 N u 2 = P l AE N I δ I P l 2AE } {{ } δ } {{ } N P l 2AE } {{ } δ } {{ } 8Fg 1.15 Fg 1.15 (Young EA) 1. (Fg 1.16 ) Fg δ 1 = P l δ 2 = P l (Fg 1.17 ) 2AE 2AE 16

19 Fg x 1 (Fg 1.18 ) Fg 1.18 x 2 (Fg 1.19 ) Fg F u = NI δ I I x u 1 3 = 1 2 N u 1 = P l AE P l 2AE } {{ } δ } {{ } 17 ( + 1 ) ( P l ) 2 2AE } {{ }} {{ } } N {{ δ }

20 x u 2 3 = 1 2 N P l 2AE } {{ } δ } {{ } N ( P l ) 2AE } {{ } δ } {{ } u 2 = 9Fg Fg 1.2 (Young EA) 1. (Fg 1.21 ) Fg (Fg 1.22 ) 18

21 Fg x 1 (Fg 1.23 ) Fg 1.23 x 2 (Fg 1.24 ) Fg F u = NI δ I I 19

22 x 1 u = 1 P l AE + P l AE + + ( 2) x 2 u 1 = ( ) P l AE = u 2 = 1 P l AE ( 2P l AE ) + 1Fg 1.25 A x 2 Fg 1.25 Young EA 1. (Fg 1.26 ) Fg (Fg 1.27 ) Fg

23 3. (Fg 1.28 ) Fg F u = NI δ I I + u 2 + /2 = u 2 = 2 11Fg 1.29 t A x 1 Fg 1.29 AYoung Eα 1. (Fg 1.3 ) Fg

24 2. δ = Nl AE +δ δ αδt δ = tαl (Fg 1.31 ) Fg (Fg 1.32 ) Fg F u = I N I δ I + + u 1 = u 1 = 1 2 tαl ( 1 2 ) tαl

25 2. 1. (u, δ) 3. (F, N ) (F, N ) 2. (u, δ) 3. (F, N ) 12Fg 1.33 Fg 1.33 AYoung E 1. n (Fg 1.34 ) Fg (Fg 1.35 ) δ 1 = δ 2 = (P n)l 2AE, δ 3 = nl 2AE Fg

26 3. P 1. P = n = 1 (Fg 1.36 ) Fg δ (F, N ) 3. (F, N ) F u = I = ( = n = N I δ I 1 ) 2 P (P n)l nl (n P )l = + nl 2AE 2AE AE 2AE 13Fg 1.37 Fg 1.37 AYoung E 1. n (Fg 1.38 ) Fg

27 2. 1. (Fg 1.39 ) δ 1 = (P n)l 2AE, (P + n)l δ 2 =, δ 3 = nl 2AE 2AE Fg (Fg 1.4 ) Fg F u = I = ( = n = N I δ I 1 2 ) ( ) (P n)l + 1 nl ( + 1 ) ( ) (P + n)l 2AE 2AE 2 2AE n = P n P ( P ) ( n) n = n n = 25

28 1.7.3 () () Fg 1.41 x 2 Fg 1.41 AYoung E 1. (Fg 1.42 ) Fg 1.42 N 1 = N 2 = P 2 ( ), N 3 = 2P (Fg 1.43 ) 26

29 Fg 1.43 δ 1 = δ 2 = P l 2 ( ) AE, δ 3 = P l ( ) AE 3.& P = 1 N1 = N2 1 2 = ( ), N3 = ( ) (Fg 1.44 ) Fg 1.44 F u = NI δ I I = u 2 P l P l 2 = ( ) 2 ( ) ( ) AE AE u 2 = P l ( ) AE () 27

30 1 P = 1n = 1 (Fg 1.45 ) Fg 1.45 F u = NI δ I I = u 2 = 1 P l ( ) AE 2 u 2 = P l ( ) AE n = 1 N = 1 N = () () 28

31 1 (Fg 1.46 ) Fg 1.46 () 1 Fg 1.47 ( 1 )1 Fg () (3 ) (2 ) 1 Fg () Fg () 15Fg 1.49 A x 2 29

32 Fg 1.49 AYoung E 1. n (Fg 1.5 ) Fg 1.5 (Fg 1.51 ) Fg 1.51 δ 1 = δ 2 = nl AE, δ 3 = δ 4 = (n P ) l AE, δ 5 = 2 (n P ) l, δ 6 = 2nl AE AE (Fg 1.52 ) Fg

33 n F u = NI δ I I = = 1 nl AE (n P ) l 2 } AE {{} 1,2 3,4 + ( 2 ) { 2 (n P ) l } + ( 2 ) { 2nl } AE AE 5 6 n = P n δ 1 = δ 2 = P l 2AE, δ 3 = δ 4 = P l 2AE, δ 5 = P l AE, δ 6 = P l AE 3. A x 2 1 () 1 ( ) (Fg 1.53 ) Fg F u = NI δ I I u 2 = nl AE = P l 2AE 31

34 1.8 δ = f(n) () Castglano() (Complementary Potental Energy) (F, N) Π Π (F, N) = W (N I ) u F (1.11) I: : u W (N) W (N) = δ(n)dn (1.12) δ(n) N N W (N) = N(δ)dδ (1.13) δ = Nl AE + δ (1.14) δ () (1.12) W (N) = N 2 l 2AE + δ N (1.15) Fg 1.54 W (N) = W (N) 32

35 Fg 1.54 W W Π (u, δ) Π(N) = I: W (δ) : F u (1.16) : () n ( = 1, 2, ) (F (n ), N(n )) Π (F (n ), N(n )) Π n = = 1, 2, (1.17) () u = Π = I W (N I ) u F = I W (N I ) W = W Π = I W (δ I ) Π 33

36 [] (1.11) () n Π = W (N I ) u F n n = I I W N I N I n : : u F n W = δdn W = δ I N I Π n = I δ I N I n : u F n F / n = Π = N I δ I n I n u F n ( NI n, F ) = ( ) () n (δ I, u ) Π n = [] ( ) (F (n), N(n)) F = I n I N I n ) F n = I n I N I n ( F n, N I n F n F n = ( F n, N I n 34 ) =

37 Π ()(δ = f(n)) 16Fg 1.55 Fg 1.55 AYoung E (Fg 1.56 ) Fg 1.56 Π = ( ) 2 l P n 2 + l/ 2 2AE 2 2AE n2 Π n = l AE l/ 2 (n P ) + AE n = P n = 1 + 1/

38 17Fg 1.57 Fg 1.57 AYoung E Fg 1.58 Fg 1.58 Fg 1.59 Fg 1.59 Π = l ( n ) 2 ( ) 2 + n2 l n 2 l n = 2AE 2 2AE 2 2 n 2AE ( ) Π nl n = = 2AE 36

39 n = 2 AE ( ) l 18Fg 1.6 t Fg 1.6 AYoung E Fg 1.61 Fg 1.61 Π = l ( n ) l/ 2 2AE 2AE n2 + l ( n ) δ ( n ) 2 2AE Π l = n 2AE 2n + l n 1 δ = 2AE 2 n = AE ( ) δ = AE α t l

40 1.8.2 Castglano. Castglano Castglano : (N, F ) Π (N + QN, F + QF ) (1.18) Q Q= (N, F ) 1 () P P P Π (N, F ) P (1.19) [] Π (N + QN, F + QF ) Q = Q = I I W (N I + QN I ) Q W (N I + QN I ) N I N I : : u (F + QF ) u F Q = W (N I )/ N I W (1.15) δ I Π (N + QN, F + QF ) = δ Q I NI u F Q= I : (δ I, u ) (N, F ) δ I NI = I = : u F + : u F Π (N + QN, F + QF ) Q = Q= : u F 38

41 F P (N, F ) (N/P, F /P ) N = P N F = P F Π (N + QN, F + QF ) = Π ((P + Q) N, (P + Q) F ) Π Q = Π = Q= P Q= P Π (P N, P F ) = Π (N, F ) P [] 19Fg 1.62 (AYoung E) Fg 1.62 Fg 1.63 Fg 1.63 (x 2 ) u 2 Castglano Π = ( ) 2 l P 2 = P 2 l 2AE 2 2AE 39

42 u 2 = Π P = P l AE Castglano ( ) 2 Π (N + QN, F + QF l P + Q ) = 2 2AE 2 u 2 = Π = P l P Q= AE x 1 u 1 Fg 1.64 Fg 1.64 Π (N + QN, F + QF ) = l ( P 2AE 2 + Q ) 2 ( P Q ) 2 2 u 1 = Π Q = Q= l 2AE {(P + Q) + (Q P )} Q= = 2Fg 1.65 A (AYoung E) Fg

43 Fg 1.66 Fg 1.67 Fg 1.66 Fg 1.67 x 2 u 2 Fg 1.68 Fg 1.68 Π (N + QN, F + QF ) = = u 2 = Π Q l 2AE ( + Q ) l 2AE Q2 2 Q = Q= ( Ql AE ) = 2 Q= 2 41 : u F +QF

44 u 2 Fg 1.69 Fg 1.69 = = Π (N + QN, F + QF ) ( l + Q ) 2 + 2AE 2 l 2AE Q2 + 2 Q u 2 = Π Q = Q= ( Q 2 ) 2 : ( Ql AE + ) = 2 Q= 2 u F +QF 21Fg 1.7 A x 2 u 2 (AYoung E, α) Fg

45 δ W = N 2 l 2AE + δ N δ = α tl Fg 1.71 Fg 1.71 Π (N + QN, F + QF ) = I = W I (N + QN ) ( l Q 2AE 2 : ) 2 + δ ( + Q 2 ) u QF + l ( + Q ) 2 2 2AE u 2 = Π Q = δ = α tl Q= 2 2 Castglano 1 1 ( ) 2 P Π (N, F ) (N, F ) P n P n P n(p ) Π n n(p ) P 43

46 ( Π ) ( Π P P ) Π P = Π (P, n(p )) + Π (P, n(p )) dn P n dp Π P P n = n(p ) 22Fg 1.72 (AYoung E) Fg 1.72 AYoung E (n = P/(1 + 1/ 2))(Fg 1.73 ) Fg 1.73 (Fg 1.74 ) Π Fg

47 x 1 u 1 Fg 1.75 Fg 1.75 u 1 = Π Q Π = = Q= = l 2AE l AE x 2 u 2 ( P n 2 + Q 2 ) 2 + l 2AE ( P n + Q ) Q= l AE ( P n 2 Q 2 ) 2 + l/ 2 2AE n2 ( P n Q ) ( 2 2 Q= 1 ) 2 [2] n n P Π = ( ) 2 l P n 2 + l/ 2 2AE 2 2AE n2 l u 2 = Π P = l P (P n) = AE (1 + 2)AE (Recprocty theorem) : δ = Nl/AE (u (1), F (1), δ (1), N (1) ) (u (2), F (2), δ (2), N (2) ) F (1) u (2) = 45 F (2) u (1) (1.2)

48 [] F (1) u (2) = = = = I I I I = N (1) I δ (2) I δ E (1) I I A I δ (1) I δ (2) 2 l I δ E (2) I I A I l I δ (1) I N (2) I u (1) F (2) [] Müller Breslau Müller Breslau f ( ) x 1 AB AB A B A B l x 1 f(x 1 ) f(x 1 ) = f(a)(1 x 1 l ) + f(b)x 1 l f f Müller Breslau () : 1 [] Fg

49 Fg 1.76 (1) (2) 1 (1) (2) (1) (2) F (1) u (2) = F (2) u (1) (1) F (1) = = R u (1) 2 R = u (1) 2 + [] 23Fg 1.77 A Fg

50 Fg 1.78 Fg Fg 1.79 A Fg 1.79 Müller Breslau () : 1 [] (1) δ (1) δ (1) (1) ln = + E (1) δ(1) A (1) N (1) = A(1) E (1)(δ(1) δ (1) ) l (1) F (1) u (2) = N (1) I δ (2) I I = A I E ( I (1) δ I δ (1) ) (2) I δ I I l I = ( (1) δ I δ (1) ) (2) I N I I = I δ (1) I N (2) I I δ (1) I N (2) I = u (1) F (2) I δ (1) I N (2) I (1.21) 48

51 Fg 1.8 (1) (2) Fg 1.8 (1) (2) 1 K (1.21) = u (1) 2 N (2) K (1) u (1) 2 = N (2) K Fg 1.8 u (1) 2 K Müller-Breslau [] Müller Breslau Fg 1.81 Fg

52 1. A = ( ) 3. 3 Müller Breslau 1. Q 1 2. A (F, N) 2. (δ,u) 3. (δ,u) () 1. (δ,u) 2. N 3. F u j δ I = n I u N I = E IA I l I δ I F = I n I N I 5

53 N I = E IA I l I n ji u j j F = j ( I n I E I A I l I n ji ) u j (1.22) n I n ji F F (1.22) () () F 1 u 1 F 2. = K u 2. F n u n F u F k F u = K ku K uu K kk K uk u u u k (1.23) k u F u (1.23) F u u ( K ku ) ( u u ) = ( F k ) ( K kk ) ( u k ) m K ku m m u u m Ax = b u 1.82 P , 2 EAl x1 2 3 x P Fg

54 n I ) n 1 1 = 1 ( n 1 2 = 1 ( ) n 2 1 = 1 ( ) n 3 2 = 1 ( ) F = j( E I n I A I I l I n ji ) u j F 11 1/2 1/2 1/2 1/2 F 21 1/2 1/2 1/2 1/2 F 12 = AE 1/2 1/2 1/2 1/2 + F 22 l 1/2 1/2 1/2 1/2 F 13 F 23 1/2 1/2 1/2 1/2 u 11 1/2 1/2 1/2 1/2 u 21 u 12 u 22 1/2 1/2 1/2 1/2 u 13 1/2 1/2 1/2 1/2 u 23 [ ] F u F 11, F 21, u 12, u 22, u 13, u 23 F 12, F 22, F 13, F 23, u 11, u 21 ( ) = AE P l ( ) ( ) 1 u11 + AE 1 u 21 l u 12, u 22, u 13, u 23 ( ) = AE ( ) ( 1 u11 P l 1 ( 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 u 11 = u 21 = P l AE u 21 ) u 12 ) u 22 u 13 u 23 52

55 (δ,u) 2. ( ) 3. (δ,u ) P , 2 EAl x1 2 3 x2 1 2 n2 1 P n1 Fg 1.83 n 1 n 2 n 1 = 1 2 ( 1 1 ) n 2 = 1 ( )

56 1. (δ,u) 2. δ 1 = n 1 u N 1 = AE n 1 u l δ 2 = n 2 u N 2 = AE n 2 u l 3. δ 1 = n 1 u δ 2 = n 2 u F u = Nδ u ( ) F = P p u P = u AE l [n 1 (n 1 u) + n 2 (n 2 u)] u P = AE l = AE l = AE l [n 1 (n 1 u) + n 2 (n 2 u)] [ ( ) 1 1 ( u 1 + u 2 ) + 1 ( ) ( ) ( ) 1 u1 1 u 2 ( u 1 + u ] 2 ) 2 2 u = l AE P K.A. (u, δ) Π(u, δ) Π(u, δ) = I W (δ I ) :F gven F 2 () W W (δ) = δ 54 N(δ)dδ F u

57 (δ,u) u Π u j = j F () u F Π u Π u = I = I W δ I F δ I u N(δ I )n I F Π = u F = N(δ I )n I I () 1. (δ,u) 2. Π 3. u Π u = 55

58 x 2 after deformaton x u x + u before deformaton x 1 Fg ɛ j (, j = 1, 2, 3) ɛ 11 ɛ 22 ɛ 33 ɛ 11 ɛ 11 = x 1 x 1 x 1 Fg 2.2 = dx 1 = dx 1 + u 1 (x 1 + dx 1 ) u 1 (x 1 ) 56

59 dx 1 ɛ 11 = {dx 1 + u 1 (x 1 + dx 1 ) u 1 (x 1 )} dx 1 dx 1 u 1 x 1 x 2 x 3 ɛ 22 ɛ 33 ɛ 22 = u 2 x 2, ɛ 33 = u 3 x 3 Fg 2.2 ɛ 12 = 1 2 (θ 1 + θ 2 ) θ 1 θ 2 Fg 2.3 Fg 2.4 ɛ 12 = 1 2 ( u2 + u ) 1 x 1 x 2 Fg

60 Fg 2.4 ɛ j = 1 2 ( u + u ) j x j x (Fg 2.5 ) F = x F = Fg 2.5 ( da ) n df n da ( n) 58

61 Fg 2.6 df t(x, n) = lm da da t (tracton) (Fg 2.7 ) t(x, n) = t(x, n) Fg 2.7 Cauchy Fg = t(n)ds + t( 2 )ds sn θ + t( 1 )ds cos θ 59

62 Fg 2.8 Fg 2.9 t(n) = t( 1 )n 1 + t( 2 )n 2 t( 1 ) = (τ 11, τ 21 ) T, t( 2 ) = (τ 12, τ 22 ) T ( t1 t 2 ) = ( τ11 τ 12 τ 21 τ 22 ) ( n1 n 2 ) t = j τ j n j (2.1) Cauchy (2.1) 3 τ 11 τ 22 τ 33 (Fg 2.1 ) Fg 2.1 τ 12 = τ 21 6

63 τ 13 = τ 31, τ 23 = τ 32 Fg ( ) Fg 2.11 Fg 2.11 (x 1 ) ɛ 11 τ 11 Fg 2.11 ɛ 11 ɛ 11 τ 11 () Hooke τ 11 (x 1 ) (Fg 2.12 )E Young ν Posson ( ν <.5) ɛ 11 = 1 E τ 11 ɛ 22 = ɛ 33 = νɛ 11 61

64 τ 22 τ 33 ɛ 11 = 1 E τ 11 ν E τ 22 ν E τ 33 = 1 + ν E τ 11 ν E (τ 11 + τ 22 + τ 33 ) ɛ 22 = ν E τ E τ 22 ν E τ 33 = 1 + ν E τ 22 ν E (τ 11 + τ 22 + τ 33 ) ɛ 33 = ν E τ 11 ν E τ E τ 33 = 1 + ν E τ 33 ν E (τ 11 + τ 22 + τ 33 ) Fg 2.12 x 1 τ 12 (= τ 21 )τ 23 (= τ 32 )τ 31 (= τ 13 ) ɛ 12 = 1 2G τ 12, ɛ 23 = 1 2G τ 23, ɛ 31 = 1 2G τ 31 E G = 2(1 + ν) ɛ j = 1 2G τ j ν E δ j 3 τ kk (2.2) k=1 Hooke δ j { 1 ( = j) δ j = ( j) 62

65 2.2 (Bernoull-Euler ) ()x 1 (= x) x 2 u 1 (x, x 2 ) = a(x)x 2 ()x 2 u 2 (= y) x 2 u 2 (x) = y(x) ɛ 12 ɛ 12 = 1 2 ɛ 12 = ( u1 + u ) 2 = 1 ( a(x) + dy(x) ) = x 2 x 1 2 dx a(x) = dy dx u 1 (x) = dy(x) dx x 2 (2.3) u 2 (x) = y(x) (2.4) 63

66 Fg τ 33 = τ 22 = (2.2) ɛ 11 = 1 E τ 11 ν E (τ 22 + τ 33 ) = 1 E τ 11 (2.5) Fg () τ 11 M (2.3) (2.5) u 1 M = x 2 τ 11 da = E x 2 ɛ 11 da = E x 2 da A A A x 1 = E x 2 2y (x)da = Ey x 2 2dA A 64 A

67 (Fg 2.15 )I φ I = A x 2 2 da M φ φ = d2 y(x) dx 2 (2.6) M = EIy = EIφ (2.7) Fg Q x 1 x 2 x 1 x 2 Fg 2.16 x 2 Q p(x) dx Q(x + dx) + p(x)dx Q(x) = Q (x) = p(x) (2.8) N dx N(x + dx) + N(x) = N(x) = (2.9) 65

68 Fg Fg 2.17 A M(x + dx) + p(x)dx dx 2 M(x) Q(x)dx = dx M (x) = Q(x) (2.1) Fg

69 2.2.6 (2.7)(2.8) (2.1) (EIy ) = p (2.11) (2.11) N (Fg 2.18 ) 4 N ( ) Fg 2.18 y = y = M = y = Q = y = Fg

70 y = M = y = Fg 2.2 y = Q = y = Fg 2.21 y = y + M = y = M + = y + = Q = Q + y = y + Fg

71 y = y + = y = y + M = M + y = y + Fg () ((r) (l)) m l,r (M l,r!) F l,r (Fg 2.24 )M N F m l = M l, m r = M r, F l = ( N Q l ), F r = ( N Q r M Q (2.8)(2.9) (2.1) Q = p, N =, M = Q (M, Q, N, F l,r, m l,r, p) ) Fg

72 2.3.2 u 1 ()(Fg 2.25 )θ θ = y (2.12) (m ) θ l = y l, θ r = y r, u l = ( u1 y l ), u r = ( u1 θ φ (2.12) (2.6) θ = y, φ = y (y, θ, φ, u l,r, θ l,r ) B.C. y r ) Fg () : (M, Q, N, F l,r, m l,r, p ) (y, θ, φ, u l,r, θ l,r ) F u + m θ + p ydx = M φdx (2.13) [] L L = M φdx = M y dx L = [M y ] L + (M ) y dx = [M y ] L + [(M ) y] L L (M ) ydx 7

73 L = M (L)y (L) + M ()y () + Q (L)y(L) Q ()y() (M ) ydx = M (L)y (L) + M ()y () + (Q (L)y(L) + Nu 1 ) (Nu 1 + Q ()y()) = ( ) + L p ydx m r θ r + m l θ l + F r u r + F l u l + (*) L p ydx = M (L) = m r, y (L) = θ r, M () = m l, y () = θ l, ( ) ( ) ( ) N F r =, u r u1 N =, F l =, u l = Q (L) y(l) Q () ( u1 y() ) F r u r = Q (L)y(L) + N u 1, F l u l = Q ()y() N u 1 3 [] 1 2 N = N (F u) F u = (F ) 2 (u) 2 3 (F u)(m θ) (F, u)(m, θ) Fg 2.26 Fg

74 2.4 () () I (y, θ, φ, u I, θ I ) f I I f Fg 2.27 Fg 2.28 I u I θ I u = u I, θ = θ I (2.14) u θ Fg Fg 2.28 I (MI, Q I, N I, F I, m I, p I ) F m Fg F 1 + ( F 1 1 ) + ( F 1 2 ) + ( F 1 3 ) = m 1 + ( m 1 1 ) + ( m 1 2 ) + ( m 1 3 ) = 72

75 Fg F = F I, m = I: I: m I (2.15) () : (MI, Q I, N I, F I, m I, p I ) (y I, θ I, φ I, u I, θ I ) F u + m θ + p I y Idx = MI φ Idx (2.16) I I [] MI φ I dx = F I u + :I I: :I = :I : I: MI φ Idx I: = I: :I = : = : (F I u + m I θ ) + F I I: (F u + m θ ) + u + I: p I y Idx I: m I θ + p Iy I dx p I y Idx m I I: (2.15) 73 θ + I: p I y Idx

76 [] 2.5 () () I θ I θ m m = (2.17) (θ )(2.17) 2.6 ()( ) 1. M 2. M φ 2 φ B.C. (φ, u, θ, y) K.A. (A) 3. (F, m, p, M ) (B) 4. (A) (B) 1. M 2. M φ 2 φ B.C. (φ, u, θ, y) K.A. (A) 74

77 3. () (F, m, p, M ) (B) 4. (A) (B) 75

78 P y(l), θ(l) (EI : B.C. : y() =, θ() = ) 1. M M = P x 2. φ. M = EIφ φ = P EI x y(l) 3. M M = x 76

79 4. F2 y + m θ + p ydx = F u M φ dx F2 () y() + F2 (l) 1 y(l) + m () θ() = l + m (l) ( x ) ( P ) EI x M } {{ } φ θ(l) + p ydx = M φ dx dx y(l) = P 3EI l3 () y() y x= y x = θ(l) 3. M M = 1 4. F 2 y + m θ + p ydx = F u M φ dx F 2 () y() + F2 }{{ (l) } y(l) + m () θ() + m (l) θ(l) + 1 l = ( 1) ( P ) EI x M } {{ } φ p ydx = M φ dx dx θ(l) = P 2EI l2 77

80 p y(l), θ(l) (EI : B.C. : y() =, θ() = ) 1. M M = p 2 (x ) 2 2. φ. y(l) M = EIφ φ = p 2EI (x ) 2 3. M M = x 4. F2 y + m θ + p ydx = F u F2 () y() + F2 (l) 1 = y(l) + m () θ() l ( x ) M ( + m (l) p ) 2EI (x ) 2 φ θ(l) + M φ dx p ydx = dx y(l) = M φ dx p 8EI l4 78

81 θ(l) 3. M M = 1 4. F2 y + m θ + p ydx = F u M φ dx F 2 () y() + F2 }{{ (l) } = y(l) + m () θ() l ( 1) M ( + m (l) 1 p ) 2EI (x ) 2 φ θ(l) + p ydx = dx θ(l) = M φ dx p 6EI l3 79

82 P y(l/2), θ(l) (EI : B.C. : y() = y(l) = ) P /2 /2 1. M M = P x 2 2. φ. y(l/2) M = EIφ φ = P x 2EI P (l x) ( x l/2), (l/2 x l) 2 P (l x) ( x l/2), (l/2 x l), 2EI 3. M F* m* F*=1 m*= F* m* M* /4 M = x 2 (l x) ( x l/2), (l/2 x l) 2 4. F2 y + m θ + p ydx = F u F 2 () y() + F2 } (l/2) {{} 1 + m (l/2) = 2 y(l/2) + F2 (l) y(l) θ(l/2) + m (l) l/2 θ(l) + p + m () M φ dx θ() ydx = M φ dx ( ) ( ) x P x dx, y(l/2) = }{{ 2 }} 2EI {{} M φ P 48EI l3 8

83 θ(l) 3. M m*= F*=1/ m*= F*= m*=1 F*=-1/ M = x l 4. F 2 y + m θ + p ydx = F u M φ dx F2 () y() + F2 (l/2) y(l/2) + F2 (l) y(l) + m () θ() + m (l/2) θ(l/2) + m (l) θ(l) + p ydx = M φ dx 1 l ( 2 = x ) ( ) P x l ( dx + x ) ( ) P (l x) P l2 dx θ(l) = }{{ l }} 2EI l {{} l 2 2EI 16EI M φ M φ y(l) (EI : B.C. : y() =, θ() = ) 1. M M = 2. φ. φ = 81

84 3. M 1 m* F*=-1 x m*= F*=1 M = x 4. F2 y + m θ + p ydx = F u M φ dx F2 }{{ () y() + F2 } (l) y(l) + m () θ() + m (l) 1 1 l = θ(l) + φ p ydx = M φ dx M dx = y(l) = 82

85 T (EI : αb.c.:y() =, θ() = ) T T T + θ x h x θ θ + θ α Τ x φ = y = dθ dx h( θ) = α T x φ = dθ dx = α T h () 1 φ φ = α T h 83

86 2 3 M = x 4 y(l) = l ( ) α T ( x ) h M } {{ } φ dx α T l2 = 2h 84

87 1. M () 2. M φ (2 φ B.C. (φ, u, θ, y) ) Rθ(l) (EI : B.C.:y() =, θ() =, y(l) = ) 1. M R M = Rx m 2. φ R. M = EIφ φ = 1 EI (Rx m) 3. = M x F * m * F * =-1 m * = 85

88 M = x 4. F2 y + m θ + p ydx = F u M φ dx F2 () y() +F2 (l) y(l) +m () θ() + m (l) θ(l) + p ydx = l ( ) 1 = (x ) EI (Rx m) dx M θ(l) = 1 EI φ ( R 3 l3 m 2 l2 ) R = 3m 2l 3. M M φ dx M = 1 4. F2 y + m θ + p ydx = F u M φ dx F 2 () y() + F2 }{{ (l) } = y(l) + m () θ() l ( 1) M ( 1 + m (l) 1 ) EI (Rx m) φ θ(l) + p ydx = dx θ(l) = ml 4EI M φ dx () ( ) (e.g. ) 86

89 R θ(l) (EI : B.C.:y() =, y(l) =, θ() = ) x R 1. M R M = Rx 2. φ R M = EIφ φ = Rx EI 3. = M x F*=1 M = x 4. F2 y + m θ + p ydx = F u M φ dx = l ( x ) ( ) Rx EI dx = Rl3 3EI R = 3EI l 3 (2.17) 87

90 θ(l) 3. M (R ). x F* m* m*=1 R* = - F* M = 1 + R x = 1 4. F 2 y + m θ + p ydx = F u θ(l) = l ( 1) ( ) Rx EI dx = Rl2 2EI = 3 2l M φ dx (2.18) R = R F ( R ) ( ) l Rx θ(l) R = ( 1 + R x ( ) l Rx ) dx ( ) l Rx = ( 1) dx R ( x ) dx EI EI }. {{. } θ(l)(. (2.18)) R EI }. {{. } (. (2.17)) 2.7 S.A. (ν = (M, Q, N, F, m, p)) Π (ν) = WI (M I)dx F u m θ I: : : u, θ W I 88

91 W (M) = φ(m)dm φ φ = M EI (+φ ) (φ : φ = ) W (M) W (M) = M 2 2EI (+M φ ) () u =, θ = Π = WI I φ = W W = M(φ)dx (W : ) Π S.A. ν ν X ν(x) X Π (ν(x)) X = R (EI : B.C.:y() =, y(l) =, θ() = ) 89

92 1 M = Rx m 2 Π = 1 2EI l (Rx m) 2 dx : (u ) F (θ ) : m 3 = Π R = 1 EI l (Rx m) xdx = 1 EI ( R 3 l3 m 2 l2 ) R = 3m 2l Π (ν(x)) X = I: W I (M I ) M I M I X dx : F X u : m X θ W (M) = Π (ν(x)) = φ I (M I ) M I X X dx I: φ(m)dm W (M) M : = φ(m) F X u F, m, p X : m X θ F = ( : ) X (2.19) m j = (j : ) X (2.2) p I = (I : ) X (2.21) Π (ν(x)) = φ I (M I ) M I X X dx F X u m X θ I: : : I: pi X ydx (2.22) (φ, u, θ, y) ( M, F, m, p ) X X X X (2.22) 2 Π (ν(x)) X 9 =

93 ( M X, F X, m X ) (2.19)(2.2) ( M X, F, m X X M X = p X = ) () Π ()φ M ( ) Π R (EI : B.C.:y() =, y(l) =, θ() = ) 1 M = Rx p 2 x2 2 Π = 1 l ( Rx p ) 2 2EI 2 x2 dx 3 = Π R = 1 l EI (Rx p ) 2 x2 xdx = 1 ( R EI 3 l3 p ) 8 l4 R = 3 8 pl R (EI : B.C.:y() =, y(l) =, θ() = ) 91

94 1 M = Rx 2 Π = 1 2EI l (Rx) 2 dx ( R) (u F ) 3 = Π R = 1 ( ) R EI 3 l3 + R = 3 EI l 3 Castglano :,., ν = (M, Q, N, p, m, F )., () () ν = (M, Q, N, p, m, F )., () Π (ν + Xν ) X () (ν + Xν ) () X () X () X= Π (ν + Xν ) X = W I (M I + XMI ) dx I X : : (m + Xm ) (θ ) X (u ) (F + XF ) X = I W I (M I + XMI ) MI M dx I (θ ) m : : (u ) F X = Π (ν) = W I (M I ) MI X I M dx (u ) F (2.23) }{{ I } : φ I (M I ) (θ ) m (2.24) : 92

95 ν ν φ I MI dx = u F + I : : θ m + I y I p I dx ν p I = φ I MI dx = u F + θ m I : (2.24) Π (ν + Xν ) X = X= : u F + : : θ m () ν () ν ( ) (() ) () () () P (m ) P ( m ) () Π P, Π m X P M(x) = M (1) (x)x + M (2) (x)p M = M (2) (x) P M (2) (x) P = 1, P =, X = ν 1 P (ν ) ν = M F m p = M (1) F (1) m (1) p (1) X + M F m p P = ν + ν P 93

96 P j ν j Π X (ν + ν P + Xν j) = Π X= X ((P j + X)ν j + ν + ν P ) = j X= Π ((P j + X)ν j + ν + ν P ) = Π (P j ν j + ν + ν P ) = Π (ν) P j j P j X= j P j ν j, P j ν, P Π X (ν + Xν ) = Π X= P (ν) Π (ν) m A (EI :B.C.:y() =, θ(l) = ) 1 M = px2 2 2 Fg M = Xx 4 Π Π = 1 2EI l ( p 2 x2 + ( Xx)) 2 dx 94

97 5 Castglano Π X = pl4 X= 8EI 2 Fg M = m 4 Π Π = 1 l { p 2 2EI 2 x2 + ( m)} dx 5 Castglano Π m = pl3 m= 6EI 95

98 m θ() (EI : B.C. : y() =, y(l) =, θ(l) = ) m x 1 2 Π = M = m + Rx l (m + Rx) 2 dx 2EI 3 R = Π l R = (m + Rx) 2 dx = R 2EI 4 Castglano θ() l (m + Rx)x dx = 1 EI EI ( ) ml Rl3 3 R = 3m 2l R = 3m 2l Π m θ(l) = Π l m = m (m 3m 2l x)2 2EI dx = m EI l ( 1 3x 2l ) 2 dx = ml 4EI (2.25) R m Π m θ(l) = Π l m = m (m + Rx) 2 2EI dx = 1 l (m + Rx)dx = ml EI 4EI (2.26) () (2.25) dπ dm dπ dm = Π m + Π dr R dm = Π m (2.26) Π m (... Π R = ) Castglano Π, Π m P P, m 96

99 (1)(F (1), m (1), p (1), M (1), Q (1), N (1), u (1), θ (1), y (1), φ (1) ) (2)(F (2), m (2), p (2), M (2), Q (2), N (2), u (2), θ (2), y (2), φ (2) ) } {{ } } {{ } S.A. K.A. (M () = EIφ () [=1,2]) () = F (1) u (2) + F (2) u (1) + m (1) θ (2) + I m (2) θ (1) + I p (1) I y (2) I p (2) I y (1) I (1) (2) F (1) u (2) + m (1) θ (2) + I p (1) I y (2) I dx = I dx dx M (1) I φ (2) I dx (2.27) M (1) I φ (2) I dx = I I (EI I I φ (1) I ) (2) φ I dx = I φ (1) I ( EI I I φ (2) I ) dx = I M (2) I φ (1) I dx (2.28) (1) (2) M (2) I φ (1) I I dx = F (2) u (1) + m (2) θ (1) + I p (2) I y (1) I dx (2.29) (2.27)(2.28)(2.29) = F (1) u (2) + F (2) u (1) + m (1) θ (2) + I m (2) θ (1) + I p (1) I y (2) I p (2) I y (1) I dx dx () () 97

100 (Müller-Breslau ) A A B B Müller-Breslau 1 () = = = 1 ( F (1) u (2) + F (2) u (1) + R (2) (x) ) } {{ } m (1) m (2) θ (2) θ (1) + I + I + y (1) 1 R (2) (x) = y (1) (x) Müller-Breslau + p (1) I p (2) I y (2) I dx y (1) I dx 1 98

101 A P B B P A () A B EI EI (A) M = P (x + l) { } l P (x + l) y = ( x)dx = EI (B) 5P l3 6EI P l3 l2 P 3EI 2EI y = P l3 3EI + P l2 2EI l = 5P l3 6EI (A)(B) M = x () F (1) u (2) + = F (2) u (1) + m (1) m (2) θ (2) θ (1) + I + I p (1) I p (2) I y (2) I dx y (1) I dx 1 y (2) A = 1 y (1) y (2) A (x) = y (1) (x) Müller-Breslau 99

102 2 (1) (M,Q,N) (2) = F (1) u (2) + m (1) θ (2) + I F (2) u (1) + m (2) θ (1) + I p (1) I y (2) I dx p (2) I y (1) I dx N (2) A [u (1) 1 ] A Q (2) A [y (1) ] A + M (2) A [θ (1) ] A [u (1) 1 ] A (1) A [y (1) ] A (1) A [θ (1) ] A (1) A 1

103 () θ (1) A θ (1)+ A u (1) A u (1)+ A u (1) A = u (1)+ A = u(1) 1 y (1) 1 u(1)+ 1 y (1)+ 1 ( F (1) u (2)) + F (1) B A u (2) + ( m (1) θ (2)) + B m(1) A θ (2) A + = ( F (2) u (1)) B + F (2) A u (1) + ( m (2) θ (1)) B + m(2) A θ (1) A + ( F (1) u (2)) + F (1)+ C A u (2) + ( m (1) θ (2)) + C m(1)+ A θ (2) A + = ( F (2) u (1)) C + F (2)+ A F (1,2)+ A = u (1)+ + ( m (2) θ (1)) + C m(2)+ A θ (1)+ A + u (1,2)+ = (1,2) N A Q (1,2), A u(1,2)+ 1 y (1,2)+ p (1) y(2) dx p (2) y(1) dx p (1) y(2) dx p (2) y(1) dx F (1,2) A = F (1,2)+ A, u (1,2) = u(1,2) 1 y (1,2) m (1,2)+ A = m (1,2) A = M (1,2) A F (1) u (2) + m (1) θ (2) + p (1) y (2) dx = F (2) u (1) + m (2) θ (1) + p (2) y (1) dx N (2) ( (1)+ A u 1 u (1) ) 1 Q (2) ( A y (1)+ y (1) ) [u (1) 1 ] A [y (1) ] A +M (2) A ( (1)+ θ A θ (1) ) A [θ (1) ] A (Müller-Breslau ) 11

104 Müller-Breslau -1 M A x 2 ( < x < l ), 2 1 (l x) 2 ( ) l 2 < x < l () = F (1) N (2) A u (2) + F (2) u (1) + = [u(1) 1 ] A Q (2) A m (1) m (2) θ (2) [y(1) ] A θ (1) + I + I +M (2) A p (1) I p (2) I [θ(1) ] A ( 1) y (2) I dx y (1) I dx = y (1) (x) + M (2) A ( 1) y (1) (x) = M (2) A (x) : Müller-Breslau 1 12

105 Q A x l ( < x < l ), 2 1 (l x) l ( ) l 2 < x < l () = F (1) N (2) A u (2) + F (2) u (1) + = [u(1) 1 ] A Q (2) A m (1) m (2) θ (2) [y(1) ] A 1 θ (1) + I + I +M (2) A p (1) I p (2) I [θ(1) ] A y (2) I dx y (1) I dx = y (1) (x) Q (2) A y (1) (x) = Q (2) A (x) : () 13

106 Q B 1 R A, M A, M B, Q B R M A A M Q B B R A 1 M A -1 M B -1 14

107 R A, R B, R D, M B, M E, Q + B, Q B, Q E A /2 E B C D R A 1 R B 1 R D 1 M B -1 M E -1 + Q B 1 - Q B 1 Q E 1 15

108 R A, R C, M A, M C, Q B, Q + C, Q C, 16

109 M A Q B, M + C, M C 17

110 S.A. S.A. (M, Q) p Q = p 18

111 M = Q 2 S.A. K.A. (θ, φ) () y θ = y φ = θ = y K.A. K.A y θ p m() y() θ(l) θ() l y(l) m(l) x=x1 F() F(l) Fg 2.32 (, l) 3 (, l) 19

112 3 N 1 N 2 N 3 N 4 N 1 N 1 () = 1, dn 1() dx N 1 (l) =, dn 1(l) dx = = N 1 (x) = 1 3( x l )2 + 2( x l )3 1 N L Fg 2.33 N 1 N 2 N 2 () =, dn 2() dx N 2 (l) = 1, dn 2(l) dx = = N 2 (x) = 3( x l )2 2( x l )3 1 N L Fg 2.34 N 2 M 1 M 1 () =, dm 1() dx M 1 (l) =, dm 1(l) dx 11 = 1 =

113 M 1 = l[( x l ) 2(x l )2 + ( x l )3 ] M L Fg 2.35 M 1 M 2 M 2 () =, dm 2() dx M 2 (l) =, dm 2(l) dx = = 1 M 2 = l[ ( x l )2 + ( x l )3 ] M L Fg 2.36 M 2 y y()n 1 (x) + y(l)n 2 (x) + θ()m 1 (x) + θ(l)m 2 (x) (2.3) N 1 N 2 M 1 M

114 (2.3) (2.3) M (2.3) (**) l Mφ dx = F y + mθ + l py dx M (2.3) ( ) M = EI(y()N 1 + y(l)n 2 + θ()m 1 + θ(l)m 2 ) y = N 1 θ = N 1 φ = N 1 l EI(y()N 1 + y(l)n 2 + θ()m 1 + θ(l)m 2 )N 1 dx = F () + pn 1 dx y = M 1 l EI(y()N 1 + y(l)n 2 + θ()m 1 + θ(l)m 2 )M 1 dx = m() + pm 1 dx y = N 2 l EI(y()N 1 + y(l)n 2 + θ()m 1 + θ(l)m 2 )N 2 dx = F (l) + pn 2 dx y = M 2 l EI(y()N 1 EIN K e = EIM EIN + y(l)n 2 1 N 1 dx + θ()m 1 EIN 1 M 1 dx + θ(l)m 2 )M 2 dx = m(l) + EIN 1 N 2 dx pm 2 dx EIN 1 M 2 dx 1 N 1 dx EIM 1 M 1 dx EIM 1 N 2 dx EIM 1 M 2 N 1 dx EIN 2 M 1 dx EIN 2 N 2 dx EIN 2 M EIM 2 N 1 dx EIM 2 M 1 dx EIM 2 N 2 dx EIM 2 M F () y() pn1 dx m() F (l) = K θ() e y(l) pm1 dx pn2 dx m(l) θ(l) pm2 dx K e 2 dx 2 dx 2 dx (2.31) 112

115 2.9.3 (2.37 ) () (y, y +1 )(θ, θ +1 ) (F, F +1 )(m, m +1 ) (2.31) F p F m m F -1 -m -1 F -m F m -1 m -F -1 -F m Fg F = F 1 m = m K 1 e K e 1 K 1 e K e () (F, y )(m, θ ) b x Ax = b x + F + m 113

116 K e -1 y -1 θ -1 F m = - K e y θ y +1 θ +1 Fg ( ) f(x) N(x) N(x+dx) f(x) Fg 2.39 N (x + dx) + f (x)dx N (x) = dn dx = f (x) N f 114

117 u 1 u 1 (x 1, x 2 ) = a(x 1 )x 2 + U 1 (x 1 ) U 1 (x) ε 11 ε 11 = U 1 = du 1 x 1 dx N ε 11 dx = l N du 1 dx dx = [N U 1 ] l l dn dx U 1dx = N (l)u 1 (l) N ()U 1 () + = F 1 (l)u 1(l) + F 1 ()U 1() + l l f U 1 dx f U 1 dx F 1 M φdx = F2 y + m θ + p ydx N ε 11 dx = F1 u 1 + f u 1 dx M φdx + N ε 11 dx = F u + m θ + p udx p = (f, p ) u = (U 1, y) 115

118 3 3.1 p /2 / p + R 1 2 5pl4, Rl3 384EI 48EI 5pl 4 384EI Rl3 48EI = R = 5pl 8 116

119 ml2 ml () 2EI EI P l3 P l2, () 3EI 2EI ql4 ql3, () 8EI 6EI () ml ml, () 3EI 6EI 117

120 P l3 48EI, () P l 2 16EI 5ql4 384EI, () ql 3 24EI R m 12 ml2 2EI, Rl3 3EI ml 2 2EI Rl3 3EI = R = 3m 2l 118

121 1 δ : () δ 1 : () δ 2 : () 1 = δ 1 δ 11 R 1 δ 12 R 2 2 = δ 2 δ 21 R 1 δ 22 R 2 ( δ11 δ 12 δ 21 δ 22 ) ( R1 R 2 ) ( δ1 = δ 2 ) δ 11 δ δ 1n R 1 δ 21 δ δ 2n R δ n1 δ n2... δ nn R n δ 1 δ 2 =. δ n δ j = δ j (... ) 119

122 3.2 (EI : ) p M M + + M M pl3 Ml 24EI 3EI pl3 + Ml 24EI 3EI pl3 24EI Ml 3EI = pl3 24EI + Ml 3EI M = pl2 8 12

123 (EI : ) ql3 24EI Ml 3EI Ml 3EI ql3 24EI Ml 3EI = Ml 3EI M = ql

124 θ deformed beam θr M r snk M r θ θr θ l, θ r r φ φ φ = r l l 122

125 M M r M ll 3EI + M rl 6EI, M ll 6EI M rl 3EI θ l, θ r θ l = θ l + φ + M ll 3EI + M rl 6EI θ r = θ r + φ M ll 6EI M rl 3EI (3.1) M 1 M 2 M A B C beam 1 beam 2 A B C E1 I1 E2 I2 B = θ 1 r + φ 1 M Al 1 6E 1 I 1 M Bl 1 3E 1 I 1 B = θ 2 l + φ 2 + M Bl 2 3E 2 I 2 + M Cl 2 6E 2 I 2 B ( l 1 l1 M A + + l ) 2 M B + l 2 M C = θr 1 6E 1 I 1 3E 1 I 1 3E 2 I 2 6E 2 I + φ 1 θl 2 φ

126 (EI : ) p p M + M θ = = pl3 24EI + Ml 3EI + Ml 6EI M = pl

127 (EI : ) M + M r θ = = l + M ll 3EI + M rl 6EI θ = = l M ll 6EI M rl 3EI M l = 6 EI, M l 2 r = 6 EI l 2 125

128 3.3 ) ) * * 3 () (3.1) ( θl θ r ) = ( ) ( ) l 2 1 Ml + 6EI 1 2 M r ( θl + φ θ r + φ ) θ l, θ r φ φ() before deformaton after deformaton P φ φ ( ) Ml = 2EI ( 2 1 l 1 2 M r ) ( θl θ l φ θ r θ r φ ) M l = 2EI l M r = 2EI l (2θ l + θ r 2θ l θ r 3φ) ( θ l 2θ r + θ l + 2θ r + 3φ) 126

129 (EI : ) 1 θ q M M = 2EI l ( = 4EIθ l θ + ql2 12 ) ql3 24EI 2ql3 24EI + M M = 2EI (2θ + ) l = 4EIθ l 4EIθ l ql2 12 = 4EIθ l θ = ql3 96EI 127

130 M (EI : ) /2 + R Rl3 6EI 2 Rl3 6EI = R = 3 EI l 3 128

131 θ r = + + l 6EI ( 2M B) θ l = l + + M Bl 3EI Ml 3EI = Ml 3EI + δ l M B = 3 EI 2l 2 r = M A = 2EI l (2θ l + θ) M B = 2EI l ( θ l 2θ) M B = 2EI l (2θ + θ r 3 l ) = M C = 2EI l ( θ 2θ r + 3 l ) θ = 2l, θ l = 4l, θ r = 5 4l M B = 3 EI 2l 2 129

132 M 13

133 4 4.1 Euler x x x+dx y M(x) N(x) p(x) M(x+dx) Q(x) N(x+dx) Q(x+dx) x N(x + dx) N(x) = N(x) N = P (P ) y p(x)dx + Q(x + dx) Q(x) = Q (x) = p(x) O 131

134 M(x) y(x) y(x+dx) N(x) p(x) M(x+dx) Q(x) O N(x+dx) Q(x+dx) = M(x + dx) + p(x)dx dx 2 M(x) Q(x)dx P (y(x + dx) y(x)) M(x + dx) M(x) lm dx dx = lm dx ( Q(x) + P M (x) = Q(x) + P y y(x + dx) y(x) dx p 2 dx ) Q = M P y p = Q = M P y p = (EIy ) + P y (... ) 4.1.2,+,+,+,+ () y =, y = () M = y =, Q = EIy P y = ( ) ()y =, y = 132

135 4.1.3 = y + () ỹ EIỹ + P ỹ = y : EIy + P y = q q = y = ỹ : 4 4 EIy + P y = q EIy + P y EI(y y ) + P (y y ) = ỹ (y y ) ỹ = z, k = y y = ỹ y = y + ỹ P EI EIz + P z = z + k 2 z = z = A cos kx + B sn kx (A, B ) ỹ = A cos kx + B sn kx ỹ = A cos kx + B sn kx + b ỹ = A cos kx + B sn kx + a + bx A, B A, B : ỹ = A cos kx + B sn kx + a + bx (A, B, a, b ) P cr (EI : ) 133

136 : y() = y(l) =, y () = y (l) = p = = y() = = A + a y () = = k 2 A y(l) = = A cos kl + B sn kl + a + bl y (l) = = Ak 2 cos kl Bk 2 sn kl 1 1 A k 2 B = cos kl sn kl 1 l a k 2 cos kl k 2 sn kl b K K (A, B, a, b) = (,,, ) (A, B, a, b) (,,, ) K = 1 1 k 2 K = = cos kl 1 sn kl l k 2 cos kl k 2 sn kl = k 2 k 2 l sn kl 1 1 k 2 sn kl l k 2 sn kl K = k =, sn kl = k = P =, sn kl = kl = nπ (n : ) kl = P = π2 EI l 2, 4π 2 EI l 2, y = B sn kl = B sn nπx l P EI l = nπ P = n2 π 2 EI l 2 9π 2 EI, y = l 2 n = 1 n = 2. P = π2 EI l 2 P = 4π2 EI l 2 : P cr : 2 - P cr (EI : ) 134

137 - - : y() = y(l) =, y () =, y (l) = q = = y() = = A + a y () = = Bk + b y(l) = = A cos kl + B sn kl + a + bl y (l) = = Ak 2 cos kl Bk 2 sn kl 1 1 A k 1 B = cos kl sn kl 1 l a k 2 cos kl k 2 sn kl b K (A, B, a, b) (,,, ) K = k 1 = K = 1 sn kl 1 l + 1 k 2 sn kl = k 2 sn kl + ( k 3 l cos kl) tan kl = kl k 1 cos kl sn kl l k 2 cos kl k 2 sn kl tan kl kl = kl = 4.5 () (kl = π) y 4. y=tan kl y= kl kl 3 P cr (EI : ) P 135

138 2 P 2 P cr = π2 EI l 2l l 2 P cr = π2 EI 4l 2 4 P cr (EI : ) P * l 2 / 2 P P cr = π2 EI ( ) 2 = 4π2 EI l l

139 * l 2 - / 2 P = (4.5 )2 EI (l/2) 2 P cr 2 4π2 EI l 2 5 ( π, π) f(x) (Fourer ) f(x) = a 2 + a n cos nx + b n sn nx n=1 n=1 π π π π π π cos nx cos mxdx = sn nx sn mxdx = 2π (n = m = ) π (n = m ) (n m) { π (n = m ) (n m) cos nx sn mxdx = a n = 1 π b n = 1 π π π π π f(x) cos nxdx f(x) sn nxdx 137

140 x = x = l x = lx = a = ( =, 1, ) < x < l f(x) f(x) = f n sn nπ x (Fourer ) l n=1 (EI : ) q(x)y(x) q(x) = y(x) = q n sn nπ n=1 l x y n sn nπ n=1 l x y() =, y(l) = y () =, y (l) = EIy + P y = q, ( ) { nπ 2 ( ) } nπ 2 y n EI P sn nπx n=1 l l l = n=1 q n sn nπx l y n = q n ( ) { 2 nπ EI ( ) } 2 nπ l l P y = ( n=1 nπ l ) 2 { q n EI ( nπ l ) 2 P } sn nπ l x 138

141 n EI ( ) 2 nπ l P yn y P EIπ2 y 1 (q 1 ) y l 2 P cr = EIπ2 l 2 P cr = γei (γ :) σ = P cr l 2 A = γe l 2 A/I I (A : )r = A σ = γe (l/r) 2 l (slenderness rato) () σ r P cr () (EI, A : ) P 139

142 -P -P/ 2 -P/ 2 P/ 2 P/ 2 P/2 P/2 P P P cr = P = π2 EI l 2 q. () R R = = 5ql4 384EI Rl3 48EI Rh EA Rh EA = 5ql4 384EI Rl3 48EI R = R = π2 EI π 2 EI h 2 = 5ql 4 384EI ( l 3 + ) h 48EI EA h 2 5ql 4 384EI ( l 3 q = 384π2 (EI) 2 14 ) + h 48EI EA ( l 3 + ) h 48EI EA 5h 2 l 4

143 4.3 = P l sn θ kθ θ = θ P = k l P = k θ l sn θ θ sn θ P π k/ π θ P < k θ = l P > k θ = 2 (3 ) l 141

144 P < k kθ P l sn θ l kθ P sn θ O θ θ = θ = θ = P > k kθ P l sn θ ( l θ = θ c,, θ c ε ) kθ θc P sn θ O θc θ θ = θ c θ = θ c εθ θ c θ = θ c + εθ θ c θ = θ c θ = θ = εθ θ c θ = εθ θ c 142

145 θ = θ = θ c θ = θ c εθ θ c θ = θ c + εθ θ c θ = θ c P cr = k l P < k l P > k l θ = θ = θ c, θ c θ = ( ) 143

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

solutionJIS.dvi

solutionJIS.dvi May 0, 006 6 morimune@econ.kyoto-u.ac.jp /9/005 (7 0/5/006 1 1.1 (a) (b) (c) c + c + + c = nc (x 1 x)+(x x)+ +(x n x) =(x 1 + x + + x n ) nx = nx nx =0 c(x 1 x)+c(x x)+ + c(x n x) =c (x i x) =0 y i (x

More information

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) =

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) = ,, uvw,, Bernoull-Euler u v, w θ dv ( ) dw u (,, ) u( ) ω(, ) φ d d v (,, ) v( ) θ ( ) w (,, ) w( ) θ ( ) (11.1) ω φ φ dθ / dφ v v θ u w u w 11.1 θ θ θ 11. vw, (11.1) u du d v d w ε d d d u v ω γ φ w u

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a φ + 5 2 φ : φ [ ] a [ ] a : b a b b(a + b) b a 2 a 2 b(a + b). b 2 ( a b ) 2 a b + a/b X 2 X 0 a/b > 0 2 a b + 5 2 φ φ : 2 5 5 [ ] [ ] x x x : x : x x : x x : x x 2 x 2 x 0 x ± 5 2 x x φ : φ 2 : φ ( )

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a, [ ] 8 IC. y d y dx = ( dy dx ( p = dy p y dx ( ( ( 8 ( s8. 3 A A = ( A ( A (3 A P A P AP.3 π y(x = { ( 8 ( s8 x ( π < x x ( < x π y(x π π O π x ( 8 ( s83.4 f (x, y, z grad(f ( ( ( f f f grad(f = i + j

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1. Section Title Pages Id 1 3 7239 2 4 7239 3 10 7239 4 8 7244 5 13 7276 6 14 7338 7 8 7338 8 7 7445 9 11 7580 10 10 7590 11 8 7580 12 6 7395 13 z 11 7746 14 13 7753 15 7 7859 16 8 7942 17 8 Id URL http://km.int.oyo.co.jp/showdocumentdetailspage.jsp?documentid=

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y 017 8 10 f : R R f(x) = x n + x n 1 + 1, f(x) = sin 1, log x x n m :f : R n R m z = f(x, y) R R R R, R R R n R m R n R m R n R m f : R R f (x) = lim h 0 f(x + h) f(x) h f : R n R m m n M Jacobi( ) m n

More information

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx 1 1 1 1 1. U(x, t) U(x, t) + c t x c, κ. (1). κ U(x, t) x. (1) 1, f(x).. U(x, t) U(x, t) + c κ U(x, t), t x x : U(, t) U(1, t) ( x 1), () : U(x, ) f(x). (3) U(x, t). [ U(x, t) Re u k (t) exp(πkx). (4)

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

30 I .............................................2........................................3................................................4.......................................... 2.5..........................................

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

body.dvi

body.dvi ..1 f(x) n = 1 b n = 1 f f(x) cos nx dx, n =, 1,,... f(x) sin nx dx, n =1,, 3,... f(x) = + ( n cos nx + b n sin nx) n=1 1 1 5 1.1........................... 5 1.......................... 14 1.3...........................

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

応力とひずみ.ppt

応力とひずみ.ppt in yukawa@numse.nagoya-u.ac.jp 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta 009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k f(x) f(z) z = x + i f(z). x f(x) + R f(x)dx = lim f(x)dx. R + f(x)dx = = lim R f(x)dx + f(x)dx f(x)dx + lim R R f(x)dx Im z R Re z.: +R. R f(z) = R f(x)dx + f(z) 3 4 R f(x)dx = f(z) f(z) R f(z) = lim R

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r 2 1 (7a)(7b) λ i( w w ) + [ w + w ] 1 + w w l 2 0 Re(γ) α (7a)(7b) 2 γ 0, ( w) 2 1, w 1 γ (1) l µ, λ j γ l 2 0 Re(γ) α, λ w + w i( w w ) 1 + w w γ γ 1 w 1 r [x2 + y 2 + z 2 ] 1/2 ( w) 2 x2 + y 2 + z 2

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X 4 4. 4.. 5 5 0 A P P P X X X X +45 45 0 45 60 70 X 60 X 0 P P 4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P 0 0 + 60 = 90, 0 + 60 = 750 0 + 60 ( ) = 0 90 750 0 90 0

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

1 B () Ver 2014 0 2014/10 2015/1 http://www-cr.scphys.kyoto-u.ac.jp/member/tsuru/lecture/... 1. ( ) 2. 3. 3 1 7 1.1..................................................... 7 1.2.............................................

More information

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) ( + + 3 + 4 +... π 6, ( ) 3 + 5 7 +... π 4, ( ). ( 3 + ( 5) + 7 + ) ( 9 ( ( + 3) 5 + ) ( 7 + 9 + + 3 ) +... log( + ), ) +... π. ) ( 3 + 5 e x dx π.......................................................................

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

数値計算:有限要素法

数値計算:有限要素法 ( ) 1 / 61 1 2 3 4 ( ) 2 / 61 ( ) 3 / 61 P(0) P(x) u(x) P(L) f P(0) P(x) P(L) ( ) 4 / 61 L P(x) E(x) A(x) x P(x) P(x) u(x) P(x) u(x) (0 x L) ( ) 5 / 61 u(x) 0 L x ( ) 6 / 61 P(0) P(L) f d dx ( EA du dx

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

1   yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α 1 http://sasuke.hep.osaka-cu.ac.jp/ yousuke.itoh/lecture-notes.html 1.1. 1. [, π) f(x) = x π 2. [, π) f(x) = x 2π 3. [, π) f(x) = x 2π 1.2. Euler dx = 2π, cos mxdx =, sin mxdx =, cos nx cos mxdx = πδ mn,

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n [ ]. A = IC X n 3 expx = E + expta t : n! n=. fx π x π. { π x < fx = x π fx F k F k = π 9 s9 fxe ikx dx, i =. F k. { x x fx = x >.3 ft = cosωt F s = s4 e st ftdt., e, s. s = c + iφ., i, c, φ., Gφ = lim

More information

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n = JKR 17 9 15 1 Point loading of an elastic half-space Pressure applied to a circular region 4.1 Boussinesq, n = 1.............................. 4. Hertz, n = 1.................................. 6 4 Hertz

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

直交座標系の回転

直交座標系の回転 b T.Koama x l x, Lx i ij j j xi i i i, x L T L L, L ± x L T xax axx, ( a a ) i, j ij i j ij ji λ λ + λ + + λ i i i x L T T T x ( L) L T xax T ( T L T ) A( L) T ( LAL T ) T ( L AL) λ ii L AL Λ λi i axx

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information