105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2

Size: px
Start display at page:

Download "105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2"

Transcription

1 (Masatake Mori) 1 $=\mathrm{l}$ 1970 [2, 4, 7], $=-$, $=-$,,,, $\mathrm{a}^{\mathrm{a}}$,,, $a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (11), $z=\alpha$ $c_{0}+c_{1}(z-\alpha)+c2(z-\alpha)^{2}+\cdots$ (12),, (11),,, (12),, $w=z-\alpha$ (13) $c_{0}+c_{1}w+c_{2}w^{2}+\cdots$ $=$ $a_{0}+a_{1}(w+\alpha)+a2(w+\alpha)^{2}+\cdots$ (14), $c_{0}=a_{0}+\alpha a_{1}+\alpha^{2}a_{2}+\cdots$ $\{$ $c_{1}=a_{1}+2\alpha a2+3\alpha^{2}a_{3}+\cdots$ $c_{2}=a_{2}+3\alpha a3+6\alpha^{2}a_{4}+\cdots$ (15)

2 105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2}w+2\ldots$ (17), $b_{0}=0$, $\phi(0)=0$ (18) (12) (11) (13), (18), (17) (16) $f(\phi(w))=c_{0}+c_{1}w+c_{2}w^{2}+\cdots$ (19), $c_{0}$ $=a_{0}$ $\{$ $c_{k}$ $= \sum_{j=1}^{k}a_{jj}wk$ (110), $W_{jk}$ $\{$ $W_{1k}=b_{k},$ $k=1,2,$ $\cdots$ $W_{jk}= \sum_{\ell_{=}1}^{1}b\ell W_{jk_{-}\ell}k-j+-1,,$ $j=2,3,$ $\cdots,$ $k$ ; $k=2,3,$ $\cdots$ (111) (110), $W_{jk}$ $(b_{1}w+$ $b_{2}w^{2}+b_{3}w^{3}+\cdots)^{j}$ $w^{k}$, $(b_{1}w+b_{2}w^{2}+b_{3}w^{3}+ \cdots)^{j}=\sum_{k=1}^{\infty}w_{j}kw^{k}$ $=$ $(b_{1}w+b_{2}w^{2}+b3w^{3}+\cdots)(b1w+b_{2}w+b3w+\cdots)^{j-}231$ (112), (17) $w=\phi^{-1}(z)$ (113) (19), $z$ $f(z)=c_{0}+c_{1}\emptyset^{-}1(z)+c_{2}(\emptyset^{-}1(_{z}))^{2}+\cdots$ (114)

3 106, (114) $z$- (16), (16), (16) $z$, $(16)\text{ }\text{ }(114)$, (17) $z=\zeta$, (113) $w_{\zeta}=\phi^{-}1(\zeta)$, $w_{\zeta}$ (19) $w$, (113), $\phi(w)$ 1 1,, $f(z)=\log(1+z)$ (115) $f(z)= \log(1+z)=z-\frac{1}{2}z+\frac{1}{3}\mathcal{z}^{3}-2\cdots,$ $ z <1$ (116) 1 $\log(1+z)$ $z=-1$, 1 $z= \phi(w)=\frac{2w}{1-w}=2w+2w^{2}+2w^{3}+\cdots$ (117), $w=\emptyset^{-1}(_{z)\frac{z}{z+2}}=$ $z$- ${\rm Re} z>-1$ $w$- $ w <1$ ( 1) (116) (117) (110) $w$ (19), $f(z)$ $=$ $\log(1+z)$ (119) 1: ${\rm Re} z>-1$ $\Leftrightarrow$ $ w <1$

4 107 $=$ $\log(1+\emptyset(w))=\log(\frac{1+w}{1-w})$ (120) $=$ $2w+ \frac{2}{3}w^{3}+\frac{2}{5}w+5\ldots$ (121) (118), $z$ $f(z)=2( \frac{z}{z+2})+\frac{2}{3}(\frac{z}{z+2})^{3}+\frac{2}{5}(\frac{z}{z+2})^{5}+\cdots$ (122) (122) ${\rm Re} z>-1$ $z$, $z$ (118) $w$ $ w <1$, $w$ (121) ${\rm Re} z>-1$ (116) $ z <1$, (116) (117), $ z <1$ $ z+2 >1$ $z$, $ z > \frac{z}{z+2} = w $ (123), (122) (116), $ z <1$ (118), 2,, $E_{1}(z)$, $F(z)=e^{z}E_{1}(Z)= \int_{0}^{\infty}\frac{e^{-t}}{z+t}dt$, $-\pi<\arg z<\pi$ (21), $F(z)$, (21), $z= \phi_{1}(w_{1})=\frac{1+w_{1}}{1-w_{1}}$ $w_{1}= \phi^{-1}(\mathcal{z})=\frac{z-1}{z+1}$ (22) (22) ${\rm Re} z>0$ $ w_{1} <1$ ( 2) (21) $z$ (22), (22), $F(z)$ $F(z)$ $=$ $F( \phi_{1}(w_{1}))=\int_{0}^{\infty}\frac{e^{-l}}{\frac{1+w_{1}}{1-w_{1}}+t}dt$

5 108 2: ${\rm Re} z>0$ $\Leftrightarrow$ $ w_{1} <1$ $=$ $(1-w_{1}) \int_{0}^{\infty}\{\sum_{k=0}^{\infty}(\frac{t-1}{t+1})wk1k\}\frac{e^{-t}}{t+1}dt$ $=$ $\sum_{k=0}^{\infty}j_{k}wk1$ (23) $=$ $\sum_{k=0}^{\infty}j_{k(}\frac{z-1}{z+1}\mathrm{i}^{k}$ (24) $J_{0}$ $=$ $\int_{0}^{\infty}\frac{1}{t+1}e^{-t}dt$ $J_{k}$ $=$ $-2 \int_{0}^{\infty}\frac{(t-1)^{k-1}}{(t+1)^{k+1}}e^{-t}dt,$ $k=1,2,$ $\cdots$ (25) (21)? \mbox{\boldmath $\pi$}<arg $z<\pi$, (22) ${\rm Re} z>0$ w\leftarrow $ w <1$, (23) $ w <1$, (24) $z$- ${\rm Re} z>0$ 3 (24),, $z= \phi_{m}(w_{m})=(\frac{1+w_{m}}{1-w_{m}})^{m}$, $w_{m}= \phi_{m}^{-1}(z)=\frac{\sqrt[m]{z}-1}{\sqrt[m]{z}+1}$, $m>1$ (31) $z$- $ \arg_{z} <m\pi/2$ ( 3) $F(z)$ $w_{m}$- $ w_{m} <1$

6 109 3: $ \arg z <m\pi/2$ $\Leftrightarrow$ $ w_{m} <1$ $F(z)$ $=$ $F(\phi_{m}(w_{m}))$ $=$ $J_{0}+ \sum_{k=1}^{\infty}k(m)kw_{m}^{k}$ $=$ $J_{0}+ \sum_{k=1}^{\infty}k_{k}(m)(\frac{\sqrt[m]{z}-1}{\sqrt[m]{z}+1})^{k}$ (32), $K_{k}^{(m)}$, (22) (31) (22), $\frac{1+w_{1}}{1-w_{1}}=(\frac{1+w_{m}}{1-w_{m}})^{m}$ (33), $w_{1}$ $w_{m}$ $w_{1}$ $=$ $(1+w_{m})^{m}-(1-w_{m})^{m}$ $(1+w_{m})^{m}+(1-w_{m})^{m}$ $=$ $\sum_{k=1}^{\infty}b_{k}^{(m)}w_{m}^{k}$ (34), (17) $b_{k}$ $b_{k}^{(m)}$ $z,$ $w,$ $w_{1},$ $w_{m},$, (23) (34) $w_{1}$ (111) $F(z)$ $=$ $F(\phi_{m}(w_{m}))$ $=$ $J_{0}+ \sum_{k=1}k_{k}(m)\infty w_{m}^{k}$ (35) $K_{k}^{(m)}= \sum_{j=1}jjw^{(}jkm)$, $k=1,2,$ $\cdots$ (36)

7 110, $\{$ $W_{1}^{(m)}\text{ }=b_{\text{ }^{}(m)},$ $k=1,2,$ $\cdots$ $W_{jk}^{(m)}= \sum_{\ell=1}^{kj+1}-b^{(}\ell j-wm1m)(),\text{ }-\ell j=2,3,$ $\cdots,$ $k$ ; $k=2,3,$ $\cdots$ (37), $m=2,3,4$ [$m=2$ ( 4)] $z= \phi_{2}(w_{2})=(\frac{1+w_{2}}{1-w_{2}})^{2}$ (38), 4: $ \arg z <\pi$ $\Leftrightarrow$ $ \arg w1 <\frac{\pi}{2}$ $\Leftrightarrow$ $ w_{2} <1$ $\frac{1+w_{1}}{1-w_{1}}=(\frac{1+w_{2}}{1-w_{2}})^{2}$ (39) $w_{1}$ $=$ $\frac{2w_{2}}{1+w_{2}^{2}}$ $=$ $2w_{2}-2w_{2}+232w^{5}2^{-}w_{2}+7\ldots$ $=$ $\sum_{k=1}^{\infty}b^{(})w^{k}\text{ }22$ (310), (36) $F(z)$ $=$ $F( \phi_{1}(w_{1}))=j_{0}+\sum_{k=1}^{\infty}j\text{ ^{}w_{1}}\text{ }$ $=$ $F( \phi_{2}(w_{2}))=j_{0}+\sum_{k=1}^{\infty}k^{(}k22)w^{k}$, $w_{2}= \frac{\sqrt{z}-1}{\sqrt{z}+1}$ (311)

8 111 $K_{k}^{(2)}= \sum_{j=1}^{\text{ }}J_{jjk}W^{(2)}$, $k=1,2,$ $\cdots$ (312), $\{$ $W^{(2)}=1kkb(2),$ $k=1,2,$ $\cdots$ $W_{jk}^{(2)}=kj+ \ell=\sum_{1}^{-}b_{\ell}^{(}w_{j-}12)(2)1,k-\ell j=2,3,$ $\cdots,$ $k$ ; $k=2,3,$ $\cdots$ (313) $W_{j}^{(2)}\text{ }$ (37) $m=2$ (311) $z=0$ ( 4) $-\infty$ [$m=3$ ( 5)] $/1+w-?\backslash 3$ $\backslash$ / $z= \phi_{3}(w_{3})=(\frac{1+w_{3}}{1-w_{3}})^{c}$ (314), 5: $ \arg_{z} <\frac{3\pi}{2}$ $\Leftrightarrow$ $ \arg w_{1} <\frac{\pi}{2}$ $\Leftrightarrow$ $ w_{3} <1$ $\frac{1+w_{1}}{1-w_{1}}=(\frac{1+w_{3}}{1-w_{3}})^{3}$ (315) $w_{1}$ $=$ $\frac{3w_{3}+w_{3}^{3}}{1+3w_{3}^{2}}$ $=$ $3w_{3}-8w^{35}3+24w3-54w_{3}^{7}+\cdots$ (316), (36) $F(z)$ $=$ $F( \phi_{1}(w1))=j0+\sum_{k=1}^{\infty}j\text{ ^{}w^{k}}1$ $=$ $F( \phi_{3}(w_{3}))=j0+\sum_{1k=}^{\infty}k_{\text{ }^{}(3})w^{k}3$ $w_{3}= \frac{\sqrt[3]{z}-1}{\sqrt[3]{z}+1}$ (317)

9 112, $K_{k}^{(3)}= \sum_{j=1}^{\text{ }}J_{j}W_{j\text{ }^{}(3})$, $k=1,2,$ $\cdots$ (318) $W_{j}^{(3)}\text{ }$ (37) [$m=4$ ( 6)] $m=3$ (317) 5, $\backslash$ $f1+w4\backslash ^{4}$ $z= \phi_{4}(w_{4})=(\frac{1+w_{4}}{1-w_{4}})^{\mathrm{e}}$ (319), 6: $ \arg z <2\pi$ $\Leftrightarrow$ $ \arg w_{2} <\pi$ $\Leftrightarrow$ $ w_{4} <1$ $\frac{1+w_{1}}{1-w_{1}}=(\frac{1+w_{4}}{1-w_{4}})^{4}=(\frac{1+w_{2}}{1-w_{2}})^{2}$ (320) $\frac{1+w_{2}}{1-w_{2}}=(\frac{1+w_{4}}{1-w_{4}})^{2}$ (321), (39) (311) $w_{1}$ $w_{2}$ $w_{2}$ $w_{4}$ $F(z)$ $=$ $F(\phi_{2}(w_{2}))=J_{0+\sum_{k=1}^{\infty}K_{\text{ }^{}(}w}2)\text{ }2$ $=$ $F( \phi_{4}(w_{4}))=j_{0}+\text{ }\sum_{=1}^{\infty}k_{k}(4)w_{4}^{k}$, $w_{4}= \frac{\sqrt[4]{z}-1}{\sqrt[4]{z}+1}$ (322), $K_{\text{ }^{}(4)}=j \sum_{=1}^{\text{ }}K\text{ }jk(2)w^{(2}\rangle$, $k=1,2,$ (323) $\cdots$ $W_{j}^{(2)}\text{ }$ (313), $K_{\text{ }^{}(2)}$ (312) (322) 6

10 $\mathrm{n}$ $\mathit{9}$ 4 $\mathrm{n}$ $E_{1}(z)=e^{-z}F(_{Z)}, F(z)= \int_{0}^{\infty}\frac{e^{-t}}{z+t}dt$ (41) (35) $m$,,, $m=3$ [7],, $m=3$ $E_{1}(z) \approx e^{-z}(j_{0}+\sum_{k=1}^{n}k^{(3})w_{3}k\mathrm{i}k$, $z=\phi_{3}(w_{3})$ (42) 1 $x=2$ $n$ $\mathrm{x}=20$ $\mathrm{e}_{1}(\mathrm{x})$ 14 $ ?\tau 0\mathit{9}$ 9734 $\mathrm{x}10^{-}2$ 10 4 $\mathrm{e}_{1}(\chi)$ $ \gamma 0*(4\iota \mathit{6}8\mathrm{x}10-\mathrm{z}$ $2$ (439 $526530\mathrm{X}\mathrm{l}\mathrm{o}^{-}z$ 11 4 $8? \mathit{6}4\mathit{6}13\mathrm{X}\mathrm{l}\mathrm{o}-2$ $3$ ( $8\mathit{9} \mathrm{x}_{1}0^{-}\mathrm{z}$ $\mathrm{x}10-\mathrm{z}$ 12 $ $\mathrm{t}$ $4$ $89013\not\in \mathrm{x}\mathrm{l}\mathrm{Q}-2$ 13 $6\cross 10^{-}z$ $5$ 4 0^{-}$a $890000\gamma 5\iota \mathrm{X}\iota $ \mathit{6}150\mathrm{X}10^{-2}$ $6$ 4 89 $00\mathrm{s}14\mathit{9}1\tau 65\uparrow 41\mathrm{X}10^{-}2$ $\mathrm{o} \mathit{6}103\mathrm{x}10^{-}2$ $7$ $276860**3\mathrm{x}10^{-}$ a $ \iota \mathrm{x}10^{-2}$ $8$ $ \mathrm{x}10^{-}2$ $ \epsilon 06112^{\chi 10^{-}}\mathrm{g}$ $752936\cross 10-z$ $\mathrm{x}10^{-2}$ : $x=2$ $E_{1}(x)$ $\mathrm{z}$ $=$ $(-1,0)$ $\mathrm{n}$ $\mathrm{r}\mathrm{e}\mathrm{e}_{1}(\mathrm{z})$ $\mathrm{r}\mathrm{e}\mathrm{e}_{1}(\mathrm{z})$ $\mathrm{n}$ $\mathrm{m}\mathrm{e}_{1}(\mathrm{z})$ I $\mathrm{m}\mathrm{e}_{1}$ I $(\mathrm{z})$ $1$ 2 1 $ $ $-3$ $ $ $-3$ $l$ $6210\iota 0$ $-3$ $-18\mathit{9}5303$ $-3$ A $ $ $-3$ $ $ $-3$ $-17\iota 6\mathit{9}54$ $-3$ $ $ $-3$ $-1$ $-3$ $ $ $-314$ $ \mathit{9}$ $-3$ $ $ $-3$ $ $ $-3$ $-18\mathit{9}5113$ $-3$ li $-18\mathit{9}2813$ $-3$ $ $ $-3$ $-1$ $ $ 22 $-189\mathrm{s}120$ $-3$ $-18\mathit{9}8305$ $ $ 23 $-18\mathit{9}5\iota 20$ $-3$ $ $ $-3$ $-18\mathit{9}5118$ $-3$ $ $ $-31$ $ $ $-31$ $-18\mathit{9}5880$ $-31$ $-18\mathit{9}5118$ $-3$ lt1593 2: $x=-1$ $E_{1}(x)$

11 $\mathrm{n}$ 114, 2 $z=-1$ $n$ $E_{1}(-1)$ $E_{1}(ix)=- \mathrm{c}\mathrm{i}(x)+i(\mathrm{s}\mathrm{i}(x)-\frac{\pi}{2})$ (43) Ci $(x)=- \int_{x}^{\infty}\frac{\cos t}{t}dt$, Si $(x)= \int_{0}^{x}\frac{\sin t}{t}dt$ (44) $x=2$ (317), 3 $\aleph$ $=$ $20$ $\mathrm{c}\mathrm{i}\langle \mathrm{x}) \mathrm{s}_{\dot{\mathfrak{l}}}(_{\mathrm{x}}\rangle$ $5\mathrm{x}_{10}-1$ $87442\cross 100$ $2$ x10 1 $ \mathrm{x}100$ $3$ 4 2 $t(82009\mathit{6}\cross 10^{-}1$ $\langle\iota 6\mathrm{x}_{1}0^{0}$ $4$ x10 16 $05\mathit{9}06037\mathrm{x}_{10}0$ $5$ x10 $60642\uparrow\tau 0\iota\cross\iota \mathrm{o}\mathrm{o}$ 1 $6$ x10 $\mathrm{x}10^{0}$ $7$ $l01759$ X $43002\mathrm{X}10^{0}$ $8$ X10 $\iota 288\mathit{6}0\mathrm{x}10^{\mathrm{o}}$ 1605 $9$ $\mathrm{t}141\cross 10-1$ $(13603\mathrm{X}\mathrm{l}\mathrm{o}^{0}$ $10$ { $ \mathrm{x}_{1}0^{-1}$ $\mathrm{x}10^{\mathrm{o}}$ $11$ x10 $-1$ $\iota 1320\mathit{6}\mathrm{x}\mathrm{l}\mathrm{o}^{0}$ $\mathrm{x}10^{\mathrm{o}}$ $\mathrm{x}_{1}0^{-1}$ $12$ $13$ $808266\mathrm{x}\mathrm{l}0^{-}1$ $95\mathrm{x}10^{\mathrm{O}}$ $14$ X10 1 $ \cross 10^{0}$ $15$ $808273\mathrm{X}10-1$ 1 6 $ \mathrm{X}10^{0}$ $16$ $17$ 4 $ \mathrm{X}10-1$ 4 $ \mathrm{X}10-1$ $77\mathrm{x}10^{0}$ $77\mathrm{X}\mathrm{l}\mathrm{o}^{0}$ : $x=2$ Ci $(x)$ Si $(x)$, $z$, $n$ $n=20$ $ E_{1}(z)-e-z(J_{0}+ \sum_{1k=}k_{k)}^{()}20mwmk,$ $w_{m}= \frac{\sqrt[m]{z}-1}{\sqrt[m]{z}+1}$ (45) $z$-, z-, $ E_{1}(Z)-e-z(J_{0}+ \sum_{\text{ }=}^{20()}1kw^{\text{ }}Km)m,$,, $m=3$, w3\rightarrow $z=1$

12 115 7: $ E_{1}(Z)-e^{-}z(J0+ \sum_{k^{0}}^{2}=1k_{k}^{(3)}w^{\text{ }}3) $, $w_{3}= \frac{\sqrt[3]{z}-1}{\sqrt[3]{z}+1}$ 5 $F(z)= \int_{a}^{b}f(z;t)\mu(t)dt$ (51) $E_{1}(z)=e^{-z} \int_{0}^{\infty}\frac{1}{z+t}e^{-}d\iota t$ (52) $a=0,$ $b=\infty$, $f(z;t)=z+ \overline{t}$ $\mu(t)=e^{-t}$ (53), (51) $f(z;t)$ $z=\phi(w_{1})$ (54) $f(z;t)=f( \emptyset(w_{1});t)=\text{ }\sum_{=0}^{\infty}a_{k}(t)w_{1}^{k}$ (55)

13 116 (51) $F(z)= \sum_{k=0}^{\infty}$ J w l $= \sum_{\text{ }=0}^{\infty}Jk$ ( $\phi-1$ (z)), $J_{k}= \int_{a}^{b}a_{\text{ }}(t)\mu(t)dl$ (56) (56), 3 (exponential integral) $E_{1}(z)=e^{-z} \int_{0}^{\infty}\frac{1}{z+t}e^{-t}dt$ (57) (sine and cosine integrals) $\{$ Si $(z)= \int_{0}^{z}\frac{\sin t}{t}dt=\frac{\pi}{2}-g_{1}(z)\cos z-g\mathit{2}(z)\sin z$ Ci $(z)= \gamma+\log z+\int_{0}^{z}\frac{\cos t-1}{t}dt=g_{1}(z)\sin z-g2(z)\cos Z$ (58) $\{$ $g_{1}(z)= \int_{0}^{\infty}\frac{z}{z^{2}+t^{2}}e^{-t}dt$ $g_{2}(z)= \int_{0}^{\infty}\frac{t}{z^{2}+t^{2}}e^{-t}dt$ (59) (error function) $\mathrm{e}\mathrm{r}\mathrm{f}z=1-\frac{2ze^{-z^{2}}}{\pi}\int_{0}^{\infty}\frac{1}{z^{2}+t^{2}}e^{-}dt^{2}t$ (510) $\mathrm{p}\mathrm{s}\mathrm{i}$ ( function) $\psi(z)=\frac{d[\log\gamma(z)]}{dz}=\frac{\gamma (_{Z)}}{\Gamma(z)}=\log z-\frac{1}{2z}-2\int_{0}^{\infty}\frac{1}{z^{2}+t^{2}}\frac{t}{e^{2\pi t}-1}dt$ (511) ( gamma function) $\log$ $\log\gamma(z)=(z-\frac{1}{2})\log z-z+\frac{1}{2}\log 2\pi+2\int_{0}^{\infty}(\arctan\frac{t}{z})\frac{1}{e^{2\pi t}-1}dt$ (512) (1) (incomplete gamma function (1)) $\Gamma(a, z)=e^{-z}\int_{0}^{\infty}(z+t)^{a-1}e^{-}dtt$ (513) (2) (incomplete Gamma function (2)) $\Gamma(a, z)=\frac{z^{a}e^{-z}}{\gamma(1-a)}\int_{0}^{\infty}\frac{1}{z+t}t^{-a}e-tdt$ (514)

14 117 6, [1] (21), $F(z)=ezE1(Z)= \int_{0}^{\infty}\frac{1}{t+z}e^{-}d\iota t$ (61), $F(z)=e^{z}E1(z)$ $=$ $\int_{0}^{\infty}\frac{1}{t+z}e^{-t}dt$ $=$ $\frac{1}{z}\int_{0}^{\infty}\frac{1}{1+\frac{t}{z}}e^{-t}dt$ (62) $=$ $\frac{1}{z}\int_{0}^{\infty}(1-\frac{t}{z}+\frac{t^{2}}{z^{2}}-\frac{t^{3}}{z^{3}}+\cdots)e-tdt$ (63) $=$ $\frac{1}{z}[1-\frac{1!}{z}+\frac{2!}{z^{2}}-\frac{3!}{z^{3}}+\cdots]$ (64) (64), $z$, (62) $1/(1+t/z)$ (63) $ t < z $ $(0, \infty)$ ( 8), (62), 8: $F(z)= \frac{1}{z}\int_{0}^{\infty}\frac{1}{1+\frac{t}{z}}e^{-t}dt$ (65) $t= \emptyset(u)=\frac{1+u}{1-u}$ $u= \phi^{-1}(t)=\frac{t-1}{t+1}$ (66)

15 $\mathrm{r}$ 118 $t$- ${\rm Re} t>0$ $u$- $ u <1$ ( 9), (62) ${\rm Re} t>0$ $\Leftrightarrow$ $ u <1$ 9: $t=(1+u)/(1-u)$ $F(z)$ $=$ $\frac{1}{z}\int_{-1}^{1}\frac{1}{(1+u)}e^{-\emptyset}(u)\phi (u)du$ $1+\overline{z(1-u)}$ $=$ $\frac{1}{z+1}\int_{-1}^{1}\frac{1-u}{1-\frac{z-1}{z+1}u}e^{-\emptyset}(u)\phi (u)du$ $=$ $\frac{1}{2}(1-w)\int_{-1}^{1}\frac{1-u}{1-wu}e^{-\emptyset}(u)\phi (u)du$ (67), $w= \frac{z-1}{z+1}$ (68) $-1<u<1$, ${\rm Re} z>0$ $ w <1$, ${\rm Re} z>0$ $ wu <1$, (67) $1/(1-wu)$ $(-1,1)$, $F(z)$ $=$ $\frac{1}{2}(1-w)\int_{-1}^{1}(1-u)(1+wu+w^{2}u^{2}+\cdots)e^{-\phi(u)}\phi (u)du$ $=$ $\frac{1}{2}(1-w)\sum_{=k0}\int_{0}^{\infty}(\infty-1\frac{t-1}{t+1})wk(\frac{t-1}{t+1})^{\text{ }}e^{-t}dt$ $=$ $\frac{1}{2}\{(i_{0}-i1)+\sum_{k=1}^{\infty}(ik-1-2ik+ik+1)(\frac{z-1}{z+1})^{k}\}$ (69), t $f^{\infty}(t-1\backslash ^{k}$ $I_{k}= \int_{0}^{\infty}(\frac{t-1}{t+1})^{n}e^{-t}dt$ (610)

16 119, (610) (25) $J_{0}= \frac{1}{2}(i_{0^{-}}i_{1}),$ $J_{k}= \frac{1}{2}(i_{k-1}-2i_{k}+i_{k+1})$ (611) $F(z)= \sum_{k=0}^{\infty}j_{k}(\frac{z-1}{z+1})\text{ }$ (612),, 2 (24) 7 3 (31), $z= \phi_{m}(w_{m})=(\frac{1+w_{m}}{1-w_{m}})^{m}$, $w_{m}= \frac{\sqrt[m]{z}-1}{\sqrt[m]{z}+1}$ $m>1$ (71), $m$, [5], [3], [1],, No 373 (1979) [2] M Mori, Analytic representations suitable for numerical computation of some special functions, Numer Math 35 (1980) [3],, modular, No 717 (1990) [4],, Taylor, No172 (1973) [5],, No 253 (1975) $=-$ [6],,, No 382 (1980) [7] H Takahasi and M Mori, Analytic continuation of some special functions by variable transformation, Japan J Appl Math 1 (1984)

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1 1040 1998 143-153 143 (Masatake MORI) 1 $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}$ (11) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1+x)3/4}$ 1974 [31 8 10 11] $I= \int_{a}^{b}f(\mathcal{i})d_{x}$

More information

42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{

42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{ 26 [\copyright 0 $\perp$ $\perp$ 1064 1998 41-62 41 REJECT}$ $=\underline{\not\equiv!}\xi*$ $\iota_{arrow}^{-}\approx 1,$ $\ovalbox{\tt\small ffl $\mathrm{y}

More information

$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu)

$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu) $\mathrm{s}$ 1265 2002 209-219 209 DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ) (Jinghui Zhu) 1 Iiitroductioii (Xiamen Univ) $c$ (Fig 1) Levi-Civita

More information

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m} 1209 2001 223-232 223 (Kazuo Iida) (Youichi Murakami) 1 ( ) ( ) ( ) (Taylor $)$ [1] $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}\mathrm{m}$ $02\mathrm{m}\mathrm{m}$ Whitehead and Luther[3] $\mathrm{a}1[2]$

More information

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math $\mathrm{r}\mathrm{m}\mathrm{s}$ 1226 2001 76-85 76 1 (Mamoru Tanahashi) (Shiki Iwase) (Toru Ymagawa) (Toshio Miyauchi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology

More information

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2 1539 2007 109-119 109 DDS (Drug Deltvery System) (Osamu Sano) $\mathrm{r}^{\mathrm{a}_{w^{1}}}$ $\mathrm{i}\mathrm{h}$ 1* ] $\dot{n}$ $\mathrm{a}g\mathrm{i}$ Td (Yisaku Nag$) JST CREST 1 ( ) DDS ($\mathrm{m}_{\mathrm{u}\mathrm{g}}\propto

More information

Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原, 正顯 Citation 数理解析研究所講究録 (1997), 990: Issue Date URL

Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原, 正顯 Citation 数理解析研究所講究録 (1997), 990: Issue Date URL Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原 正顯 Citation 数理解析研究所講究録 (1997) 990 125-134 Issue Date 1997-04 URL http//hdlhandlenet/2433/61094 Right Type Departmental Bulletin Paper

More information

$\mathbb{h}_{1}^{3}(-c^{2})$ 12 $([\mathrm{a}\mathrm{a}1 [\mathrm{a}\mathrm{a}3])$ CMC Kenmotsu-Bryant CMC $\mathrm{l}^{3}$ Minkowski $H(\neq 0)$ Kenm

$\mathbb{h}_{1}^{3}(-c^{2})$ 12 $([\mathrm{a}\mathrm{a}1 [\mathrm{a}\mathrm{a}3])$ CMC Kenmotsu-Bryant CMC $\mathrm{l}^{3}$ Minkowski $H(\neq 0)$ Kenm 995 1997 11-27 11 3 3 Euclid (Reiko Aiyama) (Kazuo Akutagawa) (CMC) $H$ ( ) $H=0$ ( ) Weierstrass $g$ 1 $H\neq 0$ Kenmotsu $([\mathrm{k}])$ $\mathrm{s}^{2}$ 2 $g$ CMC $P$ $([\mathrm{b}])$ $g$ Gauss Bryant

More information

IV.dvi

IV.dvi IV 1 IV ] shib@mth.hiroshim-u.c.jp [] 1. z 0 ε δ := ε z 0 z

More information

RIMS98R2.dvi

RIMS98R2.dvi RIMS Kokyuroku, vol.084, (999), 45 59. Euler Fourier Euler Fourier S = ( ) n f(n) = e in f(n) (.) I = 0 e ix f(x) dx (.2) Euler Fourier Fourier Euler Euler Fourier Euler Euler Fourier Fourier [5], [6]

More information

Title DEA ゲームの凸性 ( 数理最適化から見た 凸性の深み, 非凸性の魅惑 ) Author(s) 中林, 健 ; 刀根, 薫 Citation 数理解析研究所講究録 (2004), 1349: Issue Date URL

Title DEA ゲームの凸性 ( 数理最適化から見た 凸性の深み, 非凸性の魅惑 ) Author(s) 中林, 健 ; 刀根, 薫 Citation 数理解析研究所講究録 (2004), 1349: Issue Date URL Title DEA ゲームの凸性 ( 数理最適化から見た 凸性の深み 非凸性の魅惑 ) Author(s) 中林 健 ; 刀根 薫 Citation 数理解析研究所講究録 (2004) 1349: 204-220 Issue Date 2004-01 URL http://hdl.handle.net/2433/24871 Right Type Departmental Bulletin Paper

More information

$\prime i$ (Tetsuya Sakurai) (Tatsuo Torii) (Hiroshi Sugiura) 1 n f(z)=0, n, Durand-Kerner $1)_{(2}$ ), Aberth $2)_{(3}$ ) f(z)=o l, New

$\prime i$ (Tetsuya Sakurai) (Tatsuo Torii) (Hiroshi Sugiura) 1 n f(z)=0, n, Durand-Kerner $1)_{(2}$ ), Aberth $2)_{(3}$ ) f(z)=o l, New Title 高次収束する代数方程式の全根同時反復解法 ( 数値解析と科学計算 ) Author(s) 櫻井, 鉄也 ; 鳥居, 達生 ; 杉浦, 洋 Citation 数理解析研究所講究録 (1990), 717: 1-14 Issue Date 1990-03 URL http://hdlhandlenet/2433/101779 Right Type Departmental Bulletin

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL

Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: 33-40 Issue Date 2004-01 URL http://hdlhandlenet/2433/64973 Right Type Departmental Bulletin Paper Textversion

More information

第86回日本感染症学会総会学術集会後抄録(II)

第86回日本感染症学会総会学術集会後抄録(II) χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

概況

概況 2 4 6 2 2 2 3 2 4 22 5 23 27 34 37 44 45 46 2 78.67 85.77 2.6. 7. 2 2, 65 85,464 93,8 65 85.5 93.2 8 56.2 77.9 2 8.87 88.8 3 () 65 3 6 2 2 2 2 2 22 3 2 2 2 2 2 2 2 2 28.58 28.74 29.9 8.8 8.84 2.63 65 28.3

More information

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 ( 3 3. D f(z) D D D D D D D D f(z) D f (z) f (z) f(z) D (i) (ii) (iii) f(z) = ( ) n z n = z + z 2 z 3 + n= z < z < z > f (z) = e t(+z) dt Re z> Re z> [ ] f (z) = e t(+z) = (Rez> ) +z +z t= z < f(z) Taylor

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

$2_{\text{ }}$ weight Duke-Imamogle weight Saito-Kurokawa lifting ( ) weight $2k-2$ ( : ) Siegel $k$ $k$ Hecke compatible liftin

$2_{\text{ }}$ weight Duke-Imamogle weight Saito-Kurokawa lifting ( ) weight $2k-2$ ( : ) Siegel $k$ $k$ Hecke compatible liftin $2_{\text{ }}$ weight 1103 1999 187-199 187 Duke-Imamogle weight Saito-Kurokawa lifting ( ) weight $2k-2$ ( : ) Siegel $k$ $k$ Hecke compatible lifting $([\mathrm{k}\mathrm{u}])$ 1980 Maass [Ma2], Andrianov

More information

Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S

Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S Title 初期和算にみる Archimedean Spiral について ( 数学究 ) Author(s) 小林, 龍彦 Citation 数理解析研究所講究録 (2000), 1130: 220-228 Issue Date 2000-02 URL http://hdl.handle.net/2433/63667 Right Type Departmental Bulletin Paper Textversion

More information

(Kohji Matsumoto) 1 [18] 1999, $- \mathrm{b}^{\backslash }$ $\zeta(s, \alpha)$ Hurwitz, $\Re s>1$ $\Sigma_{n=0}^{\infty}(\alpha+

(Kohji Matsumoto) 1 [18] 1999, $- \mathrm{b}^{\backslash }$ $\zeta(s, \alpha)$ Hurwitz, $\Re s>1$ $\Sigma_{n=0}^{\infty}(\alpha+ 1160 2000 259-270 259 (Kohji Matsumoto) 1 [18] 1999 $- \mathrm{b}^{\backslash }$ $\zeta(s \alpha)$ Hurwitz $\Re s>1$ $\Sigma_{n=0}^{\infty}(\alpha+n)^{-S}$ $\zeta_{1}(s \alpha)=\zeta(s \alpha)-\alpha^{-}s$

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

$\mathrm{d}\mathrm{p}$ (Katsuhisa $\mathrm{o}\mathrm{m}\mathrm{o}$) Aichi Institute of Technology (Takahiro Ito) Nagoya Institute of Te

$\mathrm{d}\mathrm{p}$ (Katsuhisa $\mathrm{o}\mathrm{m}\mathrm{o}$) Aichi Institute of Technology (Takahiro Ito) Nagoya Institute of Te Title ニューロ DP による多品目在庫管理の最適化 ( 不確実で動的なシステムへの最適化理論とその展開 ) Author(s) 大野 勝久 ; 伊藤 崇博 ; 石垣 智徳 ; 渡辺 誠 Citation 数理解析研究所講究録 (24) 383: 64-7 Issue Date 24-7 URL http://hdlhandlenet/2433/2575 Right Type Departmental

More information

Design of highly accurate formulas for numerical integration in weighted Hardy spaces with the aid of potential theory 1 Ken ichiro Tanaka 1 Ω R m F I = F (t) dt (1.1) Ω m m 1 m = 1 1 Newton-Cotes Gauss

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45 ro 980 1997 44-55 44 $\mathrm{i}\mathrm{c}\mathrm{h}\mathrm{i}$ $-$ (Ko Ma $\iota_{\mathrm{s}\mathrm{u}\mathrm{n}}0$ ) $-$. $-$ $-$ $-$ $-$ $-$ $-$ 40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45 46 $-$. $\backslash

More information

MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar

MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar 1413 2005 36-44 36 MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennard-Jones [2] % 1 ( ) *yukawa@ap.t.u-tokyo.ac.jp ( )

More information

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle Method) 974 1996 43-54 43 Optimization Algorithm by Use of Fuzzy Average and its Application to Flow Control Hiroshi Suito and Hideo Kawarada 1 (Steepest Descent Method) ( $\text{ }$ $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}_{0}\mathrm{d}$

More information

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) + I..... z 2 x, y z = x + iy (i ). 2 (x, y). 2.,,.,,. (), ( 2 ),,. II ( ).. z, w = f(z). z f(z), w. z = x + iy, f(z) 2 x, y. f(z) u(x, y), v(x, y), w = f(x + iy) = u(x, y) + iv(x, y).,. 2. z z, w w. D, D.

More information

L \ L annotation / / / ; / ; / ;.../ ;../ ; / ;dash/ ;hyphen/ ; / ; / ; / ; / ; / ; ;degree/ ;minute/ ;second/ ;cent/ ;pond/ ;ss/ ;paragraph/ ;dagger/

L \ L annotation / / / ; / ; / ;.../ ;../ ; / ;dash/ ;hyphen/ ; / ; / ; / ; / ; / ; ;degree/ ;minute/ ;second/ ;cent/ ;pond/ ;ss/ ;paragraph/ ;dagger/ L \ L annotation / / / ; /; /;.../;../ ; /;dash/ ;hyphen/ ; / ; / ; / ; / ; / ; ;degree/ ;minute/ ;second/ ;cent/;pond/ ;ss/ ;paragraph/ ;dagger/ ;ddagger/ ;angstrom/;permil/ ; cyrillic/ ;sharp/ ;flat/

More information

Title Compactification theorems in dimens Topology and Related Problems) Author(s) 木村, 孝 Citation 数理解析研究所講究録 (1996), 953: Issue Date URL

Title Compactification theorems in dimens Topology and Related Problems) Author(s) 木村, 孝 Citation 数理解析研究所講究録 (1996), 953: Issue Date URL Title Compactification theorems in dimens Topology and Related Problems Authors 木村 孝 Citation 数理解析研究所講究録 1996 953 73-92 Issue Date 1996-06 URL http//hdlhandlenet/2433/60394 Right Type Departmental Bulletin

More information

Tips KENZOU PC no problem 2 1 w = f(z) z 1 w w z w = (z z 0 ) b b w = log (z z 0 ) z = z 0 2π 2 z = z 0 w = z 1/2 z = re iθ θ (z = 0) 0 2π 0

Tips KENZOU PC no problem 2 1 w = f(z) z 1 w w z w = (z z 0 ) b b w = log (z z 0 ) z = z 0 2π 2 z = z 0 w = z 1/2 z = re iθ θ (z = 0) 0 2π 0 Tips KENZOU 28 7 6 P no problem 2 w = f(z) z w w z w = (z z ) b b w = log (z z ) z = z 2π 2 z = z w = z /2 z = re iθ θ (z = ) 2π 4π 2 θ θ 2π 4π z r re iθ re i2π = r re i4π = r w r re iθ/2 re iπ = r re

More information

cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1

cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1 1398 2004 137-148 137 cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1 W. Kohnen } $SL_{2}(\mathbb{Z})$ 1 1 2 1 1 1 \sigma

More information

Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539: Issue Date URL

Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539: Issue Date URL Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539 43-50 Issue Date 2007-02 URL http//hdlhandlenet/2433/59070 Right Type Departmental

More information

$\overline{\circ\lambda_{\vec{a},q}^{\lambda}}f$ $\mathrm{o}$ (Gauge Tetsuo Tsuchida 1. $\text{ }..\cdot$ $\Omega\subset \mathrm{r}^

$\overline{\circ\lambda_{\vec{a},q}^{\lambda}}f$ $\mathrm{o}$ (Gauge Tetsuo Tsuchida 1. $\text{ }..\cdot$ $\Omega\subset \mathrm{r}^ $\overle{\circ\lambda_{\vec{a}q}^{\lambda}}f$ $\mathrm{o}$ (Gauge 994 1997 15-31 15 Tetsuo Tsuchida 1 $\text{ }\cdot$ $\Omega\subset \mathrm{r}^{3}$ \Omega Dirac $L_{\vec{a}q}=L_{0}+(-\alpha\vec{a}(X)+q(_{X}))=\alpha

More information

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z Tips KENZOU 28 6 29 sin 2 x + cos 2 x = cos 2 z + sin 2 z = OK... z < z z < R w = f(z) z z w w f(z) w lim z z f(z) = w x x 2 2 f(x) x = a lim f(x) = lim f(x) x a+ x a z z x = y = /x lim y = + x + lim y

More information

$\mathrm{n}$ Interpolation solves open questions in discrete integrable system (Kinji Kimura) Graduate School of Science and Tec

$\mathrm{n}$ Interpolation solves open questions in discrete integrable system (Kinji Kimura) Graduate School of Science and Tec $\mathrm{n}$ 1381 2004 168-181 190 Interpolation solves open questions in discrete integrable system (Kinji Kimura) Graduate School of Science and Technology Kobe University 1 Introduction 2 (i) (ii) (i)

More information

162 $\cdots$ 2, 3, 5, 7, 11, 13, ( deterministic ) $\mathbb{r}$ ( -1 3 ) ( ) $\text{ }$ ( ). straightforward ( ) $p$ version ( ) - 2 $\mathrm{n}$ $\om

162 $\cdots$ 2, 3, 5, 7, 11, 13, ( deterministic ) $\mathbb{r}$ ( -1 3 ) ( ) $\text{ }$ ( ). straightforward ( ) $p$ version ( ) - 2 $\mathrm{n}$ $\om 1256 2002 161-171 161 $L$ (Hirofumi Nagoshi) Research Institute for Mathematical Sciences, Kyoto Univ. 1. $L$ ( ) 2. ( 0 1 ) $X_{1},$ $X_{2},$ $X_{3},$ $\cdots$ $n^{-1/2}(x_{1}+$ $X_{2}+\cdots+X_{n})$

More information

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$ 1075 1999 127-142 127 (Shintaro Yamashita) 7 (Takashi Watanabe) $\mathrm{n}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{m}\mathrm{u}\mathrm{f}\mathrm{a}\rangle$ (Ikuo 1 1 $90^{\mathrm{o}}$ ( 1 ) ( / \rangle (

More information

Wolfram Alpha と数学教育 (数式処理と教育)

Wolfram Alpha と数学教育 (数式処理と教育) 1735 2011 107-114 107 Wolfram Alpha (Shinya Oohashi) Chiba prefectural Funabashi-Asahi Highschool 2009 Mathematica Wolfram Research Wolfram Alpha Web Wolfram Alpha 1 PC Web Web 2009 Wolfram Alpha 2 Wolfram

More information

( $?^{-\mathrm{b}}$ 17 ( C 152) km ( ) 14 ( ) 5 ( ) $(?^{-}219)$ $\mathrm{m}$ 247 ( ) 6 1 5km

( $?^{-\mathrm{b}}$ 17 ( C 152) km ( ) 14 ( ) 5 ( ) $(?^{-}219)$ $\mathrm{m}$ 247 ( ) 6 1 5km 1257 2002 150-162 150 Abstract When was the Suanshushu edited? * JOCHI Shigeru The oldest mathematical book in China whose name is the Suanshushu was unearthed in the Zhangjiashan ruins, Jiangsha City,

More information

330

330 330 331 332 333 334 t t P 335 t R t t i R +(P P ) P =i t P = R + P 1+i t 336 uc R=uc P 337 338 339 340 341 342 343 π π β τ τ (1+π ) (1 βτ )(1 τ ) (1+π ) (1 βτ ) (1 τ ) (1+π ) (1 τ ) (1 τ ) 344 (1 βτ )(1

More information

複数の $\delta$ 関数を初期データに持つ非線形シュレー Titleディンガー方程式について ( スペクトル 散乱理論とその周辺 ) Author(s) 北, 直泰 Citation 数理解析研究所講究録 (2006), 1479: Issue Date URL

複数の $\delta$ 関数を初期データに持つ非線形シュレー Titleディンガー方程式について ( スペクトル 散乱理論とその周辺 ) Author(s) 北, 直泰 Citation 数理解析研究所講究録 (2006), 1479: Issue Date URL 複数の $\delta$ 関数を初期データに持つ非線形シュレー Titleディンガー方程式について ( スペクトル 散乱理論とその周辺 ) Author(s) 北 直泰 Citation 数理解析研究所講究録 (2006) 1479: 142-161 Issue Date 2006-04 URL http://hdlhandlenet/2433/58020 Right Type Departmental

More information

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α 2 2.1. : : 2 : ( ): : ( ): : : : ( ) ( ) ( ) : ( pp.53 6 2.3 2.4 ) : 2.2. ( ). i X i (i = 1, 2,..., n) X 1, X 2,..., X n X i (X 1, X 2,..., X n ) ( ) n (x 1, x 2,..., x n ) (X 1, X 2,..., X n ) : X 1,

More information

REJECT}$ 11^{\cdot}\mathrm{v}\mathrm{e}$ virtual turning point II - - new Stokes curve - (Shunsuke SASAKI) RIMS Kyoto University 1

REJECT}$ 11^{\cdot}\mathrm{v}\mathrm{e}$ virtual turning point II - - new Stokes curve - (Shunsuke SASAKI) RIMS Kyoto University 1 高階線型常微分方程式の変形におけるvirtual turning Titlepointの役割について (II) : 野海 - 山田方程式系のnew S curveについて ( 線型微分方程式の変形と仮想的変わり点 ) Author(s) 佐々木 俊介 Citation 数理解析研究所講究録 (2005) 1433: 65-109 Issue Date 2005-05 URL http://hdlhandlenet/2433/47420

More information

$\mathrm{v}$ ( )* $*1$ $\ovalbox{\tt\small REJECT}*2$ \searrow $\mathrm{b}$ $*3$ $*4$ ( ) [1] $*5$ $\mathrm{a}\mathrm{c}

$\mathrm{v}$ ( )* $*1$ $\ovalbox{\tt\small REJECT}*2$ \searrow $\mathrm{b}$ $*3$ $*4$ ( ) [1] $*5$ $\mathrm{a}\mathrm{c} Title 狩野本 綴術算経 について ( 数学史の研究 ) Author(s) 小川 束 Citation 数理解析研究所講究録 (2004) 1392: 60-68 Issue Date 2004-09 URL http://hdlhandlenet/2433/25859 Right Type Departmental Bulletin Paper Textversion publisher Kyoto

More information

A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原

A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原 A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原, 辰次 Citation 数理解析研究所講究録 (2004), 1395: 231-237 Issue

More information

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N $\mathbb{q}$ 1097 1999 69-81 69 $\mathrm{m}$ 2 $\mathrm{o}\mathrm{d}\mathfrak{p}$ ray class field 2 (Fuminori Kawamoto) 1 INTRODUCTION $F$ $F$ $K/F$ Galois $G:=Ga\iota(K/F)$ Galois $\alpha\in \mathit{0}_{k}$

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

5 / / $\mathrm{p}$ $\mathrm{r}$ 8 7 double 4 22 / [10][14][15] 23 P double 1 $\mathrm{m}\mathrm{p}\mathrm{f}\mathrm{u}\mathrm{n}/\mathrm{a

5 / / $\mathrm{p}$ $\mathrm{r}$ 8 7 double 4 22 / [10][14][15] 23 P double 1 $\mathrm{m}\mathrm{p}\mathrm{f}\mathrm{u}\mathrm{n}/\mathrm{a double $\mathrm{j}\mathrm{s}\mathrm{t}$ $\mathrm{q}$ 1505 2006 1-13 1 / (Kinji Kimura) Japan Science and Technology Agency Faculty of Science Rikkyo University 1 / / 6 1 2 3 4 5 Kronecker 6 2 21 $\mathrm{p}$

More information

121 $($ 3 exact scienoe \S ( evolution model (\S \infty \infty \infty $\infty$ \S : (\alpha Platon Euclid ( 2 (\beta 3 ( \S $(\beta$ ( 2 ( Era

121 $($ 3 exact scienoe \S ( evolution model (\S \infty \infty \infty $\infty$ \S : (\alpha Platon Euclid ( 2 (\beta 3 ( \S $(\beta$ ( 2 ( Era 1019 1997 120-132 120 \copyright Copyright by Hisaaki YOSHIZAWA 1997 50 1 ( ( 1997 5 2 ( $=$ ( $=$ ( Kurt von Fritz [l] ( 121 $($ 3 exact scienoe \S ( evolution model (\S \infty \infty \infty $\infty$

More information

$\sim 22$ *) 1 $(2R)_{\text{}}$ $(2r)_{\text{}}$ 1 1 $(a)$ $(S)_{\text{}}$ $(L)$ 1 ( ) ( 2:1712 ) 3 ( ) 1) 2 18 ( 13 :

$\sim 22$ *) 1 $(2R)_{\text{}}$ $(2r)_{\text{}}$ 1 1 $(a)$ $(S)_{\text{}}$ $(L)$ 1 ( ) ( 2:1712 ) 3 ( ) 1) 2 18 ( 13 : Title 角術への三角法の応用について ( 数学史の研究 ) Author(s) 小林, 龍彦 Citation 数理解析研究所講究録 (2001), 1195: 165-175 Issue Date 2001-04 URL http://hdl.handle.net/2433/64832 Right Type Departmental Bulletin Paper Textversion publisher

More information

73,, $Jensen[1968]$, CAPM, Ippolito[19891,,, $Carhart[1997]$, ,, 12 10, 4,,,, 10%, 4,,,, ( ) $Carhart[1997]$ 4,,,,, Kosowski,$Timmennan\iota_

73,, $Jensen[1968]$, CAPM, Ippolito[19891,,, $Carhart[1997]$, ,, 12 10, 4,,,, 10%, 4,,,, ( ) $Carhart[1997]$ 4,,,,, Kosowski,$Timmennan\iota_ 1580 2008 72-85 72 (Akira Kato), (Koichi Miyazaki) University of Electro-Communications, Department Systems Engineerings 1,,,,,,, 3, ( ),, 3, 2 ( ),,,,,,,,,,,,,,,,,,,,,, Jensen[1968] $Jensen[1968]$ 1945

More information

14 6. $P179$ 1984 r ( 2 $arrow$ $arrow$ F 7. $P181$ 2011 f ( 1 418[? [ 8. $P243$ ( $\cdot P260$ 2824 F ( 1 151? 10. $P292

14 6. $P179$ 1984 r ( 2 $arrow$ $arrow$ F 7. $P181$ 2011 f ( 1 418[? [ 8. $P243$ ( $\cdot P260$ 2824 F ( 1 151? 10. $P292 1130 2000 13-28 13 USJC (Yasukuni Shimoura I. [ ]. ( 56 1. 78 $0753$ [ ( 1 352[ 2. 78 $0754$ [ ( 1 348 3. 88 $0880$ F ( 3 422 4. 93 $0942$ 1 ( ( 1 5. $P121$ 1281 F ( 1 278 [ 14 6. $P179$ 1984 r ( 2 $arrow$

More information

4

4 4 5 6 7 + 8 = ++ 9 + + + + ++ 10 + + 11 12 WS LC VA L WS = LC VA = LC L L VA = LC L VA L 13 i LC VA WS WS = LC = VA LC VA VA = VA α WS α = VA VA i WS = LC VA i t t+1 14 WS = α WS + WS α WS = WS WS WS =

More information

a) \mathrm{e}.\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{i}$ -u.ac $\mathrm{f}$ 0$ (Yoshinobu Tamura) D

a) \mathrm{e}.\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{i}$ -u.ac $\mathrm{f}$ 0$ (Yoshinobu Tamura) D a) \mathrm{e}\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{i}$ -uac $\mathrm{f}$ 0$ 1373 2004 110-118 110 (Yoshinobu Tamura) Department of Information $\mathrm{y}$ (S geru (Mitsuhiro

More information

CIII CIII : October 4, 2013 Version : 1.1 A A441 Kawahira, Tomoki TA (Takahiro, Wakasa 3 )

CIII CIII : October 4, 2013 Version : 1.1 A A441 Kawahira, Tomoki TA (Takahiro, Wakasa 3 ) III203 00- III : October 4, 203 Version :. Kawahira, Tomoki TA (Takahiro, Wakasa 3 ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/3w-kansuron.html pdf 0 4 0 0 8 2 0 25 8 5 22 2 6 2 3 2 20 0 7 24 3

More information

$\text{ ^{ } }\dot{\text{ }}$ KATSUNORI ANO, NANZAN UNIVERSITY, DERA MDERA, MDERA 1, (, ERA(Earned Run Average) ),, ERA 1,,

$\text{ ^{ } }\dot{\text{ }}$ KATSUNORI ANO, NANZAN UNIVERSITY, DERA MDERA, MDERA 1, (, ERA(Earned Run Average) ),, ERA 1,, 併殺を考慮したマルコフ連鎖に基づく投手評価指標とそ Titleの 1997 年度日本プロ野球シーズンでの考察 ( 最適化のための連続と離散数理 ) Author(s) 穴太, 克則 Citation 数理解析研究所講究録 (1999), 1114: 114-125 Issue Date 1999-11 URL http://hdlhandlenet/2433/63391 Right Type Departmental

More information

数論的量子カオスと量子エルゴード性

数論的量子カオスと量子エルゴード性 $\lambda$ 1891 2014 1-18 1 (Shin-ya Koyama) ( (Toyo University))* 1. 1992 $\lambdaarrow\infty$ $u_{\lambda}$ 2 ( ) $($ 1900, $)$ $*$ $350-8585$ 2100 2 (1915 ) (1956 ) ( $)$ (1980 ) 3 $\lambda$ (1) : $GOE$

More information

Wolfram Alpha と CDF の教育活用 (数学ソフトウェアと教育 : 数学ソフトウェアの効果的利用に関する研究)

Wolfram Alpha と CDF の教育活用 (数学ソフトウェアと教育 : 数学ソフトウェアの効果的利用に関する研究) 1780 2012 119-129 119 Wolfram Alpha CDF (Shinya OHASHI) Chiba prefectural Funabashi-Keimei Highschool 1 RIMS Wolfram Alpha Wolfram Alpha Wolfram Alpha Wolfram Alpha CDF 2 Wolfram Alpha 21 Wolfram Alpha

More information

$w_{ij}^{\infty}(t)=\delta_{ij},$ $i\leq j,$ $w_{ij}^{0}(t)=0,$ $i>j$ $w_{ii}(t)\neq 0,$ $i=1,$ $\ldots,$ $n$ $W_{\infty}(t),$ $W_{0}(t)$ (14) $L(f)=W

$w_{ij}^{\infty}(t)=\delta_{ij},$ $i\leq j,$ $w_{ij}^{0}(t)=0,$ $i>j$ $w_{ii}(t)\neq 0,$ $i=1,$ $\ldots,$ $n$ $W_{\infty}(t),$ $W_{0}(t)$ (14) $L(f)=W , 2000 pp72-87 $\overline{n}b_{+}/b_{+}$ e-mail: ikeka@math scikumamoto-uacjp September 27, 2000 \S 1 Introduction $\#_{dt}^{1}d^{2}=\exp(q_{2}-q_{1})$ $arrow_{dt}^{d^{2}}2=\exp(q_{3}-q_{2})-\exp(q_{2}-q_{1})$

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川 正行 Citation 数理解析研究所講究録 (1993) 830: 244-253 Issue Date 1993-04 URL http://hdlhandlenet/2433/83338 Right Type Departmental Bulletin Paper

More information

MediaWiki for Kisorigaku

MediaWiki for Kisorigaku MediaWiki for Kisorigaku 22 10 1 1 Kisorigaku 5 1.1... 6... 6... 6 2 MediaWiki 7 2.1... 8... 8... 8... 8 2.2... 9... 9... 10... 10... 10..................................... 11 3 13 3.1... 14... 14...

More information

133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,,

133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,, 836 1993 132-146 132 Navier-Stokes Numerical Simulations for the Navier-Stokes Equations in Incompressible Viscous Fluid Flows (Nobuyoshi Tosaka) (Kazuhiko Kakuda) SUMMARY A coupling approach of the boundary

More information

確率論と統計学の資料

確率論と統計学の資料 5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................

More information

106 (2 ( (1 - ( (1 (2 (1 ( (1(2 (3 ( - 10 (2 - (4 ( 30 (? (5 ( 48 (3 (6 (

106 (2 ( (1 - ( (1 (2 (1 ( (1(2 (3 ( - 10 (2 - (4 ( 30 (? (5 ( 48 (3 (6 ( 1195 2001 105-115 105 Kinki Wasan Seminar Tatsuo Shimano, Yasukuni Shimoura, Saburo Tamura, Fumitada Hayama A 2 (1574 ( 8 7 17 8 (1622 ( 1 $(1648\text{ }$ - 77 ( 1572? (1 ( ( (1 ( (1680 1746 (6 $-$.. $\square

More information

(PML) Perfectly Matched Layer for Numerical Method in Unbounded Region ( ( M2) ) 1,.., $\mathrm{d}\mathrm{t}\mathrm{n}$,.,, Diri

(PML) Perfectly Matched Layer for Numerical Method in Unbounded Region ( ( M2) ) 1,.., $\mathrm{d}\mathrm{t}\mathrm{n}$,.,, Diri 1441 25 187-197 187 (PML) Perfectly Matched Layer for Numerical Method in Unbounded Region ( ( M2) ) 1 $\mathrm{d}\mathrm{t}\mathrm{n}$ Dirichlet Neumann Neumann Neumann (-1) ([6] [12] ) $\llcorner$ $\langle$

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

離散ラプラス作用素の反復力学系による蝶の翅紋様の実現とこれに基づく進化モデルの構成 (第7回生物数学の理論とその応用)

離散ラプラス作用素の反復力学系による蝶の翅紋様の実現とこれに基づく進化モデルの構成 (第7回生物数学の理論とその応用) 1751 2011 131-139 131 ( ) (B ) ( ) ( ) (1) (2) (3) (1) 4 (1) (2) (3) (2) $\ovalbox{\tt\small REJECT}$ (1) (2) (3) (3) D $N$ A 132 2 ([1]) 1 $0$ $F$ $f\in F$ $\Delta_{t\prime},f(p)=\sum_{\epsilon(\prime},(f(q)-f(p))$

More information

TitleRiemann 3 角級数論文について ( 数学史の研究 ) Author(s) 小柴, 洋一 Citation 数理解析研究所講究録 (2000), 1130: Issue Date URL

TitleRiemann 3 角級数論文について ( 数学史の研究 ) Author(s) 小柴, 洋一 Citation 数理解析研究所講究録 (2000), 1130: Issue Date URL TitleRiemann 3 角級数論文について ( 数学史の研究 ) Author(s) 小柴, 洋一 Citation 数理解析研究所講究録 (2000), 1130: 72-111 Issue Date 2000-02 URL http://hdl.handle.net/2433/63678 Right Type Departmental Bulletin Paper Textversion

More information

Connection problem for Birkhoff-Okubo equations (Yoshishige Haraoka) Department of Mathematics Kumamoto University 50. $\Lambda$ $n\c

Connection problem for Birkhoff-Okubo equations (Yoshishige Haraoka) Department of Mathematics Kumamoto University 50. $\Lambda$ $n\c Title Connection problem for Birkhoff-Oku systems and hypergeometric systems) Author(s) 原岡 喜重 Citation 数理解析研究所講究録 (2001) 1239: 1-10 Issue Date 2001-11 URL http://hdl.handle.net/2433/41585 Right Type Departmental

More information

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3 Title 異常磁気能率を伴うディラック方程式 ( 量子情報理論と開放系 ) Author(s) 小栗栖, 修 Citation 数理解析研究所講究録 (1997), 982: 41-51 Issue Date 1997-03 URL http://hdl.handle.net/2433/60922 Right Type Departmental Bulletin Paper Textversion

More information

一般演題(ポスター)

一般演題(ポスター) 6 5 13 : 00 14 : 00 A μ 13 : 00 14 : 00 A β β β 13 : 00 14 : 00 A 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A

More information

untitled

untitled Y = Y () x i c C = i + c = ( x ) x π (x) π ( x ) = Y ( ){1 + ( x )}( 1 x ) Y ( )(1 + C ) ( 1 x) x π ( x) = 0 = ( x ) R R R R Y = (Y ) CS () CS ( ) = Y ( ) 0 ( Y ) dy Y ( ) A() * S( π ), S( CS) S( π ) =

More information

On N-Fractional Calculus of the Function $((z-b)^2-c)^{\frac{1}{3}}$

On N-Fractional Calculus of the Function $((z-b)^2-c)^{\frac{1}{3}}$ 1878 2014 17-29 17 On N Fractional Calculus of the Function $((z-b)^{2}-c)^{\frac{1}{3}}$ Tsuyako Miyakoda Abstract We discuss the -fractional calculus $N$ of $f(z)=((z-b)^{2}-c)^{\xi}$. In order to do

More information

【知事入れ版】270804_鳥取県人口ビジョン素案

【知事入れ版】270804_鳥取県人口ビジョン素案 7 6 5 4 3 2 1 65 1564 14 192 193 194 195 196 197 198 199 2 21 22 23 24 1.65 1,4 1.6 1,2 1.55 1, 1.45 6 1.5 8 1.4 4 1.35 1.3 2 27 28 29 21 211 212 213 214 6 5 4 3 2 1 213 218 223 228 233 238 243 248 253

More information

$6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p (Kazuhiro Sakuma) Dept. of Math. and Phys., Kinki Univ.,. (,,.) \S 0. $C^{\infty

$6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p (Kazuhiro Sakuma) Dept. of Math. and Phys., Kinki Univ.,. (,,.) \S 0. $C^{\infty $6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p 1233 2001 111-121 111 (Kazuhiro Sakuma) Dept of Math and Phys Kinki Univ ( ) \S 0 $M^{n}$ $N^{p}$ $n$ $p$ $f$ $M^{n}arrow N^{p}$ $n

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 0 1 2 3 4 5 6 1964 1978 7 0.0015+0.013 8 1 π 2 2 2 1 2 2 ( r 1 + r3 ) + π ( r2 + r3 ) 2 = +1,2100 9 10 11 1.9m 3 0.64m 3 12 13 14 15 16 17 () 0.095% 0.019% 1.29% (0.348%) 0.024% 0.0048% 0.32% (0.0864%)

More information

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + 1.3 1.4. (pp.14-27) 1 1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + i2xy x = 1 y (1 + iy) 2 = 1

More information