Size: px
Start display at page:

Download ""

Transcription

1 1 n

2 n = n =

3 1 [1] (Supply Chain Management: SCM) SCM SCM ( ) [2] (Generalized Nash Equilibrium Problem: GNEP) GNEP [3] min x ν θ ν (x ν, x ν ) s.t. x ν X ν (x ν ) } (ν = 1,..., N) (1) N x R n x ν R n ν (ν = 1,..., N) ( x = (x 1,..., x N ) T n = ) N ν=1 n ν ν (ν = 1,..., N) x x ν 1

4 x ν x = (x ν, x ν ) θ ν ν X ν (x ν ) ν x ν GNEP [3] 1 n (n 2) ( ) ( ) D(> 0): h(> 0): l i (> 0): u i ( l i ): p i (> 0): c i (> 0): k i (> 0): K i (> 0): r i (l i r i u i ): λ i (0 λ i 1): ( ) ( ) 1 i (i = 1,..., n) i (i = 1,..., n) i (i = 1,..., n) 1 ( p 1 p 2 p n ) i (i = 1,..., n) 1 i (i = 1,..., n) 1 i (i = 1,..., n) 1 i (i = 1,..., n) ( ) i (i = 1,..., n) ( n i=1 λ i = 1) 2

5 1: 2: 1 0 i (i = 1,..., n) 1 Q i Q i = λ i D/r i 2 3 n r = (r 1,..., r n ) T λ = (λ 1,..., λ n ) T λ r 3.1 i Q i 0 I i I i = r iq 2 i 2D = λ2 i D 2r i 3

6 C(r, λ) C(r, λ) = n (p i λ i D + hi i ) = i=1 ( ) n p i λ i D + h λ2 i D = D 2r i i=1 ( ) n p i λ i + hλ2 i 2r i i=1 r C(λ) := C(r, λ) λ = (λ 1,..., λ n) T min λ s.t. ( ) n p i λ i + hλ2 i 2r i=1 i n λ i = 1 i=1 λ i 0 (i = 1,..., n) (2) (2) (2) Karush-Kuhn-Tucker (KKT ) λ L 0 (λ, v, w) = 0 (3) 0 w λ 0 (4) n 1 λ i = 0 (5) i=1 L 0 (λ, v, w) = n i=1 (p iλ i + hλ 2 i /2r i ) + v(1 n i=1 λ i) n i=1 w iλ i, w = (w 1,..., w n ) T a b ab = 0 (3), (4) w i = p i + hλ i r i v 0 (i = 1,..., n) λ i r i h (v p i) (i = 1,..., n) 4

7 (4) λ i ( λ i = max 0, r ) i h (v p i) (i = 1,..., n) f i (v) = max(0, r i (v p i )/h) (5) λ i n i=1 f i(v) = 1 v λ i = max(0, r i (v p i )/h) (i = 1,..., n) p 1 p 2 p n [4] λ = r 1 (v n p 1 ) h r 2 (v n p 2 ) ḥ. r n (v n p n ) h r 1 (v n 1 p 1 ) ḥ. r n 1 (v n 1 p n 1 ) h ( v n := ( n k=1 r k) 1 ( n k=1 r kp k + h) > p n ) (v n p n, v n 1 > p n 1 ) (v n p n, v n 1 p n 1,, v 2 p 2 ) (6) 0 λ i > 0 (i = 1,..., n) (6) λ = ( r1 h (v n p 1 ), r 2 h (v n p 2 ),..., r ) T n h (v n p n ) (7) v n = ( n k=1 r k) 1 ( n k=1 r kp k + h) λ i λ i = r i r 1 + r r n [ h ] n r j (p j p i ) j=1 5 (i = 1,..., n) (8)

8 i = 1,..., n r i l i > 0, λ i > 0 r n r j (p i p j ) h ε (i = 1,..., n) j=1 ε i (i = 1,..., n) Φ i (r, λ) (i = 1,..., n) Φ i (r, λ) = (p i c i k i ) λ i D r i K i (i = 1,..., n) (8) Φ i (r, λ) Φ i (r) Φ i (r) = (p [ i c i k i ) r i r 1 + r r n h ] n r j (p j p i ) D r i K i (i = 1,..., n) j=1 1. p i > c i + k i (i = 1,..., n) p i (i = 1,..., n) Φ i (r) (i = 1,..., n) Φ i (r) r i r = (r 1,..., r n) T max r i Φ i (r i, r i ) s.t. r S } (i = 1,..., n) (9) 6

9 { S = r } n j=1 r j (p i p j ) h ε, l i r i u i, i = 1,..., n r i r i S i S i r i S i (r i ) r S r i S i (r i ) (i = 1,..., n) (9) min r i Φ i (r i, r i ) s.t. r i S i (r i ) } (i = 1,..., n) (10) 1 GNEP(1) (x ν N θ X ν r i n Φ S i ) S i (10) GNEP (10) p 1 p 2 p n S n n j=1 r j (p i p j ) h ε (i = 1,..., n) 1 n j=1 r j (p n p j ) h ε S S = { r } n r j (p n p j ) h ε, l i r i u i, i = 1,..., n j=1 g(r) = n j=1 r j(p n p j ) (h ε) (10) min r i Φ i (r i, r i ) s.t. g(r i, r i ) 0 r i u i 0 l i r i 0 (i = 1,..., n) (11) (11) KKT 7

10 ri L i (r, µ i, α i, β i ) = 0 0 µ i g(r) 0 0 α i u i r i 0 0 β i r i l i 0 (i = 1,..., n) (12) L i (r, µ i, α i, β i ) = Φ i (r) + µ i g(r) + α i (r i u i ) + β i (l i r i ) (i = 1,..., n) L (r, µ, α, β) = ( r1 L 1 (r, µ 1, α 1, β 1 ),..., rn L n (r, µ n, α n, β n )) T µ = (µ 1,..., µ n ) T g(r) = (g(r),..., g(r)) T α = (α 1,..., α n ) T, β = (β 1,..., β n ) T, u = (u 1,..., u n ) T, l = (l 1,..., l n ) T n KKT (12) L (r, µ, α, β) = 0 0 µ g(r) 0 0 α u r 0 0 β r l 0 (13) GNEP KKT r r GNEP(10) r GNEP KKT (13) ( µ, α, β ) i (11) (r, µ, α, β) GNEP KKT (13) r GNEP(10) 1. r GNEP(10) r GNEP KKT (13) ( µ, α, β ) (Variational Inequality:VI) find r S such that (s r) T ( ri Φ i (r)) n i=1 0, s S (14) ( ri Φ i (r)) n i=1 S (14) KKT [5] 8

11 ( ri Φ i (r)) n i=1 + µ ( r i g(r)) n i=1 + (α i) n i=1 (β i) n i=1 = 0 0 µ g(r) 0 0 α i u i r i 0 (i = 1,..., n) 0 β i r i l i 0 (i = 1,..., n) (15) r VI(14) r VI KKT (15) ( µ, α 1,..., α n, β 1,..., β n ) r (r, µ, α 1,..., α n, β 1,..., β n ) VI KKT (15) r VI(14) 2. r VI(14) r VI KKT (15) ( µ, α 1,..., α n, β 1,..., β n ) 2. GNEP KKT (13) VI KKT (15) µ = µ 1 = µ 2 = = µ n 2 GNEP KKT (13) GNEP(10) r ( µ, α, β ) r ( µ, α 1,..., α n, β 1,..., β n ) VI KKT (15) VI(14) VI KKT (15) VI(14) r ( µ, α 1,..., α n, β 1,..., β n ) 2 r ( µ, α, β ) GNEP KKT (13) GNEP(10) [6] [7] 3. VI KKT (15) VI(14) 2 GNEP KKT (13) GNEP(10) 3 VI KKT (15) VI(14) GNEP(10) VI [5] r i (i = 1,..., n) (8) λ i (i = 1,..., n) 9

12 3.2.3 VI(14) VI(14) ( ri Φ i (r)) n i=1 VI(14) [8] F (r) F (r) r [8] A A + A T [9] 4. VI(14) A := ( ri Φ i (r)) n i=1 A + A T A A = 2 Φ 1 (r) r1 2 2 Φ 2 (r) r 1 r 2. 2 Φ n (r) r 1 r n 2 Φ 1 (r) 2 Φ 1 (r) r 1 r 2 r 1 r n 2 Φ 2 (r) 2 Φ 2 (r) r2 2 r 2 r n Φ n (r) 2 Φ n (r) r 2 r n rn 2 a ii := 2 Φ i (r) r 2 i a ij := 2 Φ i (r) r i r j = 2a id R 3 = a id R 3 [ ] n r k (p k p i ) (R r i ) (i = 1,..., n) h k=1 [ { n }] r k (p k p i ) r j (p j p i ) (2r i R) h k=1 a i(p j p i )D hr 3 (2r i r j + R 2 r j R) (i = 1,..., n, j = 1,..., n, j i) a i = p i c i k i (i = 1,..., n), R = n k=1 r k A + A T 10

13 A + A T = 2a 11 a 12 + a 21 a 1n + a n1 a 12 + a 21 2a 22 a 2n + a n a 1n + a n1 a 2n + a n2 2a nn 4 2 A + A T 2a ii > j i a ii > 0 (i = 1,..., n) (16) a ij + a ji (i = 1,..., n) (17) Φ i (r) 1 (16) (17) n < 4, p 1 = p 2 = = p n, c 1 + k 1 = c 2 + k 2 = = c n + k n 4 VI KKT (15) r 4.1 VI KKT (15) r VI KKT (15) 0 µ g(r) 0 0 α i u i r i 0 (i = 1,..., n) 0 β i r i l i 0 (i = 1,..., n) (18) Fischer-Burmeister (FB )ϕ(a, b) = a + b a 2 + b 2 FB ϕ(a, b) = 0 a 0, b 0, ab = 0 11

14 (18) ϕ(µ, g(r)) = 0 ϕ(α i, u i r i ) = 0 (i = 1,..., n) ϕ(β i, r i l i ) = 0 (i = 1,..., n) x = (r, µ, α 1,..., α n, β 1,..., β n ) T Ψ i (x) = ri Φ i (r) + µ ri g(r) + α i β i (i = 1,..., n) ϕ(µ, g(r)) (i = n + 1) ϕ(α j, u j r j ) (i = n + j + 1, j = 1,..., n) ϕ(β j, r j l j ) (i = 2n + j + 1, j = 1,..., n) VI KKT (15) Ψ(x) = Ψ 1 (x) Ψ 2 (x). Ψ 3n+1 (x) = 0 (19) θ FB (x) = Ψ(x) T Ψ(x) (19) (19) min θ FB (x) (20) 4.2 n = 2, 3 CPU Intel(R)Core(TM)2Quad 2.83GHz 4GB (20) MATLAB lsqnonlin 12

15 4.2.1 n = 2 n = 2 5 D = 1.0, h = 1.0, ε = : c 1 = c 2 = 0.3, k 1 = k 2 = 0.1, K 1 = K 2 = 0.2, l 1 = l 2 = 0.1, u 1 = u 2 = 2.0 p 1 = 1.0 p 2 1.0, 1.25, 1.5, 1.75, : p 1 = p 2 = 1.0, K 1 = K 2 = 0.2, l 1 = l 2 = 0.1, u 1 = u 2 = 2.0 c 1 + k 1 = 0.4 c 2 + k 2 0.4, 0.6, : p 1 = p 2 = 1.0, c 1 = c 2 = 0.3, k 1 = k 2 = 0.1, l 1 = l 2 = 0.1, u 1 = u 2 = 2.0 K 1 = 0.2 K 2 0.2, 0.4, : c 1 = c 2 = 0.3, k 1 = k 2 = 0.1, K 1 = K 2 = 0.2, l 1 = l 2 = 0.6, u 1 = u 2 = 2.0 p 1 = 1.0 p 2 1.0, 1.25, 1.5, 1.75, : c 1 = c 2 = 0.3, k 1 = k 2 = 0.1, K 1 = K 2 = 0.2, l 1 = l 2 = 0.1, u 1 = u 2 = 0.9 p 1 = 1.0 p 2 1.0, 1.25, 1.5, 1.75, : 1.1 (p 1, p 2 ) (1.0, 1.0) (1.0, 1.25) (1.0, 1.5) (1.0, 1.75) (1.0, 2.0) r r λ λ

16 2: 1.2 (c 1 +k 1,c 2 +k 2 ) (0.4, 0.4) (0.4, 0.6) (0.4, 0.8) r r λ λ : 1.3 (K 1,K 2 ) (0.2, 0.2) (0.2, 0.4) (0.2, 0.6) r r λ λ : 1.4 (p 1, p 2 ) (1.0, 1.0) (1.0, 1.25) (1.0, 1.5) (1.0, 1.75) (1.0, 2.0) r r λ λ : 1.5 (p 1, p 2 ) (1.0, 1.0) (1.0, 1.25) (1.0, 1.5) (1.0, 1.75) (1.0, 2.0) r r λ λ

17 1 2 r λ λ 1 2 λ 2 r (p 1, p 2 ) = (1.0, 1.25) (p 1, p 2 ) = (1.0, 1.0) 1 r1, 2 r2 (p 1, p 2 ) = (1.0, 1.5) (p 1, p 2 ) = (1.0, 1.25) 1 r1 2 r2 (p 1, p 2 ) = (1.0, 1.75), (1.0, 2.0) (p 1, p 2 ) = (1.0, 1.5) 1 r1, 2 r2 1.2, λ 1 2 λ 2 r 1 r1, 2 r2 1.4, λ 1 2 λ 2 r (p 1, p 2 ) = (1.0, 1.75), (1.0, 2.0) 2 r2 1.5 (p 1, p 2 ) = (1.0, 1.25), (1.0, 1.5), (1.0, 1.75) 1 r r r1 1 r r2 4.1 p 1 = p 2, c 1 + k 1 = c 2 + k n = 3 n = 3 4 n = 2 D = 1.0, h = 1.0, ε =

18 2.1: c 1 = c 2 = c 3 = 0.3, k 1 = k 2 = k 3 = 0.1, K 1 = K 2 = K 3 = 0.2, l 1 = l 2 = l 3 = 0.1, u 1 = u 2 = u 3 = 2.0 p 1 = 1.0 (p 2, p 3 ) (1.0, 1.0), (1.1, 1.2), (1.1, 1.3), (1.2, 1.4) 2.2: p 1 = p 2 = p 3 = 1.0, K 1 = K 2 = K 3 = 0.2, l 1 = l 2 = l 3 = 0.1, u 1 = u 2 = u 3 = 2.0 c 1 + k 1 = 0.4 (c 2 + k 2, c 3 + k 3 ) (0.4, 0.4), (0.5, 0.6), (0.6, 0.8) 2.3: p 1 = p 2 = p 3 = 1.0, c 1 = c 2 = c 3 = 0.3, k 1 = k 2 = k 3 = 0.1, l 1 = l 2 = l 3 = 0.1, u 1 = u 2 = u 3 = 2.0 K 1 = 0.2 (K 2, K 3 ) (0.2, 0.2), (0.25, 0.3), (0.3, 0.4) 2.4: c 1 = c 2 = c 3 = 0.3, k 1 = k 2 = k 3 = 0.1, K 1 = K 2 = K 3 = 0.2, l 1 = l 2 = l 3 = 0.6, u 1 = u 2 = u 3 = 0.9 p 1 = 1.0 (p 2, p 3 ) (1.0, 1.0), (1.1, 1.2), (1.1, 1.3), (1.2, 1.4) 6 9 6: 2.1 (p 1, p 2, p 3 ) (1.0, 1.0, 1.0) (1.0, 1.1, 1.2) (1.0, 1.1, 1.3) (1.0, 1.2, 1.4) r r r λ λ λ

19 7: 2.2 (c 1 +k 1,c 2 +k 2,c 3 +k 3 ) (0.4, 0.4, 0.4) (0.4, 0.5, 0.6) (0.4, 0.6, 0.8) r r r λ λ λ : 2.3 (K 1, K 2, K 3 ) (0.2, 0.2, 0.2) (0.2, 0.25, 0.3) (0.2, 0.3, 0.4) r r r λ λ λ : 2.4 (p 1, p 2, p 3 ) (1.0, 1.0, 1.0) (1.0, 1.1, 1.2) (1.0, 1.1, 1.3) (1.0, 1.2, 1.4) r r r λ λ λ

20 n = r λ λ 1 2 λ 2 3 λ 3 r 1 r1, 2 r2 3 r λ 1, 2 λ 2 3 λ 3 (c 1 + k 1, c 2 + k 2, c 3 + k 3 )=(0.4, 0.5, 0.6) (c 1 + k 1, c 2 + k 2, c 3 + k 3 )=(0.4, 0.4, 0.4) 1 r1 2 r2, 3 r3 (c 1 + k 1, c 2 + k 2, c 3 + k 3 )=(0.4, 0.6, 0.8) (c 1 + k 1, c 2 + k 2, c 3 + k 3 )=(0.4, 0.5, 0.6) 1 r1, 2 r2, 3 r λ 1 2 λ 2 3 λ 3 r (K 1, K 2, K 3 ) = (0.2, 0.25, 0.3) (K 1, K 2, K 3 ) = (0.2, 0.2, 0.2) 1 r1 2 r2, 3 r3 (K 1, K 2, K 3 )=(0.2, 0.3, 0.4) (K 1, K 2, K 3 ) = (0.2, 0.25, 0.3) 1 r1, 2 r2, 3 r λ 1 2 λ 2 3 λ 3 r (p 1, p 2, p 3 )=(1.0, 1.1, 1.2), (1.0, 1.1, 1.3), (1.0, 1.2, 1.4) 3 r3 (p 1, p 2, p 3 ) = (1.0, 1.2, 1.4) 1 r r1 3 r r1 2 r2 1 r 1 3 r r2 4.1 p 1 = p 2 = p 3, c 1 + k 1 = c 2 + k 2 = c 3 + k 3 18

21 4.2.3 n i=1 (hλ2 i /2r i ) 1.1, i (i = 1,..., n) Φ i (r) 1 r i Φ i (r) Φ i (r) r i Φ i (r)/ r i > 0 Φ i (r) Φ i (r)/ r i < 0 Φ i (r) r i r i r i r i Φ i (r)/ r i < , 1.3 r 1/r 2 = λ 1/λ 2 2.2, 2.3 r i /r j = λ i /λ j (i, j = 1, 2, 3) i (i = 1,..., n) λ i λ i = r i / n k=1 r k 1.4, 1.5,

22 5 1 n VI(14) GNEP(10) 20

23 [1].., [2] A. Y. Ha, L. Li, and S.-M. Ng. Price and delivery logistics competition in a supply chain. Management Science, Vol. 49, pp , [3] F. Facchinei and C. Kanzow. Generalized Nash equilibrium problems. A Quarterly Journal of Operations Research, Vol. 5, pp , [4] R. T. Rockafellar. Network Flows and Monotropic Optimization. Wiley, [5] F. Facchinei and J.-S. Pang. Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, [6] P. T. Harker. Generalized Nash games and quasi-variational inequalities. European Journal of Operational Research, Vol. 54, pp , [7] F. Facchinei, A. Fischer, and V. Piccialli. On generalized Nash games and variational inequalities. Operations Research Letters, Vol. 35, pp , [8].., [9] R. W. Cottle, J.-S. Pang, and R. E. Stone. The Linear Complementarity Problem. Academic Press,

CVaR

CVaR CVaR 20 4 24 3 24 1 31 ,.,.,. Markowitz,., (Value-at-Risk, VaR) (Conditional Value-at-Risk, CVaR). VaR, CVaR VaR. CVaR, CVaR. CVaR,,.,.,,,.,,. 1 5 2 VaR CVaR 6 2.1................................................

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

Dimitrov [2] MPC Dimitrov MPC MPC MPC [14] MPC [7] KKT MPC [14] Rao LDL MPC MCP [5] 2 MPC u k

Dimitrov [2] MPC Dimitrov MPC MPC MPC [14] MPC [7] KKT MPC [14] Rao LDL MPC MCP [5] 2 MPC u k 1 2 In model predictive control (MPC), an optimal control problem is solved at each time steps to determine control input. To realize on-line control of MPC, reducing computational time is requisite. In

More information

数学概論I

数学概論I {a n } M >0 s.t. a n 5 M for n =1, 2,... lim n a n = α ε =1 N s.t. a n α < 1 for n > N. n > N a n 5 a n α + α < 1+ α. M := max{ a 1,..., a N, 1+ α } a n 5 M ( n) 1 α α 1+ α t a 1 a N+1 a N+2 a 2 1 a n

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

untitled

untitled ,, 2 2.,, A, PC/AT, MB, 5GB,,,, ( ) MB, GB 2,5,, 8MB, A, MB, GB 2 A,,,? x MB, y GB, A (), x + 2y () 4 (,, ) (hanba@eee.u-ryukyu.ac.jp), A, x + 2y() x y, A, MB ( ) 8 MB ( ) 5GB ( ) ( ), x x x 8 (2) y y

More information

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 : Transactions of the Operations Research Society of Japan Vol. 58, 215, pp. 148 165 c ( 215 1 2 ; 215 9 3 ) 1) 2) :,,,,, 1. [9] 3 12 Darroch,Newell, and Morris [1] Mcneil [3] Miller [4] Newell [5, 6], [1]

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

Q & A Q A p

Q & A Q A p Q & A 2004.12 1 Q1. 12 2 A1. 11 3 p.1 1.1 2 Q2. A2. < > [ ] 10 5 15 (p.138) (p.150) (p.176) (p.167 ) 3 1. 4 1.6 1.6.1 (2) (p.6) Q3. 5 1 1:1.0 12 2 1:0.6 1:1.0 1:1.0 1:0.6 1:0.6 1:0.6 1:1.0 1:0.6 ( ) 1:1.0

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

AHPを用いた大相撲の新しい番付編成

AHPを用いた大相撲の新しい番付編成 5304050 2008/2/15 1 2008/2/15 2 42 2008/2/15 3 2008/2/15 4 195 2008/2/15 5 2008/2/15 6 i j ij >1 ij ij1/>1 i j i 1 ji 1/ j ij 2008/2/15 7 1 =2.01/=0.5 =1.51/=0.67 2008/2/15 8 1 2008/2/15 9 () u ) i i i

More information

i

i 14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7

More information

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i i j ij i j ii,, i j ij ij ij (, P P P P θ N θ P P cosθ N F N P cosθ F Psinθ P P F P P θ N P cos θ cos θ cosθ F P sinθ cosθ sinθ cosθ sinθ 5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

第3章 非線形計画法の基礎

第3章 非線形計画法の基礎 3 February 25, 2009 1 Armijo Wolfe Newton 2 Newton Lagrange Newton 2 SQP 2 1 2.1 ( ) S R n (n N) f (x) : R n x f R x S f (x ) = min x S R n f (x) (nonlinear programming) x 0 S k = 0, 1, 2, h k R n ɛ k

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m 1 1 1 + 1 4 + + 1 n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m a n < ε 1 1. ε = 10 1 N m, n N a m a n < ε = 10 1 N

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th 1 n A a 11 a 1n A = a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = ( x ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 11 Th9-1 Ax = λx λe n A = λ a 11 a 12 a 1n a 21 λ a 22 a n1 a n2

More information

…p…^†[…fiflF”¯ Pattern Recognition

…p…^†[…fiflF”¯   Pattern Recognition Pattern Recognition Shin ichi Satoh National Institute of Informatics June 11, 2019 (Support Vector Machines) (Support Vector Machines: SVM) SVM Vladimir N. Vapnik and Alexey Ya. Chervonenkis 1963 SVM

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

薄膜結晶成長の基礎2.dvi

薄膜結晶成長の基礎2.dvi 2 464-8602 1 2 2 2 N ΔμN ( N 2/3 ) N - (seed) (nucleation) 1.4 2 2.1 1 Makio Uwaha. E-mail:uwaha@nagoya-u.jp; http://slab.phys.nagoya-u.ac.jp/uwaha/ 2 [1] [2] [3](e) 3 2.1: [1] 2.1 ( ) 1 (cluster) ( N

More information

Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa THBV3_0402JAb 1000 800 600 400 50 % 25 % 200 100 80 60 40 20 10 8 6 4 10 % 2.5 % 0.5 % 0.25 % 2 1.0 0.8 0.6 0.4 0.2 0.1 200 300 400 500 600 700 800 1000 1200 14001600

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

s s U s L e A = P A l l + dl dε = dl l l

s s U s L e A = P A l l + dl dε = dl l l P (ε) A o B s= P A s B o Y l o s Y l e = l l 0.% o 0. s e s B 1 s (e) s Y s s U s L e A = P A l l + dl dε = dl l l ε = dε = l dl o + l lo l = log l o + l =log(1+ e) l o Β F Α E YA C Ο D ε YF B YA A YA

More information

o 2o 3o 3 1. I o 3. 1o 2o 31. I 3o PDF Adobe Reader 4o 2 1o I 2o 3o 4o 5o 6o 7o 2197/ o 1o 1 1o

o 2o 3o 3 1. I o 3. 1o 2o 31. I 3o PDF Adobe Reader 4o 2 1o I 2o 3o 4o 5o 6o 7o 2197/ o 1o 1 1o 78 2 78... 2 22201011... 4... 9... 7... 29 1 1214 2 7 1 8 2 2 3 1 2 1o 2o 3o 3 1. I 1124 4o 3. 1o 2o 31. I 3o PDF Adobe Reader 4o 2 1o 72 1. I 2o 3o 4o 5o 6o 7o 2197/6 9. 9 8o 1o 1 1o 2o / 3o 4o 5o 6o

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

untitled

untitled 1 1 Ax = b A R m m A b R m x R m A shift-and invert Lanczos - LU CG A = LU LU Ly = b Ux = y A LU A A = LL T 1 LU b,, Vol. 11, No. 4, pp. 14 18 (2006). x * x (0), x (1), x (2), A Ap A # x (n+1) = Cx (n)

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008) ,, 23 4 30 (i) (ii) (i) (ii) Negishi (1960) 2010 (2010) ( ) ( ) (2010) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 16 (2004 ) 2 (A) (B) (C) 3 (1987)

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

Jacobi, Stieltjes, Gauss : :

Jacobi, Stieltjes, Gauss : : Jacobi, Stieltjes, Gauss : : 28 2 0 894 T. J. Stieltjes [St94a] Recherches sur les fractions continues Stieltjes 0 f(u)du, z + u f(u) > 0, z C z + + a a 2 z + a 3 +..., a p > 0 (a) Vitali (a) Stieltjes

More information

福岡大学人文論叢47-3

福岡大学人文論叢47-3 679 pp. 1 680 2 681 pp. 3 682 4 683 5 684 pp. 6 685 7 686 8 687 9 688 pp. b 10 689 11 690 12 691 13 692 pp. 14 693 15 694 a b 16 695 a b 17 696 a 18 697 B 19 698 A B B B A B B A A 20 699 pp. 21 700 pp.

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a ... A a a a 3 a n {a n } a a n n 3 n n n 0 a n = n n n O 3 4 5 6 n {a n } n a n α {a n } α {a n } α α {a n } a n n a n α a n = α n n 0 n = 0 3 4. ()..0.00 + (0.) n () 0. 0.0 0.00 ( 0.) n 0 0 c c c c c

More information

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) * * 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *1 2004 1 1 ( ) ( ) 1.1 140 MeV 1.2 ( ) ( ) 1.3 2.6 10 8 s 7.6 10 17 s? Λ 2.5 10 10 s 6 10 24 s 1.4 ( m

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

ohpr.dvi

ohpr.dvi 2003-08-04 1984 VP-1001 CPU, 250 MFLOPS, 128 MB 2004ASCI Purple (LLNL)64 CPU 197, 100 TFLOPS, 50 TB, 4.5 MW PC 2 CPU 16, 4 GFLOPS, 32 GB, 3.2 kw 20028 CPU 640, 40 TFLOPS, 10 TB, 10 MW (ASCI: Accelerated

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

inkiso.dvi

inkiso.dvi Ken Urai May 19, 2004 5 27 date-event uncertainty risk 51 ordering preordering X X X (preordering) reflexivity x X x x transitivity x, y, z X x y y z x z asymmetric x y y x x = y X (ordering) completeness

More information

JFE.dvi

JFE.dvi ,, Department of Civil Engineering, Chuo University Kasuga 1-13-27, Bunkyo-ku, Tokyo 112 8551, JAPAN E-mail : atsu1005@kc.chuo-u.ac.jp E-mail : kawa@civil.chuo-u.ac.jp SATO KOGYO CO., LTD. 12-20, Nihonbashi-Honcho

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

Lecture 12. Properties of Expanders

Lecture 12. Properties of Expanders Lecture 12. Properties of Expanders M2 Mitsuru Kusumoto Kyoto University 2013/10/29 Preliminalies G = (V, E) L G : A G : 0 = λ 1 λ 2 λ n : L G ψ 1,..., ψ n : L G µ 1 µ 2 µ n : A G ϕ 1,..., ϕ n : A G (Lecture

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

( ( 3 ( ( 6 (

( ( 3 ( ( 6 ( ( ( ( 43037 3 0 (Nicolas Bourbaki (Éléments d'histoire des athématiques : 984 b b b n ( b n/b n b ( 0 ( p.3 3500 ( 3500 300 4 500 600 300 (Euclid (Eukleides : EÎkleÐdhc : 300 (StoiqeÐwsic 7 ( 3 p.49 (

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

i ii iii iv v vi vii ( ー ー ) ( ) ( ) ( ) ( ) ー ( ) ( ) ー ー ( ) ( ) ( ) ( ) ( ) 13 202 24122783 3622316 (1) (2) (3) (4) 2483 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 11 11 2483 13

More information

高知工科大学電子 光システム工学科

高知工科大学電子 光システム工学科 卒業研究報告 題 目 量子力学に基づいた水素分子の分子軌道法的取り扱いと Hamiltonian 近似法 指導教員 山本哲也 報告者 山中昭徳 平成 14 年 月 5 日 高知工科大学電子 光システム工学科. 3. 4.1 4. 4.3 4.5 6.6 8.7 10.8 11.9 1.10 1 3. 13 3.113 3. 13 3.3 13 3.4 14 3.5 15 3.6 15 3.7 17

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

untitled

untitled ADSLFTTH P2P CDN(Contents Delivery Network) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

[2, 3, 4, 5] * C s (a m k (symmetry operation E m[ 1(a ] σ m σ (symmetry element E σ {E, σ} C s 32 ( ( =, 2 =, (3 0 1 v = x 1 1 +

[2, 3, 4, 5] * C s (a m k (symmetry operation E m[ 1(a ] σ m σ (symmetry element E σ {E, σ} C s 32 ( ( =, 2 =, (3 0 1 v = x 1 1 + 2016 12 16 1 1 2 2 2.1 C s................. 2 2.2 C 3v................ 9 3 11 3.1.............. 11 3.2 32............... 12 3.3.............. 13 4 14 4.1........... 14 4.2................ 15 4.3................

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

/ n (M1) M (M2) n Λ A = {ϕ λ : U λ R n } λ Λ M (atlas) A (a) {U λ } λ Λ M (open covering) U λ M λ Λ U λ = M (b) λ Λ ϕ λ : U λ ϕ λ (U λ ) R n ϕ

/ n (M1) M (M2) n Λ A = {ϕ λ : U λ R n } λ Λ M (atlas) A (a) {U λ } λ Λ M (open covering) U λ M λ Λ U λ = M (b) λ Λ ϕ λ : U λ ϕ λ (U λ ) R n ϕ 4 4.1 1 2 1 4 2 1 / 2 4.1.1 n (M1) M (M2) n Λ A = {ϕ λ : U λ R n } λ Λ M (atlas) A (a) {U λ } λ Λ M (open covering) U λ M λ Λ U λ = M (b) λ Λ ϕ λ : U λ ϕ λ (U λ ) R n ϕ λ U λ (local chart, local coordinate)

More information

直交座標系の回転

直交座標系の回転 b T.Koama x l x, Lx i ij j j xi i i i, x L T L L, L ± x L T xax axx, ( a a ) i, j ij i j ij ji λ λ + λ + + λ i i i x L T T T x ( L) L T xax T ( T L T ) A( L) T ( LAL T ) T ( L AL) λ ii L AL Λ λi i axx

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

[I486S] 暗号プロトコル理論

[I486S]  暗号プロトコル理論 [I486S] 2018 5 1 (JAIST) 2018 5 1 1 / 22 : I486S I URL:https://wwwjaistacjp/~fujisaki/i486S (Tuesdays) 5 17:10 18:50 4/17, 4/24, 5/1, 5/15, 5/22, 5/29, 6/5, 6/19, 6/26, 7/3, 7/10, 7/17, 7/24, 7/31 (JAIST)

More information

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue 2012-06 Date Type Technical Report Text Version publisher URL http://hdl.handle.net/10086/23085 Right Hitotsubashi University Repository

More information

numb.dvi

numb.dvi 11 Poisson kanenko@mbkniftycom alexeikanenko@docomonejp http://wwwkanenkocom/ , u = f, ( u = u+f u t, u = f t ) 1 D R 2 L 2 (D) := {f(x,y) f(x,y) 2 dxdy < )} D D f,g L 2 (D) (f,g) := f(x,y)g(x,y)dxdy (L

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

Chap9.dvi

Chap9.dvi .,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim

More information

178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21

178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21 I 178 II 180 III ( ) 181 IV 183 V 185 VI 186 178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21 4 10 (

More information

Mathematical Logic I 12 Contents I Zorn

Mathematical Logic I 12 Contents I Zorn Mathematical Logic I 12 Contents I 2 1 3 1.1............................. 3 1.2.......................... 5 1.3 Zorn.................. 5 2 6 2.1.............................. 6 2.2..............................

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

三石貴志.indd

三石貴志.indd 流通科学大学論集 - 経済 情報 政策編 - 第 21 巻第 1 号,23-33(2012) SIRMs SIRMs Fuzzy fuzzyapproximate approximatereasoning reasoningusing using Lukasiewicz Łukasiewicz logical Logical operations Operations Takashi Mitsuishi

More information

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ 1 (1) ( i ) 60 (ii) 75 (iii) 15 () ( i ) (ii) 4 (iii) 7 1 ( () r, AOB = θ 0 < θ < ) OAB A OB P ( AB ) < ( AP ) (4) 0 < θ < sin θ < θ < tan θ 0 x, 0 y (1) sin x = sin y (x, y) () cos x cos y (x, y) 1 c

More information

18 2 20 W/C W/C W/C 4-4-1 0.05 1.0 1000 1. 1 1.1 1 1.2 3 2. 4 2.1 4 (1) 4 (2) 4 2.2 5 (1) 5 (2) 5 2.3 7 3. 8 3.1 8 3.2 ( ) 11 3.3 11 (1) 12 (2) 12 4. 14 4.1 14 4.2 14 (1) 15 (2) 16 (3) 17 4.3 17 5. 19

More information