Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Size: px
Start display at page:

Download "Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N."

Transcription

1 Basic Mathematics (10:40-12:10) (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology) 17

2 Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. ( N n, N n. element e, E.) N = {1, 2, 3,...} = {n; n } 0 (integers) Z ( : Ganz Zahlen Z). A B A B ; x A B Z = {0, ±1, ±2, ±3,...} =( N) {0} N x A or x B. 1, (rational numbers) 2 Q. (, R, Q ) Q := Z/N = {r; r = m/n, m Z,n N} = {m/n; m, n Z,n 0} π 2 (real numbers) R x 2 = 1 i = 1,, (comlex numbers) C C = {z; z = x + iy, x, y R} , [A B], A [B ],. [B A ]. ( ) 2 =, ( ) 2 =. 1, 1/π, 2/ 3, /. 2,.

3 Basic Math. 2 1 Keywords (set) A, a, [a A a A (element). a A ]. (A a. A a.) a/ A or A a. A = {2, 3, 5} = {a; a =2, 3, 5}, B = {2, 4, 6, 8,...} = {b; b },., (empty set),. (finite set) ; A <. (infinite set) ; A =. (.) A, B, A B or A B A B [x A x B] x A, x B,, A, B. (., B A. B A.. A B x 0 A; x 0 B, i.e., A B A = B A B,A B [x A x B]. A B and A B, A B. X.,, ( ) (power set), 2 X or P(X). 2 2, 3 n X (set). A, B (subset), i.e., A, B X. A B := {x X; x A or x B} : A B (union) A B := {x X; x A and x B} : A B or (intersection) A B =, (disjoint), A B ( ). ( ).

4 Basic Math. 3 (1) : A B = B A, A B = B A. (2) : A A = A, A A = A. (3) : A (B C) =(A B) C, A (B C) =(A B) C. (4) : A (B C) =(A B) (A C), A (B C) =(A B) (A C). (5) A = A, A =. (6) A B A A B. (7) A B A B = B A B = A. 1.. X {A n } n=1 (a family of subsets),. x n=1 A n n 1; x A n (n x ) x n=1 A n n 1,x A n. A, B A c := {x X; x/ A} A X (complement). A \ B := A B c = {x X; x A, x / B} (difference). 2. De Morgan. ( ) c ( ) c (1) (A B) c = A c B c, (A B) c = A c B c (2) A n = A c n, A n = A c n. 3. f = f(x), g = g(x) R,. n=1 n=1 f g := max{f, g}, f g := min{f, g} 1. (1) {x R; f(x) a} {x R; g(x) a} (2){x R; f(x) a} {x R; g(x) a} 4. (symmetoric difference) A B := (A \ B) (B \ A), (1) A B =(A B) \ (A B) (2) A C (A B) (B C). {A n } n=1 A 1 A 2, (increasing sequence), A n ( A n ), A 1 A 2, (decreasing sequence), A n ( A n ) (1) [ 0, 1 1 ) (2) [ 0, 1 1 ] n n n 1 n 1 (3) n 1 [ 0, 1+ 1 ] n n=1 (4) [ 0, 1+ 1 ) n n 1 n=1 (1) (2) [0, 1), (3) (4) [0, 1],, [HW] 1. (1) n 1 [ 1 n, 2 1 ) n (2) n 1 ( 1 n, 1+ 1 ) n

5 Basic Math. 4 lim sup n A n = inf sup n lim inf n A n = sup inf A n := n 1 n A n := n 1 A k k n A k k n (upper limit set) (lower limit set), lim A n, {A n } (limit set). n 6.. (1) lim inf A n lim sup A n. (2) (lim inf A n) c = lim sup A c n. n n n (3) A n = lim n A n = A n. n=1 n A n = lim n A n = A n. 7. R {f n (x)},. {x R; f n (x) f(x) 1/k}. k 1 N 1 n N X, Y, X Y := {(x, y); x X, y Y } X Y, (product), (x, y). ((x, y) (y, x), X Y Y X ). {X n } n 1, X n X 1 X 2 := {(x n ) n 1 =(x 1,x 2,...); x n X n,n 1} ( Π n x n n=1 ). P k :(x n ) n x k n X n X k (projection). 1.. (1) X (Y 1 Y 2 )=(X Y 1 ) (X Y 2 ) (2) X (Y 1 Y 2 )=(X Y 1 ) (X Y 2 ). X A = {A t } t I (I (index set), I =[0, 1] ) n=1 x t I A t = A = {A t ; t I} t I; x A t x t I A t = A = {A t ; t I} t I,x A t De Morgan ; ( A t)c = ( A c t, A t)c = A c t. t I t I t I t I {X t } t I, X t := {(x t ) t ; x t X t,t I} ( Π t x t t I ). P s :(x t ) t x s t X t X s.

6 Basic Math. 5 3 (mapping) X, Y. X x Y y, f : X Y ; x y = f(x), (mapping). f(x) ={f(x); x X} Y f (range). A X, B Y, f(a) ={f(x); x A} f A (image), f 1 (B) ={x X; f(x) B} f B (inverse image) or. f( ) =, f 1 ( ) =. y f(a) x f 1 (B) f : X Y. x A; y = f(x) f(x) B ( x 1. f 1. B,B 1,B 2,... Y, (1) B 1 B 2 = f 1 (B 1 ) f 1 (B 2 ) (2) f 1 (B 1 B 2 )=f 1 (B 1 ) f 1 (B 2 ), f 1 (B 1 B 2 )=f 1 (B 1 ) f 1 (B 2 ) (3) f 1 ( n B n)= n f 1 (B n ), f 1 ( n B n)= n f 1 (B n ) (4) f 1 (B c )=f 1 (B) c 2. f, A, A 1,A 2,... X, (1) A 1 A 2 = f(a 1 ) f(a 2 ) (2) f(a 1 A 2 )=f(a 1 ) f(a 2 ), f(a 1 A 2 ) f(a 1 ) f(a 2 ) (3) f( n A n)= n f(a n), f( n A n) n f(a n) (4) (2) = 3. A X, B Y, (1) f(f 1 (B)) = B f(x), f 1 (f(a)) A (2) f(a f 1 (B)) = f(a) B, f 1 (f(a) B) A f 1 (B) f : X Y, f (injection) or (one to one) y f(x), 1 x X; y = f(x) ( f(x) f 1 : f(x) X; y f 1 (y).) f (surjection) or (onto) f(x) =Y, f(x) Y, i.e., y Y, x X; y = f(x) f (bijection) f, i.e., y Y, 1 x X; y = f(x) f : X X; f(x) =x (identity mapping), I X,id X I,id. f : X Y, g : Y Z, g f : X Z g f(x) =g(f(x)). ; (h g) f = h (g f): h g f. 4. f [f(x) =f(y) x = y] [x y f(x) f(y)]. (.,.) 5. f : X Y, g : Y Z g f : X Z, (1) f, g g f (2) f, g g f (3) f, g g f (g f) 1 = f 1 g 1 (4) g f f, f g (5) g f g, g f

7 Basic Math. 6,,,,. f : X Y. g : Y X, g f = id X f g = id Y, f, g = f 1. g f = id X f. f(x 1 )=f(x 2 ), g,, f. x 1 = g f(x 1 )=g(f(x 1 )) = g(f(x 2 )) = g f(x 2 )=x 2 f g = id Y f. y Y, y = f g(y) =f(g(y)), x = g(y) x X y = f(x), f. 6. f. ( f 1. [ {.) (1) f : N Z; f(n) =( 1) n n ] k (n =2k +1,k 0) =,. 2 k (n =2k, k 1), [x], x. [f 1 (m) = 2m +1(m 0), =2m (m 1)] (2) N 2 := N N, f : N 2 N; f((p, q)) = p +(p + q 1)(p + q 2)/2. (, n := f((p, q)),k:= p + q 1, n k q.) (3) A N. f : A N; f(a) = {n A; n a} (A, ) (4) Q + := {x Q; x > 0} A := {(p, q) N 2 ; p, q } f : A Q + ; f((p, q)) = p/q. (5) Q + = {r n } n=1. f : N Q; f(n) =( 1)n r [n/2]., X Y,,,,.,., X Y f X Y., X Y ; X = Y, X Y ; X Y.., Z, N n (n 1), Q, N ( ),,. N Z N n Q, i.e., Z = N n = Q = ℵ 0 (:= N ). 4 ε-δ (ε-δ Logic) [ ] s.t.= such that ( ; ( ).)

8 Basic Math. 7 x I; x a <δ x a <δ x I. ε. L, M. δ ε>0 ( ) ( ). (.) N ε ( ). (.) ε 0 N 0. (.) {a n } α R. ε, N, N n a n α ε., ε>0, N N, n N, a n α <ε. [ lim n a n = α] or[a n α (n )] ε>0, N N; n N, a n α <ε. [ ] N ε N = N(ε) orn = N ε.,,,,!! {a n } α R. [ lim n a n α] or[a n α (n )] ε 0 > 0; N N, n N; a n α ε 0 ε 0 > 0; k N, n k; a n α ε 0 ε 0 > 0; {n k } k 1 ; n k (k ), a nk α ε 0. [ ] N ( k), ε 0. n ε , k n = n k. (, n,. {n k }.) {n k } ε 0., ε 0 {n k }. [ 1],. 1. S R, (a) (supremum) α = sup S (1) S ( c R; x S, x c),

9 Basic Math. 8 (i) x S, x α, (ii) ε>0, x ε S; α ε<x ε ( α) (,,,.) (2) S, α =, i.e., sup S =. (b) (infimum) β = inf S (1) S ( d R; x S, d x), (i) x S, β x, (ii) ε>0, x ε S;(β ) x ε <β+ ε (,,,.) (2) S, β =, i.e., inf S =. 2. I =[a, b] f = f(x) (a) f(x) x 0 I (continuous at x 0 ) ε>0, δ>0; x I; x x 0 <δ, f(x) f(x 0 ) <ε. (b) f(x) I (continuous on I) f(x) x 0 I x 0 I, ε>0, δ>0; x I; x x 0 <δ, f(x) f(x 0 ) <ε. (δ = δ(x 0,ε) > 0 x 0 I,ε > 0. ( f.) ) (c) f(x) I (uniform continuous on I) ε>0, δ>0; x, y I; x y <δ, f(x) f(y) <ε. (δ = δ(ε) > 0 ε>0. (x, y.)) 3. S R f n (x) f(x) (a) f n f S (pointwise convergence) f n f on S (or f n f p.w. on S) x S, ε>0, N N; n N, f n (x) f(x) <ε. (N = N(x, ε) > 0 x S ε>0.) (b) f n f S (uniform convergence) f n f on S (or f n f unif. on S) ε>0, N N; n N, x S, f n (x) f(x) <ε. : ε>0, N N; n N,sup x S f n (x) f(x) ε. lim sup f n (x) f(x) =0 n x S (N = N(ε) > 0 ε>0. x.), f S ε 0 > 0; δ>0, x δ,y δ S; x δ y δ <δ, f(x δ ) f(y δ ) ε 0. x δ,y δ, x δ y δ <δ δ x, y,. ( ε 0,, f.) δ>0, n 1,, δ =1/n, x δ,y δ x n := x 1/n,y n := y 1/n,. (.)

10 Basic Math. 9 5 (Potency) N, Z, Q, R,,,. (Natural numbers, Integers, Rational numbers, Real numbers) X, Y, X Y (equipotent) f : X Y ;, X Y (potency) ( (cardinals)). X X, X, Card X,. =0, {1, 2,...,n} = n. X X (finite set) X < ( X =0 X = ) (infinite set) X X N X = ℵ 0 (aleph zero), (countable)., X ℵ 0 (X ),. (uncountable). Z, N n (n 1), Q.., R. (1) Z, i.e., Z = ℵ 0. [ f : N Z; f(n) =( 1) n n ] = 2 { k (n =2k +1,k 0) k (n =2k, k 1),., [x], x. ( ) (, f 1 (m) ). [f 1 (m) = 2m +1(m 0), =2m (m 1)] (2) Q, R. (a) N 2 := N N. N n (n 1). f : N 2 N; f((p, q)) = p +(p + q 1)(p + q 2)/2,. (, n := f((p, q)),k := p + q 1, n k q.) (b) X A X N, N A, A N. A,., f : A N; f(a) = {n A; n a},. (c) Q + := {x Q; x>0}

11 Basic Math. 10 A := {(p, q) N 2 ; p, q },, A N. f : A Q + ; f((p, q)) = p/q,. (d) Q N Q +, Q + = {r n } n=1. f : N Q; f(n) =( 1) n r [n/2],. Z N, B, f : B Q; f((p, q)) = p/q. (e) R ( ), (0, 1] R, (0, 1] = {a n } n 1. 10, a n =0.a n1 a n2 a n3 (a ni =0, 1,...,9)., 1= (,,.), { 1 (ann =0, 2, 4, 6, 8) b =0.b 1 b 2 b 3, b n = 2 (a nn =1, 3, 5, 7, 9)., (a ni ) a nn b n b. b (0, 1], b n a nn, n 1,b a n,., R., R. 2. (1) (2) (a) (d), f. f 1., (potency of continuum), R = ℵ. 3.. <a<b<. (1) [0, 1] [a, b], [0, 1) [a, b), (0, 1] (a, b], (0, 1) (a, b) (2) [0, 1] [0, 1), [0, 1) (0, 1), (0, 1) (0, 1], (0, 1] [0, 1] (f :[0, 1] [0, 1) 1/n 1/(n +1),.) (3) R ( 1, 1) (y = 2 π arctan x or x = tan(πy)/2) (4) (0, 1) 2 := (0, 1) (0, 1) (0, 1) ( f :(0, 1) 2 (0, 1), 10,, ),,. R n (n N). X, ( (power set) ) {A; A X} 2 X (. P(X).)., X Y Y X := {f : X Y ; }, Y 2 ( Y = {0, 1}) Y X (= {0, 1} X )=2 X. X x, (f(x) = 1), (f(x) =0)

12 Basic Math. 11. f(x) =1 x X. f 2 X X A = {x X; f(x) =1},. X Y X < Y f : X Y ; X Y and X Y. Cantor : X < 2 X (= 2 X ), ℵ 0 < 2 ℵ0 = ℵ f : X 2 X ; f(x) ={x},,, X 2 X. X 2 X. 2 X X.. g :2 X X;. B := {a = g(a) X; A 2 X,a= g(a) / A} ( X), b := g(b), b X, b B,, A X; g(b) =b = g(a) / A, g(b) =g(a) g, B = A, b/ A = B,. b/ B, A = B, b B., 2 X X., X < 2 X. (Schröder-) Bernstein : X Y Y X = X = Y., f : X Y g : Y X. y Y, f x X. x X, g y Y., (a) A X a X, Y, X,Y, X,... a ; a b 1 a 1 b 2 a 2 (b) A X X a X,, Y, X,Y, X,..., Y, X, X, Y a, a or a b 1 a 1 b n a n (c) A Y X a X, Y,X,Y,X,...,X,Y, Y, X a, a b 1 a 1 b n (d) X, Y, B,B Y,B X Y., X = A A X A Y ( ), Y = B B Y B X ( ) f(a )=B, f(a X )=B X, g(b Y )=A Y. f,g. ( f(a Y )=B Y, g(b X )=A X, f(a Y ) B Y, g(b X ) A X. f(a Y ) X Y. g(b X ).) h : X Y h = f on A A X, h = g 1 on A Y.

13 Basic Math. 12 (0, 1) 2 (0, 1). (0, 1) (0, 1) 2.. (a, b) (0, 1) 2, 10, a =0.a 1 a 2 a 3, b =0.b 1 b 2 b 3.,, 9 (, 0.23 = ). f :(0, 1) 2 (0, 1) f(a, b) :=0.a 1 b 1 a 2 b 2,, (0, 1) 2 (0, 1) , [0, 1] [0, 1] 2,, (01 ), a =0.1 = , b = ,, a. (,, )., 0, e.g., x = =0.x 1x 2x 3x 4x 5x 6 (x 1 = 001, x 2 = 03, x 3 =2,x 4 = 04, x 5 =5,x 6 = 0001,...) a =0.x 1x 3x 5, b =0.x 2x 4x 6 x (a, b). : ℵ 0 < ℵ, (,,, 1963, Cohen ) A, B, F (A, B) A B B A. X, X (x 1,x 2,...) (x i X).. 4. A, B, C F (A B,C) F (A, F (B,C)) N {0, 1} N = F (N, {0, 1}) R. 6. R Z [0, 1) N R. (.) 7. F (R, R) 2 R. [F (R, R) F (R,F(N, {0, 1})) F (R N, {0, 1}) F (R, {0, 1})={0, 1} R 2 R ] 8. R R N = F (N, R) R, N R. a 0 + a 1 x + a 2 x a n x n =0 (n N,a i Z,a n 0), A., A c := C \ A. 9. A. [N = n + a 0 + a a n,.] 10. α A Nα A, β A c Nβ A c. 11. A c., R, Q c., [ x 0, Nx 0 := {x = nx 0 : n N},,. R = Q Q c N Q c Nx 0 Q c = Q c. N Q c Nx 0 Q c, ]

14 Basic Math (Equivalence Relation and Order) X, 2 x, y X (relation) x y, x y. ( X, Y R X Y X Y. x y (x, y) R ). 3, (equivalence relation) : [ ] (reflexive law) [ ] (symmetric law) [ ] (transitive law) x x x y = y x x y, y z = x z, X. [x] :={y X; x y} (equivalence class). 6.1 X = Z, x y x y 2Z,, [x] =2Z if x 2Z, [x] =2Z +1ifx 2Z [x],. (1) x y = [x] =[y] (2) x y [x] [y] = x [x], {[x]} x X X. {[x]} x X =: X/, X (quotient set). X/ = {2Z, 2Z +1}. Z/(2Z). (n N Z/(nZ) ) 2. f : X X/ f(x) =[x]. 3. X = R, x y x y Z,, f :[0, 1) R/ ; f(x) =[x]. X, 3, (order) : [ ] (reflexive law) x x [ ] (anti-symmetric law) [ ] (transitive law) x y, y x = y = x x y, y z = x z x y x y, x y. (X, ) (ordered set). x, y X x y y x. [ ]. 6.2,. (1) S X =2 S. A, B X, i.e., A, B S, A B A B. (2) X = R 2 x =(x 1,x 2 ),y =(y 1,y 2 ) X, x y x 1 y 1,x 2 y 2. (X, ) x X ( ) y X; x y (y x),x = y.,. A X; A, [x X A x A, a A, a x], [x X A a A, a x], [ = ( )].. 2,. 4.. [N],.

15 Basic Math Zorn (Axiom of Choice, Zorn s Lemma) (1) 1 ( ). (2) Zorn. (3) X. 2. Zermelo {X t } t T, 1, i.e., X X t ; t T,X X t = {x t }. (, {X t } t T, Y t := {t} X t. {Y t }.) X, f :2 X \ { } X; f(a) A [ 7.1 ] [ ] X λ (λ Λ). X := λ Λ X λ,,, (X, )., X λ X,. [Zorn ] X, W := {(A, α); A X, α }. 1 W. (A, α), (B,β) W,,. (A, α) (B,β) A B,α = β A. (W, ) ( ). Zorn, (T, ) W: i.e., (T, ) (T, ) W (T, ) = (T, ). T = X, (X, ). [ ] W 0 W. W := S W 0 = S {A;(A, α) W 0} X, ω, x, y W, (A, α); x, y A, xωy xαy, W 0 well-ined, (W, ω) W 0 1. [ ] T ( X, a X \ T 1, T := T {a} = on T, x T, x a (T, ) (T, ) W, T ( T T. T = X. [ Zorn ] (X, )., W ( x X; w W, w x). [, 1,, ( f- ),.] ( ), W X a W, W a := {w W ; w a} (W a ), (W a ) :={x X; b W a,b x} a (a X )

16 Basic Math. 15., a = min W, i.e.,w a =, (W a ) :=X. min( (W a ) W )=a.,. f :2 X \{ } X; f(a) A. W X : f- W : ; a W, a = f( (W a )). min W = f(x) (a = min W (W a ) =X )., f(x) X a = f( (W a )) a,, f-. W f-, W := W = w W W, W f- ( W X ). (X, ), W, w. w W., (X, ). [ ] W f-,.. (1) W 1,W 2: f- W 1 = W 2 or. [ ] W 1 W 2,. b W 2, ϕ : W 1 W 2 b ;, x W 1,ϕ(x) =x, W 1 = W 2 b. W 1 := {x W 1; ϕ(x) x}, y := min W 1. min W i = f(x), x W 1; x y ϕ(x) =x W 1 y = W 2 ϕ(y). (W 1 y ) = (W 2 ϕ(y) ). y = f( (W 1 y )) = f( (W 2 ϕ(y) )) = ϕ(y), y W 1. W 1 =. W 1 = W 2 b. W 1 = W 2 or W 1 a = W 2 (a W 1). (2) W. [ ] M ( ) W, a M. W a f-, m := min(m W ) ( W f- ; ) m = min M., x M; x m x W x W ; f-., m = min(m W ), x m x/ W, i.e., x W \ W. (1) b W ; W = W b., b = min(w \ W ), x W \ W b x. m W, m b. m b x, x m. m = min M., W. (3) f- W, W = W or W = W a (a W ). [ ] (1) f- W, min W = f(x)., W W, a := min(w \ W ). a f- W. a/ W (1), b W ; W = W b. a W a W. W W W W a W a. b = min(w \ W ), a W \ W b a, W b W a., W a W = W b W a W a, W = W a. f- W, W W, a W ; W = W a. (4) W f-. [ ] a W, a f- W. (3) W a = W a,, (W a ) = (W a ), f( (W a )) = f( (W a )) = a, W f-. [ ] w., i.e., w X; w w W f- W,., := {x X; a W,a x}, w. z := f( ) (f ), W := W {z}, W = W z, = (W z ) f( (W z )) = z, W f-, W f-. w. w W w,. w W.

17 Basic Math. 16 (1). (X, ), (Y, ), X Y ϕ : X Y ;, i.e., ϕ, ; x 1 x 2 ϕ(x 1 ) ϕ(x 2 ). 7.2 ( ) 2 (X, ), (Y, ) 1. (1) X Y, (2) a X; X a Y, (3) b Y ; X Y b (X, ), (Y, ). X 1 = {a X; b Y ; X a Y b }, X 1 = X or a 0 X; X 1 = X a 0. a X b Y, X a = = Y b, a X 1, i.e., X 1. a X 1 b Y, ϕ : X a Y b. x X a, y := ϕ(x) X x Y y. a X 1 X a X 1. X 1 X, a 0 := min(x \ X 1 ), X a 0 X 1 a 0 / X 1. X a 0 = X 1., X 1 \ X a 0, i.e., a X 1 ; a 0 a a 0 X a X 1 a 0 / X 1. X 1 = X a 0., X 1 X X 1 = X a (X, ), ϕ : X X,, x X, x ϕ(x). A := {x X; ϕ(x) x}, A =. A a := min A. ϕ(a) a, ϕ, ϕ(ϕ(a)) ϕ(a), ϕ(a) A ϕ(a) a a. A =. [ 7.2 ] X 1 = {a X; b Y ; X a Y b }, Y 1 = {b Y ; a X; X a Y b }. a X 1 b Y, b Y 1. ϕ : X 1 Y 1 b = ϕ(a) ϕ : X 1 Y , X 1 = X or a X; X 1 = X a, Y 1 = Y or b Y ; Y 1 = Y b. X 1 = X a Y 1 = Y b X a = X 1 Y 1 = Y b, X 1 a X 1 = X a, a/ X a. (1), (2), (3).. (2), (3), i.e., X a Y, X Y b. ϕ : X Y b Y X a ( X), a/ X a ϕ(a) a, 7.2. (2), (3) ( ) (A, ), a A P (a). (1) P (min A) (2) a A; a min A, b A a, P (b) P (a), a A, P (a). A 0 = {a A; P (a) }. A 0 a 0 := min A 0. (1) a 0 min A, a 0 a A a 0, P (a). (2) P (a 0 ), a 0 A 0. A 0 =.

18 Basic Math (Set and Topology) 2 (topology),. (neighborhood) (open set),,., (metric),,. [ ] X, O X (O1) O, X O. (O2) G 1,G 2 O= G 1 G 2 O. (O3) G α O(α A) = α A G α O.. A.,. (X, O) (topology space). [ ] X, d : X X [0, + ]; (x, y) d(x, y). (D1) d(x, y) 0; d(x, y) =0 x = y (D2) d(x, y) =d(y, x) (D3) d(x, z) d(x, y)+d(y, z) (X, d) (metric space). R 2, x =(x 1,x 2 ) x = x x2 2, d(x, y) = x y. δ>0, U δ (x) {y R 2 ; d(x, y) <δ} x δ-. δ, U(x) x. x =(x 1,x 2 ) S R 2 U(x); x, U(x) S, U(x); x, U(x) S =, U(x); x, U(x) S, U(x) S c. S,.,. S, (closed set). S, (boundary)., S, (S c )= S (1) {(x 1,x 2 ); x x 2 2 < 1} (2) {(x 1,x 2 ); x x 2 2 =1} (3) {(x 1,x 2 ); x 1 x 2 > 0} (4) {(x 1,x 2 ); x 1,x 2 Q} 3. S, S. x S x S, S S S S. 6. S S S.

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È 2011 i N Z Q R C A def B, A B. ii..,.,.. (, ), ( ),.?????????,. iii 04-13 04-20 04-27 05-04 [ ] 05-11 05-18 05-25 06-01 06-08 06-15 06-22 06-29 07-06 07-13 07-20 07-27 08-03 10-05 10-12 10-19 [ ] 10-26

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp 1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete space T1 T2 =, X = X, X X = X T3 =, X =, X X = X 2 X

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1 2013 5 11, 2014 11 29 WWW ( ) ( ) (2014/7/6) 1 (a mapping, a map) (function) ( ) ( ) 1.1 ( ) X = {,, }, Y = {, } f( ) =, f( ) =, f( ) = f : X Y 1.1 ( ) (1) ( ) ( 1 ) (2) 1 function 1 ( [1]) (1) ( ) 1:

More information

set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9..

set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9.. 12 -- 2 1 2009 5,,.,.,.. 1, 2, 3,., 4),, 4, 5),. 4, 6, 7).,, R A B, 8, (a) A, B 9), (b) {a (a, b) R b B }, {b (a, b) R a A } 10, 11, 12) 2. (a). 11, 13, R S {(a, c) (a, b) R, (b, c) S } (c) R S 14), 1,

More information

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2 Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2 C II,,,,,,,,,,, 0.2. 1 (Connectivity) 3 2 (Compactness)

More information

応用数学特論.dvi

応用数学特論.dvi 1 1 1.1.1 ( ). P,Q,R,.... 2+3=5 2 1.1.2 ( ). P T (true) F (false) T F P P T P. T 2 F 1.1.3 ( ). 2 P Q P Q P Q P Q P or Q P Q P Q P Q T T T T F T F T T F F F. P = 5 4 Q = 3 2 P Q = 5 4 3 2 P F Q T P Q T

More information

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1 sup inf (ε-δ 4) 2018 1 9 ε-δ,,,, sup inf,,,,,, 1 1 2 3 3 4 4 6 5 7 6 10 6.1............................................. 11 6.2............................... 13 1 R R 5 4 3 2 1 0 1 2 3 4 5 π( R) 2 1 0

More information

( ) ( ) Iverson

( ) ( ) Iverson ( ) ( ) 2012 1 2 1 2 1.1....................................... 2 1.2....................................... 2 1.3 Iverson........................................ 9 1.4.............................................

More information

i 2013 0.1. 0.2. JR 0.1 0.2 ii A B B A 0.2 0.1 0.1 0.2 iii 1 1 1.1............................. 1 1.2........................... 10 1.3............................... 17 2 21 2.1...........................

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/005431 このサンプルページの内容は, 初版 1 刷発行時のものです. Lebesgue 1 2 4 4 1 2 5 6 λ a

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

1 2 X X X X X X X X X X Russel (1) (2) (3) X = {A A A} 1.1.1

1 2 X X X X X X X X X X Russel (1) (2) (3) X = {A A A} 1.1.1 1 1 1.1 G.Cantor (1845 1918) 1874 Unter eines Menge verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten in unserer Anschauung oder unserers Denkens (welche die Elemente von

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) 1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) X α α 1 : I X α 1 (s) = α(1 s) ( )α 1 1.1 X p X Ω(p)

More information

2014 (2014/04/01)

2014 (2014/04/01) 2014 (2014/04/01) 1 5 1.1...................................... 5 1.2...................................... 7 1.3...................................... 8 1.4............................... 10 1.5 Zorn...........................

More information

Solutions to Quiz 1 (April 20, 2007) 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T T T T T F T F F F T T F T F T T T T T F F F T T F

Solutions to Quiz 1 (April 20, 2007) 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T T T T T F T F F F T T F T F T T T T T F F F T T F Quiz 1 Due at 10:00 a.m. on April 20, 2007 Division: ID#: Name: 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T F T T F T T T F F T F T T T F T F T F F T T F F F T 2. 1.1 (1) (7) p.44 (1)-(4)

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

数学概論I

数学概論I {a n } M >0 s.t. a n 5 M for n =1, 2,... lim n a n = α ε =1 N s.t. a n α < 1 for n > N. n > N a n 5 a n α + α < 1+ α. M := max{ a 1,..., a N, 1+ α } a n 5 M ( n) 1 α α 1+ α t a 1 a N+1 a N+2 a 2 1 a n

More information

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1 III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 1 1 1.1 ϵ-n ϵ-n lim n = α n n α 1 lim n = 0 1 n k n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n = α ϵ Nϵ n > Nϵ n α < ϵ 1.1.1 ϵ n > Nϵ n α < ϵ 1.1.2

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3 2 2 1 5 5 Schrödinger i u t + u = λ u 2 u. u = u(t, x 1,..., x d ) : R R d C λ i = 1 := 2 + + 2 x 2 1 x 2 d d Euclid Laplace Schrödinger 3 1 1.1 N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3,... } Q

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

) 9 81

) 9 81 4 4.0 2000 ) 9 81 10 4.1 natural numbers 1, 2, 3, 4, 4.2, 3, 2, 1, 0, 1, 2, 3, integral numbers integers 1, 2, 3,, 3, 2, 1 1 4.3 4.3.1 ( ) m, n m 0 n m 82 rational numbers m 1 ( ) 3 = 3 1 4.3.2 3 5 = 2

More information

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f 1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1. R A 1.3 X : (1)X ()X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f 1 (A) f X X f 1 (A) = X f 1 (A) = A a A f f(x) = a x

More information

inkiso.dvi

inkiso.dvi Ken Urai May 19, 2004 5 27 date-event uncertainty risk 51 ordering preordering X X X (preordering) reflexivity x X x x transitivity x, y, z X x y y z x z asymmetric x y y x x = y X (ordering) completeness

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( )

I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( ) I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( ) 1 (Introduction) 1 1.1... 1 1.2 Riemann Lebesgue... 2 2 (Measurable sets and Measures) 4 2.1 σ-... 4 2.2 Borel... 5 2.3...

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

Mathematical Logic I 12 Contents I Zorn

Mathematical Logic I 12 Contents I Zorn Mathematical Logic I 12 Contents I 2 1 3 1.1............................. 3 1.2.......................... 5 1.3 Zorn.................. 5 2 6 2.1.............................. 6 2.2..............................

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ A S1-20 http://www2.mth.kyushu-u.c.jp/ hr/lectures/lectures-j.html 1 1 1.1 ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1)

More information

Lebesgue Fubini L p Banach, Hilbert Höld

Lebesgue Fubini L p Banach, Hilbert Höld II (Analysis II) Lebesgue (Applications of Lebesgue Integral Theory) 1 (Seiji HIABA) 1 ( ),,, ( ) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

koji07-01.dvi

koji07-01.dvi 2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct 27 6 2 1 2 2 5 3 8 4 13 5 16 6 19 7 23 8 27 N Z = {, ±1, ±2,... }, R =, R + = [, + ), R = [, ], C =. a b = max{a, b}, a b = mi{a, b}, a a, a a. f : X R [a < f < b] = {x X; a < f(x) < b}. X [f] = [f ],

More information

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A 91 7,.,, ( ).,,.,.,. 7.1 A B, A B, A = B. 1), 1,.,. 7.1 A, B, 3. (i) A B. (ii) f : A B. (iii) A B. (i) (ii)., 6.9, (ii) (iii).,,,. 1), Ā = B.. A, Ā, Ā,. 92 7 7.2 A, B, C. (1) A = A. (2) A = B B = A. (3)

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta 009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

/ 2 ( ) ( ) ( ) = R ( ) ( ) 1 1 1/ 3 = 3 2 2/ R :. (topology)

/ 2 ( ) ( ) ( ) = R ( ) ( ) 1 1 1/ 3 = 3 2 2/ R :. (topology) 3 1 3.1. (set) x X x X x X 2. (space) Hilbert Teichmüller 2 R 2 1 2 1 / 2 ( ) ( ) ( ) 1 0 1 + = R 2 0 1 1 ( ) ( ) 1 1 1/ 3 = 3 2 2/ R 2 3 3.1:. (topology) 3.2 30 3 3 2 / 3 3.2.1 S O S (O1)-(O3) (O1) S

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

( ) 7 29 ( ) meager (forcing) [12] Sabine Koppelberg 1995 [10] [15], [2], [3] [15] [2] [3] [11]

( ) 7 29 ( ) meager (forcing) [12] Sabine Koppelberg 1995 [10] [15], [2], [3] [15] [2] [3] [11] (Sakaé Fuchino) fuchino@isc.chubu.ac.jp 2002 8 24 2002 11 11 2002 11 23 2002 11 29 2003 10 30 footnote 0 2 1 3 1.1...................... 3 1.2....................... 5 1.3.......................... 6 1.4..........................

More information

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x 11 11.1 I y = a I a x I x = a + 1 f(a) x a = f(a +) f(a) (11.1) x a 0 f(a) f(a +) f(a) = x a x a 0 (11.) x = a a f (a) d df f(a) (a) I dx dx I I I f (x) d df dx dx (x) [a, b] x a ( 0) x a (a, b) () [a,

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

3 1 5 1.1........................... 5 1.1.1...................... 5 1.1.2........................ 6 1.1.3........................ 6 1.1.4....................... 6 1.1.5.......................... 7 1.1.6..........................

More information

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S Riemnn-Stieltjes Polnd S. Lojsiewicz [1] An introduction to the theory of rel functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,, Riemnn-Stieltjes 1 2 2 5 3 6 4 Jordn 13 5 Riemnn-Stieltjes 15 6 Riemnn-Stieltjes

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa 1 2 21 2 2 [ ] a 11 a 12 A = a 21 a 22 (1) A = a 11 a 22 a 12 a 21 (2) 3 3 n n A A = n ( 1) i+j a ij M ij i =1 n (3) j=1 M ij A i j (n 1) (n 1) 2-1 3 3 A A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33

More information

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1, 17 ( ) 17 5 1 4 II III A B C(1 ) 1,, 6, 7 II A B (1 ), 5, 6 II A B (8 ) 8 1 I II III A B C(8 ) 1 a 1 1 a n+1 a n + n + 1 (n 1,,, ) {a n+1 n } (1) a 4 () a n OA OB AOB 6 OAB AB : 1 P OB Q OP AQ R (1) PQ

More information

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2 1. 2. 3. 4. 5. 6. 7. 8. N Z 9. Z Q 10. Q R 2 1. 2. 3. 4. Zorn 5. 6. 7. 8. 9. x x x y x, y α = 2 2 α x = y = 2 1 α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

Tricorn

Tricorn Triorn 016 3 1 Mandelbrot Triorn Mandelbrot Robert L DevaneyAn introdution to haoti dynamial Systems Addison-Wesley, 1989 Triorn 1 W.D.Crowe, R.Hasson, P.J.Rippon, P.E.D.Strain- Clark, On the struture

More information

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 8 8 1 9 9 1 10 10 1 E-mail:hsuzuki@icu.ac.jp 0 0 1 1.1 G G1 G a, b,

More information

°ÌÁê¿ô³ØII

°ÌÁê¿ô³ØII July 14, 2007 Brouwer f f(x) = x x f(z) = 0 2 f : S 2 R 2 f(x) = f( x) x S 2 3 3 2 - - - 1. X x X U(x) U(x) x U = {U(x) x X} X 1. U(x) A U(x) x 2. A U(x), A B B U(x) 3. A, B U(x) A B U(x) 4. A U(x),

More information

untitled

untitled 1 kaiseki1.lec(tex) 19951228 19960131;0204 14;16 26;0329; 0410;0506;22;0603-05;08;20;0707;09;11-22;24-28;30;0807;12-24;27;28; 19970104(σ,F = µ);0212( ); 0429(σ- A n ); 1221( ); 20000529;30(L p ); 20050323(

More information

Chap9.dvi

Chap9.dvi .,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

Lecture 12. Properties of Expanders

Lecture 12. Properties of Expanders Lecture 12. Properties of Expanders M2 Mitsuru Kusumoto Kyoto University 2013/10/29 Preliminalies G = (V, E) L G : A G : 0 = λ 1 λ 2 λ n : L G ψ 1,..., ψ n : L G µ 1 µ 2 µ n : A G ϕ 1,..., ϕ n : A G (Lecture

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h 009 IA I, 3, 4, 5, 6, 7 7 7 4 5 h fx) x x h 4 5 4 5 1 3 1.1........................... 3 1........................... 4 1.3..................................... 6 1.4.............................. 8 1.4.1..............................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information