LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

Size: px
Start display at page:

Download "LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University"

Transcription

1 LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University Cramer hsuzuki@icuacjp 0

2 3x + y + 2z 4 x + y + z x y + 5z 7 x + y + z 3x + y + 2z 4 x y + 5z x + y + z 2y z 2y 6z x + y + z 2y z z y x z (parameter) - { x + y + z y + 2 z 2 { x + 2 z 3 2 y + 2 z

3 z t x t y t 2 2 z t x y z t n m a x + a 2 x a n x n b a 2 x + a 22 x a 2n x n b 2 a m x + a m2 x a mn x n b m a ij b k a ij (double index) x, y, z x, x 2,, x n a a 2 a n b a 2 a 22 a 2n b 2 a m a m2 a mn b m b, b 2,, b m a a 2 a n a 2 a 22 a 2n a m a m2 a mn 3x + y + 2z 2 x + y + z 2 9x y + 5z 6 x 4, y 2, z 8 { x + 3y + 2z 3x 9y 6z 3 2 3x + y + 2z 4 x + y + z x y + 5z [ ]

4 x 3t + 2u, y t, z u I x, x 2, x 3 x, x 2 2, x 3 3 x 2 5t, x 2 t, x 3 t x x 2 x 3 x 4 x t u

5 (arbitrary) 0 i 0 i c 2 c i ) i i c j c j i i 2 2 i 2 c c 2 2 i 2 ) 3 i 2 i 2 c j 2 c j i i i 3 c 3 4

6 2 2 a x + a 2 x a n x n b a 2 x + a 22 x a 2n x n b 2 a m x + a m2 x a mn x n b m 3x + y + 2z 4 x + y + z x y + 5z 7 a a 2 a n b a 2 a 22 a 2n b 2 a m a m2 a mn b m { x + 2 z 3 2 y + 2 z x + 5z 0 y + z 0 0 2

7 2 (rank) A rank A 2 rank rank 3, rank A n A A I () (2) 2 2 2

8 22 a x + a 2 x a n x n 0 a 2 x + a 22 x a 2n x n 0 a m x + a m2 x a mn x n 0 3x + y + 2z 0 x + y + z 0 x y + 5z 0 x x 2 x n 0 a a 2 a n 0 a 2 a 22 a 2n 0 a m a m2 a mn r l,, r l i l {i, i 2,, i r, j, j 2,, j n r } {, 2,, n} x i + n r k c kx jk 0 x i2 + n r k c 2kx jk 0 x ir + n r k c rkx jk 0 x j,, x jn r 2 3

9 x + 5x 2 + 5x 5 + ( )x 6 0 x 2 + 0x 2 + 3x 5 + x 6 0 x 3 + 0x 2 + 4x 5 + 2x 6 0 i, i 2 3, i 3 4, j 2, j 2 5, j 3 6 j, j 2, j 2 x 2, x 5, x 6 22 n r n r x x 2 x n 0 n > r n r n r x 0 x 2 0 x n m n r r m r n r m r n 2 4

10 3 3 3 m n a a 2 a n a 2 a 22 a 2n A a m a m2 a mn m n (m, n) A [a ij ] 2 (m, n) m n 3 n [a, a 2,, a n ] n m m a a 2 a m 4 A j a j a 2j a j a mj A j i a i [a i, a i2,, a in ] A i A A [a, a 2,, a n ] a a 2 a m 3

11 5 i j (i, j) A (i, j) a ij 32 A B m n c A+B ca c a + b a 2 + b 2 a n + b n ca ca 2 ca n a 2 + b 2 a 22 + b 22 a 2n + b 2n ca 2 ca 22 ca 2n A+B, ca a m + b m a m2 + b m2 a mn + b mn ca m ca m2 ca mn x t y t 2 2 z t x y z 2 t t 2 t t A (a i,j ) m r B (b k,l ) r n m n C (c s,t ) r c s,t a s,u b u,t a s, b,t + a s,2 b 2,t + + a s,r b r,t u C AB A B ru a,u b ru u, a,u b u,2 ru a 2,u b ru u, a 2,u b u,2 C AB ru a m,u b ru u, a m,u b u,2 ru a,u b u,n ru a 2,u b u,n ru a m,u b u,n 3 A [ ] AB BA, B [ ] [ ] [ AB BA AB BA 3 2 ]

12 2 A b, x Ax 4 7 x x 2 x x x 2 x 3 3x + x 2 + 2x 3 x + x 2 + x 3 x x 2 + 5x 3 Ax b 3 A a a 2 a n a 2 a 22 a 2n a m a m2 a mn, x x x 2 x n, b b b 2 b m Ax b Ax a x + a 2 x a n x n a 2 x + a 22 x a 2n x n a m x + a m2 x a mn x n b b 2 b m A, B n n AB BA n n n 2 m n 0 0 m,n A m n A + 0 m,n 0 m,n + A A, A0 n,l 0 m,l, 0 l,m A 0 l,n 0 n,n 0 n 3 3

13 3 i i (i, i) n 0 I I n E E n A m n B n m AE A EB B 3 () A + B B + A (2) A + (B + C) (A + B) + C (3) A(BC) (AB)C (4) A(B + C) AB + AC (A + B)C AC + BC (5) ca (ci)a 34 m n A [a i,j ] (i, j) a j,i (j, i) a i,j n m A A t A a a 2 a n a 2 a 22 a 2n a m a m2 a mn A t a a 2 a m a 2 a 22 a m2 a n a 2n a mn A t t A, A T, T A A t 3 4

14 4 Ax b a a 2 a n x b a 2 a 22 a 2n x 2 b 2 A, x, b a m a m2 a mn ax b a A 4 A AB BA I B A (invertible matrix) [ (nonsingular matrix)] B A B A A B A Ax b B x n Bb BAx Ix x x Bb Ax A(Bb) (AB)b Ib b Bb Bb Ax b b m [ ] [ a b A A d b c d ad bc c a ] [ a b AA c d ] [ d b ad bc c a ] [ ad bc 0 ad bc 0 ad bc ] I A A ad bc [ d b c a ] [ a b c d ] [ ad bc 0 ad bc 0 ad bc ] I [ ] [ ad bc 0 ad bc [ ] a a 2 A a 2 a 22 4 ]

15 det A a a 22 a 2 a 2 a, b, c, d ad bc [ ] b b 2 B b 2 b 22 det(ab) [ ] a b + a 2 b 2 a b 2 + a 2 b 22 det a 2 b + a 22 b 2 a 2 b 2 + a 22 b 22 (a b + a 2 b 2 )(a 2 b 2 + a 22 b 22 ) (a b 2 + a 2 b 22 )(a 2 b 2 + a 22 b 22 ) (a a 22 a 2 a 2 )(b b 22 b 2 b 2 ) det A det B AB I det I det A det B det I det A a a 22 a 2 a A [ a a 2 a 2 a 22 () A, B 2 2 det AB det A det B ] det A a a 22 a 2 a 2 (2) A det A a a 22 a 2 a 2 0 A [ ] a22 a 2 det A a 2 a A n I I n n C [A, I] n 2n C D D [I, B] B A D I A A rank A n 4 2

16 42 A C A 2 2 A A C

17 [I, B] rank A 2 rank A 2 rank A 3 A A rank A 42 ( ) ( 0 ) 4 4

18 5 I I m m E i,j (i, j)- i j m P (i; c) I + (c )E i,i, P (i, j) I E i,i E j,j + E i,j + E j,i, P (i, j; c) I + ce i,j c A [a i,j ] (i, j)- a i,j m n P (i; c) A P (i; c)a a a 2 a n a 2 a 22 a 2n ca i ca i2 ca in a m a m2 a mn P (i; c) A A i c P (i, j) A i < j a a 2 a n a 2 a 22 a 2n P (i, j)a a j a j2 a jn a i a i2 a in a m a m2 a mn P (i, j) A A i j 5

19 P (i, j; c) A P (i, j; c)a a a 2 a n a i a i 2 a i n a i + ca j a i2 + ca j2 a in + ca jn a i+ a i+2 a i+n a m a m2 a mn P (i, j; c) A A j i i P (i; c)p (i; /c) P (i; /c)p (i; c) I P (i; c) P (i; /c) 2 P (i, j)p (i, j) I P (i, j) P (i, j) 3 P (i, j; c)p (i, j; c) I P (i, j; c) P (i, j; c) 5 P, Q n P (P ) P P Q (P Q) Q P P, P 2,, P n, P n n P n P n P 2 P (P n P n P 2 P ) P P 2 P n P n Q P P Q Q Q I, P QQ P P P I (P Q) Q P 52 A m n A B m P P A B A P, P 2,, P n, P n P P n P n P 2 P B P n P n P 2 P A P A P, P 2,, P n, P n 5 P

20 A n I I n n C [A, I] n 2n C D D [I, B] B A D I A A rank A n X, Y n [X, Y ] P X Y P [X, Y ] [P X, P Y ] C [A, I] D [I, B] C P, P 2,, P n, P n P P n P n P 2 P [I, B] D P n P n P 2 P C P [A, I] [P A, P ] P A I B P P P P A I P P I P P A A B P A D L P A L I L m 0 rank L r < n 22 n r n r x x 2 x n 0 n > r n r n y 0 Ly 0 A L P A 0 L 0 L Ly Iy y 0 A 53 A, B n AB I A B BA I B n y 0 By 0 0 A0 ABy Iy y 0 5 3

21 B B IB ABB A BA BB I A n n y 0 Ay 0 Ax b [A, b] P P [A, b] [P A, P b] P Ax P b P Ax b P Ax P b x Ax b P Ax P b x P Ax P b Ax b 5 4

22 6 2 2 det A n n n 6 N {, 2,, n} N (j, j 2,, j n ) N P n 2 ρ (j, j 2,, j n ) P n l(ρ) {(r, s) r < s n, j r > j s } ρ 3 ρ sgn(ρ) ( ) l(ρ) ρ (sign, signature) 6 n P {()} 2 n 2 P 2 {(, 2), (2, )} {, 2} 2 3 n 3 P 3 {(, 2, 3), (, 3, 2), (2,, 3), (2, 3, ), (3,, 2), (3, 2, )} {, 2, 3} 6 4 n 4 P 4 {(, 2, 3, 4), (, 2, 4, 3), (, 3, 2, 4), (, 3, 4, 2), (, 4, 2, 3), (, 4, 3, 2), (2,, 3, 4), } ! 5 n 2 n 3 n 2 S S {, 2,, n} P n n (n ) (n 2) 2 n! S S 6

23 62 (3, 4,, 5, 2) 3 (3, ), (3, 2) 4 (4, ), (4, 2) (5, 2) l(3, 4,, 5, 2) sgn(3, 4,, 5, 2) ( ) 5 3 (, 2, 3,, n) 0 i < j i j ρ (, 2,, i, j, i +,, j, i, j +,, n) l(ρ) (j i) + (j i) 2(j i) + sgn(ρ) 4 P {()} l() 0, sgn() P 2 P 3 P 2 (, 2) (2, ) l 0 sgn P 3 (, 2, 3) (, 3, 2) (2,, 3) (2, 3, ) (3,, 2) (3, 2, ) l sgn n 62 A [a ij ] n det A ρ(j,j 2,,j n) P n sgn(ρ)a,j a 2,j2 a n,jn A A ρ P n n! n, 2, 3, 4, 2, 6, 24 2 sgn(ρ)a,j a 2,j2 a njn sgn(ρ) ± A n n 6 2

24 n det A A [a ij ] n det A a a 2 n 2 det A a a 2 a 2 a 22 sgn(, 2)a a 22 + sgn(2, )a 2 a 2 a a 22 a 2 a 2 3 n 3 det A a a 2 a 3 a 2 a 22 a 23 a 3 a 32 a 33 sgn(, 2, 3)a a 22 a 33 + sgn(, 3, 2)a a 23 a 32 + sgn(2,, 3)a 2 a 2 a 33 + sgn(2, 3, )a 2 a 23 a 3 + sgn(3,, 2)a 3 a 2 a 32 + sgn(3, 2, )a 3 a 22 a 3 a a 22 a 33 a a 23 a 32 a 2 a 2 a 33 + a 2 a 23 a 3 + a 3 a 2 a 32 a 3 a 22 a 3 4 n 4 24 n 4 63 n 2 det [ ] ( 2) 7 5 a b 0 d ad 2 n 3 det ( ) ( ) ( ) ( )

25 3 n 4 a a 2 a 3 0 a 22 a a a a 22 a 33? n 2 n 3 n 4 63 n A [a ij ] i > j i, j a ij 0 i < j i, j a ij 0 i j i, j a ij 0 6 A [a ij ] n A det A a a 22 a nn det A ρ(j,j 2,,j n ) P n sgn(ρ)a,j a 2,j2 a n,jn sgn(ρ)a,j a 2,j2 a n,jn 0 a,j, a 2,j2,, a n,jn n 0 a n,n j n n n 0 a n,n a n,n j n n j n n j n n (j, j 2,, j n ) (, 2,, n) 0 sgn(, 2,, n) det A a a 22 a nn 6 4

26 7 det A ρ(j,j 2,,j n) P n sgn(ρ)a,j a 2,j2 a n,jn A [a ij ] n A det A a a 22 a nn 2 (a) c c (b) c c a a 2 a n a 2 a 22 a 2n ca i ca i2 ca in a n a n2 a nn c a a 2 a n a 2 a 22 a 2n a i a i2 a in a n a n2 a nn a a 2 ca j a n a 2 a 22 ca 2j a 2n a n a n2 a nj a nn sgn(ρ)a,j a 2,j2 a n,jn c c c c (a) 0 0 (b)

27 3 a a 2 a n a j a j2 a jn a i a i2 a in a n a n2 a nn a a 2 a n a i a i2 a in a j a j2 a jn a n a n2 a nn sgn(ρ)a,j a 2,j2 a n,jn i k sgn(ρ)a,j a i,ji a k,ji a i+,ji+ a k,jk a i,jk a k+,jk+ a n,jn sgn(ρ) sgn(j, j 2,, j n ) sgn(j, j i, j k, j i+,, j k, j i, j k+,, j n ) i k i, k n S {j 2,, j n j > j n {l S j > l} + {l S l > j n } + S {l S l > j } + S {l S j n > l} + 2 S + ( {l S j n > l} + {l S l > j } ) (a) (b) - d d d d 0 4 (a) (b) 7 2

28 a a 2 a n a i a i 2 a i n a i + ca j a i2 + ca j2 a in + ca jn a i+ a i+2 a i+n a n a n2 a nn a a 2 a n a i a i 2 a i n a i a i2 a in a i+ a i+2 a i+n a n a n2 a nn a a 2 a n a i a i 2 a i n a i + b i a i2 + b j2 a in + b jn a i+ a i+2 a i+n a n a n2 a nn a a 2 a n a i a i 2 a i n a i a i2 a in a i+ a i+2 a i+n a n a n2 a nn + a a 2 a n a i a i 2 a i n b i b i2 b in a i+ a i+2 a i+n a n a n2 a nn ρ(j,j 2,,j n ) P n sgn(ρ)a,j (a i,ji + b i,ji ) a n,jn ρ(j,j 2,,j n ) P n sgn(ρ)a,j a i,ji a n,jn + ρ(j,j 2,,j n) P n sgn(ρ)a,j b i,ji a n,jn a a 2 a n a i + ca j a i2 + ca j2 a in + ca jn a j a j2 a jn a n a n2 a nn 7 3

29 a a 2 a n a i a i2 a in a j a j2 a jn a n a n2 a nn a a 2 a n a i a i2 a in a j a j2 a jn a n a n2 a nn + c a a 2 a n a j a j2 a jn a j a j2 a jn a n a n2 a nn c c c c

30 a b b b b a b b b b a b b b b a, x x 2 x n x 2 x 2 2 x n 2 x 3 x 2 3 x n 3 x n x 2 n x n n 7 5

31 8 8 A n det A det A t det A sgn(ρ)a,j a 2,j2 a n,jn ρ(j,j 2,,j n ) P n A t [b ij ] b ij a ji det A t sgn(ρ)b,j b 2,j2 b n,jn ρ(j,j 2,,j n ) P n sgn(ρ)a j,a j2,2 a jn,n ρ(j,j 2,,j n) P n sgn(ρ )a,k a 2,k2 a n,kn ρ (k,k 2,,k n) P n det A ρ (j, j 2,, j n ) a j,a j2,2 a jn,n a,k a 2,k2 a n,kn ρ (k, k 2,, k n ) l(ρ) l(ρ ) sgn(ρ) sgn(ρ ) ρ (j, j 2, j 3, j 4, j 5 ) (2, 5,, 4, 3) a j,a j2,2 a j5,5 a 2 a 52 a 3 a 44 a 35 a 3 a 2 a 35 a 44 a 52 ρ (k, k 2, k 3, k 4 k 5 ) (3,, 5, 4, 2) l(ρ) l(ρ ) 5 sgn(ρ) sgn(ρ ) rho (, 2, 3, 4, 5) (2, 5,, 4, 3) rho (, 2, 3, 4, 5) (3,, 5, 4, 2) A B A t 8

32 a a,i + ca,j a,j a,n a 2 a 2,i + ca 2,j a 2,j a 2,n a n a n,i + ca n,j a n,j a n,n a a 2 a n a i + ca ij a 2i + ca 2j a ni + ca nj a j a 2j a nj a n a 2n a nn a a 2 a n a i a 2i a ni a a,i a,j a,n a 2 a 2,i a 2,j a 2,n a j a 2j a nj a n a n,i a n,j a n,n a n a 2n a nn A B 2 2 det AB det A det B 4 (2) n 82 A B n det AB det A det B c c P (i; c) 2 2 P (i, j) 3 P (i, j; c) det P (i; c) c, det P (i, j), det P (i, j; c) 8 2

33 P (i; c)a c A P (i; c) A P (i, j)a A P (i, j) A P (i, j; c)a A P (i, j; c) A P, P,, P m A B P P m P 2 P B P A P m P 2 P A P m P 2 P A P A A B B P A P A B I 0 I I B P A A P A A 53 B I 83 n A det A 0 53 A P m P 2 P 0 A P m P 2 P P m P 2 P 0 0 B P A B I B B 0 B 0 B P A P A P 0 A 0 82 A 53 AB P B P B A B A A P P A 0 P AB 0 AB P P AB P P AB 0 A B 8 3

34 84 A det A det A AA I det I det AA det A det A 82 0 A n B AB BA I det A 0 53 det A det B det AB det I A, B n AB I A B BA I AB I det I det AB det A det B det A det B 0 A B BA BABB BIB BB I B A A B 8 Vandermonde x x 2 x n x 2 x 2 2 x n 2 x 3 x 2 3 x3 n i x j ) i>j(x x n x 2 n xn n n x 2 x 2 2 x n 2 2 x 3 x 2 3 x n 2 2 x 4 x 2 4 x4 n 2 i x j ) i>j(x x n x 2 n xn n n n j ij+ n n j2 ij+ (x i x j ) (x i x j )

35 x x 2 x n x 2 x 2 2 x n 2 x n x 2 n xn n x x 2 x n 0 x 2 x x 2 2 x 2 x2 n x n 0 x n x x 2 n x 2 xn n x n x 2 x x 2 2 x 2 x2 n x n x 3 x x 2 3 x 2 x3 n x n x n x x 2 n x 2 xn n x n x 2 x x 2 2 x 2 x2 n x x n 2 2 x 3 x x 2 3 x 2 x3 n x x n 2 3 x n x x 2 n x 2 xn n x xn n 2 x 2 x x 2 2 x x 2 x2 n x x n 2 2 x 3 x x 2 3 x x 3 x3 n x x n 2 3 x n x x 2 n x x n xn n x xn n 2 (x 2 x )(x 3 x ) (x n x ) n n j ij+ (x i x j ) x 2 x 2 2 x n 2 2 x 3 x 2 3 x2 n 2 x 4 x 2 4 x4 n 2 x n x 2 n xn n 2 8 5

36 9 Cramer A a 0 B a B 9 n A i j n M i,j C i,j ( ) i+j M i,j A (i, j) (k, l) C l,k C t à A à [ã i,j] ã i,j ( ) i+j M j,i M j,i A j i n 9 A A à à ( ) + M ( ) +2 M 2 ( ) +3 M 3 ( ) 2+ M 2 ( ) 2+2 M 22 ( ) 2+3 M 32 ( ) 3+ M 3 ( ) 3+2 M 23 ( ) 3+3 M ( ) i+j + ( ) i+i + à + M M 2 + M 3 M 4, M 2 + M 22 M 32 + M 4,2 + M 3 M 23 + M 33 M 4,3 M 4 + M 24 M 34 + M 4,4 9

37 [ ] a b A c d [ d b à c a ] A ad bc 0 à det A A Aà ÃA det A I n det A 0 0 δ i,j (Kronecker) i j i j 0 i, j I [δ i,j ] (i, j) δ i,j 9 A [a i,j ] n à [ã i,j] A n () i, k a i,j ã j,k δ i,k det A j n (2) i, k ã i,j a j,k δ i,k det A j (3) Aà ÃA det A I (4) det A 0 A à det A (3) (4) A Vandermonde (4 2)(4 3)(3 2) 2 0 A A à det A 9 2

38 (3) AÃ i, k () ÃA i, k (2) () (2) (3) () i k ã j,k ã j,i ( ) i+j M i,j (i, j) n n det A a i,j ã j,i ( ) i+j a i,j M i,j j j i a i,j (i, j) i (2) i k n n det A ã i,j a j,i ( ) i+j a j,i M j,i j j i a i a 2i a ni a i a 2i + + a a i a n a 2 a 2i a 2n det A a n a ni a nn a ni 9 3

39 a 0 a n n a j a ji a jn j a n 0 a nn a ji a j a jn 0 a a n n j 0 a n 0 a nn a a n n ( ) i+j a ji omit row i and column j j a n a nn n ( ) i+j a j,i M j,i j i k i (i, i) a j,k a j,i n ã i,j a j,k j i k 0 n ã i,j a j,k δ i,k det A j ()

40 0 9 Cramer 92 (Cramer ) A [a i,j ] n Ax b A i b A i x i A i, i, 2,, n A x A b 9 x i A A A A A i A x Ãb A n ã ij b j j n ã ij b j j a 0 a n n 0 b i 0 j a n 0 a nn a b a n a i b i a in a n b n a nn x y z Cramer 2 x , y , z

41 0 0 x, x 2,, x n y, y 2,, y n n f(x ) y, f(x 2 ) y 2,, f(x n ) y n n n f(t) c 0 + c t + + c n x n c 0 + c x + + c n x n y c 0 + c x c n x2 n y 2 c 0 + c x n + + c n xn n y n c 0, c,, c n x x 2 x n x 2 x 2 2 x n c 0 y 2 A x 3 x 2 3 x3 n c y 2, x, b x n x 2 n xn n c n y n Ax b A Vandermonde x, x 2,, x n A n n j ij+ (x i x j ) 0 A b Ax b x n f(t) 0 f(2) 5, f(3) 8, f(4) 0 f(t) c 0 + c t + c 2 t c 0 c c c 0 4, c /2, c 2 /2 f(t) t 2 t2 0

42 02 A i,j l i m j B j,k m j n l A A A 2 A q A 2 A 22 A 2q A p A p2 A pq AB C, B C C 2 C r C 2 C 22 C 2r C p C p2 C pr C il l i n l p C ik A ij B jk j B B 2 B r B 2 B 22 B 2r B q B q2 B qr a x + a 2 x a n x n b a 2 x + a 22 x a 2n x n b 2 a m x + a m2 x a mn x n b m A a a 2 a n a 2 a 22 a 2n a m a m2 a mn, x x x 2 x n, b b b 2 b m Ax b 2 x 0 Ax 0 b n x Ax b A(x x 0 ) Ax Ax 0 b b 0 0 2

43 y x x 0 x x 0 + y y Ay 0 n A Ay 0 y x x 0 + y Ax b Ax A(x 0 + y) Ax 0 + Ay b + 0 b Ax b Ax 0 Ax b x 0 x x 0 + y Ax x x 2 x x x 2 x 3 t t 2 2 Ax (a) P (i; c) P (i, j) P (i, j; c) (b) (c) 0 3

44 4 A n (a) A (b) A I (c) A n (d) Ax 0 (e) Ax b b (f) A (g) det A 0 A [a i,j ] B [b i,j ] n det A sgn(ρ)a,j a 2,j2 a n,jn ρ(j,j 2,,j n ) P n sgn(ρ)a j,a j2,2 a jn,n ρ(j,j 2,,j n) P n P n {, 2,, n} sgn(ρ) ( ) l(ρ) l(ρ) ρ A A 2 A det A a a 22 a nn 3 (a) c c (b) 2 (c) (a) c c (b) 2 0 4

45 (c) A [a, a 2,, a i,, a n ] a i a i + a i A a, a 2,, a i + a i,, a n a, a 2,, a i,, a n + a, a 2,, a i,, a n a a 2 A a n a i a i + a i a a a A a i + a i a i + a i a n a n a n 6 det A t det A 7 det AB det A det B 8 A [a i,j ] n à [ã i,j] A n (a) i, k a i,j ã j,k δ i,k det A j n (b) i, k ã i,j a j,k δ i,k det A j (c) Aà ÃA det A I (d) det A 0 A à det A ã i,j ( ) i+j M j,i M j,i A j i n 0 5

46 02 a b b b b a b b b b a b b b b a (a + (n )b)(a b) n a + (n )b n a + (n )b a b b b b a b b b b a b b b b a a + (n )b b b b a + (n )b a b b a + (n )b b a b a + (n )b b b a a + (n )b b b b 0 a b a b a b (a + (n )b)(a b) n 0 6

47 m k n b < k < n a 2 n m 3 n m 4 n m 43 k 7 b a k a b a (k ) (n ) b a k, n, b a a b H [h ij ] n m h ij i j 0 HH t n a b J n HH t (a b)i + bj (a + (n )b)(a b) n a b HH t H n n m n > m H P H 0 P HH t n m HH t H JH kj kj H t J HJ aj aj JH t aj(h t ) J H t H H t HH t (H t ) H t ((a b)i + bj)(h t ) (a b)h t (H t ) + bh t J (a b)i + bh t J(H t ) (a b)i + bkj(h t ) (a b)i + bk a J H nk na a k b

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign( I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A

More information

行列代数2010A

行列代数2010A a ij i j 1) i +j i, j) ij ij 1 j a i1 a ij a i a 1 a j a ij 1) i +j 1,j 1,j +1 a i1,1 a i1,j 1 a i1,j +1 a i1, a i +1,1 a i +1.j 1 a i +1,j +1 a i +1, a 1 a,j 1 a,j +1 a, ij i j 1,j 1,j +1 ij 1) i +j a

More information

行列代数2010A

行列代数2010A (,) A (,) B C = AB a 11 a 1 a 1 b 11 b 1 b 1 c 11 c 1 c a A = 1 a a, B = b 1 b b, C = AB = c 1 c c a 1 a a b 1 b b c 1 c c i j ij a i1 a i a i b 1j b j b j c ij = a ik b kj b 1j b j AB = a i1 a i a ik

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

+ 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm.....

+   1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm..... + http://krishnathphysaitama-uacjp/joe/matrix/matrixpdf 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm (1) n m () (n, m) ( ) n m B = ( ) 3 2 4 1 (2) 2 2 ( ) (2, 2) ( ) C = ( 46

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

January 27, 2015

January 27, 2015 e-mail : kigami@i.kyoto-u.ac.jp January 27, 205 Contents 2........................ 2.2....................... 3.3....................... 6.4......................... 2 6 2........................... 6

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a φ + 5 2 φ : φ [ ] a [ ] a : b a b b(a + b) b a 2 a 2 b(a + b). b 2 ( a b ) 2 a b + a/b X 2 X 0 a/b > 0 2 a b + 5 2 φ φ : 2 5 5 [ ] [ ] x x x : x : x x : x x : x x 2 x 2 x 0 x ± 5 2 x x φ : φ 2 : φ ( )

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6 1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67

More information

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a 1 40 (1959 1999 ) (IMO) 41 (2000 ) WEB 1 1959 1 IMO 1 n, 21n + 4 13n + 3 2 (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a = 4, b =

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

koji07-01.dvi

koji07-01.dvi 2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?

More information

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n 1 1.1 1.1.1 A 2 P Q 3 R S T R S T P 80 50 60 Q 90 40 70 80 50 60 90 40 70 8 5 6 1 1 2 9 4 7 2 1 2 3 1 2 m n m n m n n n n 1.1 8 5 6 9 4 7 2 6 0 8 2 3 2 2 2 1 2 1 1.1 2 4 7 1 1 3 7 5 2 3 5 0 3 4 1 6 9 1

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

21 1 1 1 2 2 5 7 9 11 13 13 14 18 18 20 28 28 29 31 31 34 35 35 36 37 37 38 39 40 56 66 74 89 99 - ------ ------ -------------- ---------------- 1 10 2-2 8 5 26 ( ) 15 3 4 19 62 2,000 26 26 5 3 30 1 13

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

O E ( ) A a A A(a) O ( ) (1) O O () 467

O E ( ) A a A A(a) O ( ) (1) O O () 467 1 1.0 16 1 ( 1 1 ) 1 466 1.1 1.1.1 4 O E ( ) A a A A(a) O ( ) (1) O O () 467 ( ) A(a) O A 0 a x ( ) A(3), B( ), C 1, D( 5) DB C A x 5 4 3 1 0 1 3 4 5 16 A(1), B( 3) A(a) B(b) d ( ) A(a) B(b) d AB d = d(a,

More information

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α SO(3) 48 6 SO(3) t 6.1 u, v u = u 1 1 + u 2 2 + u 3 3 = u 1 e 1 + u 2 e 2 + u 3 e 3, v = v 1 1 + v 2 2 + v 3 3 = v 1 e 1 + v 2 e 2 + v 3 e 3 (6.1) i (e i ) e i e j = i j = δ ij (6.2) ( u, v ) = u v = ij

More information

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1 1 Ricci V, V i, W f : V W f f(v = Imf W ( f : V 1 V k W 1 {f(v 1,, v k v i V i } W < Imf > < > f W V, V i, W f : U V L(U; V f : V 1 V r W L(V 1,, V r ; W L(V 1,, V r ; W (f + g(v 1,, v r = f(v 1,, v r

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

FORES II [フォレスII]

FORES II [フォレスII] ORES Z7 M06 G699 MG59 M59 M49 M06 Z7 G699 1 JOIA ABS 02 231 1 2013-2014 40 -OPEN -LOK L L 1 1 L 735 A4BOX6 /653 2 601 A4BOX5 /525 257 40 2 OA 40 P252 1230 02 232 2 2013-2014 A B 9G-MP59 920RG-MP 59 106,6

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

空き容量一覧表(154kV以上)

空き容量一覧表(154kV以上) 1/3 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量 覧 < 留意事項 > (1) 空容量は 安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 熱容量を考慮した空き容量を記載しております その他の要因 ( や系統安定度など ) で連系制約が発 する場合があります (3) 表 は 既に空容量がないため

More information

2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし

2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし 1/8 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( や系統安定度など ) で連系制約が発生する場合があります (3)

More information

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1 (, Goo Ishikawa, Go-o Ishikawa) ( ) 1 ( ) ( ) ( ) G7( ) ( ) ( ) () ( ) BD = 1 DC CE EA AF FB 0 0 BD DC CE EA AF FB =1 ( ) 2 (geometry) ( ) ( ) 3 (?) (Topology) ( ) DNA ( ) 4 ( ) ( ) 5 ( ) H. 1 : 1+ 5 2

More information

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト https://www.hmg-gen.com/tuusin.html https://www.hmg-gen.com/tuusin1.html 1 2 OK 3 4 {a n } (1) a 1 = 1, a n+1 a n = 2 (2) a 1 = 3, a n+1 a n = 2n a n a n+1 a n = ( ) a n+1 a n = ( ) a n+1 a n {a n } 1,

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

iii 1 1 1 1................................ 1 2.......................... 3 3.............................. 5 4................................ 7 5................................ 9 6............................

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

) 9 81

) 9 81 4 4.0 2000 ) 9 81 10 4.1 natural numbers 1, 2, 3, 4, 4.2, 3, 2, 1, 0, 1, 2, 3, integral numbers integers 1, 2, 3,, 3, 2, 1 1 4.3 4.3.1 ( ) m, n m 0 n m 82 rational numbers m 1 ( ) 3 = 3 1 4.3.2 3 5 = 2

More information

2001 年度 『数学基礎 IV』 講義録

2001 年度 『数学基礎 IV』 講義録 4 A 95 96 4 1 n {1, 2,,n} n n σ ( ) 1 2 n σ(1) σ(2) σ(n) σ σ 2 1 n 1 2 {1, 2,,n} n n! n S n σ, τ S n {1, 2,,n} τ σ {1, 2,,n} n τ σ σ, τ τσ σ n σ 1 n σ 1 ( σ σ ) 1 σ = σσ 1 = ι 1 2 n ι 1 2 n 4.1. 4 σ =

More information

a,, f. a e c a M V N W W c V R MN W e sin V e cos f a b a ba e b W c V e c e F af af F a a c a e be a f a F a b e f F f a b e F e ff a e F a b e e f b e f F F a R b e c e f F M N DD s n s n D s s nd s

More information

2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1

2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1 Mg-LPSO 2566 2016 3 2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1 1,.,,., 1 C 8, 2 A 9.., Zn,Y,.

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 8 8 1 9 9 1 10 10 1 E-mail:hsuzuki@icu.ac.jp 0 0 1 1.1 G G1 G a, b,

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

1 5 13 4 1 41 1 411 1 412 2 413 3 414 3 415 4 42 6 43 LU 7 431 LU 10 432 11 433 LU 11 44 12 441 13 442 13 443 SOR ( ) 14 444 14 445 15 446 16 447 SOR 16 448 16 45 17 4 41 n x 1,, x n a 11 x 1 + a 1n x

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C(

76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C( 3 3.1 3.1.1 1 1 A P a 1 a P a P P(a) a P(a) a P(a) a a 0 a = a a < 0 a = a a < b a > b A a b a B b B b a b A a 3.1 A() B(5) AB = 5 = 3 A(3) B(1) AB = 3 1 = A(a) B(b) AB AB = b a 3.1 (1) A(6) B(1) () A(

More information

ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

04年度LS民法Ⅰ教材改訂版.PDF

04年度LS民法Ⅰ教材改訂版.PDF ?? A AB A B C AB A B A B A B A A B A 98 A B A B A B A B B A A B AB AB A B A BB A B A B A B A B A B A AB A B B A B AB A A C AB A C A A B A B B A B A B B A B A B B A B A B A B A B A B A B A B

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

働く女性の母性健康管理、母性保護に関する法律のあらまし

働く女性の母性健康管理、母性保護に関する法律のあらまし 17 1 3 3 12 3 13 10 19 21 22 22 23 26 28 33 33 35 36 38 39 1 I 23 2435 36 4/2 4/3 4/30 12 13 14 15 16 (1) 1 2 3 (2) 1 (1) (2)(1) 13 3060 32 3060 38 10 17 20 12 22 22 500 20 2430m 12 100 11 300m2n 2n

More information

difgeo1.dvi

difgeo1.dvi 1 http://matlab0.hwe.oita-u.ac.jp/ matsuo/difgeo.pdf ver.1 8//001 1 1.1 a A. O 1 e 1 ; e ; e e 1 ; e ; e x 1 ;x ;x e 1 ; e ; e X x x x 1 ;x ;x X (x 1 ;x ;x ) 1 1 x x X e e 1 O e x x 1 x x = x 1 e 1 + x

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

untitled

untitled 17 5 13 1 2 1.1... 2 1.2... 2 1.3... 3 2 3 2.1... 3 2.2... 5 3 6 3.1... 6 3.2... 7 3.3 t... 7 3.4 BC a... 9 3.5... 10 4 11 1 1 θ n ˆθ. ˆθ, ˆθ, ˆθ.,, ˆθ.,.,,,. 1.1 ˆθ σ 2 = E(ˆθ E ˆθ) 2 b = E(ˆθ θ). Y 1,,Y

More information

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1, 17 ( ) 17 5 1 4 II III A B C(1 ) 1,, 6, 7 II A B (1 ), 5, 6 II A B (8 ) 8 1 I II III A B C(8 ) 1 a 1 1 a n+1 a n + n + 1 (n 1,,, ) {a n+1 n } (1) a 4 () a n OA OB AOB 6 OAB AB : 1 P OB Q OP AQ R (1) PQ

More information

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l ABCDEF a = AB, b = a b (1) AC (3) CD (2) AD (4) CE AF B C a A D b F E (1) AC = AB + BC = AB + AO = AB + ( AB + AF) = a + ( a + b) = 2 a + b (2) AD = 2 AO = 2( AB + AF) = 2( a + b) (3) CD = AF = b (4) CE

More information

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1. Section Title Pages Id 1 3 7239 2 4 7239 3 10 7239 4 8 7244 5 13 7276 6 14 7338 7 8 7338 8 7 7445 9 11 7580 10 10 7590 11 8 7580 12 6 7395 13 z 11 7746 14 13 7753 15 7 7859 16 8 7942 17 8 Id URL http://km.int.oyo.co.jp/showdocumentdetailspage.jsp?documentid=

More information

... 1... 2... 9... 20... 23 - i - ... 30... 34... 38 - ii - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - 10 (A) (B) (A)(B) (C) (E) (C)(E) 16 3,096 3,700 6,796 975 5,821 17 3,002 4,082 7,084

More information

Gauss

Gauss 15 1 LU LDL T 6 : 1g00p013-5 1 6 1.1....................................... 7 1.2.................................. 8 1.3.................................. 8 2 Gauss 9 2.1.....................................

More information

( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................

More information

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = ( 1 1.1 X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (X 1,..., X n ) ( ) X 1,..., X n f 1,..., f r A T X + XA XBR 1 B T X + C T QC = O X 1.2 X 1,..., X n X i X j X j X i = 0, P i

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (, [ ], IC 0. A, B, C (, 0, 0), (0,, 0), (,, ) () CA CB ACBD D () ACB θ cos θ (3) ABC (4) ABC ( 9) ( s090304) 0. 3, O(0, 0, 0), A(,, 3), B( 3,, ),. () AOB () AOB ( 8) ( s8066) 0.3 O xyz, P x Q, OP = P Q =

More information

() () () () () 175 () Tel Fax

() () () () () 175 () Tel Fax JPCA-PE04-02-01-02-01S JPCA PE04-02-01-02-01S 2005 () () () () () 175 () 167-0042 3122 2 Tel 03-5310-2020Fax 03-5310-2021e-mailstd@jpca.org Detail Specification for PT Optical Module 1 PT PT 12 Optoelectronic

More information

弾性定数の対称性について

弾性定数の対称性について () by T. oyama () ij C ij = () () C, C, C () ij ji ij ijlk ij ij () C C C C C C * C C C C C * * C C C C = * * * C C C * * * * C C * * * * * C () * P (,, ) P (,, ) lij = () P (,, ) P(,, ) (,, ) P (, 00,

More information

3 m = [n, n1, n 2,..., n r, 2n] p q = [n, n 1, n 2,..., n r ] p 2 mq 2 = ±1 1 1 6 1.1................................. 6 1.2......................... 8 1.3......................... 13 2 15 2.1.............................

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information