運輸交通機関用太陽水素メタノールエネルギーシステム

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "運輸交通機関用太陽水素メタノールエネルギーシステム"

Transcription

1 Drift Prevention of Disabled Ships in Rough Seas by Shoichi HARA, Katsuji TANIZAWA, Kenji YAMAKAWA, Kunihiro HOSHINO, Kazuhiro YUKAWA, Jun HASEGAWA, Michio UENO, Makiko MINAMI, Nobuo KIRIYA Shigeo OHMATSU, Toshihiko SARUTA and Michio OKAMOTO Abstract The disabled tanker was broken into two parts due to rough waves and bow part of the ship drifted to the sea shore in the heavy oil leakage accident of Russian ship named Nakhodka January in The loaded heavy oil flew out of the bow section of the ship continuously and caused the biggest marine pollution in Japan. Approximately 6,5 kl heavy oil leaked out in this accident. If the technology for the recovery of the drifting bow part of disabled ship in rough waves had been available, the serious disaster would be prevented from occurring. This report is based on the research results of 5 year research project sponsored by the Ministry of Land, Infrastructure and Transport from 1998 to 3. The direct motivation of starting the project is Nakhodka incident. The purpose of this project is to predict the drift motion of disabled ships in rough sea and to tow them safely in order to prevent the secondary disaster such as collision, explosion and strand. The Optimum Towing Support System (OTSS), which can estimate the drift motion, towline tension, maneuvering method during tow and towing power of tow boats, has been developed to provide with the Japan Coast Guard and salvage companies. Further, the computer program for predicting the drift course considering wave effect has been also developed to be provided with the Japan Coast Guard. 1

2 LNG ( ) 4 (1) () (3) (4) (1) () (3) (4)

3 () 1)) 1)) 3) () (-1) Fig Fig OE-XEYE O-XY = + + = + + = + + ), ( ),, ( ), ( ), ( ),, ( ), ( ), ( ),, ( ), ( Ar Ar A W W W Ar Ar A W W W Ar Ar A W W W U N T H N U N U Y T H Y U Y U X T H X U X θ χ β θ χ β θ χ β (1) X,Y,N,W A U β H, W TW χ UAr θar UC ψc UA ψa UAr θar C Ar A U U U U + = () 3

4 X E O E V : Drift speed ψ V ψ B U A ψ A ψ W ψ C U C V : Drift direction : Bow direction : True wind speed : True wind direction : Wave direction U C : Current speed : Current direction ψ B ψ W U A U Ar U Drift U Ar : Relative wind speed : Relative wind direction θ Ar U : Ship speed relative to water ψ U ψ A - β ψ V Wave χ Wind θ Ar ψ U ψ C Rel. Wind Rel. Drift Current : Direction of U χ : Relative wave direction Y E β : Oblique angle relative to water ψb Fig Coordinate system. ψ B = ψ U + β (3) Table Principal dimensions of a training ship. Fig Hydrodynamic forces and moment acting on underwater ship s hull due to oblique motion obtained by tank test for a training ship. ψw χ χ = ψ W ψ B (4) V, ψv V + = U U C (5) (-) (1) V ψv Table X,Y,N ψv ψb 1) Fig /ρLdU 1/ρL du (λ/l).8 XW,YW,NW 1) Fig /ρgL(Hw/) 1/ρgL (Hw/) 3 XA,YA,NA 4) Fig /ρAUAr L 1/ρAUAr L 3 ρa Fig Fig Fig (1) ψb Newton -Raphson V

5 X W' YW' NW' (deg) (deg) (deg) Fig Steady wave forces and moment calculated with 3-D. panel method for a training ship (?/L=.8)?/L=.8( T 7.34s) m? W= UA=15m/s? A=33 UC=.514m/s (1.kt)? C=1 (1) Fig Fig Fig Table Fig )) Table.1.1- Fig (1) 1) ß X A' YA' NA' Ar 7 (deg) Ar 7 (deg) Ar 7 (deg) 36 Fig Wind forces and moment obtained by wind tunnel test for a training ship. Table.1.1- Solutions for steady drifting conditions of a training ship in wind, wave and current. No. V( kt ) V (deg) B (deg)(deg) U Ar (m/s) Ar (deg)(deg) ) Fig Drifting velocity, direction and posture of a training ship in wind, wave and current. 5

6 Table Principal dimensions of a tanker model. (3) 6)7) T537 T54 V ψv β Table Experimental conditions. (3-1) Table N(3.kgf) ψb (Pitch ang.) 55% (Roll ang.) (Yaw r.) Fig Fig Fig Fig Fig Fig ψv ψv-18 Fig Fig χi 7 Fig χi Table T537 T539 (λ/l).4 T543 T544.4m A 8) T538 T54.3 T54 B A B Fig Fig ψb V ψv β (3-) Fig Fig Fig T538 T54T544 ψb ψv β Fig A B 6

7 Fig Trajectories of drifting motion of a tanker model. Fig Time history of T537. Fig Time history of T54. Fig Averaged values in steady drifting conditions of a tanker model. Fig ( A) Fig ( B) (Pitch ang.) (Roll ang.) (Yaw r.) Fig

8 (4) (4-1) 1999 Table Photo A Table Photo A 3 Photo A A1 7 :17 SOS 8 1:4 A A3 A4 A4 A7 E1 E4 EPIRB(Emergency Position Indicating Radio Beacon) B 1 Photo Disabled ship in drifting condition, wind from starboard side. UC ψc Photo ψc UC=1.65ktψC= : 11m/s 9: 11m/s 8 A1 A A V ψv Table Fig A Table Principal dimensions of a disabled ship. (4-) (4--1) deg 36deg deg Table m Table A Table

9 Fig Trajectory of a drifting ship;a1-a4 (A4-A7; towed path),epirb; E1-E4, B; life buoy and current data. Table Averaged drifting characteristics from point-a1 to point-a in Fig Fig Fig Fig deg deg Table Solutions for steady drifting conditions of a disabled ship in wind and current. Fig Hydrodynamic forces and moment acting on underwater ship s hull due to oblique motion obtained by tank test for a tanker model. Fig Table A ψb -5.5deg Fig Fig Fig Photo (4--) (1) Table

10 (5) Fig Wind forces and moment obtained by wind tunnel test for a bulk carrier model. Fig Comparison of drifting condition, observed and estimated for a disabled ship in wind and current. Fig ) Ueno, M., Nimura, T. On steady drifting motion of a ship in waves, Fig Proceedings of 5th IFAC conference on manoeuvring and control of marine craft, (), pp ) 74 1

11 () pp ) HAZMAT ()pp ) Risk Analysis 189 (1)pp ) 16 (1986)pp ) 1 (1)pp ) 13 () pp ) () 17 Suppl. 1(1997)pp =6m =.5m =.5m) (1) OCIMF 1) HAZMAT ) OCIMF Wind-Wave Drift Factor OCIMF Formal 3 3) (-1) ( Fig Table.1.-1 Principal dimensions. 11

12 3..5 Exp. F D =71.7V. Carriage Rail F D (N) Heaving rod Gimbal mm Load cell V(m/s) Fig Drug on the D body as a function of speed. 4 mm T V.88sec1.sec1.3sec1.57sec Fig..1.- Measuring equipment of D floating body motions. kb / T V λ V Table.1.-1 k V HW =.65H V Fig..1.- HW / λ V Fig V(m/s) 5.m FD(N) 1.m 8.m CD=1.449 (-).4 kb / ~.k W.cm~7.cm kb /.5.7. kw / λ.1~.64 Fig ISSC ( V / Bg ) Modified B = 4mm Pierson-Moskowitz ISSC a H T V V Tvω T ω v Φζζ ( ω) = HvTv exp.44 π π π.419:tv=1.57sec 1.51: Tv=.88sec Fig (1) Fig

13 Drifting speed (V/ Bg) k Exp. a=1.499 Drifting speed (V/ Bg) k Exp. a= H W / H W / Drifting speed (V/ Bg) k Exp. a=1.434 Drifting speed (V/ Bg) k Exp. a= H W / H W / Drifting speed (V/ Bg) k Exp. a= H W / Fig Relation between wave slope and drifting speed (D body in regular waves). Fig Relation between wave slope and drifting speed (D body in irregular waves). (3) (3-1) ( =5m =8.m =4.5m) Fig GPS Fig Fig mm 7g Heave.7secRoll.6sec.7 13

14 1 34 mm 54 mm mm Wave height : Hw (m) Regular wave Irregular wave H w / λ = 1 / 1 15 mm 34 mm 33 mm Wave length λ : (m) Weight = 6.35 kg Natural heave period =.7 sec Natural roll period =.6 sec Fig Spherical buoy used for the measurement. Fig Waves used for the drifting ( V speed measurement of the buoy λ, H are used on irregular waves). W Fig (3-) V 7.6m Fig Fig m ( V / Dg ) D = 34mm a 5m Stokes Fig λ =.5m ~1.5m Stokes.5m 1m Fig H W λ 1/1 Fig λ =.m ~1m ISSC λ = 5.m Stokes T.8sec ( 1m ) V 1.13sec ( m )1.39sec ( 3m ) HW =.65H V 14

15 Drifting speed (V/ Dg) Drifting speed (V/ Dg) kd/=1.91, λ =.5 m Exp. Stokes Drift Hw / λ kd/=1.364, λ =.7 m Exp. Stokes Drift a =.858 a = Drifting speed (V/ Dg) Drifting speed (V/ Dg) kd/=1.59, λ =.6 m Exp. Stokes Drift kd/=1.194, λ =.8 m Exp. Stokes Drift a = Hw / λ a = Hw / λ Hw / λ.3.3 Drifting speed (V/ Dg) kd/=.955, λ = 1. m Exp. Stokes Drift a = Drifting speed (V/ Dg) kd/=.637, λ = 1.5 m Exp. Stokes Drift a = Hw / λ Hw / λ Fig Relation between wave slope and drifting speed (Buoy in regular waves : λ=.5m1.5m) 1/1 (.83) Fig Fig (4) Fig..1.-8Fig

16 . Drifting speed (V/ Dg) Drifting speed (V/ Dg) kd/=.478, λ =. m Exp. Stokes Drift kd/=.191, λ = 5. m Exp. Stokes Drift a = Hw / λ a = Drifting speed (V/ Dg) Drifting speed (V/ Dg) kd/=.318, λ = 3. m Exp. Stokes Drift kd/=.96, λ = 1. m Exp. Stokes Drift a = Hw / λ a = Hw / λ Hw / λ Fig Relation between wave slope and drifting speed (Buoy in regular waves : λ=.m1m).3.3 Drifting speed (V/ Dg) k v D/=.955, λ v = 1. m Exp. a = Drifting speed (V/ Dg) k v D/=.478, λ v =. m Exp. a = H W / λ V H W / λ V.3 Drifting speed (V/ Dg) k v D/=.318, λ v = 3. m Exp. a = H W / λ V Fig Relation between wave slope and drifting speed (Buoy in irregular waves) 16

17 . F W F D 1 F Fig = ρgd C H ω () W R W 8 Fig FD = ρac V (3) D A C D D R B D C W 1.5 C W 1. V D R g 1 λ C H W ω = (4) AC D λ Coefficient a k Exp. (Regular wave) Exp. (Irregular wave) Cal. (5) C D = k Fig Linear coefficient of wave drifting speed of the D body. (5) (5-1) C C W (4) (4) ( δ = H / λ ) W a 1 λ C AC w = (5) D Fig Fig aδ a Coefficient a Exp. (Regular wave) Exp. (Irregular wave) Cal. (5) k D / Fig Linear coefficient of wave drifting speed of the body. D 17

18 C W C D Fig ) 5 C D =.9 5) Fig k Fig a Fig nd order coefficient of wave drifting speed of the buoy..3 (5-) Stokes.15 U δ c = U kz = cπ δ e (6) g 1 1+ π δ + π k 4 δ 4 6) c Stokes U R R (7) kz U π δ e = (8) D g kd V (5-3) V = bδ (9) D g R Drifting speed (V/ Dg) Coefficient b kd/ Exp. (Regular wave) Cal. Exp. (Regular wave) Cal. (1) H W / Fig Wave drifting speed of the buoy. b = A π kz (1) kd R A e ds V D R g = aδ + bδ (11) b Fig (11) Fig Fig aδ + bδ b (1) 18

19 Fig Wave flume with a bottom step. kd /.5~1. (5-4) H W k Fig. V Fig H W k V (6-1) Fig x = (6) h - h x = - x = 9) 5) ζaζrζt 7) E 1 E = ρgζ (1) Newman 8) ζ h Yaw Serise 6 V 19

20 V = V n (13) V c C ω = (14) k 1 kh n = ( 1+ ) (15) sinh kh Vc ω k n AB ( E E ) V E V (16) A R = EA ERET V+ x = ± (1)~(15) (16) n k T n ( ζ ζ ) = ζ A (17) R k T φ φ / t φ t φ φ t φ = φ = () t φ φ t ln r c ( Q) φ φ t ( Q) ( Q) φ ( P ) φ ( P) ln r r S ln t n, ( P, Q) ( P) φ n φ t n ( P Q) ( P) ds (3) F D F D = n gζ (18) ρ (17)(18) n D R = 1 ζ pgζ A A F n ζ R 1 + ζ A ζ n R (19) k k ζ T ζ A () PQ n r(p,q) PQ c(q)q S w φ ζ cosh k( z + h) n t n = = k A ω cosh kh φ ζ coshk( z + h) cos( kx ω t (4) k A sin( kx ω t ) coshkh (5) ) n k 1 k n n ζ T ζ A (6-) 1),11),1),13),14) (1) S f S w S b z o-xz g ρ λ k,ω,ζa Dφ 1 = z + Dt S s Dx x Dt ( ) v( x)( φ φe φ ) ( x)( η η ) e (6) = φ v (7) η v(x)

21 x x M αω λ N = ( n, n r) v( x) = for x x x1 = x + βλ φ t 1 = NM for x < x or x > x φt Nds 1 n ss (8) NM z ( φ ) Nds+ Fg ss 1 + q ( φ ) n (33) α β F g α~1β 1 q % φ e η e φ φ e η η e φ e =, ηe = ( h + z) ζ A cosh k φe = sin( kx ω t) (9) ω cosh kh e A ( kx ωt) η = ζ cos (3) φ φ = n ( υ + ω r) (31) n υ ω φ t φ t = k n n + n ( φ υ ω r ) + n n (& υ + ω& r ) + n ω ( ω ( φ υ ω r ) 1 ( φ ) k n ω r ) (3) & υ &, ω 7) υ& ω& φ t υ& ω& (3) q = k n ( φ υ ω r + n ω ω r + n ω φ υ ω r φ = z v x t dz φ = v x dt z ) ( ) ( ) (36) (34) φ φ t φ φ t 4 (MEL) (6-3) (6)(7) ( e )( φ φe ) ( e )( η ηe ) (35) φ t (3) (33) n φt = n (& υ + ω& r) (37) n φt 1 = NM { ( φt z) Nds Fg } + s s (38) 1

22 Table.1.- Principal dimensions of floating body. (6-4) ( =6m =.5m =.5m) 1mm cm.5m.3m 95% 6 15) Fig Floating body and measuring equipment. Table.1.- Fig (6-5) Fig (a)

23 k - B/ B/=.m k - B/> (x = m) k - B/< (6) Fig x = ± 1 (6) Fig (b)(9) 3. 1m (x = -1m) 3. 1m (x = 1m) x = m x = m Fig (a,b,c) Fig Floating body motions, wave reflection and transmission coefficients and wave drifting force at x = m. 3

24 Fig (d,e) Fig (f) Fig (9) Fig. Fig Fig Fig..1.- x = 1m x = -1m Fig (b).1.-18,19, Fig Floating body motions, wave reflection and transmission coefficients and wave drifting force at x = -1m. 4

25 Fig k- B/ <.6 x > 4.77 rad/sec 1 λ + / rad/sec Fig..1.- k - B/ kx λ - x λ Fig..1.- Floating body motions, wave reflection and transmission coefficients and wave drifting force at x = 1m. 5

26 (7) () (4) HW kv Fig Wave drift force as a function of relative location of the body to the floor step. Fig..1.- Wave drift force as a function of wave number and relative location of the body to the floor step. 6

27 Stokes Stokes 1) OCIMFDisabled Tankers, Report of studies on ship drift and towage, Oil Companies International Marine Forum, ISBN , (1981) ) HAZMATShip drift analysis for the Stokes Northwest Olympic Peninsula and the Stokes Strait of Juan de Fuca, Hazardous Materials Response and Assessment 6) Division, Office of Ocean Resources Conservation and Assessment, NOAA}, HAZMAT Report 97-3, (1997) 3) 19,(1),pp ) (5) (1997) 5) ( ) 141,(1977), pp71-77,144,(1978), 3 15),16),17),18) pp ) Kinsman,B.Wind Waves, Dover Books on Earth and Science, (1965),pp ) Maruo, H.The drift of a body floating on waves, J.S.R., Vol.4, No.3, (196), pp.1 8) Newman, J.N. The drift force and moment on ships in waves, J.S.R., Vol.11, No.1, (1967), pp ) 51 (1975), pp ) Cointe, R., Geyer, P., King, B., Molin, B. and Tramoni, M. Nonlinear and linear motions of a rectangular barge in perfect fluid, Proc. of the 18th Symp. on x> Naval Hydro., AnnArbor, Michigan, k - B/.6 (199), pp ) Tanizawa, K.A Nonlinear Simulation (19),(),(1) Method of 3-D Body Motions in Waves, 178 (1995) pp ) Kashiwagi, M. Full-nonlinear simulation of hydrodynamic forces on a 7

28 Heaving two-dimensional body, 18 (1996)pp ) Tanizawa, K.Long time fully nonlinear simulation of floating body motions with artificial damping zone, 18 (1996), pp ) Tanizawa, K. and Clement, A : The report of NWT workshop, Proc. 1th ISOPE Conf., vol.3, Seattle, (), pp ) U S. Estimation of wave drift force by numerical wave tank, Proc. 9th ISOPE Conf., vol.3, Brest, (1999),pp ) Tanizawa, K., Minami, M. and Naito, S. Estimation of wave drift force by numerical wave tank, nd Report, Proc. B F L F Y Fig Coordinate system vol.48 (1976)pp ) 7 (1998),pp ) Tanizawa, K., Minami, M. and Naito, 1th ISOPE Conf., vol.3, Seattle, (), pp ) 187 (), pp (1) X Y N X Y N X' =, Y' = N' = (1) ρldu ρldu ρl du U C D ) U ) L N () Fig Shape Shape C D Table Drag coefficients of various shapes of -dimensional bodies Table.1.3- Drag coefficients of various shapes of 3-dimensional bodies F F X F D 8

29 1.3-1 F Fig.. C = D D 1 ρldu,c L = F L 1 ρldu FD FL (-1) () C N = 1 N ρl du = N ' () U Fig The change of viscous drag of the -D rectangle cylinder with different B shape of the tip by L/B. L Fig Drag coefficient of the -D rectangle object. Fig Lift coefficient of the -D rectangle object. Fig Longitudinal drag coefficient of the -D rectangle object. Fig Moment coefficient of the -D rectangle object. Fig Lateral drag coefficient of the -D rectangle object. 9

30 -1-1 Table Table Table L/B Fig..1.3-L/B Fig Effect of the rounding corner on the drag coefficient. 3) L/B.6 Fig Table ) Fig CD CL CN Fig Effect of the rounding corner 4) on the drag coefficient of -dimensional L/B /. / Fig CLCD X Y N Fig X Y Fig N CN -1-3 rectangle object. Fig Drag coefficient of -D elliptic cylinder. 3

31 Fig Fig Fig Fig KRR/BR:B B/D Fig K3D.5 3 Fig Fig K K3D Fig B/ K3D.5 3 Fig Three-dimensional effect (change of the drag coefficient by the draft). Fig Effect of the fracture surface. Fig Interaction effects. 31

32 -1-5 (Table.1.3-1,) 3 (Fig ) (Fig ) Fig Fig towing direction 1..8 L/B=., B/d=1. Boxbarge L B.6 d Y' V=.m/s V=.3m/s V=.4m/s Estimated β( deg.) (deg.) B Fig Model and outline of the experiment. Table Disabled Ship in drifting condition. L(m) B(m) d L/B Model A Fig Comparison of measured value of Y' and estimate of the Boxbarge. Model B L/B=., B/d=1. Boxbarge V=.m/s V=.3m/s V=.4m/s Estimated.1.5 L/B=., B/d=1. Boxbarge V=.m/s V=.3m/s V=.4m/s Estimated X' N' (deg.) β(deg.) Fig Comparison of measured value of X' and estimate of the Boxbarge (deg.) β(deg.) Fig Comparison of measured value of N' and estimate of the Boxbarge. 3

33 N F X Fig Model and setup of the experiment. F Y Hull Fig Coordinate system. Fig Coordinate system..58 Table m/sec 3 Table Experimental conditions (deg.) 6 6 Fig (deg.) 6, 3, 4, 6, 1,, 3, 6, 9, (deg.) 1, 15, 18 U(m/sec).6 Table m/sec 3 l Fig Table Fig Deckhouse model..4m/sec 3 l Fig Axial distribution of local drag Model AL/B=. Fig Table Principal dimensions of the model L(m) 1.8 B(m).3 d(m).16 coefficient of the 3- dimensional cylinder. 17 l 33

34 l Fig Estimated Distribution of local l drag coefficient along the length. estimated CDX of the model ship with Model BL/B=1. deckhouse. Table Fig Fig Comparison between measured and estimated CDY of the model ship with Table /1 1.8m.3m.m Fig (.58m(L).3m(B).144m(H)) Fig Fig Comparison between measured o-xyz and estimated CN of the model ship Fig Comparison between measured and deckhouse. with deckhouse. 34

35 - 3 7) 7) 3 Fig Fig Change by draft and drift angle Fig of the moment lever Lateral force coefficient Fig Table Moment Fig lever Fig Fig Method for estimating CN from Lateral force coefficient and Moment lever. 3 Fig C DX C DY =9 C N L Table Principal particulars of the model ship. VLCC L(m) 3. B(m).544 d(m).181 C B.83 l 35

36 Fig C N 3 Fig Method for estimating CN from lateral force coefficient and moment lever. Trim Heel Fig Estimated result of the change of X' Fig Estimated result of the change by the draft of VLCC. of Y' by the draft of VLCC.. Fig Estimated result of the change of N' by the draft of VLCC. Fig Comparison of estimated result of the change of N' by the draft and measured value 36

37 3-1 X Y 3 N N Fig ),9) N Fig B/d=3.6 Fig N Fig N N Fig Photo Experimental model that divided VLCC. Fig aft Y Fig N Fig Y VLCC SR1C 1 Table YN fore model A model B model C model D model E model F model G model H remained part Fig Division condition of the model.. Fig Change of Y by breakage. 37

38 N Fig Fig Table VLCC X Y N=45135 Fig Effect of gap of the division model deg. Y N Y Fig N Fig VLCC 3- Table F Y VLCC 1kgf XY L/B3 d/b/l N Photo Fig Fig Fig Model AH 9 F X kgf 3 Fig Rate of change of Y' by the breakage. Y Y 38

39 Fig Comparison between measured and estimated value of Y' of the breakage ship. Fig Comparison between measured and estimated value of N' of the breakage ship. Y Fig. 39

40 YYFig Fig =18 Y LL PP Y YK BRK Y L/LPP Y L/LPP=.5 Y 3 N 3 l L' Fig =18 N = Y 3 Fig Model-ACEG Fig Change of the estimate of N by the breakage. Y Fig L Y Fig N Fig. N ' '( L ) L YFig Y l / L Fig N Trim= deg. Trim=3 deg. Trim=6 deg. Fig Experimental condition on evaluation of the trim effect. Fig Change by Y' by Trim. 4

41 Heel deg. Heel 1deg. Heel deg. Fig Change of Y' by Heel. N N N 3-3 Y Fig XN Fig Fig Trim=,3,6deg.3 Photo.1.3- Fig Y Disabled Ship in drifting condition. Fig Prediction result of the drift resistance of the disabled ship. 41

42 Heel =,1,deg.3 Fig Fig by the Author, Chapter 3,8 (1965). Y 4) Y No.38(1989), pp.61. XN 5) (1985),pp ) 1 No.37(1989)pp ) 4 8) Photo Heel 3deg Table ) Fig Y 18deg (3), pp ) Horner, S. F.: Fluid Dynamic Drag, Published (197) pp ) (5).1.4 (1) 9 1) 99 (), pp ) 4

43 f Fig Concept of binocular stereo vision. xp = dxl(xlxr) yp = dyl(xlxr) = dyr(xlxr) zp = df (xlxr) () f d xl xr 3 (xp,yp,zp) yl yr y ( ) (-1) 3 Fig ( ) d (VGA 64 (,,) 48 [pixel]) ( xp,yp,zp) PL(xL,yL)PR( xr, yr) 43

44 (Toyo corporationhttp:// Fig. Fig D 3D Modeling using echosounding Photo Example of multibeam echosounder. (-) Fig Concept of shape measurement system 3 for floating object. Fig Photo Table Table Outline of function on multibeam echosounder system. Multibeam Echosounder (RESON SEABAT 815) ultrasonic wave swath breadth of sonic beam beam width of sonic beam khz 1 resolution 6 mm measuring frequency (MAX) weight in water 4 Hz 5 kg graphic display real time ship speed for observation (MAX) 1 kt. z m 3 y x (3) 44

45 No. 3 video camera target model laser rangefinder No. video camera No. 1 video camera f Photo.1.4- Outline of trinocular vision system Fig Concept of trinocular stereo vision. for 3D measurement. ( ) Fig GPS Fig D modeling of floating model using trinocular vision system. 3 Photo Fig (4) TV VGA (64*48 pixel) 45

46 3ch. Photo (A) (A1).9 +1 (A) Photo Fig VGA % 3 (5) Table.1.4-Matching result using template matching processing. position enlargement inclined angle X,Y [Pixel] rate [deg] A (-1.) (.) A (-1.1) ( -5. ) A (-.9) ( +1. ) () Photo Table.1.4- Photo Example of template matching processing. 46

47 A B 9 9 x Fig Dimension of towing bracket x BASE PLATE Rivet 33 19mm / 9 mm [ 6t mm] tf 6mm 19mm 9mm Fig Fig y No.3 T-75 1 BASE Rive t BRACKET 16 Fig Shackle: SB34 1 SHELL PLATE z Arrangement of rivet 45 6 Fig Strength of bracket for tow 3 47

48 5tf broken bracket Fig mm 9mm appearance of mother plate cut rivets Photo..1-1 Broken appearance_1 Photo mm Fig x =, Photo..1-9mm 5 Fig...1- Photo..1-1 Photo tf Photo..1- Broken appearance_ 48

49 1tf 5tf Fig tf 1 tf Fig Schematic idea of catch of drift ship by two boats Fig Drift ( ) Fig Fig Fig Catch of drift ship 49

50 a L =.5m b T LBd=.5m.45m.15m (L=.5m)1.6 (== =) Fig Towed ship and towline 8.m Table..1-1 Parameter of experiment 1cm 4m 4.m 4.m =156m /L=.6 3.m 3 kt wave generator deg. 3 deg Fig = /L Table..1.1 ab Fig ab T pier T ab ab Table..1- Table..1- Swing angle() and ship status angle() 3 carriage(x-axis) wave absorber 7m Fig Experimental arrangement in the basin Fig Ship status during tow LH=4.m carriage(y-axis) 4 m 5

51 4m kt Fig (L) /L T Fig Fig /L 1 ab /L.5 Fig Measurement of swing angle and towline force /L /L.5 /L Fig...-1 m 3 4m /L /L1 /L.5 /L.1.9 :tow point for emergency Fig Arrangement of towing points for emergency tow Fig Swing and ship status during tow Fig Idea of emergency tow point 51

52 Fig IWRC 6WS(36).4 Fig tf 6m 1m 3tf 4m.kg Fig A B 1) Fig...1- Base Plate ) 1 3) 4) D/d Fig a) Shackle Wire Rope 4m Ring m D= Fig Parts of ship capture net 8m Fig Example of ship capture net mm Table..1-3 Photo..1-3 D/d D/d Table..1-4 Photo tf mm b) mm Table

53 Table..1-3 Rope specimen Table..1-4 Test item and method Specimen Specimen Specimen Edge Specimen D/d=5 Specimen D/d=1 (a) For tensile test D/d=1 Photo..1-3 Rope specimen Specimen Edge D/d=1 (b) For axial friction test Photo..1.4 Appearance of metal fittings 53

54 Table..1-5 Result for static tensile test Fig Load and elongation curve Photo..1-5 D/d tensile test (specimen ) Photo..1-6 D/d tensile test (specimen ) Photo..1-7 D/d tensile test (specimen ) Fig Edge and D/d tensile test Table..1-6 Edge result and D/d tensile test result Fig tf tf 3 9.9tf 3 Photo..1-8 D/d tensile test (specimen ) / Photo..1-9 D/d tensile test Table..1-6 Fig (specimen ) 54

55 Specimen D/d=1 Specimen Edge Specimen D/d=1 Specimen Edge Specimen D/d=1 Specimen Edge Specimen D/d=1 Specimen Edge Specimen D/d=1 Specimen Edge Specimen D/d=1 Specimen Edge Photo..1-1 Axial friction test 55

56 D/d151 /1 /5 1 PET D/d Photo..1-5 D/d Photo Table..1-7 Photo D/d Table..1-8 D/d Photo Table..1-7 Result of axial friction test (D/d) Table..1-8 Result of axial friction test (edge) PLH-A(5,59 ) PL-C(993 ) 75mm4m 46.5tf PLH-A PLH-A PHL-A PL-C PL-C Photo Appearance of breakage parts of towline 56

57 PL-C Photo No.331 No.3637 PL-C PLH-A PLH-A PL-C PLH-A Fig PL-C Fig Photo No.16 No.18 No.1 Photo..1-1 No No.181 No. No.1 No.14 PLHA Photo Appearance of breakage parts of towline at first tow operation No.31 No.3 Fig Arrangement of towline on PLH-A No.36 No.37 Photo Appearance of breakage parts of towline at second tow operation No.43 No.44 Fig Arrangement of towline on PL-C Photo Appearance of breakage parts of breaking test 57

58 Photo No.4344 Photo No.5,6 No.4,41 c) Photo No.1516 No.19 Photo No.3133 No Photo No.34 No.19 No. Photo Details of breakage parts of towline at first tow operation d) No.31 Photo No.15,19, Photo No.31,33,37,39Photo No.3,4 Photo No.45,47 e) ( ) No.15 No.31 No.37 No.4 No.16 No.33 No.39 Photo Appearance of breakage parts of towline at second tow operation No.3 Photo Appearance of breakage parts of towline cut by knife No.5 No.6 No.45 No.47 Photo Appearance of breakage parts of towline at first tow operation No.4 No.41 Photo Appearance of towline at first and second tow operations 58

59 f) Table..1-9 Towline tension at break Table..1-9 g) Fig )678.5 JIS F7 =R/r (-4-4) Table 9 Fig h) Fig...1- PLH-A PL-C.5 (-4-3) (3) 1) 1m ) 59

60 3) 4) 5) 6) 1) (197) ) (1998) 3) Kite Towing System 34 3 (1995) 5) 1967 Fig Number of towed ships by gross tonnage Fig...1- Towing sea area 1) () pp (1984) pp ) 13) 1 5 6) GUIDELINESSecond Edition (1997) ) ) (1993) pp ) OCIMF MOORING EQUIPMENT (1) 9) 1) 15 (3) pp ) (1-1) Fig m.3m.m.16m 1/1 () pp

61 (Table..-1) (.58m.3m.144m) 1 ( 1.78m) Fig...-1 Schematic idea of model ship. Table..-1 Principal dimension of the ( 6.16g/cm) (LED) 3 PSD LED kt4kt 6kt (Fn =.45,.49,.735)(PSD) 8kt(Fn=.98) 4m (1-).5~. (1--1) Fig...- Table..- Cd (4.97 ) (.7 ) Cd = T /( ρbdv / ) (T ρ B 3 ( V ) 15m 7.5m3.5m) ( ) T model ship. length 1.8m breadth.3m draught.16m depth.m KG.135m GM.48m

62 Cd 1) Table..-3 Table..-4 Table..-3 Fig...-4 Cd Table..-4 (Table..-4 )Cd 16% (Table..-4 ~) (Table..-4 ~) (Table..-4 ~) (Table..-3 ) Cd 6% Cd Table..- Experimental condition. Fig...-3 (,4,6,8kt) Table..-3.4~.6 (Table..-3 ~) (Table..-3 Fig...- Towing conditions in stern tow. ) kt~4kt 3 (Table..-4 ) 6

63 ( ) Table..-4 ~ 3 6kt Fig...-5 Table..-3 Towing resistance coefficient in bow tow. Table..-4 Towing resistance coefficient in stern tow. 63

64 ( ) 3 Fig...-3 Comparison of towing resistance coefficient in bow tow Fig...-4 Comparison of towing resistance coefficient in stern tow Fig...-5 Schematic idea of broken model ship Fig...-6 Comparison of non-dimensional yaw (1--) period against towing speed. kt 4kt 1/ 1/4 4kt kt 1/ 1/4 (Table..-4 )4kt 6kt )3) Fig...-6 ( / ) 64

65 ) 4)5) (Table..-4 ) (Table..-4 ) Fig...-7~Fig kt ( ) ( ) % ( ) Fig...-7 Fig kt ( ) (Fig...-8)Fig...-9~Fig...-1 kt~6kt 4kt kt 4kt Fig...-1 Fig...-1 kt 4kt kt 6) (1--3) Fig (Table..- ) 8kt Fig (Table..- ) 6kt 5 ) 65

66 Fig (Table..-4 ) Fig (1) 6kt () (1--4) (3) Fig...-7 Yaw period (small trim). ( ) 6kt 3 Fig...-1 Yaw amplitude (large trim). Fig...-8 Yaw period (large trim). Fig Sway amplitude (small trim). Fig...-9 Yaw amplitude(small trim). Fig...-1 Sway amplitude (large trim). 66

67 (1-3) (1-3-1) 7) 1/1 1.8m.3m.m.16m 7) (Fig...-1) ) 5 4 3) 3 Fig Comparison of towline tension in different towing speed. Fig Comparison of towline tension in different towing direction Fig Comparison of towline tension on damaged condition. (.58m.3m.144m) Fig ( 1.78m) ( 6.16g/cm) Table..-5 6kt( ) 7.8kt (.115m.11m) 4.9 ( ) ( ).8 / 67

68 1..8 ) 7) Z/a.5 3 ( 15m 7.5m3.5m) ( 5m8m 4.5m) ( 1 ).5 LED 3 PSD (1-3-) (1-3-3) /L Fig Response Amplitude /L ( ) Fig Response Fig Amplitude Operator of surge. 1.5 /ka Exp. kt Exp..6kt Exp. 5.kt Exp. 7.8kt Cal. kt 1.8 Exp. kt 1.6 Exp..6kt.6kt 5.kt 1.4 Exp. 5.kt PSD 1. Exp. 7.8kt 1 Cal. kt.8 7.8kt Fig...-16~Fig /L Fig Response.8 Amplitude Operator of pitch. X/a Exp. kt Exp..6kt Exp. 5.kt Exp. 7.8kt Cal. kt Table..-5 Experimental condition. Operator of heave. 68

69 4 Fig...- yaw period Fig Yawng period duringi unstable motion in head waves. (4kt ) Fig...-1 Fig...- T Ψ (sec) head waves kt(reg) 4kt 6kt kt in still water(exp.) 4kt in still water(exp.) 6kt in still water(exp.).6kt(irreg. 5.kt 7.8kt.6kt in still water(exp.) 5.kt in still water(exp.) 7.8kt in still water(exp.) λ/l 7) Fig...- Yawng amplitude duringi unstable motion in head waves. Fig kt 5.9.6kt 5.kt(.63) (1-3-4) / 4) 5) Fig

70 Fig...-5 Fig...-6 ( ) ( )4 3 Fig...-1 Yawing period during unstable motion in following waves. Fig...- Yawing amplitude during unstable motion in following waves Fig...-4 Towline tension in still water (bow tow, bow trim, immersed and capsized condition). Fig...-5 Towline tension in still water (stern tow, bow trim, immersed and capsized condition). Fig...-3Non-dimensionalyawing period during unstablemotion in following waves Fig...-6 owline tension of broken ship in still water (stern tow, even keel, off-center tow). 7

71 8) Newman 9) 3 1) (Fig...-7 Fig...-8) Taw ρgb ha /L ρ g ha B L Fig...-7 λ/l=1.1 Fig ) 7).8 Fig...-9 Fig...-8 (Fig...-3) λ/l=1.5 7) (Fig...-31) Fig % 7) λ/l=1. Fig ~6 4~5 (1-3-5) ( ) (1) 71

72 T aw /(rgb Ha /L) stern tow, stern trim, upright kt 4kt 6kt Cal. kt T aw /(rgb Ha /L) bow tow, stern trim, capsize kt kt 4kt 6kt Cal. kt /L Fig...-7 Towline tension increase in waves (stern tow, stern trim, upright) /L Fig...-3 Towline tension increase in waves (bow tow, stern trim, capsize). T aw /(rgb Ha /L) stern tow, stern trim, capsize kt 4kt 6kt Cal. kt T aw /(rgb Ha /L) bow tow, bow trim, capsize kt kt 4kt 6kt Cal. kt /L.5 3 Fig...-8Towline tension increase in waves (stern tow, stern trim, capsize) /L.5 3 Fig Towline tension increase in waves (bow tow, bow trim, capsize). T aw /(rgb Ha /L) stern tow, stern trim, capsize (trim =.8deg) kt kt 4kt 6kt Cal. kt T aw /(rgb Ha /L) stern tow, bow trim, capsize kt kt 4kt 6kt Cal. kt /L Fig...-9 Towline tension increase in waves (stern tow, stern trim, capsize, small trim) /L Fig...-3 Towline tension increase in waves (stern tow, bow trim, capsize). () (4) (3) 7 ()

73 KGPS( GPS) PM-D KGPS PL-B 1 1 (-1) PL (PL-B) PM PM-D 3km ~14 Fig KGPS Table..-7 PL-B PM-D ( )( ~) PM-D PL-B ( )PL-B PL-B ( PM-D ) Fig Comparison of towline tension on damaged condition ( ) PL-B ( ) JISF mm (Photo..-1) Table..-6 (Photo..-) PL-B 1 ( MS75) KGPS 1 (47) PL-B PL-B 1.57m PM-D 1 PL-B Table..-6 Main dimension of tow and towed ship. 65mm165m (.15kg/m) (-) 73

74 Table..-7 Experimental conditions at sea. Exp. No. time speed(kt) Patrol Vessel 'PL-B' straight 1Hz KGPS 1Hz KGPS XY( ) H( ) course change right turn left turn 14143,4,6 straight straight straight Patrol Vessel 'PM-D' straight follow rudder angle(deg) tow ship PL-B PL-B straight 7 PL-B straight 7 PL-B straight PM-D turn 7 PM-D turn 7,15,3 PM-D (-3) ~4m/sec Fig Fig KGPS PL-B PM-D 11.64m 5.m PL-B 1.6cm.1% PM-D 19.6cm.4% KGPS (Table..-7 ) Fig KGPS PL-B PM-D Photo..-1 Tension meter installed at bow. Photo..- Tension meter installed PL-B at stern Fig PL-B.96 Fig sec Fig

75 A B Tb AB l1 A B lb = l la lc = hb ( hb + ) (3) w la lb da db A B d Ta Tb TA TB lc 1) la ha ( ha + d Ta ) w = (1) T wl a a a = sinh 1 () w Ta b = l 1 l c d a Tb w( l l = sinh 1 w T a a l ) c (4) T a = T b (5) a T = T + ( wl ) a A b T = T + ( wlb ) B (6) (7) k l tow ship towed ship MS75 GPS antenna MS75 MS75 tow ship MS75 towed ship towline OSMIV 47 Fig Measuring system using KGPS. Fig Changeof distance between two antennas in Patrol Vessel PL-B. Fig Change of distance between two antennas in Patrol Vessel PM-D. 75

76 Fig Time history of towline tension. ' Ta + ( wla ) l = l + k Fig Head angle of tow and towed ship. Tb = ( hb h')( hb h' ) (1) w Fig (8) PM-D ( ) h (1) 11.6tf (3) Ta la = ( ha h')( ha h' + ) w l lc b + = (11) l 1 = d a + d b (1) l1 TBdadb h Fig...-4 ( ) 3% k.35(tf/m) ha hb 4.89m 4.35m da db lc l1 353m lc h 1m 11) PL-B (9) 89sec T A Tb T B hb B l 1 la A ha Ta da Fig Schematic idea of towline figure during towing. 76

77 6kt Fig KGPS Fig KGPS Fig sec 33m KGPS ~3% Fig...-4 (TB) PL-B Fig (db) Fig...-4 Numerical calculation of towline tension and figure. ( 3mm) 13)14).3(tf/m)1.5%.35(tf/m)9% Fig...-4 Comparison between towline tension and distance from towed point to sea surface. Fig Towline tension and distance between tow and towed ship. Fig Relation between towline tension and elongation. 77

78 PLH-A 9.357(tf/m) PL-C PLH-A 65mm 15(g/m).96 E 5.3(kgf/mm ) (-4) KGPS ( T7~T1) (1) PL-C 3 15 PL-C 1 () 65mm 5.3(kgf/mm ) ( T6~T1) 75mmm (3) () 15), GPS,Gross tonnage (t) 993 5,59 Displacement (t) 1,5 5,317 ( T6) PL-C 3 PLH-A 7 ( 9 ), PLH-A PL-C PLH-A PL-C 3 7 ( 11) :.8kg/m 46.5tf) Table..-8 Principal dimension of tow and towed ship. Patrol Vessel PL-C Length over all (m) Maximum breadth (m) Depth (m) Patrol Vessel PLH-A (3-1) (3-1-1) Table PL PL-C) 3 PL PLH-A) (Fig...-44) ~1 7~8 9 1 Table PL-C PLH-A (, T1~T4) PL-C Izu Pen. Sagami Bay Izu Island N34 44' E139 36' Tokyo Bay Boso Pen. Within this circle of 5 nautical mile radius Fig Experimental site. 78

79 /1/9 /1/1 (3-1-) PL-C PLH-A Table..-1 Table..-11 PL-C PLH-A 3, Table..-9 Experimental conditions (tow). 1, PL-C PL-C Table..-11 Measuring item and 3m measuring device at Patrol Vessel PLH-A ( ) date Exp. No. time speed (kt) T1 13:39-14:5 3kt T 14:5-14:6 3kt T3 15:3-15: 5kt T4 15:-15:44 5kt T5 9:4-9:5 3kt T6 9:5-1:1 3kt l T7 13:19-13:3 3kt T8 13:3-13:5 3kt T9 14:7-14:5 3kt T1 14:5-14:5 3kt JISF333 PLH-A Fig KGPS4 Patrol Vessel Patrol Vessel rudder angle PL-C PLH-A (deg) tow ship straight straight PL-C right turn follow 7 PL-C straight straight PL-C right turn follow 15 PL-C straight straight PL-C eft turn follow 15 PL-C straight straight PLH-A follow right turn 7 PLH-A straight straight PLH-A follow right turn 15 PLH-A Table..-1 Measuring item and measuring device at Patrol Vessel PL-C. measuring item wave height pitch roll sway acc. surge acc. heave acc. wave compensation measuring item tension roll pitch sway acc. surge acc. heave acc. Patrol Vessel PLH-A Moving base Master receiver GPS receiver (MS75) Slave No.1 GPS receiver (74Msi) RS-3C Signal distributor Data transmitter measuring device ultrasonic wave probe optical fiber gyro optical fiber gyro optical fiber gyro optical fiber gyro optical fiber gyro accelerometer measuring device tension meter vibrating structure gyro vibrating structure gyro 3 axis accelerometer 3 axis accelerometer 3 axis accelerometer Patrol Vessel PL-C Data receiver RS-3C Signal distributor Slave No. GPS receiver (74Msi) Slave No.3 GPS receiver (74Msi) Fig Moving KGPS system. 79

80 KGPS, PL-C 1 (MS.3%PLH-A.1% Msi-3 )PLH-A 1 GPS 3 PLH-A 1 DGPS Fig Fig kt KGPS PL-C PLH-A 17.17m PLH-A PL-C 1.8m 1.64tf/m.353tf/m 4.6 1Hz KGPS 5Hz KGPS X Y( ) H( ) GPS 3 ~1 (3-) (3--1) ~18m/sec,1~m Fig T5~T6 18 PL-C PLH-A PLH-A 13tf 18.8tf 7 PLH-A KGPS PL-C 16) PLH-A, 5cm 15cm 8 distance between two ships (m) 6 PLH-A 54 head direction 48 (deg) 4 distance between two ships (m) PL-A head direction (deg) PL-C distance between two ships (m) 8:59: 9:1 9: 9:3 9:4 9:5 1: 1:1 1: Time distance PL-C head direction (deg) towline tension (tf) towline tension (tf) 1:7 16 Towline snapped Fig Distance between PL-C and PL-A, head direction and towline tension. (tow ship : PL-C, towed ship : PL-A, stern tow) towline tension (tf) 5 4 tension 57 9:35 6 9:4 63 9: :5 69 9:55 1: 7 Time Fig Time history of distancebetween two ships and towline tension (/1/1)

81 m 1 m k T KGPS 14% T6~T1 PL-C PL-C T5 T6 1% 1.64tf/m 3kt T tf/m % (3-3) T1 PL-C KGPS (3--) (1) Fig towline tension (tf) 18 Fig A B AB l 1 1 A B 1 8 la lb 6 d a d b A B 4 Ta Tb distance between two ships (m) TA TB ' l c h Fig...-48Relation between distance and towline tension. (9:45-9:5, /1/1) 4.353tf/m Fig % Fig T = π (13) 1 1 k + m1 m Table..-8 PL-C PLH-A [m],[tf] lc db l 1 [m] da T B *1 h'*1 Fig...-49Numerical calculation of towline tension and figure. 81

82 () 1) 16) 3 (1985)pp ) 186 (1999) pp ()pp ) (1) 5 (1988)pp ) (1) (1989)pp ) 6 (1996) pp ) 33 ()pp ) Maruo,H.The Drift of a Body Floating on Waves, Journal of Ship Research, Vol.4, No.3, (196)pp.1-1 9) Newman,J.N. The Drift Force and Moment on Ships in Waves, Journal of Ship Research. Vol.11, No.1, (1967) pp ) 31 3 (1994)pp ) 1) ( 3 ) 44 1 (1998)pp ) (1993)pp ) Hyunkyoung Shin, Kenji Yamakawa, Shoichi Hara Laboratory Tests on Synthetic Fiber Ropes, OMAE94, (1994), pp ) 37 ()pp ()pp ) 54 Table..3-1Principal dimensions 8

83 Fig Self-propulsion. Fig...3- Horse power estimation. 1 t ( ) 1wT T aw =(T w T )/(ρgζ w B / L PP ) R aw =(R w R )/(ρgζ w B / L PP ) Q aw =(Q w Q )/(ρgζ w DB / L PP ) N aw =(N w N ) VD 3 /(gζ w B / L PP ) R,T,Q,N : in still water with tow load 83

84 Fig Amplitude of heave, pitch & surge Fig Example of self-propulsion test results. 84

85 Fig Propulsive performance in irregular waves. Fig Towing power in still water. Fig Towing power in irregular waves. Fig Towing power of PL-C in still water (495rpm). Table..3-Principal dimensions of Patrol Vessels. Fig Towing power of PM-D in still water (38rpm). 85

86 (JA) (KT) Fig Speed, pitch angle and towline tension in still water. Fig Weather conditions. 86

87 Fig Speed, Blade angle and Towline tension in waves. 87

88 PM-D PL-B PM-D PM-D..4. (1) (Photo..4-1) 88

89 () Fig o -xy (i=1) (i=) o i-x iy i Li U& ( m i + m xi ) U i U T ( m + m ) i + T Towed Point VC ( m m ) r sin( ψ + ψ ) yi xi ( m + m ) VC ( m m ) r cos( ψ + ψ ) xi + L U ( m + m ) i i i ( I zzi + i zzi ) r i + r& i = N i i yi yi i i i i yi Li U& i i i i U sin β & β cos β i U i + U i U i U& Li cos β i & β i sin β i i i xi i i U L i i i i i C r sin β = X C r cos β = Y X = X V Cψ C Y = Y H 1) i i (1) () l l : Length of Towline Fig...4- Definition of towline x o Photo U Wind A o V A X', x H f Wrecked fore part of "ERIKA". Wave W l T' N', r' H Y', y H T' 1 N', r' H1 1 a o 1 U 1 1 X', x H1 1 Y', y H1 1 Ship1Tow Ship V C C Current ShipTowed Ship Fig Coordinate y p ) (p)(s) X = X H T T Tow Point 1 1 Y = Y 1 H1 H1 N = N H1 + N + N H N = N + Y H + X P1( p, s) R1( p, s) + y ( X P1( p) X P1( s) ) + y ( X X ) R1( p, s) p R1( p) R1( s) A1 + Y p + N + X A + N A A + Y W1 + Y W + X A1 + N + X ' + N W W A1 + Y T1 + Y T + X W1 + X T + N T W1 + Y T1 + X T1 () AW T 1) Isherwood 1) y 89

90 X Y Wi Wi N Wi = C = C X YWi = C ( κ, λ / Li ) gha / d iu Wi i ( κ, λ / Li ) gha / d iu i ( κ, λ / L ) gh / d U NWi i a i C XWiC YWi C NWi X T = T cosε κ λ/li Y T = T sin ε h a f N T = T sin L i (3) T af l l Fig...4- l T l = T 1 ω sinh ω l T (4) T T = T ω l + (5) ω T ψ i r i k l l = l T ω l + k (6) T (4) (6) T 3 ω l ω l T + ( ) = k l l 4T (7) T, T T i, T i = 1 ρlid iu i X Ti X Ti X Ti X T1 N T1 N T1 = T cos = T sin 1 1 = T 1 ( ψ 1 ψ ε ) ( ψ ψ ε ) a L 1 1 sin ( ψ ψ ε ) ε 1 (8) ε 1 ε& = { U l a r 1U L 1 U 1 f L sin 1 r U sin ( ε + β ) ( ψ + ε ψ ) ( ψ + ε ψ + β ) cos U cos L U i i = ri Li 1 r 1 1 (9) ψ& (1) (1) (9) (1) Table..4-1 Principal particulars. Tow Ship Towed Ship (Wreckage) L (m) B (m) d (m) C B.58 A f (m ) 13. As (m ) 55. L OA (m) Table..4- Location of tow and towed points. Posture of towed ship a (m) f (m) Upright Capsize Table..4-3 Calculation conditions. Wind North Wind, V A =15 (m/s) Wave H 1/3 =3 (m), T H 1/3 =9 (sec.) 9

91 Photo..4- (3) (3-1) Table..4-1 CPP 1 SR1 VLCC (SR1C ) 3) S.S.71/ X H Y H N H 1/17 5) Bodyplan Photo..4-6(deg.) Fig S.S.8 S.S.71/ 4) (3-) General view of towed ship. (a) Tow ship F.P. 91/ L.W.L. (b) Towed ship (Wrecked fore part) Fig Bodyplans of tow and towed ships. 9 81/ 8 71/ 6(deg.) 4),5) U 1 1(knot) (knot) 6(mm) 6(m) 15.8(kg/m) l 3.5% 6) a, f Table..4- ±(deg.) ( p, s) = K r K ( ψ 1 ψ m ) + K ( ψ ψ ε ) + K d l Upright Fig δ (11) ψ m d l K 1~K 4 Table ) (3-3) Fig Isherwood 1) C XA, C YA C NA ψ A Fig X HY H N H Upright N H Upright 4 91

92 C XWi, C YWi U 1 (knot) C NWi 3 8) (deg.) U 1 (knot) 9) SurgeSwayYaw 3 β 1 Yaw Upright T 3(tonf) C YWC NW C XW 6(deg.) Upright (Fig...4-8(b),(d)) β 1 ψ W -(deg.) (3-4) U 1 1(knot) 6(tonf) (knot) 1(tonf) Fig T ~9(deg.) 1(deg.) Fig...4-7(a)~(d) Fig...4-8(a) ~(d) (knot) 3(sec.) (a)(b) U 1 1(knot) (c)(d) U 1 1(knot) U 1 (knot) (deg.) 6(deg.) 1(knot) 6(sec.) Upright (deg.) Upright U1 1(knot) (deg.) (knot) U 1 (knot) 3(deg.) 4(deg.)5(deg.) 1 Upright 6(deg.) ψ -~(deg.) 4 T U 1 1(knot) ~(deg.) 1 3(deg.) T 1 T 9

93 1. C XA1, C YA1, C NA Fig : C XA1 -.8 : C YA1 : C NA Wind direction ψ Α (deg.) Wind force and moment coefficients acting : r' =. : r' =. : r' = X' H Upright Drift angle β (deg.) X' H Capsize Drift angle β (deg.) Y' H Upright Drift angle β (deg.) Y' H Capsize Drift angle β (deg.) N' H Upright Drift angle β (deg.) N' H Capsize Drift angle β (deg.) Fig Hydrodynamic forces acting on towed ship (stern trim 6 deg.). : C XW1 (Cal.) : C YW1 (Cal.) : C NW1 (Cal.) : C XW (Exp.) : C YW (Exp.) : C NW (Exp.) C XW1, C YW1, C NW Encounter angle ψ W (deg.) 1.6 C XW, C YW, C NW Upright Encounter angle ψ W (deg.) 1.6 C XW, C YW, C NW Capsize Encounter angle ψ W (deg.) Fig Wave drifting force and moment coefficients acting on tow and towed ships. 93

94 x / L Wind Wave Current t = 6 (sec.) t = (sec.) (a) U 1 = 1 (knot) ψ A,W = (deg.) 8 x / L Unstable Wind Wave Current t = (sec.) t = (sec.) y / L y / L y / L y / L (b) U 1 = 1 (knot) ψ A,W = 6 (deg.) 8 x / L t = 6 (sec.) Current t = (sec.) (c) U 1 = (knot) ψ A,W = (deg.) 8 x / L Unstable Wind Wave Current (d) U 1 = (knot) ψ A,W = 6 (deg.) 6 : β 1 : ψ 1 : β : ψ 1 β 1,, ψ 1, (deg.) (a) U 1 = 1 (knot), ψ A,W = (deg.) Tension (tonf) (a) U 1 = 1 (knot), ψ A,W = (deg.) β 1,, ψ 1, (deg.) (b) U 1 = 1 (knot), ψ A,W = 6 (deg.) Tension (tonf) (b) U 1 = 1 (knot), ψ A,W = 6 (deg.) β 1,, ψ 1, (deg.) (c) U 1 = (knot), ψ A,W = (deg.) Tension (tonf) (c) U 1 = (knot), ψ A,W = (deg.) β 1,, ψ 1, (deg.) (d) U 1 = (knot), ψ A,W = 6 (deg.) Tension (tonf) (d) U 1 = (knot), ψ A,W = 6 (deg.) Time (sec.) Fig Trajectories of tow and towed ships and time histories of towing motion (Upright) 94

95 x / L Wind Wave Current t = 6 (sec.) t = (sec.) y / L y / L y / L y / L (a) U 1 = 1 (knot) ψ A,W = (deg.) x / L Wind Wave Current t = 6 (sec.) t = (sec.) (b) U 1 = 1 (knot) ψ A,W = 6 (deg.) 8 x / L t = 6 (sec.) Current t = (sec.) (c) U 1 = (knot) ψ A,W = (deg.) 8 x / L t = 6 (sec.) Current t = (sec.) (d) U 1 = (knot) ψ A,W = 6 (deg.) 6 : β 1 : ψ 1 : β : ψ 1 β 1,, ψ 1, (deg.) (a) U 1 = 1 (knot), ψ A,W = (deg.) Tension (tonf) (a) U 1 = 1 (knot), ψ A,W = (deg.) β 1,, ψ 1, (deg.) (b) U 1 = 1 (knot), ψ A,W = 6 (deg.) Tension (tonf) (b) U 1 = 1 (knot), ψ A,W = 6 (deg.) β 1,, ψ 1, (deg.) (c) U 1 = (knot), ψ A,W = (deg.) Tension (tonf) (c) U 1 = (knot), ψ A,W = (deg.) β 1,, ψ 1, (deg.) (d) U 1 = (knot), ψ A,W = 6 (deg.) Tension (tonf) (d) U 1 = (knot), ψ A,W = 6 (deg.) Time (sec.) Fig Trajectories of tow and towed ships and time histories of towing motion (Capsize) 95

96 Wind and Wave Direction (deg.) 3 1 Current 4 (tonf) Wind and Wave Direction (deg.) 3 1 Current 4 (m) Wind and Wave Direction (deg.) 3 1 Current 5 (PS) (tonf) Upright : 1 (knot) : (knot) 3 (a) Tension (m) Upright : 1 (knot) : (knot) 3 1 (b) Unstable motion amp (PS) Upright : 1 (knot) : (knot) 4 3 (c) EHP 1 1 Wind and Wave Direction (deg.) 3 1 Current 4 (tonf) Wind and Wave Direction (deg.) 3 1 Current 4 (m) Wind and Wave Direction (deg.) 3 1 Current 5 (PS) (tonf) Capsize : 1 (knot) : (knot) 3 (a) Tension (m) Capsize : 1 (knot) : (knot) 3 1 (b) Unstable motion amp (PS) Capsize : 1 (knot) : (knot) 4 3 (c) EHP 1 1 Fig Estimation of towing tension, amplitude of unstable motion and EHP 5~7(deg.) ψ 1 T T (4) T ~5(deg.) Fig EHP ~3% T 96

97 Upright ~(deg.) 5~7(deg.) 1) Kijima, K., Katsuno, T., Nakiri, Y. and Furukawa, Y.On the Manoeu- vring Performance of a Ship with the Parameter of Loading Condition, 168 (199) pp ) 163 (1988) pp ) () 1 ( ) (1995) 4) 186 (1999)pp ) 74 ()pp ) (16 ) 7) 1 (1997) 8) 31 3 (1994) pp ) 1 (1)pp ) Isherwood R.M. Wind Resistance of Merchant Ships, The Royal Institution of Naval Architects, Vol.115, (197), pp

98 3. (1) ( ) () 3 Ve(kt) (A) (B) A/B Vw B A Ve = (1) Vw (m/sec) ±15 Vc(kt) φ Vw sinϕ /.45 Vw Vc = () 45 Vs(kt) (3) (Vv).1.. ( ) 3 1/ 3 1/ = λ π H B dz e k g H C C B Lg V B kz D W V (3) L B CW CD g H 1/3 ( H 1/3 /1.6 ) λ k = π /λ 98

99 T λ = T g /π.1.. GM χ MKS (4) (3) (3) a) (3) b) C C W D C W (3) 3 C D Fig. 3-1Fig. 3- C W /C D χ λ/l 3 Fig Fig. 3- B L d λ/l C W /C D L kz kz e dz e dz 1 B d {1 kd = e } C W / B Ld kd (4) C D Fig. 3- χ Fig. 3-3~Fig. 3-5 C W /C D χ 3 B L B Ld C W /C D χ kd Fig. 3-1 (4) 99

100 1 kd {1 e } 1 kd kd (5) (4) kd Fig.3-6 Fig. 3-1 Value of C W /C D Fig. 3- Value of C W /C D (tanker 15DWT, full load). (observation ship, full load). λ / L λ / L λ / L Fig. 3-3 Value of C W /C D (Tanker 15DWT) (mean value with respect to wave encounter angle) λ / L Fig. 3-4 Value of C W /C (Cargo) D (mean value with respect to wave encounter angle) 1

101 λ / L {1-exp(-kd)} / kd λ / L kd Fig. 3-5 Value of C W /C D (PCC) (mean value with respect to wave encounter angle) Fig. 3-6Plotting of equation (4) near kd=. Table 3-1 Ship for drift motion prediction. Fig. 3-7 Ship during drift. (5) (Vv) Vs Vc Ve Vv Table 3-1 Fig a) b) Ve (1) A/B=1.3.68( ) 15 Vc () Vv (3) L=95m d=5.4m c) (B=Ld ) Table 3-1:

102 1.8~13.8m/s.5~4.m ~4m 1.3m/s 3.3m Fig ~ ( 1m ) m 1.8 Fig. 3-8 prediction curve of wave Table 3- drift course and weather condition. date time place ship inclination current direction current speed (kn) wind direction wind force wave swell drift direction and speed N 1/ ENE 5 ENE E N 4- L3 5.3 ENE 6 ENE E N ENE 7 ENE N ENE 6 ENE E N 7- L ENE 6 ENE E 5-1.3N 8- L15 ENE 7 ENE E 5-8.5N 9- L ENE 7 ENE E 5-6.9N 1- L15 ENE 7 ENE E 5-4N 11- L E 7 E E 5-3N 1- L E 6 E-5 ENE E 5-1.1N 13- L15 E 6 E-4 14-E N 14- L E N 141.4E 4-58N 16- L E NE-3 NE-3 NE-3 NE-3 NE-3 NE-3 NE-3 NE-3 ENE-3 ENE-3 1.kn L15 ENE 6 E-3 ENE E 5 E-3 ENE

103 d) Fig m/s m (6) North Latitude 4.95 Predictions Actual drifting path Ocean current + Wind drift components Ocean current + Wind drift + Wave drift components Wavedrift component Ocean current component East Longitude Fig. 3-9result of drift course prediction. 1) pp ) Vol.19pp ) Tanizawa, K. and Minami, M., : On the drifting speed of floating bodies in waves, Proc. 1 th ISOPE Conf. Vol.3, (), pp

104 4. (1) ( ) Table 4-1 ()(LBD) 1) 4.1. (Optimum Towing Support System: OTSS) 3) (Light Weight) DOS/V OS (L B D )/(LBD) Windows ( ) 64Mb ( 18Mb )CPU 4MHz HD Mb Visual Basic FORTRAN C++ Deck )deck 3) ViewPoint 1Kbyte 4) D-WEB D-WEB 14 LBD ) (Compartment) BD No (Basic Weight) (Local Weight) Weight () Table 4-1 Main particulars of type ships. 1) 4 1 5)

105 (3) ( ) 1) (4) ) (FSE:Free Surface Effect) (GG) 3) ( (6) ( ) 4) )(LBD) (VCG) 5) GZ (5) ) (Typeship) ( (7) ( ) The start of OTSS Calculation of hydrodynamic force and motion (If you only refer to past results or default, you don t need to calculate.) Animation Input style New Past results Default Go to main screen select select Go to main screen Input items Sea conditions Principal dimension of disabled ship Broken condition of disabled ship & calculation of center of gravity and GZ-curve Longitudinal strength Form of submerged part damage stability Specifications of towline and tow ship Steady drift calculation Maneuver simulation (If you only refer to past results or default, you don t need to calculate.) Save of input data and results End Drift speed Drift direction Towline tension Amplitude of unstable motion Effective horse power Trajectory of tow ship and towed ship Fig. 4-1 Flow of Optimum Towing Support System. 15

106 (8) (S.F.) S.F. (B.M.) ) Fig. 4-1 ) (1) OTSS 3) (9) ( ) 3 (a) (1) 4-3) (b) (11) (Fig. 4-) () (Fig. Save Fig. 4- Display for the start. Fig. 4-3 Main menu display. 16

107 (c) ( ) (3) (a) (b) ( PCC( ) ( ) (c) (Fig. 4-4) Upright Normal Upright Broken Capsize Normal Capsize Broken ( ) ( ) ( ) * Sumcalc.exe GZ ) ( ) Wtrmesh.txt 3 DTH (d) (Fig. 4-5) 1kt 1 Fig. 4-4 Input menu for ship status. Fig. 4-5 Input menu for tow ship and towline. 17

108 Fig. 4-6 Display for animation. Fig. 4-7 Display for drift prediction. Cut_Res: Reset: Motion_Ani: Fig. 4-8 Display for the results of towline tension and unstable motion. (4) ( ) (6) MS-DOS 6) MS-DOS (Fig. 4-6) (7) (Fig. 4-8) 1 18 Water Opac Low: Water Opac Res: Naked ON: Naked Off: Cut: (5) (Fig. 4-7) 5) 1

109 Fig. 4-9 Display for the results of trajectory of tow and towed ship. Engine room Broken position A.P.T. Slop tank Table (1) () (3) (4) F.W.T. F.O.T. Fig kt Fig. 4-1 (8) (Fig. 4-9) ( ) ( ) 1 ( XG q, YGq, ZGq ) ( d e, te, he ) e e C.O.T. B.W.T. F.P.T. Fig. 4-1 Tank arrangement of 15DWT. tanker. (1) Fig ( ) /3 t ( d e, te, he ) W q e h W q = e (1) t e XG q = ( KGq ZBe ) + Lpp q e q XB e e e () YG = tan( h )( KG ZB ) + YB (3) ( e e e XB, YB, ZB ) d e 19

110 Initial condition Damage 1 Damage Damage 3 GZ(m) Initial condition damage damage4 damage6 damage8 damage1 damage3 damage5 damage Damage 4 Damage 5 Damage 6 Damage 7 Damage 8 Damage 9 Fig Damage procedure of aft part of broken tanker. Initial condition Damage Heel(deg) Fig GZ curve of damaged full loaded condition. D raft, Trim, Heel 3 Draft (m) (ballast) Trim (deg) (ballast) Heel (deg) (ballast) Draft (m) (full) Trim (deg) (full) Heel (deg) (full) Damage Damage Damage 4 Damage 5 Damage 6-1 Initial Damage 1 Damage Damage 3 Damage 4 Damage Damage 6 Damage 7 Damage 8 condition Fig Change of ship status on upright full loaded condition (1/3 aft part). Fig. 4-1 Damage procedure of fore part of 11 e = ρ P p V ϕ, d, t, h ) (4) w j j ( j e e e p jξ x ( ϕ j, de, te, he ) XBe = (5) p V ( ϕ, d, t, h ) j j j e e e e p jξ y ( ϕ j, de, te, he ) YBe = (6) p V ( ϕ, d, t, h ) p jξ z ( ϕ j, de, te, he ) ZBe = (7) p V ( ϕ, d, t, h ) j j e ρ : w P : p j : V ϕ, d, t, h ) ( j e e e ( de e e broken tanker. e e e e : ϕ j, t, h ) () Fig GZ -85 ~85 8 Fig ( ) Fig Fig. 4-16( ) ξ u ( ϕ j, de, te, he ) : ϕ j ( d,, ) u(xyz) e te he /3

111 Table 4- Drift motion (wind only). Ship Type Cargo Fishing boat PCC Tanker Solution No. drift speed (kt) drift direction (deg) head direction (deg) Table 4-3 Drift motion (wind and waves). Bending moment (MT-M) Fig Definition of ship status. Bending moment Shear force Shear force (MT) From A.P. (m) Fig Shear force and bending moment on upright full loaded condition (1/3 aft part). Draft, Trim, Heel Draft (m) (ballast) Trim (deg) (ballast) Heel (deg) (ballast) Draft (m) (full) Trim (deg) (full) Heel (deg) (full) 5-5 Ship Type Cargo Fishing boat PCC Tanker Solution No. drift speed (kt) drift direction (deg) head direction (deg) Initial Damage 1 1 Damage Damage 3 3 Damage 4 4 condition Fig.4-17 Change of ship status on upright full loaded condition (/3 fore part). Fig (Fig. 4-18) m/sec m7sec PCC ( )4 Table 4- ~

112 Tank15, wind only drift speed(kt) wave 3 period: 7.s height:.m incident angle: deg wind 6 speed: 1.m/s incident angle: deg 9 Tank15, wind and waves drift speed(kt) wave 3 period: 7.s height:.m incident angle: deg wind 6 speed: 1.m/s incident angle: deg 9 4 Cargo1, wind only drift speed(kt) Fish, wind only drift speed(kt) PCC99, wind only drift speed(kt) drift direction(deg) wave 33 3 period: 7.s height:.m incident angle: deg wind 6 speed: 1.m/s incident angle: deg 9 1 drift 1 15 direction(deg) 18 wave 33 3 period: 7.s height:.m incident angle: deg wind 6 speed: 1.m/s incident angle: deg 9 1 drift 1 15 direction(deg) 18 wave 33 3 period: 7.s height:.m incident angle: deg wind 6 speed: 1.m/s incident angle: deg drift direction(deg) Cargo1, wind and waves drift speed(kt) wave period: 7.s 5. height:.m 4. incident angle: deg 3. 3 wind 6. speed: 1.m/s 1. incident angle: deg drift 1 15 direction(deg) Fish,wind and waves 18 drift speed(kt) wave period: 7.s 3. height:.m.5 incident angle: deg wind 6 1. speed: 1.m/s.5 incident angle: deg drift 15 direction(deg) 18 drift speed(kt) wave period: 7.s 3. height:.m.5 incident angle: deg wind 6 1. speed: 1.m/s.5 incident angle: deg drift direction(deg) drift direction(deg) Fig Drift motion prediction of various type of ships in wind and waves. 11

113 Table 4-4 Submerged part of type ship status. Stern trim 3 Bow trim 3 Barge Cargo Container Fishing boat PCC Tanker (Double hull) Tanker1 (Single hull) Table 4-5 Submerged part of tanker and cargo. 6trim 3trim Even keel -3trim -6trim Cargo Tanker(Double hull) Table 4-6 Submerged part of broken tanker. Aft part -6. trim LOA = 176.6m Fore part 6. trim LOA = 88.3m All Even keel LOA = 65.m 9 ( ) Table 4-6 () Table 4-1 PCC 1.5 X w X Table 4-3 w Fx = (5) 1 1.4~. ρglha ρ g L h a (1) 8) Newman 9) 3 Table ( ) ±3 ( + )3 ( ) ±3 ±6 5 ( ) ±6 Table 4-4 Table

114 surge even keel 18deg.6 even keel 18deg.4 barge cargo.4.3 container fishing boat barge cargo. container fishing boat PCC tanker. PCC tanker.1 tanker1 tanker pitch?/l even keel 18deg ?/L barge container PCC tanker1 cargo fishing boat tanker heave Fx?/L barge container PCC tanker1?/l cargo fishing boat tanker even keel 18deg Fig Effect of ship type on RAO of ship motion and wave drift force (even keel, head wave) surge.9 heave even keel.6.6 even keel deg.5.5 deg.4.4 barge cargo barge cargo.3.3 container fishing boat container fishing boat.. PCC tanker PCC tanker.1.1 tanker1 tanker ?/L?/L pitch even keel deg ?/L barge container PCC tanker1 cargo fishing boat tanker Fx barge container PCC tanker1 even keel deg ?/L cargo fishing boat tanker Fig. 4- Effect of ship type on RAO of ship motion and wave drift force (even keel, follow wave). 114

115 surge -3. trim 18deg pitch barge container PCC tanker1 λ/l cargo fishing boat tanker barge container PCC tanker1 cargo fishing boat tanker -3. trim 18deg λ/l heave barge container PCC tanker1 cargo fishing boat tanker -3. trim 18deg λ/l Fx barge container PCC tanker1 λ/l cargo fishing boat tanker -3. trim 18deg Fig. 4-1 Effect of ship type on RAO of ship motion and wave drift force (bow trim, head wave) surge barge cargo container fishing boat PCC tanker tanker1-3. trim deg pitch barge container PCC tanker1 λ/l cargo fishing boat tanker -3. trim deg λ/l heave barge container PCC tanker1 cargo fishing boat tanker -3. trim deg λ/l Fx barge cargo container fishing boat PCC tanker tanker1-3. trim deg λ/l Fig. 4- Effect of ship type on RAO of ship motion and wave drift force (bow trim, follow wave). 115

116 surge barge container PCC tanker1 cargo fishing boat tanker 3. trim 18deg pitch barge container PCC tanker1 λ/l cargo fishing boat tanker 3. trim 18deg λ/l heave barge container PCC tanker1 cargo fishing boat tanker 3. trim 18deg λ/l Fx barge container PCC tanker1 cargo fishing boat tanker λ/l 3. trim 18deg Fig. 4-3 Effect of ship type on RAO of ship motion and wave drift force (stern trim, head wave) surge barge cargo 3.5 barge cargo 3.5 container fishing boat container fishing boat 3. PCC tanker PCC tanker 3. tanker1.5 tanker trim 3. trim.. deg deg pitch barge container PCC tanker1 λ/l cargo fishing boat tanker 3. trim deg λ/l heave Fx barge container PCC tanker1 λ/l cargo fishing boat tanker 3. trim deg λ/l Fig. 4-4 Effect of ship type on RAO of ship motion and wave drift force (stern trim, follow wave). 116

117 surge 6 trim 3 trim even keel -3 trim -6 trim tanker 18deg pitch 6 trim 3 trim even keel -3 trim -6 trim λ/l tanker 18deg λ/l heave 6 trim 3 trim even keel -3 trim -6 trim tanker 18deg λ/l Fx λ/l tanker 18deg 6 trim 3 trim even keel -3 trim -6 trim Fig. 4-5 Effect of ship status on RAO of ship motion and wave drift force (Tanker(double hull)) surge 6 trim 3 trim even keel -3 trim -6 trim cargo1 18deg /L pitch 6 trim 3 trim even keel -3 trim -6 trim cargo1 18deg /L heave 6 trim 3 trim even keel -3 trim -6 trim cargo1 18deg /L Fx /L cargo1 18deg 6 trim 3 trim even keel -3 trim -6 trim Fig. 4-6 Effect of ship status on RAO of ship motion and wave drift force (Cargo). 117

118 surge aft(-6. trim) fore(6. trim) all(even keel) 1.5 heave aft(-6. trim) fore(6. trim) all(even keel) Fig. 4-7 Effect of ship status of broken tanker on RAO of ship motion and wave drift force. 18 tanker broken 18deg pitch Fig Fig. 4- Table 4- Fig. 4-3 Fig λ/l=.5 1 Fig. 4-1 Fig. λ/l tanker broken 18deg λ/l aft(-6. trim) fore(6. trim) all(even keel) Table 4-7 Metacenter height and center of gravity. aft(-6. trim) fore(6. trim) all(even keel) GML OGX ( tanker broken 18deg ) Fig. 4-5 Fig. 4-6 ( 118 λ/l Fx λ/l aft(-6. trim) fore(6. trim) all(even keel) tanker broken 18deg λ/l.5 ( )

119 ) ( ) λ/l=1. 6 λ/l=1.5 Fig. 4-7 ( ) 1/3 3 6 Table 4-7 (GML) (OGX) ) Fig. 4-8 Towing operation concept using internet for making emergency towing database. ( -3kt 5-6kt () (3) (4) 1 (5) (6) 119

120 3) ( ) () pp ) 3D-WEB 871 (3)pp ()pp ) 191 () pp ) () pp ) Maruo, H.The Drift of a Body Floating on 9) Newman, J.N. The Drift Force and Moment on Ships in Waves, Journal of Ship Research, Vol.11, No.1, (1967) pp ) 31 3 (1994)pp (Fig. 4-8) 1) ( ) 74 ()pp37-38 ) ( 1 )1 (1)pp ) Waves, Journal of Ship Research, Vol.4, No.3, (196)pp.1-1 1

121 11

122 1) 11) 13

123 Fig.1 Wire rope construction 4) 1 6 Fig.1 point contact lay Fig. Point contact lay 4) Fig. Fig.3 Fig.3 Linear contact lay 4) (IWSC: Independent Wire Strand Core ) IWRC: Independent Wire Rope CoreCFRC: Center Fit Wire Rope Core Table 1 Classification of breaking load 4) (Fig.4) Fig.4 Section of core ropes 4) Table Symbol of lay 4) JIS 355 Table 1 Z S 14

124 Z S (Table ) ( ) 637 G/O IWRC 6 WS(36) G/O G/O Table Z IWRC 6WS(36) 77 IWRC: Independent Wire Rope Core WSWorinton Seal 6 D/d=1 Fig. 5 Appearance of synthetic 637 IWRC 6 fiber ropes 5) WS(36) Table 3 Table 4 4 Fig.5 1) 3 ) 4Z S (-4-1) 3) 1 6Z OCIMF S D/d> ) IWRC 6(37) D/d=16 6 WS(36)D/d= 1) 4) Table 5 Z S Z S Z 1 JIS 15