数学Ⅱ演習(足助・09夏)

Size: px
Start display at page:

Download "数学Ⅱ演習(足助・09夏)"

Transcription

1 II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w e z e w 5 z, w C, z, w arg zw arg z + arg w 2π 2 < arg z < π, < arg w < π,,,, z,, w, zw, arg zw arg z + arg w 2πZ 6 z C e z e re z, e z 2 n Z e z+2π n e z 3 e z e z e z 7 z C f z : R 2 R 2 g z : R 2 R 2 x x R x 2 2 re zx + x 2 re zx f z x im zx + + x 2, g z x x 2 im zx + x 2 zx + x 2, zx + x 2 n z n n!

2 A z M 2 R x R 2 f z x A z x A z z M 2 R z A z, w C A z A w 3 M 2 R 4 f z g z f z a x, x 2 R 2, f z x + x 2 f z x + f z x 2, b x R 2, λ R, f z λx λf z x, g z 8 x y 9 v, w R x 2 y 2, v w 2 v w v w x y + x 2 y 2, v v, v,, v, w C 2 R 2 v w x y + x 2 y 2 2 v w x y + x 2 y 2 v w 2 3 v C 2 v v v v w R 2, w C 2 w w 4 v C 2, λ C, λv λ v z c r, c, r C {z C z c r}, c, r C 2 z + z + p, p >, p > p R 3 z z + c, c R 4 z im z +

3 II z a + b, z a b, zz a 2 + b 2, a b z 2 z a + b, w a 2 + b 2, zw a a 2 b b 2 + a b 2 + a 2 b, z a 2 + b 2, w a 22 + b 2 2, zw a a 2 b b a b 2 + a 2 b 2 a 2 a 22 + b 2 b a 2 b b 2 a 22 zw z w 3 z, w 2, z + w z + w z + w 2 z + w 2 a + a b + b 2 2 a 2 + b 2 + a b a 2 + b 2 a 22 + b 2 2 a a 2 + b b 2 a 2 + b 2 a 22 + b 2 2, <, a a 2 + b b 2 2 a 2 + b 2 a b 2 2 a 2 a 2 2 2a a 2 b b 2 + b 2 b 2 2 a b 2 a 2 b 2 4 t R t t, tt t 2 t 2 z a + b z a b, z + z 2a, z z 2 b z + z 2 3 a rez, z z 2 b imz θ, θ 2, θ R argz, argw, argzw, e θ zw zw z z w w e θ +θ 2 e θ 2π, θ + 2πn θ + θ 2 n Z argzw argz + argw 2πn 2π 2, P, Qz, P w, Q zw < argz < π, < argw < π, < argzw < 2π, argzw argz + argw POQ P OQ argz, zw z z w z w OQ OQ OP OP w OPQ OP Q, : w 6 z a + b a, b R, e θ cos θ + sin θ, e z e a e b e x cos b + sin b e rez cos 2 b + sin 2 b e rez 2 n Z, e z+2π n e z e z+2π n e z cos 2πn + sin 2πn e z 3 e z e x, e z e x e x e z e x+z x z e z e z a 2 + b 2 a 22 + b 2 2

4 7 z a + b, z a b rez a, imz b zx + x 2 ax bx 2 + ax bx bx + ax 2, f z x 2 a b bx + ax 2 b a 2 a rez z + z 2, imz b z z z + z 2, A z + z z 2 2 z + z z + z deta z a 2 + b 2 z 2 a b, X a 2 + b 2 z + z z + z b a z z + z, z + z 2 2 A z X a 2 + b 2 a b b a a b b a, X A z x, X A z a, b a, b, w z, A z A w { a b 3 M a, b R}, A M b a 4 b b,, z + z z + z A z 2 2 z + z z + z 2 2 z + z z + z 2 z 2 2 2, w z z + z z + z f z x 2 8 a x b x s t, x 2 s2 fx + fx 2 x x 2 fλx, s t, t, s 2, t 2 R, 2 re zs + t + re zs 2 + t 2 im zs + t + re zs 2 + t 2 re z{s + s 2 + t + t 2 } im z{s + s 2 + f t + t 2 } z x + x 2 re zλx + λ x 2 im zλx + λ re zx + x λ 2 x 2 im zx + x 2, z z, g z λf z x

5 9 v, v, v 2 < 2 v, v x x + x 2 x 2 x 2 + x 2 2, x x 2 v a 3 w a, b R, a a, b b, w a b 2 + b 2, w 4 λv λx λx + λx 2 λx 2 λλx x + x 2 x 2 λ v z x + y x, y R z c, r / R, r < z C r, z c x re c + y im c x re c 2 + y im c 2 r 2 c, r r c 2 3 z + w z + w, w w z w z + w, z + + z z + z 2 p 2 p < 2 z + + z p x 2 + y 2 + x y 2 p x 2 + y 2 p x y 2, p 2 x y 2, x 2 + y 2 p 2 2p x y 2 + x y 2 2p x y 2 p 2 + 4x, p 2 + 4x 4p 2 {x y 2 } p 4 + 8p 2 x + 6x 2 4p 6x 2 + 4p 2 y 2 p 4 4p 2 y p 2 x 2 p 2 /4 + y 2 p 2 p > 2 /4 p 2, y x, y x p > 2, p 2 < p, p 2 < p2 4,, x2 p 2 /4 + y 2 p 2 /4,, p, p 2 4

6 3 4 z z + >, c < z C c, z c z + x + y c x + + y x 2 + y 2 c 2 {x y 2 } c 2 x c 2 x + c 2 + c 2 y 2 c x c, c 2, x c2 c y2 x + 2 c2 + c c 2 + y c 2 2c 2 c 2 + c2 2c, c2 c 2 c z im z + x + y x 2 + y 2 y + x 2 + y 2 y + 2 y + x 2 4y y x 2 4y, im z, c 2 2, 3 2, 4 im z

7 II I 2 9/4/28 9/5/7 2 L R 2 a, a 2, v, v 2 { } x L a x x + a 2 x 2 2 { } x x v t R, t x 2 x 2 v 2 a v L a 2 v 2 a a 2 v L v 2 22 P R 3 a, a 2, a 3 P x x 2 a x + a 2 x 2 + a 3 x 3 a L a 2 a 3 x 3 v, w P t, s tv + sw P 2 v, w P u P u tv + sw t, s tv + sw t s 3 v, w P u P u tv + sw t, s P P x x 2 a x + a 2 x 2 + a 3 x 3 x 3 x x 2 t, s R, x x 2 t v v 2 + s w w 2 x 3 x 3 v 3 w 3

8 R 3 a a P P {u R 3 a u } 23 R 3 R 3 L a, a 2 R 3 a a, a 2 a 2 a 2 a 3 a 22 a 23 L x x 2 a x + a 2 x 2 + a 3 x 3, a 2 x + a 22 x 2 + a 23 x 3 x 3 L {u R 3 a u a 2 u } 2 a, a v L x x 2 t R, x x 2 t v v 2 x v v R 3 v L 2 v 2 v 3 a, a 2 R 3 L { u R 3 a u a 2 u } a, a R θ, ϕ R T θ R 3 y- θ- S ϕ R 3 z- ϕ- xyz- z- x y x x R 3 T θ x S ϕ x x, x 2, x 3 x 2 x 3 x 3 v 3 a 2 a 3 v 2 v 3

9 2 x R 3 fx S ϕ T θ x x x fx 3 v, w R 3 T θ v T θ w v w 4 v, w R 3 fv fw v w 5 a R 3 a P {x R 3 a x } R 3 fp { x R 3 y P, x fy } fp P f fp 6 a a R 3 P 5 25 a 2 a 3 P x x 2 R 3 x 3 x 3 θ ϕ P fp θ ϕ f f P P 5 A M n C, B M n C, AB A, B 2 A M n R, A GL n C, A GL n R B M n C A, AB BA E n x 2 x 3 26 A A A 2 A q A A 2 A 22 A 2q A p A p2 A pq t A A ij

10 II 2 L x, x 2, t R x tv, x 2 tv 2, a v ta v + a 2 v 2 t, a 2 v 2 22 a a a 2, x P a x a 3 v, w P a v a w, a tv + sw ta v + sa w tv + sw P 2 u u u 2 u 3, v v v 2 v 3, w w w 2 w 3, u, v, w P, a u + a 2 u 2 + a 3 u 3 a v + a 2 v 2 + a 3 v 3 2 a w + a 2 w 2 + a 3 w 3 3 u tx + su s, t u tv + sw u 2 tv 2 + sw 2 u 3 tv 3 + sw t v 2 u v u 2 v 2 w v w 2 s v 2 w v w 2 3 v or w or v // w, v 2 u v u 2, v 2 u v u 2 s v 2 w v w 2, s v 2u v u 2, u w 2u w u 2 s, t v 2 w v w 2 v 2 w v w 2, tv + sw s, t, s, t s t v, t w s, t, v s t w v // w, w P,!s, t R 2 u tv + sw u, w, u \// w tv + sw t s! 3 2, w or v or v // w, v 2 u v u 2 s, t w, v, v \// w, u R 3 s, t, 2 23 u R 3 u x x 2, x 3 a u a x + a 2 x 2 + a 3 x 3, a 2 u a 2 x + a 22 x 2 + a 23 x 3

11 2 { a x + a 2 x 2 + a 3 x 3, a 2 x + a 22 x 2 + a 23 x 3 2 x x 2, x 3 x 2 a 2a 3 a a 23 x, x 3 a a 22 a 2 a 2 x 22 a 2 a 23 a 22 a 3 a 2 a 23 a 22 a 3, v a 2a 23 a 22 a 3 a 2 a 3 a a 23 L x x 2 t R, x x 2 tv a a 22 a 2 a 2 x 3 x 3 x x 3 v L x 2 t R, x 2 tv x 3 x 3 x x a, x 2, L x 2 a 2x + a 22 x 2 + a 23 x 3 x 3, a 2 a // a 2, k a ka 2, a x +a 2 x 2 +a 3 x 3 ka 2 x +a 22 x 2 +a 23 x 3, 2, L a, a 2 a, a 2, a \// a 2, R 2 a x 2,,, 24 cos θ sin θ x x cos θ y sin θ, sin θ cos θ y x sin θ + y cos θ T θ x x cos θ + x 3 sin θ x 2, S ϕ x x cos ϕ x 2 sin ϕ x sin ϕ + x 2 cos ϕ x sin θ + x 3 cos θ x 3 x cos θ + x 3 sin θ cos ϕ x 2 sin ϕ x cos θ cos ϕ x 2 sin ϕ + x 3 sin θ cos ϕ 2 fx x cos θ + x 3 sin θ sin ϕ + x 2 cos ϕ x cos θ sin ϕ + x 2 cos ϕ + x 3 sin θ sin ϕ x sin θ + x 3 cos θ x sin θ + x 3 cos θ 3 v v v 2, w w w 2, v 3 w 3 T θ v T θ w v cos θ + v 3 sin θw cos θ + w 3 sin θ + v 2 w 2 + v sin θ + v 3 cos θ w sin θ + w 3 cos θ v w cos 2 θ + v 3 w 3 sin 2 θ + v w 3 sin θ cos θ + v 3 w sin θ cos θ + v 2 w 2 + v w sin 2 θ + v 3 w 3 cos 2 θ v w 3 sin θ cos θ v 3 w sin θ cos θ v w + v 2 w 2 + v 3 w 3 v w a 2 x 3 x 2 4 v, w 3 3 S ϕ v S ϕ w, fv fw S ϕ T θ v S ϕ T θ w T θ v T θ w v w

12 5 fa fx a x, P Q { x R 3 fa x } fp Q, T θ x x cos θ x 3 sin θ x 2, S ϕ x x cos ϕ + x 2 sin ϕ x sin ϕ + x 2 cos ϕ, x sin θ + x 3 cos θ x 3 f x T θ S ϕ x, ff x x, x Q y f x P, fy x fp Q fp Q fp Q fp Q T θ x, S ϕ x T θ x, S ϕ x θ, ϕ θ, ϕ 6 a, P { x R 3 a x } a cos θ a 3 a, sin θ a2 + a 2 2 a θ, cos ϕ a a2 + a, sin ϕ a 2 ϕ, 2 2 a2 + a 2 2 sin θ cos ϕ fa a sin θ sin ϕ a a 2 a, 5 P fp, cos θ a 3 f cos θ cos ϕ cos θ sin ϕ sin θ a a a 3 a a 2 + a 2 2 a 3, f sin ϕ cos ϕ a 2 a 2 a a 2 a2 + a AB re A + im Are B + im B re A re B im A im B + im A re B re A im B re AB re A re B im A im B, im AB im A re B re A im B 2 A M n R, AB BA E n B M n C re A A, im A O n, { A re B re B A En, A im B O n 2 2 re B, re B A im B re B O n im B O n B M n R re X X, im X X 26 t A t A 2 t A p t t A t 2 A 22 t A p2 A t A t q A 2q t A pq

13 II I 3 9/5/8 9/5/9 K R C x y x y 4 z z w x y 5 2 z 3 b a, b R 2 6 a w 32 rank x,, x n a x + + a n x n c, a ij, c i R a m x + + a mn x n c m x C n v v x n C n C n re v R n v n im v R n a x + + a n x n, a m x + + a mn x n

14 c 2 C n c m R n c 3 c m R n C n C n R n 2 C n x c 34 A M m,n K v K n c K m x n c m Av c x,, x n K a m+, x + + a m+,n x n c m+ m n A GL n K v A c y,, y n t a n+, A y t c y n a n+,n c n+ A c v a n+, a n+,n c n+ y y n A c a n+, a n+,n c n+ A c 2 a n+, a n+,n c n+

15 A c 3 m n V, W V V W A c a m+, a m+,n c m+ A c 35 x,, x n K a x + + a n x n c, a ij, c i K a m x + + a mn x n c m x K n, w c c m Vw x n v V w v 2 V w2 v + v 2 V w +w 2 2 V w 3 v V w T v : V w V T v u u v T v u V T v

16 II /2 2, , 2 3 3,3 3 x, y, z , , ,2 2 3,3 3 x, y, z, w b 2 6 a b a , b 2 6 a b + a 2, b + b b a 2 a 2, α, β x α, y 2 4α 2β, z α, w β a 2,,

17 ,4 a 2 4 a 2 4 2, α x α, y 2 4α, z α, w, b, b, a 2, x α, y 2 4α 2β, z α, w β α, β b, a 2, x α, y 2 4α, z α, w α , 2, , , rank /4 /4 /4 9/8 3/8 / , 2,2 2, rank 2

18 33 A a ij, c c, c m Av A re v + A im v c R m A re v c, A im v re v R n, im v R n 2 R n C n, R n C n,, v C n re v R n, C n R n, C n, R n 3 2 R n C n, v C n, im v, v R n im v, im v R n, c im v R n, C n, R n 34 A c v a n+, a n+,n c n+, Av c,a GL n K v A c, an+, a n+,n A c c n+, an+, a n+,n E A c a n+, a n+,n c n+ a n+, a n+,n A { A E A c } a n+, a n+,n c n+ a n+, a n+,n A A c a n+, a n+,n c n+ a n+, a n+,n A y y n, y y n A c an+, a n+,n c n+, t a y n+, A t c a y n+,n n c n+,, y y n

19 2 y y n A c an+, a n+,n c n+, A c a n+, a n+,n c n+ n + i y i i, 2,, n, A c A c 3 v A c, a m+, a m+,n c m+ A c, V W A c V W, X X a m+, a m+,n c m+ A c Y Y, P, Q GL m+ K X P X QY Y Q P X Y, Q P, X Y, V W, X Y 35 w v c c m x x n, w 2, v 2 c x c m x n, v V w, v 2 V w2 v + v 2 V w,w 2 a x + + a n x n c, a m x + + a mn x n c m a x + + a n x n c 2 a m x + + a mn x n c m + 2 a x + x + + a n x n + x n c + c 2 a m x + x + + a mn x n + x n c m + c m v + v 2 V w,w 2 2 V w, v V w v, V w, v v K n, v V w V w

20 3 v V w, v x x n a x + + a n x n c, 3 a m x + + a mn x n c m, u x x n, T v u, a x + + a n x n c 4 a m x + + a mn x n c m 34, a x x + + a n x n x n 2 a m x x + + a mn x n x n, T v u V, v V u v+v, v+v V w+ V w, T v u v+v v v T v u, u, u 2 V w T v u T v u 2 u v u 2 v u u 2 T v u T v u

21 II I 4 9/6/ 9/6/2 K R C 4 x,, x n {v K n v λ v + + λ s v s + d} n 8 x 2 + 3x 4 + x 7 + 3x 8, x 3 + 2x 4 + x 6 x 8, x 5 + 2x 6 + x 8 3 n 8 x 2 + 3x 4 + x 7 + 3x 8 4, x 3 + 2x 4 + x 6 x 8 6, x 5 + 2x 6 + x n 5 x + x 3 + x 5, x 2 2x 3, x 4 3 x 5 4 n 5 x + x 3 + x 5, x x 2 2x 3 + x 4, x2 3 2 x 3 + x 4 x 5 42 i ii iii i ii iii , V, W f : V W v, v 2 V fv fv 2 v v 2, 2 w W v V w fv

22 3 f f 4 f : V W a f b f c f d f 5 f : V W 45 x + 3x 2 + 7x 3, 2x + 4x 2 + 6x 3 2, 5x + x 2 + 6x A M m,n K, B M n,m K AB E m BA E n A, B Er O 2 n m r < n Ẽ r M n K Ẽr r,n r O n r,r O n r,n r AB Ẽr BA Ẽr A, B 47 R[ t ] { t } f R[ t ] f t, ϕf R[ t ] ϕft tft ft + t ϕft t + t 2, f R[ t ], ψf R[ t ] ft f ψft ft + 2t ψft 2 t f R[ t ] ψϕf f 2 ϕψf f 48 R n [ t ] n t R n [ t ] R[ t ] ψ : R n [ t ] R n [ t ] 47 A M n+ R f R n [ t ] ft a + a t + + a n t n b a b A a b n a n b,, b n ψf b + b t + + b n t n A

23 47 A, B M n K AB E n BA E n n R[ t ] + t, + 2t 3t , 3 ϕ ψ 48 ϕ, ψ, A, B BA AB

24 II v K 8 λ, λ 2, λ 3, λ 4, λ 5 K, v λ + λ λ λ 4 + λ v K 5 λ, λ 2 K, v λ 2 + λ v K 8 λ, λ 2, λ 3, λ 4, λ 5 K, v λ + λ λ λ 4 + λ , v K 5 λ, λ 2 K, v λ + λ 2

25 , 3 2 2, 2/3 4/3 /3 2/ ,2 2 i, ii 3, iii,, , 5 2 2, 3 2 3, , , i, ii 5, / iii,

26 3 i i 2 i 2i i i i i 4 i i 2 4 3i + 4i 2 + i + 2i 2i i/ 3 6i/ 4 + 3i/ i 6 + 2i 4 + i 7 6i/ + 2i/ 2 i/ 4 + 9i 2i 5 i 2 + i/ i/ 3 4i/ 3 3 i 2 + i 4 2i, 3, 2 2, , i 6 + 2i 4 + i i, 4 + 9i 2i 5 i 3 i 2 + i 4 2i ii 3, i 2 i 3 4 i 4 + 2i 2 4 3i + 4i i 2i 9 + 8i/ 7 6i/ 2 + i/ iii i 2 i i + 4i i 4 + 2i 2 + i i,, , 5 2 2, 3 2 2, , , ,,

27 , ,, A O A O A O 3 A, B, O B O B, A B O B ,, 2, , , p42-43,p83 44 fv fv 2 v v 2 2 w W, v, v 2 V w fv 3 f v, v 2 V fv fv 2, v v 2 f w W, v V w fv 4 a f : R R, fx Arctan x, b f : R R, fx x 3 x, c f : R R, fx sin x, d f : R R, fx x R R, a N N, fx 2x, 5 f, f f,, f a d

28 , , , , x, x , x , 3, 2 2, ,3, x, x 2 2, x 3 46 m < n, A E m O m,n m, B Em O n m,m O n m,m O n m,n m, Em O AB E m, BA m,n m E n Er O 2 A r,n r AB O n r,r O n r,n r Er O, B r,n r E n r,r O n r,n r Er O r,n r O n r,r O Ẽr, BA n r,n r, Er O r,n r E n r,r O n r,n r Ẽr

29 47 tft f ψφft ψtft ft f R[t] ψφf f t ft f ft f 2 φψft ψ t t t ft f f f R[t] φψf f 48 ft a + a t + + a n t n, ψf a + a 2 t + + a n t n, b a b a 2 b n a n b n A a ij, a i n+ a k a i,k i,, n + a n+ k f, a, a,, a n R, { j i a ij j i, A A M n R, A M n+ R

30 II I 5 9/6/5 9/6/6 K R C 5 2 A b 52 A M n K A A c d M n K A GL n K A En b L c d, U A LU b d 53 A M n K A k k A k M k K A k k k-th principal minor A,, A n A U GL n K L GL n K A LU LU n U, L A 2 n A GL n+ K A b A A A c d M n K A A n A A L U L n LU L LU A LU A LU L U LU L L U U E n L L, U U 54 LU

31 55 Vandermonde n 2 x x 2 x n det x x 2 x n x j x i nn 2 x i x j i<j n i<j n n n n x x 2 x n x j x i i < j n i, j i<j n x j x i x,, x n 56 A M m,n K A a,, a n K m a,, a n rank A n ranka,, a n n λ,, λ n K a n λ a + + λ n a n A n A a,, a n A A a n rank A n A A A 57 A M m,n K i < i 2 < < i r j < j 2 < < j r A i i r j j r M r K A i,,i r ;j,,j r r i < i 2 < < i r j < j 2 < < j r det A i,,i r ;j,,j r rank A r 58 A M n K A à A GL n K det à 2 A GL n K à det An 2 A 3 n > 2 A GL n K à O n rank A rank A < n 57 à O n rank A n 56 à rank A < n 2 A à A M nk n 2 A M n K {A n } n,2,, lim A n n A

32 II 5 A, B A a ij, B b ij, i > j a ij, b ij A + B i, j a ij + b ij, i > j a ij + b ij n, AB i, j a ik b kj, k < i a ik, j < k b kj, i > j k n a ik b kj, A, B A + B AB k, 2 A a ij GL n K, k, k k i k /a kk ii l k a kl l k i /a kk, ii, l < k E n a kl, a kl l > k, k,, n, A E n A, A a ij GL n K, i > j a ij A ã ã n deta ã n ã nn A k, l M n K Ãkl, a a,k a,k a,l a,l+ a,n a k, a k,k a k+, a k+,k à kl a l, a l,l a l+, a l+,l+ a l+, k < l, i > j a ij, a k+,k,, a l,l, à kl,, ã kl det Ãkl A A a nn

33 A b A A 52 A LU b c d c cb + d, 53 { b A b d cb + d { b A b d d cb n U, L A 2 n A M n+ K, A n A A b A, A c d LU L U L L cu d cu L, U b b, L, U A b, L U A, n + LU c d 2 LU A LU L U LU L L U U 5,,, En b, U, U En b, U En b U U En b b, U U b b L L U U E n L L, U U LU, 53, LU, ,, , LU, ,, 4 3, n 2 det x x x 2 x 2

34 2 n, x x 2 x n+ x x n+ x 2 x n+ x n det x x 2 x n+ det x 2 2 x n+ x x n+ x n+ n n n x x 2 x n+ x n n x n+ x n n n 2 x n+ x n+ k,, n, k n + x x n+ x 2 x n+ x n x n+ x 2 2 x n+ x x n+ x 2 2 n x n+ n+2 x 3 3 x n+ x x n+ x 3 3 n x n+ x n n x n+ x n n 2 x n+ x n n n x n+ x + x n+ x 2 + x n+ x n + x n+ n x x x n+ + x n+ x x 2 x n+ + x n+ x 2 2 n + x n x n+ + x n+ n x k x n+ k n n n x n k k x n+ x n k k 2 x n+ x n k k n x n+ k, k,, n, k x k x n+ n x x 2 x n x n+ x k x x 2 x n k n x n x 2 n x n k 2,, n, k k x n+ n x n+ x k x j x i x j x i nn+ 2 x i x j k i<j n i<j n+ n + i < j n + i, j N 2, n + 2 k nn +, 2 i<j n+ n r k n! r!n r! 56 A A a n, A a a n A A a a n, k,, n λ k,,, λ k,n K, a k λ k,a + + λ k,n a n A i k k A A a n rank A n, n k i k, a n l a n,l, k n k a n,ik n λ k a n,il λ l,k k,, n a n λ a + + λ n a n l 57 i < i 2 < < i r, j < j 2 < < j r deta i,,i r ;j,,j r, ranka i,,i r ;j,,j r r A Ai,,i r;j,,j r P Q R rank, ranka r

35 ranka r, A, i k k i < i 2 < < i r, A, i k k j < j 2 < < j r i k, j k k r deta i,,i r ;j,,j r 58 Aà detae n, deta detaã detadetã detdetae n det deta n deta deta, detã detan 2 à à detãe n A, Aà à deta à detãa detan A deta, à detan 2 A 3 A rank i ranka n 2 57, ranka < n, i < i 2 < < i n, j < j 2 < < j n deta i,,i n ;j,,j n, i, j n A i, j à Õn O n ii ranka n 5,7,detA i,,i n ;j,,j n i < i 2 < < i n, j < j 2 < < j n i n, i i k k, n i N i A a a n, 56, λ i,, λ in K, a i λ i a i + + λ in a in a k j K n a k,j, A i, j ã i,j, ã i,j i +j deta i,j a in,j, i k, j ã ik,j, ã ik,j i k+j deta i,j a ik,j a ik +,j a i,j a in,j i+j deta i,j a i,j a i+,j λ i a i,j + + λ in a in,j a in,j i k+j deta i,j a ik,j a ik +,j λ i a i,j a in,j i k λ ik j deta i,j a ik,j a ik +,j a i,j a in,j i k+ i k i λ ik j deta i,j a in,j ik i sgn k + i k n 2 n n i k i i k+ i k i λ ik, j deta i,j a in,j i k, j, fi k, gj, fi i, ã i j figj, fi g fi g2 fi gn fi 2 g fi 2 g2 fi 2 gn ã ã n detã det fi g fi g2 fi gn ã n ã nn fi n g fi n g2 fi n gn,, rankã < n 2 i, à O n

36 II I 6 9/6/29 9/6/3 K R C V K- V K- V V K- V 6 M m,n K K K- 2 K[ t ] t K K[ t ] {a + a t + + a n t n a,, a n K} n K n [ t ] t n K K n [ t ] {a + a t + + a m t m a,, a m K, m n} K[ t ] K n [ t ] K- K[ t ] K n [ t ] 3 V {{a n } n,2, a n K, a n+2 3a n+ + 2a n } a, b V a {a n }, b {b n } c n a n + b n a+b V a+b {c n } a V, λ K a {a n } d n λa n λa V λa {d n } V K- 62 V C- W V v, v W v+v V λ R λv λ C V C W R- v V w v W V w W W v w v W 63 V, W K- f : V W K- v, v 2 V, fv + v 2 fv + fv 2 2 v V, λ K, fλv λfv V W

37 64 n d W {a n n dt + a d n n n dt + + a d n dt + a } a,, a n R d n w a n dt + a d n n n dt + + a d n dt + a f R[ t ] d n f wf a n dt + a d n f n n dt + + a df n dt + a f w : R[ t ] R[ t ] R- d n 2 w a n dt + a d n n n dt + + a d n dt + a w d n b n dt + b d n n n dt + + b d n dt + b W w + w a n + b n dn dt n + + a + b d dt + a + b λ R λw λa n dn dt n + λa n dn dt n + + λa d dt + λa f R[ t ] w + w f wf + w f, λwf λwf 3 W R- W R n+ 65 V K 3 W, W 2, W 3 W + W 2, W + W 3, W 2 + W 3, W + W 2 + W 3 V K 3 W, W 2, W 3 2 V K 3 W, W 2, W 3, 66 V K[x] W, W 2 W W 2, W + W 2 W x +, W 2 x 2 2 W x, W 2 x 2 3x W x 2 3x + 2, W 2 x 2 4

38 67 R 2 R 2 { } { } x x W x R 2 W 2 x R { } { } t t 3 3 W 3 t 2 t R 4 W 4 t 3 t R { } 68 R 2 x W W x R R 2 U, U 2, R 2 W U W U 2 U U 2 69 V K- W, W 2, W 3 V W + W 2 W 3 W W 3 + W 2 W 3 2 W W 2 + W 3 W + W 3 W 2 + W 3 6 V K- V {f : V K, K- } f, g V f + g : V K v V f + gv fv + gv f + g V 2 f V λ K λf : V K v V λfv λfv λf V 3 V K- V V V 6 V, W K- f : V W K- g W f g f gv gfv, v V f g V f g f g 2 f : W V K-

39 II 6 A a ij, B b ij, C c ij M m,n K, λ, µ K A + B a ij + b ij, K λa λa ij, A + B, λa M m,n K, A + B + C a ij + b ij + c ij a ij + b ij + c ij A + B + C, 2 A + B a ij + b ij b ij + a ij B + A, 3 a ij A O, A O + A + a ij a ij A, 4 A A a ij, A + A a ij + a ij O, 5 λ + µa λ + µa ij λa ij + µa ij λa + µa, 6 λa + B λa ij + b ij λa ij + λb ij λa + λb, 7 λµa λµa ij λµa ij λµa, 8 A a ij a ij A 8, M m,n K K- 2 p, q, r K n [t] pt a n t n + + a, qt b n t n + + b, rt c n t n + + c, λ, µ K p + qt a n + b n t n + + a + b, λpt λa n t n + + λa, p + q, λp K n [t], p + q + rt {a n + b n + c n }t n + + {a + b + c } {a n + b n + c n }t n + + {a + b + c } p + q + rt p + q + r p + q + r, 2 p + qt a n + b n t n + + a + b b n + a n t n + + b + a q + pt p + q q + p, 3, p K n [t] + p p, 4 p K n [t], p p, p + p t {a n + a n }t n + + {a + a }, 5 λ + µpt λ + µa n t n + + λ + µa λa n + µa n t n + + λa n + µa n λp + µpt λ + µp λp + µp, 6 λp + qt λa n + b n t n + + λa + b λa n + λb n t n + + λa + λb λp + λqt λp + q λp + λq, 7 λµpt λµa n t n + + λµa λµa n t n + + λµa λµpt λµp λµp, 8 pt a n t n + + a a n t n + + a pt p p 8, K n [t] K- K[t] 3 a, b, c V a {a n }, b {b n }, c {c n }, λ, µ K a + b + c {a n + b n + c n } {a n + b n + c n } a + b + c, 2 a + b {a n + b n } {b n + a n } b + a, 3 {}, a + a a, 4 a a a, a + a {a n + a n } {}, 5 λ + µa {λ + µa n } {λa n + µa n } λa + µa 6 λa + b {λa n + b n } {λa n + λb n } λa + λb 7 λµa {λµa n } {λµa n } λµa 8 a { a n } {a n } a 8, V K-

40 62 v, v W V, W v + v V, V C-, W W, R C V C-, λ R W λv V, W W W R- 64 f, g R[t], λ R, f + g, λf R[t], wf +g a n d n f + g dt n + +a f +g wλf a n d n λf dt n + + a λf λ a n d n f dt n + + a f a n d n f dt n + + a f d n g + a n dt n + + a g wf +wg R[t], λwf R[t] w : R[t] R[t] R 2 w + w f a n + b n dn f dt n + a d n f + b f a n dt n + b d n f n dt n + a f + b f d n f a n dt n + + a d n f f + a b dt n + + b f wf + w f, λwf λa n dn f dt n + + λa d n f f λ a n dt n + + a d n λf f a n dt n + + a λf λwf 3 w, w, w W w a n d n dt n + + a, w b n d n dt n + + b, w c n d n dt n + + c, λ, µ K w+w +w {a n +b n +c n } dn dt n +{a +b +c } {a n +b n +c n } dn dt n +{a +b +c } w+w +w, 2 w + w a n + b n dn dt n + a + b b n + a n dn dt n + b + a w + w, 3 a,, a n w, w W w, 4 w W, w a n dn dt n + + a, w+w {a n + a n } dn dt n +{a + a }, 5 λ + µw λ + µa n d n dt n + + λ + µa λa n + µa n dn dt n + + λa + µa λw + µw, 6 λw + w λa n + b n dn dt n + + λa + b λa n + λb n dn dt n + + λa + λb λw + λw, d n 7 λµw λµa n dt n + + λµa λµa n dn dt n + + λµa λµw 8 w a n dn dt n + + a d n a n dt n + + a w 8, V R- 65 W + W 2 {w + w 2 w W, w 2 W 2 } λ + λ 2 λ, λ 2 K,, W + W 3 λ + λ 2 λ, λ 2 K,, W 2 + W 3 λ + λ 2 λ, λ 2 K λ + λ 2 + λ 2 λ, λ 2 K µ + µ 2 µ, µ 2 K,, λ µ µ 2, λ 2 µ 2

41 W + W 2 + W 3 λ + λ 2 + λ 3 λ, λ 2, λ 3 K λ + λ 2 + λ 3 + λ 3 λ, λ 2, λ 3 K µ + µ 2 + µ 3 µ, µ 2, µ 3 K,, K 3 λ µ, λ 2 µ 2 µ 3, λ 3 µ 3 2 W + W 2 λ + λ 2 λ, λ 2 K,, W + W 3 λ + λ 2 + λ 3 λ, λ 2, λ 3 K µ + µ 2 + µ 3 µ, µ 2, µ 3 K,, K 3, λ µ µ 2 µ 3, λ 2 µ 2, λ 3 µ 3 W 2 + W 3 λ + λ 2 + λ 3 λ, λ 2, λ 3 K λ + λ 2 + λ + λ 3 λ, λ 2, λ 3 K µ + µ 2 µ, µ 2 K, λ k K, λ 2 µ k, λ 3 µ 2 + k W + W 2 + W 3 W + W 2 + W 3 W + W 3 K 3 66 p W W 2, p λ x + λ 2 x 2 λ, λ 2 K { { λ λ 2 λ p W W 2 {} λ 2λ 2 λ 2, W + W 2 {λ x + + λ 2 x 2 λ, λ 2 K} {λ + λ 2 x + λ 2λ 2 λ, λ 2 K} {µ x + µ 2 µ, µ 2 K} K [x] λ 2µ + µ 2 3, λ 2 µ µ p W W 2, p λ x λ 2 x 2 3x + 2 λ, λ 2 K λ 2 { λ λ 3λ 2 p W W 2 {} λ 2 λ 2λ 2, W + W 2 { λ x + λ 2 x 2 3x + 2 λ, λ 2 K } {x λ 2 x + λ 2λ 2 λ, λ 2 K} {x µ x + µ 2 µ, µ 2 K} {f K 2 [x] f } λ 2µ + µ 2, λ 2 µ

42 3 p W W 2, p λ x 2 3x + 2 λ 2 x 2 4 λ, λ 2 K λ λ 2 { λ 3λ p W W 2 {} λ 2 2λ 4λ 2, W + W 2 { λ x 2 3x λ 2 x 2 4 λ, λ 2 K } {x 2λ + λ 2 x λ + 2λ 2 λ, λ 2 K} {x 2µ x + µ 2 µ, µ 2 K} {f K 2 [x] f2 } λ 2µ µ 2 3, λ 2 µ + µ 2 3 λ, K µ, K, 67 R 2 R- x x x, x R, w, w W, W Ø, x + x w, w W, w + w λx W w W, λ R, λw W W R 2 2 W 2, 2 / W 2 2, W 2 R W 3, 2 / W 2 2, W 3 R 2 t 3 s 4 t, s R, w t 3 w 3 s 3 W 4, W 4 Ø, t w, w W 4, w + w 3 + s 3 3 t t 3 + s s t 3 + s 3 3 W 4 λt 3 3 λt w W 4, λ R, λw λt λt 3 W 4 W 4 R 2 68 { { y y2 U y y R}, U 2 y y 2 R}, U U 2, 2 W U W U 2, W U W + U R 2, W U 2 W + U 2 R 2 69 W W 3 + W 2 W 3 {x + y x W W 3, y W 2 W 3 }, x W W 3, y W 2 W 3, x W, y W 2 x + y W + W 2, x, y W 3 W 3 V x + y W 3 W + W 2 W 3 W W 3 + W 2 W 3 V K 3, W W + W 2 W 3, W 2, W 3,,, W W 3 + W 2 W 3

43 2 W W 2 + W 3 {x + y x W W 2, y W 3 }, x W W 2, y W 3, x W, y W 3 x + y W + W 3, x W 2, y W 3 x + y W 2 + W 3 W W 2 + W 3 W + W 3 W 2 + W 3 V, W, W 2, W 3, W W 2 + W 3 W 3, W + W 3 W 2 + W 3 K 3 6 v, v V, f + gv + v fv + v + gv + v fv + fv + gv + gv fv + gv + fv + gv f + gv + f + gv, v V, λ K, f + gλv fλv + gλv λfv + λgv λfv + gv λf + gv f + g : V K K- f + g V 2 v, v V, λfv + v λfv + v λfv + gv λfv + λfv λfv + λfv, v V, µ K, λfµv λfµv λµfv µλfv µλfv λf : V K K- λf V 3 f, g, h V, λ, µ K, v V f + g + hv f + gv + hv fv + gv + hv fv + g + hv f + g + hv f + g + h f + g + h, 2 f + gv fv + gv gv + fv g + fv f + g g + f, 3 o V ov, f V, o + fv ov + fv fv o + f f 4 f V, f V f v fv, f + f v fv + f v fv + fv ov f + f o, 5 λ + µfv λ + µfv λfv + µfv λfv + µfv λf + µfv λ + µf λf + µf, 6 λf + gv λf + gv λfv + gv λfv + λgv λfv + λgv λf + λgv λf + g λf + λg, 7 λµfv λµfv λµfv λµfv λµfv λµf λµf, 8 fv fv fv f f 8, V K- 6 f : V W, g : W K f g : V K, v, v V, f gv + v gfv + v gfv + fv gfv + gfv f gv + f gv, v V, λ K, f gλv gfλv gλfv λgfv λf gv f g : V K K- f g V 2 v V g, g W, f g + g v g + g fv gfv + g fv f gv + f g v f g + f g v, f g + g f g + f g, g W, λ K, f λgv λgfv λgfv λf gv, f λg λf g f : W V K-

44 II I 7 9/7/3 9/7/4 K R C 7 t, t 2, t 3, t 4 K K 4 a, a 2, a 3 a, a 2, a 3 A a a 2 a 3 V a, a 2, a 3 V {w K 4 t t 2 t 3 t 4 v K 3, w Av} 2 A A V {w K 4 v K 3, w A v} 3 dim V ranka a 2 a 3 4 V 72 K[x] x K- K- K[x] {a + a x + + a n x n a,, a n K} f, g K[x] f + g f g f K[x] λ K λf f λ f, g K[x] f + g f g f + g f + gx fx + gx f + g f + g f K[x] λ K λ f f λ λ f λ fx λfx λ f λf + 73 f : K n+ K n [x] a a f a + a x + + a n x n a n f K- f

45 2 g : K n+ K n [x] a a g a + a + a x + a + a + a 2 x a + + a n x n a n g K- g 74 ϕ : K 2 K 3, ψ : K 3 K 3 2x + 3y x ϕ x + y, ψ x y x + z 2x + y 3z y y z x y x ψ ϕ y 2 ψ ϕ ϕ ψ A, B, C A, B, C A CB 75 f : R 3 R 2 v x y x R 3 fv n + y + z x + y z n f n 76 ϕ : R 3 R ϕ t ϕ s ϕ t s ϕ t ϕ s 2 n > m f : K n K m f 3 n < m f : K n K m f 77 R 3 v, v 2, v 3 fv, fv 2, fv 3 R 3 R 3

46 v, v 2, v 3 f a v 2 3, v 2 5, v b v 3, v 2 3 2, v A v v 2 v 3 f A A f A 78 f R n [x] ϕf R 2n [x] ϕfx fx 2 ϕ R n [x] R 2n [x] ϕ 2 ϕ 3 ψ : R 2n [x] R n [x] ψ ϕ id Rn [x] 79 ψ ϕ ψ id R2n [x] f : K 8 K 3 x x f 2 x 8 x 2 + 3x 4 + x 7 + 3x 8 x 3 + 2x 4 + x 6 x 8 x 5 + 2x 6 + x 8 V { v K 8 fv }, W { w K 3 v K 8, w fv } V Ker f W Im f V W 2 g : C 5 C 3 g x x 2 x 3 x 4 x 5 x + x 3 + x 5 x 2 2x 3 x 4 3 x 5 V W V W

47 7 V, W U, U 2 V f : U W f 2 : U 2 W V U U 2 v V v u + u 2 u U u 2 U 2 fv f u + f 2 u 2 f V W well-defined 2 V U + U 2 f 7 t, t 2, t 3 K K 3 W W 2 W,, W 2, t t 2 W + W 2 t, t 2, t 3 K 3 W W 2 W + W 2 2 t, t 2, t 3, t 4, t 5 K K 5 W W 2 W 3 t W, t 2, W 2 W 3 t 3 t 4 W + W 2 + W 3 t, t 2, t 3, t 4, t 5 72 f R f x R f x fx f x R f x fx t 3 t 5 73 V {f R[x] f } W {f R[x] f } V W R[x] 2 R[x] V W 3 R[x] V W f R[x] g V h W f g + h g h f 2

48 II 7 V a, a 2, a 3 {λ a + λ 2 a 2 + λ 3 a 3 λ, λ 2, λ 3 K} λ a a 2 a 3 λ 2 λ, λ 2, λ 3 K { Av v K 3} { w K 4 v K 3, w Av } λ 3 2 A A, P GL 3 K A AP v P v, A v AP v Av, v P v, v K v K { w K 4 v K 3, w A v } { w K 4 v K 3, w Av } V 3 A A t 3 t t t 3 t 2 t 4, t 4 t 2 V v + v 2 + v 3 t 3 t v, v 2, v 3 K V K 3, t 4 t 2 t t 3 t 2 t 4 V v + v 2 v, v 2 K V K 2 {, A A t 3 t ranka 2 t t 3, t 2 t 4 ranka 3 otherwise t 4 t 2 { 2 t t 3, t 2 t 4 dimv ranka a 2 a 3 3 otherwise 4 t t 3, t 2 t 4 V,, t t 3 t 2 t 4 V,, t 3 t t 4 t 2 72 f, g K[x] fx a n x n + + a, gx b n x n + + b, f + gx a n + b n x n + + a + b a n x n + + a + b n x n + + b fx + gx, f + gx fx + gx f + gx f + gx f + g f + g, λfx λa n x n + + λa λa n x n + + a λ fx, λ fx λ fx λfx λ fx λf λ f 73 p K n [x], a n {p x n }, f : K n [x] K n+ f p f f id Kn[x], f f id K n+ f K-, f f f a n f n /n! a a, a n

49 a 2 p K n [x],a n, g : K n [x] K n+ g a a p, a n a n g g id Kn [x], g g id K n+ g K-, g g g 74 2x + 3y 2x + 4y x ψ φ ψ x + y 3x + 4y y y 3x + 2y 2 CB A f, λ R, λ fλv n x n + λy + λz λx λfv n + λy + λz λ λx + λy λx + λy n x n λx n n n, v, v R 3 v x y, v y, z z x + x v, v R 3, fv + v + y + y + z + z x + y + z x x + x + y + y + + y + z x + y x + y fv + fv, λx + λy + λz x + y + z v R 3, λ K, fλv λ λfv f λx + λy x + y x,f n 76 φ, t φ, s φ, φ : R R 3, φ t, φ s φ s t t φ φ s/t s t φ s, φ s s/t, 2, φ φ : R 3 R 2 f A a ij M m,n K f, fx fy x y, Av w f, v v v n K n, Av v n > m, A, j,, j k k m ranka

50 v + a,j v j + + a,jk v jk v + a,j v j + + a,jk v jk v j,, v jk v l l j,, j k, v, f 3 f A a ij M m,n K f, w K m, v K n w fv, V {w K m v K n, w Av} K m v w f, v K n,w K m 7 2, A v n w m V n < m, A, i i k k, w ik v k k,, r w i a i, v + + a i,r v r r ranka w ik v k k,, r w i a i, v + + a i,r v r w K m w V, V K m f 77 a , , , f, fv, fv 2, fv 3 b f , f, fv f 4v 2 v 3 4fv 2 fv f P, P A P v v 2 v 3 E P A GL n K, P A 78 f f, g R n [x], φf + gx f + gx 2 fx 2 + gx 2 φfx + φgx φf + φgx, f R n [x], λ K, φλfx λfx 2 λfx 2 λφfx λφfx λφfx φ : R n [x] R 2n [x] 2 f, g R n [x], fx a n x n + + a, gx b n x n + + b φfx φgx fx 2 gx 2 fx 2 gx 2 a n b n x 2n + + a b x 2 + a b φf φg a i b i i,, n f g, φ

51 3 fx a 2n x 2n + + a R 2n [x], ψ : R 2n [x] R n [x] ψfx a 2n x n + a 2n 2 x n + + a 2 x + a, ψ φ id Rn [x], gx x 2 + x g R 2n [x], φ ψgx x 2, φ ψg g φ ψ id R2n[x] 79 V fv,, dimv V v K 8 λ, λ 2, λ 3, λ 4, λ 5 K, λ + λ 2 + λ λ 4 + λ 5 f A M 3,8 K, W { w K 3 v K 8, w Av } A W A A E 3 O 3,5, v W { w K 3 v K 8, w A v } v v 2 v 3 v, v 2, v 3 K K3 dimw 3 2 2, V v C 5 λ, λ 2 C, λ + λ 2 3 dimv 2 v v 8, g B M 3,5, B B E 3 O 3,2,, W C 3, dimv 3 7 U + U 2, v u + u 2, v V u, u 2, f, f 2, u, u 2 fu, fu 2 v fv f u + f 2 u 2, f : V W well-defined v, v V, λ K u, u U, u 2, u 2 U 2 v u + u 2, v u + u 2, v + v u + u + u 2 + u 2 u + u U, u 2 + u 2 U 2, λv λu + λu 2 λu U, λu 2 U 2, v, v V, fv + v f u + u + f 2 u 2 + u 2 f u + f u + f 2 u 2 + f 2 u 2 f u + f 2 u 2 + f u + f 2 u 2 fv + fv, v V, λ K, fλv f λu + f 2 λu 2 λf u + λf 2 u 2 λf u + f 2 u 2 λfv f : V W 2 V W K 3, U,, U 2,, f, f 2 f u u, f 2 u 2 2u 2 v, u u 2, u 2 u, u, u U, u 2, u 2 U 2, v u + u 2 u + u 2, 2 fu + fu 2, fu + fu 2 f well-defined

52 7 W W 2, W + W 2 2 W W 2 {}, W + W 2 W 3 {} t W + W 2,, t 2, W 3 t 3,, t 4 t 5 t 4 t 5, W + W 2 + W 3,,, t 4 t 5 73 V V Ø, f, g V, f + g x f x + g x fx gx fx + gx f + gx f + g V, f V, λ K, λf x λf x λ fx λfx λfx λf V V R[x] W 2 fx a n x n + + a f V, f x fx a a 2 a 2m V { a 2m x 2m + + a 3 x 3 + a x a, a 3,, a 2m R }, f W, f x fx a a 3 a 2m W { a 2m x 2m + + a 2 x 2 + a a, a 2,, a 2m R } V W {a n x n + + a a a a n } {} V + W, V + W {a n x n + + a a, a,, a n R} R[x] V W R[x] 3 fx a n x n + + a, fx f x 2a 2m x 2m + + a 3 x 3 + a x, fx + f x 2a 2m x 2m + + a 2 x 2 fx f x + a, g, h gx, hx 2, g V, h W, f g + h, fx + f x 2

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1, 17 ( ) 17 5 1 4 II III A B C(1 ) 1,, 6, 7 II A B (1 ), 5, 6 II A B (8 ) 8 1 I II III A B C(8 ) 1 a 1 1 a n+1 a n + n + 1 (n 1,,, ) {a n+1 n } (1) a 4 () a n OA OB AOB 6 OAB AB : 1 P OB Q OP AQ R (1) PQ

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1 1 Ricci V, V i, W f : V W f f(v = Imf W ( f : V 1 V k W 1 {f(v 1,, v k v i V i } W < Imf > < > f W V, V i, W f : U V L(U; V f : V 1 V r W L(V 1,, V r ; W L(V 1,, V r ; W (f + g(v 1,, v r = f(v 1,, v r

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2 θ i ) AB θ ) A = B = sin θ = sin θ A B sin θ) ) < = θ < = Ax Bx = θ = sin θ ) abc θ sin 5θ = sin θ fsin θ) fx) = ax bx c ) cos 5 i sin 5 ) 5 ) αβ α iβ) 5 α 4 β α β β 5 ) a = b = c = ) fx) = 0 x x = x =

More information

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th 1 n A a 11 a 1n A = a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = ( x ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 11 Th9-1 Ax = λx λe n A = λ a 11 a 12 a 1n a 21 λ a 22 a n1 a n2

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

January 27, 2015

January 27, 2015 e-mail : kigami@i.kyoto-u.ac.jp January 27, 205 Contents 2........................ 2.2....................... 3.3....................... 6.4......................... 2 6 2........................... 6

More information

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id 1 1.1 1.1 R R (1) R = 1 2 Z = 2 n Z (2) R 1.2 R C Z R 1.3 Z 2 = {(a, b) a Z, b Z Z 2 a, b, c, d Z (a, b) + (c, d) = (a + c, b + d), (a, b)(c, d) = (ac, bd) (1) Z 2 (2) Z 2? (3) Z 2 1.4 C Q[ 1] = {a + bi

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

u V u V u u +( 1)u =(1+( 1))u =0 u = o u =( 1)u x = x 1 x 2. x n,y = y 1 y 2. y n K n = x 1 x 2. x n x + y x α αx x i K Kn α K x, y αx 1

u V u V u u +( 1)u =(1+( 1))u =0 u = o u =( 1)u x = x 1 x 2. x n,y = y 1 y 2. y n K n = x 1 x 2. x n x + y x α αx x i K Kn α K x, y αx 1 5 K K Q R C 5.1 5.1.1 V V K K- 1) u, v V u + v V (a) u, v V u + v = v + u (b) u, v, w V (u + v)+w = u +(v + w) (c) u V u + o = u o V (d) u V u + u = o u V 2) α K u V u α αv V (a) α, β K u V (αβ)u = α(βv)

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1) ( ) 1., : ;, ;, ; =. ( ).,.,,,., 2.,.,,.,.,,., y = f(x), f ( ).,,.,.,., U R m, F : U R n, M, f : M R p M, p,, R m,,, R m. 2009 A tamaru math.sci.hiroshima-u.ac.jp 1 ,.,. 2, R 2, ( ).,. 2.1 2.1. I R. c

More information

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 : 9 ( ) 9 5 I II III A B (0 ) 5 I II III A B (0 ), 6 8 I II A B (0 ), 6, 7 I II A B (00 ) OAB A B OA = OA OB = OB A B : P OP AB Q OA = a OB = b () OP a b () OP OQ () a = 5 b = OP AB OAB PAB a f(x) = (log

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

°ÌÁê¿ô³ØII

°ÌÁê¿ô³ØII July 14, 2007 Brouwer f f(x) = x x f(z) = 0 2 f : S 2 R 2 f(x) = f( x) x S 2 3 3 2 - - - 1. X x X U(x) U(x) x U = {U(x) x X} X 1. U(x) A U(x) x 2. A U(x), A B B U(x) 3. A, B U(x) A B U(x) 4. A U(x),

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト 名古屋工業大の数学 年 ~5 年 大学入試数学動画解説サイト http://mathroom.jugem.jp/ 68 i 4 3 III III 3 5 3 ii 5 6 45 99 5 4 3. () r \= S n = r + r + 3r 3 + + nr n () x > f n (x) = e x + e x + 3e 3x + + ne nx f(x) = lim f n(x) lim

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

VI VI.21 W 1,..., W r V W 1,..., W r W W r = {v v r v i W i (1 i r)} V = W W r V W 1,..., W r V W 1,..., W r V = W 1 W

VI VI.21 W 1,..., W r V W 1,..., W r W W r = {v v r v i W i (1 i r)} V = W W r V W 1,..., W r V W 1,..., W r V = W 1 W 3 30 5 VI VI. W,..., W r V W,..., W r W + + W r = {v + + v r v W ( r)} V = W + + W r V W,..., W r V W,..., W r V = W W r () V = W W r () W (W + + W + W + + W r ) = {0} () dm V = dm W + + dm W r VI. f n

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

+ 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm.....

+   1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm..... + http://krishnathphysaitama-uacjp/joe/matrix/matrixpdf 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm (1) n m () (n, m) ( ) n m B = ( ) 3 2 4 1 (2) 2 2 ( ) (2, 2) ( ) C = ( 46

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

untitled

untitled 1 ( 12 11 44 7 20 10 10 1 1 ( ( 2 10 46 11 10 10 5 8 3 2 6 9 47 2 3 48 4 2 2 ( 97 12 ) 97 12 -Spencer modulus moduli (modulus of elasticity) modulus (le) module modulus module 4 b θ a q φ p 1: 3 (le) module

More information

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y 5 5. 2 D xy D (x, y z = f(x, y f D (2 (x, y, z f R 2 5.. z = x 2 y 2 {(x, y; x 2 +y 2 } x 2 +y 2 +z 2 = z 5.2. (x, y R 2 z = x 2 y + 3 (2,,, (, 3,, 3 (,, 5.3 (. (3 ( (a, b, c A : (x, y, z P : (x, y, x

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P 6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P

More information

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k : January 14, 28..,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k, A. lim k A k = A. A k = (a (k) ij ) ij, A k = (a ij ) ij, i,

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a 1 40 (1959 1999 ) (IMO) 41 (2000 ) WEB 1 1959 1 IMO 1 n, 21n + 4 13n + 3 2 (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a = 4, b =

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information