¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

Size: px
Start display at page:

Download "¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È"

Transcription

1 2011

2

3 i N Z Q R C A def B, A B.

4 ii..,.,.. (, ), ( ),.?????????,.

5 iii [ ] [ ] [ ]

6 iv ,, [8] p.1 p.51. p.1 p.20, p.57 p.166.,. 2..,.,.

7 v ,, ,, , , ,

8

9 1 1,,. (, ).,,. 1.. (i). (ii),. (iii), ,, ( [8, p.2] ),. ( [7].),,. (,, ).,,,. 1. (i),,.,,.. (. )

10 2,,,,,,. (ii),,.,,. (. 1 2,,.) (iii),. ε-δ, [2] {a n }, {b n }, lim a n = α, lim b n = β n n, lim a nb n = αβ, n,,.,.,. 2. y = f(x) [a, b], f(a) f(b). k f(a) f(b) f(c) = k, a < c < b c 1 f(b) y k f(a) a c b x

11 1 3,,. ( ).

12 ([8, p.19]). N : (natural number)., 1, 2, 3,.... 0,. Z : (Zahlen, ).,..., 2, 1, 0, 1, 2,.... Q :.. R : (real number). C : (complex number). ( 0 ) rational number, r r (Quotient) q.. integer AD [5], N, Z, Q, R.,,, 2.1 (blackboard bold double struck ). [8, p.20], (definition),., *1. *1 ( ),.

13 3 5 3, ( ) (proposition). p, q, P, Q ( ) * = 2 ( ) ( ). 3..,. 4. x, x 2 = 2. x (x ) , x,. 3.3., (predicate).,,, , ( ).,,,, * = 0 ( ), 1 +,.

14 6.. for all given any. 2.,.,.,,,,,,,,,, ],, ],.. there exists such that for some, ,, ,. 3.6.,,. (,, )..,. 1. ( ).

15 3 7,. 2. ( ).,.. ( ) a.,,., (, ), 1. b.,,., (, ), 2.,, (, ),,.,,... P (x) x., x, P (x)., x P (x),,. x, P (x). P (x) x x P (x),,

16 8.., P (x, y) x, y, x, P (x, y) y., y, x, P (x, y). 3.7., y, ( x, P (x, y) ).,,,. (.) 3.8. x, P (x) x, P (x) x, P (x) x, P (x) ([8, p.12 13]). 1. x, x 2 0., x, x 2 0,. 2. x, x 2 = 2., x 2 = 2 x, x x 2 = 2. x = 2 x 2 = 2,. 3. x, y, y 2 = x. x, ( y, y 2 = x ) x, ( y, y 2 = x ).

17 3 9 y, y 2 = x, y 2 = x y, y y 2 = x, x, y y 2 = x. x, y x y 2 = x. x, y = x, y, y 2 = x.. 4. y, x, y 2 = x. y, ( x, y 2 = x ) y, ( x, y 2 = x ), ( x, y 2 = x ) y. x, y 2 = x, x y 2 = x, x y 2 = x, y, x y 2 = x, (x y 2 = x ) y. y,., y. 1 y 2 = 1. 2 y 2 = 2. 1 = y 2 = 2, ,.,., ,4,.! [8, p.7],,.,,

18 10,, x, y, x < y. 2. x, y, x < y. 3. x, y, x < y. 4. x, y, x < y , ( 3.11 ). 1. y, x, x < y , x, y, x y. 2. x, y, x y x, y, z, z(x + y) = x, y, z, z(x+y) = , x, y, z, i, j, k, l, m, m, n. ([7].)

19 ([8, p.28]). 1. (set). A, B, S, T. 2. S, S S (element). x S, x S, x S, S x, x S S x. x S, x S, x S, S x, x S S x. 4.2 ([8, pp.28 30]). A, B. 1. A x, x B, A B (subset), A B B A., A B, A B., A B, B A. 2. A B B A, A B, A = B., A B, A B ,. A A (A x, x A ). A B, A B, A B (proper subset).,. A B A B A B A B A B A B , 4.2.1,,,,,,.

20 (. [8, pp.28 29]). 1. (extensional), {}.. {1, 2, 3, 4, 5},,..... {1, 2, 3,..., 10000} (10000 ) 2. (intensional). P (x) x. P (x) x {x P (x)}. x U, P (x) x ( x U) {x U P (x)}.. {n N n 10000} (10000 ) 4.6 ([8, p.31 (3)]) N = {1, 2, 3,... } = { n n } Z = {0, ±1, ±2,... } = { n n } Q = { r r } { m } = n m, n Z n {1, 2, 3} = {2, 3, 1} = {3, 1, 2} = {1, 3, 2} = {3, 2, 1} = {2, 1, 3} 2. {1, 1, 2} = {1, 2} 3. {1, 2, 3,..., 10000} = {n N n 10000} 4. { x i N, x = ( 1) i } = {1, 1} 5. { x C x 2 = 1 } = {± 1} , 4.7.2,,,,., , { ( 1) i i N } C R { x R x 2 = 1 }. x 2 = 1,.

21 ( [8, p.31]).. (empty set),., S, S. ( (4.2.1) S, 12.9.,.) 4.10.,,. S 1 = { 1 n n N } S 2 = {x R 0 < x 1} S 3 = {x Q 0 < x 1} S 4 = {x Z 0 < x 1} S 5 = { x R x 2 = 1 } S 6 = { x N x 2 = 1 } S 7 = { x R x 2 = 1 2 S 8 = { x R x 2 = 1 4 S 9 = { x Q x 2 = 1 2 S 10 = { x Q x 2 = 1 4 S 11 = {1} S 12 = S 13 = { ( 1) i i N } x > 0} x > 0} x > 0} x > 0} { 1 n n N n 10 } 2. { x Q 0 < x < 100 x N } 3. { x R x 2 Z x 3 }

22 14 5,,. 5.1 ([8, p.3]). 1. p, q,, p q. 2. P, Q,,, P Q [8],,. [4]. p,q, p, p q, p q.,.,,,.,,,,.,,,.,,. p, p q, p q, p, q,. 5.3 ([8, pp.3 5])., T, F,. 1. p p p.

23 5,, 15 p p. p p T F F T ( p (truth table).) 2. p q p q p q. p, q p q. p q p q T T T T F T F T T F F F ( p q (truth table).) 3. p q p, q p q.,, p q p q. p q p q T T T T F F F T F F F F ( p q (truth table).) 5.4.,.,, p, p p q, p q. ( p p q.),,,

24 16,,..,, ( ) p p p p p T F T F T F, p p. 2. p q q p p q q p q p p q T T T T T T T F F T T T F T T F T T F F F F F F p, q.,. p q, p, q,. q p, q, p,., p, q. 3. p q r p q r q r p q r T T T T T T T F F T T F T F T T F F F T F T T T T F T F F F F F T F F F F F F F 5.3., P (x) x, Q(y)

25 5,, 17 y, x P (x) x, y P (x) Q(y), P (x) Q(y). P (x) Q(y). P (x) Q(y) x, y (a b ) P (a) Q(b) P (a) Q(b). P (x), Q(y), P (a), Q(b), P (a) Q(b) P (x) Q(y), x, y., x, y, P (x) Q(y) x, P (x) Q(x). (.) x, y, P (x) Q(y) x, P (x) Q(x),.,, ( ) x, y, P (x) Q(y) x, P (x) Q(x) x, x 2 > 0 x 0. x. x 0 x 2 > 0. x = 0 x 0. x 2 > 0 x 0.. (, x 2 0( x 2 0) x = 0 0..) 5.8..

26 18 1. p p. 2. p p. 3. p q p r ( 3.13.) = = = = x, y, x < y x, y, x < y. 4. x, y, x < y x, y, x < y. 5. x, y, x < y. 6. x, y, x < y. 7. x, y, x < y x > y.

27 p, q, p q.,, p q.,,.. p q, p q. p q, p q. p p q.,,,, p, q, p q.,. 6.1 ([8, p.5]). p, q, p q (, p q ). p q p q. p q. p q p q T T T T F F F T T F F T ( p q (truth table).) p p q (q ).,. (, [8, p.5 ]..).,. p q, p q, p q, p q p q, T F,

28 20 p q p q T T T T F F F T F F,,,. p q p q p q p q p q T T T T T T T F F F F F F T T F T F F F T T F F, (p q) q, (p q) (p q). p q q p q., p q,, (p q) (q p). p q p q, p q q p.. p q. p q p q p q, ([8, p.6]).. p q p (, ([8, p.17]). p q, p, q, q p. q p, p q (contraposition)..

29 6 21 p q q p p q p, q q p T T F F T T T T F T F F F F F T F T T T T F F T T T T T p, q, 3. ) p q p p q p, q T T F T T T F F F F F T T T T F F T T T, p q p, q. q p (q ), (p )] q (p )] p, q] p q , (theorem), ( ).,,, (proposition), (lemma), (corollary)., ( 5),,.,, x,., x. 1. x > 2 x > x > 0 x > 2.

30 ,2,., i. x > 2 x > 0. ii. x > 0 x > 2., i, ii, ,2 x, x., x x. x a. a, a > 2 a > 0, a > 0 a > 2. a a > 2 a > 0 a > 2 a > 0 a > 0 a > 2 a 0 F F T T 0 < a 2 F T T F a > 2 T T T T 1. x > 2 x > 0. a a > 2 a > 0., x, x > 2 x > 0. x, x > 2 x > 0. (,, x, P (x) Q(x),,.) 2. x > 0 x > 2. a,., x, x > 2 x > 0, x, x > 2 x > 0., i, ii, ( ) i. x, x > 2 x > 0 ii. x, x > 2 x > 0

31 6 23.,, ( )., ( ),, P (x), Q(x) x P (x) Q(x), ( ), x, P (x) Q(x).,,,, x, P (x) Q(x),, x a P (a) Q(a), a, x. P (a) Q(a), P (a), P (a)., P (a) Q(a). ( [4], [7].) 6.7. x, x 2 > 0 x ,., , x, x 2 0 x 0,. x. x 2 0, x = 0, x ((p q) p) q.

32 = = = = x, y, x y x < y. 4. x, y, x y x < y.

33 ([8, pp.32 33]). S, T. 1. S T S T = { x x S x T }, S T (intersection). 2. S T S T = { x x S x T }, S T (union) A, B, A 1, A 2, B 1, B A B A. 2. A A B. 3. A B 1 A B 2, A B 1 B A 1 B A 2 B, A 1 A 2 B.., 4. A 1 B A 2 B. x A 1 A 2., x A 1 x A 2. (i) x A 1. A 1 B, x B. (ii) x A 2. A 2 B, x B. x B. A 1 A 2 B A B, (i) A B = A. (ii) A B = B. 2. A i B i (i = 1, 2), (i) A 1 A 2 B 1 B 2. (ii) A 1 A 2 B 1 B 2.., 7.2.

34 26 1. (i) 7.2.1, A B A., A A, A B, 7.2.3, A A B., ( ) A B = A. 2. (i) 7.2.1, A 1 A 2 A 1, A 1 B 1, A 1 A 2 B 1. A 1 A 2 B 2., 7.2.3, A 1 A 2 B 1 B 2.,. 7.4., (Venn diagram),,.. A = {1, 2}, B = {{1, 2}, 1}, C = {1, 2, 3}.?,,., A = Q, B = { r + s 2 r, s Q }, C = { r + s 3 r, s Q } ( ) 2. ( ) A B = B A A B = B A 3. ( ) A (B C) = (A B) C A (B C) = (A B) C A (B C) = (A B) (A C) A (B C) = (A B) (A C)

35 , 2,,. 2, { x x A x B x C }. ( (p q) r p (q r).). A (B C) = (A B) (A C) (a) A (B C) (A B) (A C). x A (B C)., x A x B x C. (i) x B. x A x B, x A B (A B) (A C). (ii) x C. x A x C, x A C (A B) (A C). x (A B) (A C). A (B C) (A B) (A C). (b) (A B) (A C) A (B C). B B C, A B A (B C)., C B C, A C A (B C). (A B) (A C) A (B C). A (B C) = (A B) (A C), (A B) (A C) = ( (A B) A ) ( (A B) C ) = A ( (A B) C ) = A ( (A C) (B C) ) = ( A (A C) ) (B C) = A (B C).,,. (a) A (B C) (A B) (A C). B C B, A (B C) A B., B C C, A (B C) A C., A (B C) (A B) (A C). (b) (A B) (A C) A (B C). x (A B) (A C)., x A B x A C.

36 28 (i) x A. x A A (B C). (ii) x A. x A B, x A x B, x A, x B., x A C, x A x C, x A, x C., x B x C, x B C A (B C)., x A (B C). (A B) (A C) A (B C)., , 5.8, p (q r) (p q) (p r)., A (B C) = { x x A x B C } = { x x A (x B x C) } = { x (x A x B) (x A x C) } = { x x A B x A C } = (A B) (A B) (b). 1. x A, x A.. x A (B C)),, x A x B C., x A. x A. x A x B C ( ) x A x B C. 2. x A B, x A, x B,. x A, x B, x A C x C.

37 7 29, x A x C. x A x B { x A x C 7.7.,., p (q r) (p q) (p r) (i), (ii), ,.

38 ([8, p.34]). 1., X, X (universal set). 2. S X, S c S c = {x X x S}, S (complementary set). 8.2 ([8, p.35]). X, S, T X.. 1. S S c =, S S c = X. 2. (S c ) c = S. 3. c = X, X c =. 4. S T S c T c. S = T S c = T c. 5. S T = S T c S c T. 6. (de Morgan ( ) ) (S T ) c = S c T c (S T ) c = S c T c 8.3.,.,,, (i) S T =. S = S X = S (T T c ) = (S T ) (S T c ) = (S T c ) = S T c T c. (ii) S T c. S T T c T = S T =. 6. (S T ) c = S c T c

39 8 31 (i) (S T ) c S c T c. ((S T ) c S) T = (S T ) c (S T ) = (S T ) c S T c. (, (S T ) c = (S T ) c X = (S T ) c (S c S) = ((S T ) c S c ) ((S T ) c S) S c T c. x (S T ) c, x S T. x S c T c,, x S c x T c. x S c *3. x S c. x S *4. x T, x S T. x T, x T c *5.) (ii) S c T c (S T ) c. S S T S c (S T ) c., T S T T c (S T ) c. S c T c (S T ) c. ( ),, (p q) (p ) (q ). (S T ) c = {x X x S T } = { x X x S T } (S T ) c = S c T c = { x X (x S x T ) } = { x X (x S ) (x T ) } = { x X x S x T } = { x X x S c x T c} = S c T c. *3 (S T ) c S c S c. *4 x (S T ) c S. *5 (S T ) c S T c.

40 32, (S c T c ) c = (S c ) c (T c ) c = S T. (S T ) c = S c T c. 8.4 ([8, p.34]). A, B. A B A B = { x x A x B } A B (set difference). A \ B. (A B.) 8.5. X, S, T X. S T = S T c., S c = X S X, A, B, C X.. 1. A B C A B c C. 2. A B = X A c B A B c.

41 ([8, p.36]). 1. X, Y. X x X Y X Y (map). f X Y, f : X Y. X f Y. 2. f : X Y. f, x X y Y, f x y, f : x y., f x y, y f(x) Y = R, C, ( ). 3. f(x), f (x). f(x) f x Y. f(x): X Y.. Y. Y ( )., ( ). (X, X.) 9.3. S = {0, 1, 2}, T = {0, 1}. 1. f : S T g : T S h: T T

42 ([8, p.37]). X, S X. 1. f : X X (identity map), x X, f(x) = x. X id X id. 2. f : S X (inclusion map), s S, f(s) = s ( s X ). (, S = X.) g : T S, h: T T T. 9.6 ([8, p.37]). X, Y, Z, f : X Y, g : Y Z., x X, g(f(x)) Z f g (composite map), g f. (g f)(x) = g(f(x)). g f : X x Z g(f(x)) g f : X f Y g Z S = {0, 1, 2}, T = {0, 1}, f, g, h, g f, f g? 2. S T. 9.8 (2011/6/28 ). f, g : X Y. x X, f(x) = g(x), f g, f = g f : X Y. f id X = f, id Y f = f.

43 10,, 35 10,, 10.1 ([8, p.36]). f : X Y (injection, injective map). x 1, x 2 X, x 1 x 2 f(x 1 ) f(x 2 ). def, f : X Y, x 1, x 2 X, f(x 1 ) = f(x 2 ) x 1 = x A def B, A B x 1, x 2 X, x 1 = x 2 f(x 1 ) = f(x 2 )., f, f(x) = x 2 f : R R. f(1) = f( 1). 2. g(x) = x 2 g : R 0 R. R 0 := {x R x 0}. x 1, x 2 R 0. g(x 1 ) = g(x 2 ), 0 = g(x 1 ) g(x 2 ) = x 2 1 x 2 2 = (x 1 x 2 )(x 1 + x 2 ) x 1 x 2 = 0 x 1 + x 2 = 0., x 1, x 2 0, x 1 + x 2 = 0 x 1 = x 2 = 0. ( ) x 1 = x h: R R x x 3. x 1, x 2 R. x 1 x 2, x 1 < x 2 x 1 > x 2. h, h(x 1 ) < h(x 2 ) h(x 1 ) > h(x 2 ), h(x 1 ) h(x 2 ).

44 x 1, x 2 R. h(x 1 ) = h(x 2 ) 0 = h(x 1 ) h(x 2 ) = x 3 1 x 3 2 = (x 1 x 2 )(x x 1 x 2 + x 2 2) x 1 = x 2 * f. f(1) = f(2) g. g(0) g(1) h. h(0) h(1) ([8, p.36]). f : X Y (surjection, surjective map). y Y, x X, y = f(x). def f(x) = x 2 f : R R. x R, f(x) = x < 0, f(x) = 1 x R. 2. f(x) = x 2 f : R R 0. R 0 := {x R x 0}. y R 0, x = y, x R, f(x) = x 2 = y S = {0, 1, 2, 3}. f,. f : S S f(0) = f(1).. f(x) = 1 x S ([8, p.39] ). X, Y, Z, f : X Y, g : Y Z.. *6 x x 1x 2 + x 2 2 = 0 x 1 = x 2 = 0.

45 10,, g f f. 2. g f g.. 1. x 1, x 2 X. f(x 1 ) = f(x 2 ) x 1 = x 2. f(x 1 ) = f(x 2 ). (g f)(x 1 ) = g (f(x 1 )) = g (f(x 2 )) = (g f)(x 2 )., g f x 1 = x z Z. y Y z = g(y)., g f, x X, (g f)(x) = z. y = f(x) Y, g(y) = g (f(x)) = (g f)(x) = z f : X Y (bijection, bijective map). def f ([8, p.37]). f : X Y.. 1. y Y, y = f(x) x X. 2. y Y, y = f(x) x X Y X. f 1. x = f 1 (y) f(x) = y. f 1 : Y X. f 1 f = id X, f f 1 = id Y f : X Y., f 1 : Y X f (inverse map) y Y. f, y = f(x) x X. x X f(x ) = y, f(x ) = y = f(x), f, x = x. x.

46 38 2. (i) f 1 f = id X. x X. ( f 1 f ) (x) = x. y = f(x), f 1, f 1 (y) = x. x = f 1 (y) = f 1 (f(x)) = (f 1 f)(x). (,., f 1 (f(x)), f f(x) ( ). x f f(x) f 1 (f(x)) = x.) (ii) f f 1 = id Y. y Y. ( f f 1) (y) = y, f ( f 1 (y) ) = y,. (f y ( ) f 1 (y).), x = f 1 (y), f(x) = y. y = f(x) = f ( f 1 (y) ) = (f f 1 )(y) f : X Y.. 1. f. 2. g : Y X, g f = id X, f g = id Y., g = f , g = f g f = id X, id X, 10.11, f., f g = id Y, id Y, 10.11, f. g : Y X g f = id X. g = g id Y = g (f f 1 ) = (g f) f 1 = id X f 1 = f 1. f 1 2 1), f f f : N Z, g : Z N,

47 10,, 39 n 2, n f(n) = n + 1, n { 2 2l, l > 0 g(l) = 2l + 1, l 0 (f(n) Z, g(l) N ), g f = id N, f g = id Z, f, g, g = f ( ) A = {1, 2, 3}, B = {1, 2}. 1. A B? 2. A B? 3. A B? 4. A B? 5. B A? 6. B A? 7. B A? X, Y, Z, f : X Y, g : Y Z..,. 1. g f g. 2. g f f f : X Y, S., g 1, g 2 : S X f g 1 = f g 2, g 1 = g f : X Y, T., h 1, h 2 : Y T h 1 f = h 2 f, h 1 = h f : X Y, g, h: Y X. g f = id X, f h = id Y, f, g = h = f X, Y, Z, f : X Y, g : Y Z..

48 40 1. f, g g f. 2. f, g g f. 3. f, g g f m, n N, A = {1, 2,..., m}, B = {1, 2,..., n}. 1. A B? 2. m n, A B? 3. n = 2 m n, A B? 10.21, 10.22, f : X Y. S, g 1, g 2 : S X, f g 1 = f g 2 g 1 = g 2, f f : X Y. T, h 1, h 2 : Y T, h 1 f = h 2 f h 1 = h 2, f.

49 11, 41 11, 11.1 ([8, p.36]). f : X Y, A X., Y f(a) f(a) = {f(a) a A} Y, f A (image) f : X Y, B Y., X f 1 (B) f 1 (B) = {x X f(x) B} X, f B (inverse image)., f 1 (B), f B X f( ) =, f 1 ( ) = , f : X Y. 1. f, f f 1 : Y X. 2., f, Y B X f 1 (B). 3., f 1,., f 1 ( )., f f : X Y, B Y., f 1 (B) 1. f B f 1 (B) 2. f 1 : Y X B (f 1 )(B),, f 1 (B) = (f 1 )(B) ([8, p.41]). f : X Y, A 1, A 2 X.,. 1. A 1 A 2 f(a 1 ) f(a 2 ).

50 f(a 1 A 2 ) = f(a 1 ) f(a 2 ). 3. f(a 1 A 2 ) f(a 1 ) f(a 2 ). 4.,. 1. A 1 A 2. y f(a 1 )., a A 1, y = f(a). A 1 A 2, a A 2., y = f(a) f(a 2 ). 2. (i) f(a 1 A 2 ) f(a 1 ) f(a 2 ). y f(a 1 A 2 )., a A 1 A 2, y = f(a). a A 1, y = f(a) f(a 1 ) f(a 1 ) f(a 2 )., a A 2 y f(a 2 ) f(a 1 ) f(a 2 ). y f(a 1 ) f(a 2 ). (ii) f(a 1 ) f(a 2 ) f(a 1 A 2 ). A 1 A 1 A 2, f(a 1 ) f(a 1 A 2 )., A 2 A 1 A 2,f(A 1 ) f(a 1 A 2 ). f(a 1 ) f(a 2 ) f(a 1 A 2 ). 3. A 1 A 2 A 1, f(a 1 A 2 ) f(a 1 )., A 1 A 2 A 2, f(a 1 A 2 ) f(a 2 )., f(a 1 A 2 ) f(a 1 ) f(a 2 ). 4. f : R R, f(x) = x 2, R A 1 = (, 0], A 2 = [0, ). A 1 A 2 = {0} f(a 1 A 2 ) = f({0}) = {f(x) x {0}} = {f(0)} = {0}. (f({0}) f(0), {0} 0.) f(a 2 ) = [0, )., f(a 1 ) f(a 2 ) = [0, ). f(a 1 ) = {f(x) x A 1 } = { x 2 x 0 } = [0, ) f(a 1 A 2 ) f(a 1 ) f(a 2 ).. f(a 1 A 2 ) f(a 1 ) f(a 2 ).

51 11, 43 f : {0, 1} {0} {0}, {1} {0, 1}, {0} {1} =, f({0} {1}) =., f({0}) = f({1}) = {0}, f({0}) f({1}) = {0} ([8, p.37]). f : X Y f(x) = Y.. f. f(x) Y. Y f(x). y Y. f, x X, y = f(x)., y = f(x) f(x). f(x) = Y. y Y. y Y = f(x) = {f(x) x X}, x X, y = f(x). f ([8, p.41]). f : X Y, B 1, B 2 Y.,. 1. B 1 B 2 f 1 (B 1 ) f 1 (B 2 ). 2. f 1 (B 1 B 2 ) = f 1 (B 1 ) f 1 (B 2 ). 3. f 1 (B 1 B 2 ) = f 1 (B 1 ) f 1 (B 2 ). ( ), x f 1 (B 1 ). f(x) B 1. B 1 B 2, f(x) B 2., x f 1 (B 2 ). 2. (i) f 1 (B 1 B 2 ) f 1 (B 1 ) f 1 (B 2 ). x f 1 (B 1 B 2 ). f(x) B 1 B 2. f(x) B 1, x f 1 (B 1 ) f 1 (B 1 ) f 1 (B 2 ). f(x) B 2, x f 1 (B 2 ) f 1 (B 1 ) f 1 (B 2 ). x f 1 (B 1 ) f 1 (B 2 ). (ii) f 1 (B 1 ) f 1 (B 2 ) f 1 (B 1 B 2 ). B 1 B 1 B 2, f 1 (B 1 ) f 1 (B 1 B 2 )., B 2 B 1 B 2, f 1 (B 2 ) f 1 (B 1 B 2 )., f 1 (B 1 ) f 1 (B 2 ) f 1 (B 1

52 44 B 2 ).. f 1 (B 1 B 2 ) = {x X f(x) B 1 B 2 } = { x X f(x) B 1 f(x) B 2 } = { x X x f 1 (B 1 ) x f 1 (B 2 ) } = f 1 (B 1 ) f 1 (B 2 ). 3. (i) f 1 (B 1 B 2 ) f 1 (B 1 ) f 1 (B 2 ). B 1 B 2 B 1, f 1 (B 1 B 2 ) f 1 (B 1 )., B 1 B 2 B 2, f 1 (B 1 B 2 ) f 1 (B 2 ). f 1 (B 2 ). (ii) f 1 (B 1 ) f 1 (B 2 ) f 1 (B 1 B 2 )., f 1 (B 1 B 2 ) f 1 (B 1 ) x f 1 (B 1 ) f 1 (B 2 ). x f 1 (B 1 ) x f 1 (B 2 ). x f 1 (B 1 ) f(x) B 1. x f 1 (B 2 ) f(x) B 2., f(x) B 1 B 2., x f 1 (B 1 B 2 ).. f 1 (B 1 B 2 ) = {x X f(x) B 1 B 2 } = { x X f(x) B 1 f(x) B 2 } = { x X x f 1 (B 1 ) x f 1 (B 2 ) } = f 1 (B 1 ) f 1 (B 2 ) f : X Y, A X, B Y.,. 1. f 1 (f(a)) A. 2. f f 1 (f(a)) = A. 3. f(f 1 (B)) B. 4. f f(f 1 (B)) = B (A f f(a).), a A. f(a) f(a)., a f 1 (f(a)).. f : R R, f(x) = x 2, f 1 (f({1})).

53 11, f., f 1 (f(a)) A. x f 1 (f(a)). f(x) f(a), a A, f(x) = f(a). f, x = a A. 3.. (f 1 (B) f B.), y f(f 1 (B))., x f 1 (B), y = f(x). x f 1 (B) f(x) B., y = f(x) B.. f : R R, f(x) = x 2, f(f 1 (R)). 4. f., B f(f 1 (B)). b B. f, x X, f(x) = b. f(x) = b B, x f 1 (B)., b = f(x) f(f 1 (B)) f : X Y, B Y., f B f 1 (B), f 1 : Y X B (f 1 )(B), f 1 (B) = (f 1 )(B) f : X Y, A 1, A 2 X. f, f(a 1 A 2 ) = f(a 1 ) f(a 2 ) f : X Y, B Y., B f(x) = f(f 1 (B)) f : X Y, A X. 1. f(x A) f(x) f(a). 2. f,,, f(x A) = f(x) f(a). 3. f(x A) f(x) f(a) f : X Y, B Y., f 1 (Y B) = X f 1 (B).

54

55 p, q. 1. p p. 2. p q p q. 3. p q p q.,,, (logical connective) [8] p, p.,.. (negation). (disjunction). (conjunction). (implication) ([8, p.7]). P (x) x. 1. x, P (x). All A.,. x : P (x) 2. x, P (x). x : P (x)

56 48 Exist E.,., (quantifier).. (universal quantifier),. (existential quantifier),.,,,. P (x), x, P (x).,.,.,,, ,. P (x, y) x, y, x, P (x, y) y. 12.3,. x : P (x, y) y, x, P (x, y) 12.3, y : x : P (x, y) y : ( x : P (x, y)), :,. y, x : P (x, y)

57 (,,, ) (, ) (logical symbol), ,,,..,,,,,,.,,,,. x x, x, x 3 0, x, x 2 = 2, x x P (x), Q(x) x. 1. P (x) x, Q(x) x(p (x)) : Q(x)., x. 2. P (x) x, Q(x) x(p (x)) : Q(x)., x..,.,.,,., x : P (x) Q(x) x(p (x) Q(x)) ( )., P (x), Q(x) x..

58 50 1. x(p (x)) : Q(x) x : P (x) Q(x). 2. x(p (x)) : Q(x) x : P (x) Q(x).,.,,,,, P (x) x.. 1. x : P (x). 2. x : P (x).. 1. x : x P (x). x, x. x, x P (x)., x, x P (x). 2. x : (x ) P (x). x x. (x ) P (x) x., x, (x ) P (x) ([8, p.12 13], 3.9). 1. x, x 2 0. x(x R) : x 2 0., x R : x x : x R x 2 0. x, x x 2 0, x x ,.

59 x, x 2 = 2. x R : x 2 = 2 x : (x R) (x 2 = 2).. 3. x, y, y 2 = x. x(x R x > 0), y R : y 2 = x x R(x > 0), y R : y 2 = x.,,,,, [8, p.13, ]., x > 0, y R : y 2 = x.. 4. y, x, y 2 = x. y R, x > 0 : y 2 = x , x > 0, y R : y 2 = x y R, x > 0 : y 2 = x. (.)!

60 52 2.,. ( ) ). (i) 4.8,.,,. f : X Y B Y f 1 (B) = { x X f(x) B}. (ii) {x P (x)}, P (x) x.,,. f : X Y A X f(a) = {f(x) x A}., x A,. x x. (iii),.,. {x R ε > 0 : x ε} {x R ε > 0 : x ε} = {x R x 0} ,4, 12.8,,. 3. x > 0, y R : y 2 = x = x(x > 0) : y(y R) : y 2 = x x(x > 0) : y : (y R) (y 2 = x) x : (x > 0) ( y : (y R) (y 2 = x)) x, y 2 = x y. y x : y : (x > 0) ((y R) (y 2 = x)) = x, y : (x > 0) ((y R) (y 2 = x)).

61 ,,,,,.,, 6.5, ,,., 12.14, , , p x, x, x p, p, p (1 6), x, x p, p (7 10) p (, x ), Q(x) x.. 1. x : p Q(x) p ( x : Q(x) ). 2. x : p Q(x) p ( x : Q(x) ). 3. x : p Q(x) p ( x : Q(x) ). 4. x : p Q(x) p ( x : Q(x) ). 5. x : p Q(x) p ( x : Q(x) ). 6. x : p Q(x) p ( x : Q(x) ). 7. x : ( Q(x) p ) ( x : Q(x) ) p. 8. x : ( Q(x) p ) ( x : Q(x) ) p. 9. x : ( Q(x) p ) ( x : Q(x) ) p. 10. x : ( Q(x) p ) ( x : Q(x) ) p.. 3. q, p p q, p p q q. p., p ( x : Q(x) )., x, p Q(x), x : p Q(x). p. x : Q(x).

62 54, p ( x : Q(x) )., x : Q(x), x, Q(x)., x, p Q(x)., x : p Q(x). x : Q(x)., p ( x : Q(x) )., x : Q(x), Q(x 0 ) x 0. x 0, p Q(x 0 )., x : p Q(x). q, p p q q, p p q, 4. 6, 7, p q q p,,. 1, 2, p q p q,,. 5, 6, 9,10 3, 4., 13.1, 13.4, 3, ( ) x : p Q(x) x : ( p Q(x) ) 13.4 x : p Q(x) 13.1 p ( x : Q(x) ) 4 p ( x : Q(x) ) 13.4 ( p ( x : Q(x) )) ( ) x : p Q(x) x : p Q(x) (p ( x : Q(x) )) p ( x : Q(x) ) P (x), Q(x) x.. 1. x : P (x) Q(x) ( x : P (x) ) ( x : Q(x) ). 2. x : P (x) Q(x) ( x : P (x) ) ( x : Q(x) )...

63 12 55 x : P (x) Q(x)., x P (x) Q(x). P (x) Q(x), P (x), Q(x).,, x P (x). x : P (x). x : Q(x)., ( x : P (x)) ( x : Q(x)). ( x : P (x)) ( x : Q(x))., x : P (x), x : Q(x). x : P (x), x P (x). x Q(x)., x, P (x), Q(x), P (x) Q(x)., x : P (x) Q(x). 2, 13.1, x P (x), Q(x), R(x) x.. 1. x(r(x)) : P (x) Q(x) ( x(r(x)) : P (x) ) ( x(r(x)) : Q(x) ). 2. x(r(x)) : P (x) Q(x) ( x(r(x)) : P (x) ) ( x(r(x)) : Q(x) ).. p, q, r, r (p q) (r p) (r q) r (p q) (r p) (r q) ,. 1. (i) x R : (x > 0) (x 0). (ii) ( x R : x > 0) ( x R : x 0). 2. (i) x R : (x > 0) (x 0). (ii) ( x R : x > 0) ( x R : x 0) x,. ( 2, 4, 5, 8, 9 ) p (, x ), Q(x), R(x) x.. 1. x(r(x)) : p Q(x) p ( x(r(x)) : Q(x) ).

64 56 2. x(r(x)) : p Q(x) ( p ( x(r(x)) : Q(x) )) ( x : R(x)). 3. x(r(x)) : p Q(x) p ( x(r(x)) : Q(x) ) (. 4. x(r(x)) : p Q(x) p ( x(r(x)) : Q(x) )) ( x : R(x)). ( 5. x(r(x)) : p Q(x) p ( x(r(x)) : Q(x) )) ( x : R(x)). 6. x(r(x)) : p Q(x) p ( x(r(x)) : Q(x) ). 7. x(r(x)) : ( Q(x) p ) ( x(r(x)) : Q(x) ) p. 8. x(r(x)) : ( Q(x) p ) ( ( x(r(x)) ) ) : Q(x) p ( x : R(x)). 9. x(r(x)) : ( Q(x) p ) ( ( x(r(x)) ) ) : Q(x) p ( x : R(x)). 10. x(r(x)) : ( Q(x) p ) ( x(r(x)) : Q(x) ) p , 12.8, 12.14, ,8. 7. r (q p) r (q p) ( r q) p (r q) p (1). x(r(x)) : ( Q(x) p ) ( x : R(x) ( Q(x) p )) 12.8 ( (R(x) ) ) x : Q(x) p (1) ( x : ( R(x) Q(x) )) p ( x(r(x)) : Q(x) ) p (r q) r r (2).

65 12 57 x(r(x)) : ( Q(x) p ) x : R(x) ( Q(x) p ) 12.8 x : ( R(x) Q(x) ) ( R(x) p ) ( ) ( ) x : R(x) Q(x) x : R(x) p ( ) ( ( x ) ) x : R(x) Q(x) : R(x) p ( ( x ) ( ) ) ( ( x ) ) : R(x) Q(x) x : R(x) : R(x) Q(x) p ( x : ( R(x) Q(x) ) ) ( ( x ) ) R(x) : R(x) Q(x) p ( ) ( ( x ) ) x : R(x) : R(x) Q(x) p (2) ( ) ( ( x(r(x)) ) ) x : R(x) : Q(x) p 12.8 ( ( x(r(x)) ) ) ( ) : Q(x) p x : R(x)., 7, , , (r (q p) (r q) p), (r (q p) (r q) (r p)) E = { x Z x }, O = { x Z x }. 1.. (i) x E, y O : x y. (ii) x E, y O : x y. (iii) ε > 0, N N, n N : (n N) ( a n a ε). 2.. (i) x, y, x < y. (ii) x, y, x < y. (iii) ε, N, n N n N, a n a < ε. (iv) ε, N, n N a n a < ε.

66 [8, pp.14 16] p, q.. 1. ( p) p. 2. (de Morgan ( ) ) (i) (p q) ( p) ( q). (ii) (p q) ( p) ( q). 3. (p q) p ( q) , 3.), 2, 1, ( 8.2 ). 3, 6.2 1,2. (p q) (( p) q) ( p) ( q) p ( q) 13.2.,,, 3. 3 p q, p q, p q p q (.) [8, p.14] P (x) x.. 1. ( x : P (x) ) x : P (x). 2. ( x : P (x) ) x : P (x) [8, p.16] P (x), Q(x) x..

67 ( x(p (x)) : Q(x) ) x(p (x)) : Q(x). 2. ( x(p (x)) : Q(x) ) x(p (x)) : Q(x)..,, ( x(p (x)) : Q(x) ) ( x : P (x) Q(x) ) x : ( P (x) Q(x) ) x : P (x) Q(x) x(p (x)) : Q(x). 2,,. 13.1,13.4, [8, p.15] Step 1 (:),. Step 2, Step 3.,..) Step 3 ( ) ( Step 1.) x > 0, y R : y 2 = x. ( x > 0, y R : y 2 = x ) x > 0, y R : y 2 x 12.12, x > 0, y R : y 2 = x,, x : (x > 0) ( y : (y R) (y 2 = x)) *7. ( x : (x > 0) ( y : (y R) (y 2 = x)) ) x : ( (x > 0) ( y : (y R) (y 2 = x)) ) x : x > 0 ( y : (y R) (y 2 = x)), *7,.

68 60 ( y : (y R) (y 2 = x)) y : ((y R) (y 2 = x)) y : (y R) (y 2 = x) y : (y R) (y 2 x) ( x : (x > 0) ( y : (y R) (y 2 = x)) ) x : x > 0 ( y : (y R) (y 2 = x)) x : x > 0 y : (y R) (y 2 x).,,,. x > 0 : y : (y R) (y 2 x) x > 0 : y : (y R) (y 2 x) x > 0 : y R : y 2 x x > 0, y R : y 2 x,, Step 1 Step 2 Step Step , ( ) Step 1..,,,.,,,, A B

69 , A x, x B. Step 1 x A : x B. Step 2 x A : x B. Step 3, x A, x B.,, A, B x. ( x A : x B x : x A x B.) ( A B, A B, A B,...) 2. α x 4 = 1, x 3 = 1. ( α).,,, α ( 6.5). Step 1, α R : α 4 = 1 α 3 = 1. Step 2, α R : α 4 = 1 α 3 1. Step 3, α, α 4 = 1 α 3 1.,, α, α x 4 = 1, x 3 = 1. x 4 = 1, x 3 = 1 α.,.., α 4 = 1 α, α 3 = 1, Step 1, α R(α 4 = 1) : α 3 = 1. Step 2, α R(α 4 = 1) : α 3 1. Step 3, α 4 = 1 α, α 3 1. x 4 = 1, x 3 = 1 α..

70 a *8., α. 1. x > a α x, α a. 2. x < a α x, α a... x > a α x, α a. x < a α x, α a α R : ( x > a : α x) α a. ((p q) ( q p)), α R : α a ( x > a : α x). x > a : α x x > a : α x, α R : α > a ( x > a : α > x). α > a. x = (α + a)/2, x > a, α > x α R : α > a ( x > a : α > x) α > a, x > a x, α > x. *i α > a, α > x > a x. 1,. *8, a,.

71 13 63 α R : α > a ( x > a : α > x) α > a : ( x > a : α > x) α > a, x > a : α > x. *i α R : α > a ( x > a : α > x) α R : α > a ( x : (x > a) (α > x)) α R : α > a ( x : α > x > a) α. ε > 0 α ε, α a = α. ε > 0 α < ε, α 0.. α < ε α ε {x R ε > 0 : x ε} = {x R x 0}.. (x 0 0 < ε, x ε.) ([8, p.50]). α. 1. ε > 0 α < ε, α = ε > 0 α ε, α = 0.. α 0, α = 0 α = p, q.. 1. (p q) ( p) ( q).

72 64 2. (p q) ( p) ( q). 3. (p q) p ( q) p, q. p q, (p q) f : X Y. 2. f : X Y. 3. ε, N, n N n N, a n a < ε. 4. ε, N, n N a n a < ε. 5. ε, δ, x R, 0 < x x 0 < δ f(x) a < ε.

73 14, 65 14,,,., [3],[9],,... R ( ). 1. ( ) a R : a a 2. ( ) a, b R : a b b a a = b 3. ( ) a, b, c R : a b b c a c (order), (ordered set). R. 4. a, b R a b b a. 4 (total order) (linear order). R. a b a b, a < b. a b b a [8, p.10], a < b a = b a b,, <,,.,, a b a < b a = b. a b a b (a b a = b) (a b a b) (a b a = b) a < b a = b, R.

74 a, b (a < b) [a, b] := {x R a x b} a, b (closed interval). (a, b) := {x R a < x < b} a, b (open interval). (, a] := {x R x a} (, a) := {x R x < a} [a, ) := {x R x a} (a, ) := {x R x > a} ([8, p.57]). A R. 1. m R A (upper bound) x A, x m. def m A. x A : x m ( x : x A x m). 2. l R A (lower bound) x A, l x. def l A. x A : l x. 3. A A (bounded from above). m R, x A : x m. 4. A A (bounded from below). l R, x A : l x.

75 14, (bounded). A l R, m R, x A : l x m , a, b R, a < b. (a, b) U((a, b)), L((a, b)). U((a, b)) := { x R x (a, b) } L((a, b)) := { x R x (a, b) }., U((a, b)) = [b, ), L((a, b)) = (, a].. L((a, b)) (, a]., l (, a], l a. x (a, b), a < x, l x. l (a, b),, l L((a, b)). L((a, b)) (, a]. l L((a, b)), l (a, b)., x > a l x., x < b, x (a, b),, l x. x b, c = (a + b)/2, c (a, b), l c. c < b, l c < b x l x., 13.11, l a, l (, a]. L((a, b)) = (, a]. U((a, b)) = [b, ) ([8, p.44]). A R. 1. M R A (maximum number) (i) M A def (ii) M A. M A (M A) ( x A : x M). (M A) ( x : x A x M). M = max x = max x = max A. x A A

76 68 2. m R A (minimum number) (i) m A def (ii) m A. m A (m A) ( x A : m x). m = min x = min x = min A. x A A a, b, a < b. max[a, b] = b, min[a, b] = a. max(a, b), min(a, b).. max[a, b] = b, min[a, b] = a. min(a, b). m (a, b), x (a, b), x < m. *i m (a, b)., a < m < b. x = (a + m)/2, a < x < m., x < m., m < b, a < x < b,, x (a, b).,,.. *i min(a, b),, m (a, b), x (a, b) : x < m. m R : m (a, b) ( x (a, b) : m x) m (a, b) : ( x (a, b) : m x) m (a, b), x (a, b) : m x.. m (a, b),, m (a, b), m (a, b)., (a, b), m., m (a, b), m (a, b)., m (a, b), m (a, b)... min(a, b), L((a, b)) (a, b). min(a, b), m L((a, b)), m (a, b) *i, 14.5,

77 14, 69 L((a, b)) = (, a],. *i min(a, b), m R : m (a, b) m L((a, b)) m R : m L((a, b)) m (a, b) m L((a, b)) : m (a, b)., m L((a, b)) : m (a, b) ([8, pp.49 50]). A R ( ).., M 1, M 2 A. (i1) M 1 A (ii1) a A : a M 1 (i2) M 2 A (ii2) a A : a M 2 (i1) (ii2) M 1 M 2. M 2 M 1. M 1 = M A R, l, m, M R. 1. m A. 2. l A. 3. M A. 4. A. (.) 5. A. (.) a, b R, a < b. 1. max[a, b] = b, min[a, b] = a. 2. max(a, b) A R., max A, min A, A.

78 A R. A M R, x A : x M.

79 15, 71 15,, R (a, b)., b, (a, b), a,.,, ([8, p.57]). A R. 1. A, A (supremum) sup a sup A a A. A, sup A = min U(A). U(A) := { x R x A } 2. A, A (infimum). A, inf A = max L(A). inf a inf A a A L(A) := { x X x A },,,, (, [8, p.58]). R. 1.,. 2., ,,.,,,,

80 72.,,.,.,,, N, N Z, Z Q, Q R, R,. [6], [1] ,,., m R A R, a A : a m. A =, 12.9, m R, a : a m., m R, m.,, U( ) = R. L( ) = R. R, sup, inf. 2. A R, sup A.,, U(A) =.. 3. A R, inf A ([8, pp.61 62]).,..,.,. 14.8, ([8, p.62]). A R. 1. max A A,, sup A = max A. 2. min A A,, inf A = min A.. M = max A. A U(A). (ii) M A, *i M U(A). (i) M A. *ii, A m U(A) M m, M U(A). M = min U(A), A..

81 15, 73 *i A. *ii A a, b R, a < b. sup(a, b) = b, inf(a, b) = a , U((a, b)) = [b, ), L((a, b)) = (, a]., sup(a, b) = min U((a, b)) = min[b, ) = b inf(a, b) = max L((a, b)) = max(, a] = a ([8, p.58]). A R, s R s = sup A s = inf A { (i) (ii) { (i) (ii) x A : x s r < s, x A : r < x x A : x s r > s, x A : r > x. A U(A). (i) s A, s U(A). (ii) r < s, r A., r A, s r, s U(A). *i (i),(ii) s U(A), sup A. *i (ii) r < s, x A : r < x r R : (r < s) ( x A : r < x) r R : ( x A : r < x) r s r R : ( x A : r x) r s (ii) r R : ( x A : x r) s r r R : r U(A) s r r U(A) : s r

82 74., s U(A).., r A x A : r < x A R, s R s = sup A s = inf A { (i) (ii) { (i) (ii) x A : x s ε > 0, x A : s ε < x x A : x s ε > 0, x A : s + ε > x a, b R, a < b. sup(a, b) = b x (a, b), a < x < b, x b, b 15.8 (i). (ii). r < b. x = max{(a + b)/2, (r + b)/2}, x (r + b)/2 > r x > r., x (a + b)/2 > a x > a., (a + b)/2, (r + b)/2 < b x < b., x (a, b) r < x. (ii). b = sup(a, b)., 14.5., r a, x = (a + b)/2. a < r, x = (r + b)/2. inf(a, b) = a , r b, r (a, b). r,, r > a R ( (Archimedes) [8, p.65]). R. 1. N. 2. a > 0, b R, n N : na > b. 3. ε > 0, n N : 1 n < ε.,.

83 15, 75. N. N. 15.2, N. s = sup N. 15.9, n N, s 1 < n. s < n + 1, n + 1 N, s N. N.,. *i, 1,2,3. N, x R, n N : n > x. 1 2.) a, b R, a > 0., n N, n > b/a. a > 0, a, na > b. 2 3.) ε > 0., n N, nε > 1. n > 0, n, ε > 1/n. 3 1.) x > 0. *ii 1/x > 0,, n N 1/x > 1/n. nx > 0, nx, n > x. *i N, 15.2, N. 15.8, N, ` s R : ( N N : N s) ( r < s, n N : r < n) s R : ( N N : N s) ( r < s, n N : r < n) s R : ( r < s, n N : r < n) ( N N : N s) s R : ( r < s, n N : r < n) ( N N : N s),, s R : ( r < s, n N : r < n) ( N N : N > s) s R : ( N N : N s) ( r < s, n N : r n)... s N, s N, s N., N, s., s,, s, s, s. *ii x,, x.

84 ,.,,.,, E = { 1 n n N } R., max E = sup E = 1, inf E = 0, min E.. max E = 1. (i) 1 N, 1 = 1/1 E. (ii) n N, n 1, 1/n 1. max E = 1. max E = 1, sup E = inf E = (i) n N, n > 0, 1/n > 0. (ii), ε > 0, n N, ε > 1/n., inf E = 0. inf E = 0 E, 15.6, min E. *i,, n N, 1/n > 1/(n + 1) E. *ii, min E. *i min E, inf E = min E E. *ii min E, m E, x E : m > x , E (0, 1], E = (0, 1] = A B R, B. 1. A. 2. sup A sup B. 3. inf A inf B.

85 15, A R. 1. r R A., x r, x A. 2. m R A., x m, x A. { E = ( 1) n n 2n + 1. } n N R. max E, sup E, min E, inf E

86 ([8, p.93]). N R a: N R,,. a(n) a n, {a n } n N {a n } ([8, pp.94 95]). {a n } α R ε > 0, N, n N n N def, a n α < ε. *i, ε > 0, N N, n(n N) : a n α < ε. lim a n = α n a n α (n ). α {a n }. {a n } α R.. *i., ε > 0, N N, n N : n N a n α < ε. ε > 0, N, n N a n α < ε.,, ε-n {a n } ε-n.

87 16 79 {a n },, {a n }. {a n }, α R, ε > 0, N N, n(n N) : a n α < ε., α R, ε > 0, N N, n(n N) : a n α ε.,. α, ε, N, N n, a n α ε , ([8, p.95]). 1. {a n } def K R, N N, n N a n > K.,, lim n a n = {a n } K R, N N, n(n N) : a n > K. def K R, N N, n N a n < K.,, lim n a n =. K R, N N, n(n N) : a n < K ,,., {a n } α, lim n a n = α, α, {a n },,, ([8, p.108]). {a n },,.

88 80. α R {a n }. β R, α β. β {a n } *i. ε = α β /2 ε > 0. x R x α < ε., α β = α x + x β α x + x β < ε + x β, x β > α β ε = ε. α = lim n a n, ε, N 1, n N 1 a n α < ε., n N 1 a n β > ε, β {a n } *ii. *i ε > 0, N N, n(n N) : a n β ε *ii N, n := max{n, N 1 }, n N, n N 1, a n β ε lim n n = lim n = +. n. 1. ε > 0, 15.12, N N, 1/N < ε. n N n N, 1/n 1/N, 1 n 0 = 1 n < ε 1, lim n n = K R, N, N N, N > K. n N n > K, lim n n = +..

89 ([8, p.110]). {a n }, {b n } {a n + b n }, {a n b n }, {a n b n } 1. lim (a n + b n ) = lim a n + lim b n, lim (a n b n ) = lim a n lim b n. n ( n ) ( n ) n n n 2. lim (a nb n ) = lim a n lim b n. n n n k R, {ka n }, lim ka n = k lim a n. n n b n 0 (n = 1, 2,... ) lim n b n 0 {a n /b n } a n 3. lim = n b n lim n a n lim n b n. α = lim n a n, β = lim n b n. 1. ε > 0. lim a n = α, N 1 N, n N 1 n N n, a n α < ε 2., lim n b n = β, N 2 N, n N 2 n N, b n β < ε 2. N = max{n 1, N 2 }., n N n N, n N 1 n N 2,, lim n (a n ± b n ) = α ± β. 2. ε > 0. (a n ± b n ) (α ± β) = (a n α) ± (b n β) { ε := min a n α + b n β < ε 2 + ε 2 = ε. ε 1 + α + β, 1, ε *i > 0. lim a n = α, ε, n N 1 N, n N 1 n N, a n α < ε., lim n b n = β, N 2 N, n N 2 n N, b n β < ε. }

90 82 N = max{n 1, N 2 }., n N n N, n N 1 n N 2, a n b n αβ = (a n α + α)(b n β + β) αβ = (a n α)(b n β) + α(b n β) + β(a n α) a n α b n β + α b n β + β a n α < ε ε + α ε + β ε 1 ε + α ε + β ε = (1 + α + β )ε (1 + α + β ) = ε. ε 1 + α + β, lim n a nb n = αβ. b n = k,. *i,, a n α, b n β, a n b n αβ., a n b n αβ, a n α b n β, a n b n αβ = (a n α)(b n β) + α(b n β) + β(a n α)., a n α, b n β ε, a n b n αβ (ε + α + β )ε. ε ε.,.. ε > 0. j ε := min ε 1 + α, ε 1 + β, 1, ε > 0. lim a n = α, ε, N 1 N, n n N 1 n N, a n α < ε 2., lim b n = β, N 2 N, n N 2 n N n, b n β < ε 2. N = max{n 1, N 2 }., n N n N, n N 1 n N 2, ff

91 16 83 a n b n αβ = a n b n a n β + a n β αβ a n b n a n β + a n β αβ = a n b n β + a n α β = a n α + α b n β + a n α β ( a n α + α ) b n β + a n α (1 + β ) (1 + α ) b n β + a n α (1 + β ) ( a n α < ε /2 1.) < (1 + α ) ε 2 + ε (1 + β ) 2 ε 2 + ε 2 = ε {a n }, {b n }, α = lim a n, β = lim b n. {c n } n n.. 1. N, n N a n b n., α β. 2. α = β., N, n N a n c n b n., {c n } lim n c n = α. 1., α > β, N, n N, a n > b n *i. α > β. ε = α β ε > *ii {a n b n } α β, N 0, m N 0 (a m b m ) (α β) < ε,, ε < a m b m (α β) < ε. ε = α β,, m N 0 *iii. a m b m > α β ε = 0

92 84 N, n := max{n, N 0 }, n N. n N 0, a n > b n *iv.,, N, n N a n b n., α β, α β , ε > 0, α β ε. ε > {a n b n } α β, N 0, m N 0 (a m b m ) (α β) < ε,, ε < a m b m (α β) < ε., m N 0 α β < a m b m + ε. n := max{n, N 0 }, n N, a n b n 0., n N 0, α β < a n b n + ε., α β < a n b n + ε 0 + ε = ε.,. *i ( N N, n N : n N a n b n ) α β α β ( N N, n N : n N a n b n ) α > β ( N N, n N : n N a n > b n ). *ii ε = α β, *iii 2.,. *iv, α > β ( N 0 N, m(m N 0 ) : a m > b m ) ( N 0 N, m(m N 0 ) : a m b m ) α β ( N 0 N, m(m N 0 ) : a m > b m ) ( N N, n N : n N a n > b n ).,.

93 ε > 0. lim a n = α, N 1 N, n N 1 n N n, a n α < ε, ε < a n α., lim n b n = α, N 2 N, n N 2 n N, b n α < ε, b n α < ε. N 0 = max{n, N 1, N 2 }., n N 0 n N, n N n N 1 n N 2, a n α ε < n N 1 n N c n α n N b n α < ε, n N 2, c n α < ε , {c n }. {c n }, , a n c n c n b n,, {c n }.,, ([8, p.121]). {a n n N}. def 2. {a n } {a n n N}. def 3. {a n } 1. {a n } {a n n N}. def 4. {a n n N}, {a n }, sup a n. 5. {a n n N}, {a n }, inf a n {a n }, 1. n N a n a n n N a n < a n n N a n a n n N a n > a n ,.

94 {a n }... lim n a n, sup a n. {a n } α, α = sup a n. N N. {b n } b n = a N lim n b n = a N. {a n }, n N a n a N = b n. Thm α = lim a n lim b n = a N. N N α a N, α {a n } n n. b {a n }. n N a n b. Thm α = lim n a n b. α {a n }, α = sup a n. sup a n α. ε > 0, N a N > α ε {a n } n N a n a N., α {a n } n N α a n., n N α ε < a n α, a n α < ε. {a n } a ,. 2.,., A R., A {a n }, n N : a n A, lim n a n = sup A.. n N, 1/n > 0, 15.9, A x, sup A 1 n < x. n N, x A, a n. {a n }, n N, a n A,.. sup A 1 n < a n sup A lim (sup A 1 n n ) = sup A,, lim a n = sup A n {( 1) n } {a n },

95 {a n } {a n },. 3. lim n a n = lim n ( a n) = {a n }, n N : a n < a n+1 α R., n N, a n < α.

96 ([8, p.141]). X. 1. f : X R, X. 2. f : X R. f(x) = {f(x) x X}, f., R.,,,, ([8, p.142], [5, p.16]). S( ) R. a R S ε > 0, x S : 0 < x a < ε. def a R S, a a S. a S. 0 (0, 1). S R, S, S, ([8, p.142]). S( ) R, a R S, α R, f : S R., f(x) x a α def ε > 0, δ > 0, 0 < x a < δ x S, f(x) α < ε., ε > 0, δ > 0, x S(0 < x a < δ) : f(x) α < ε. lim f(x) = α x a f(x) α (x a). α, x a f.

97 , x a f, a f ε-δ x a f, x a, x = a f. f a., < x a < δ 0 < f : R R f(x) = { 1, x 0 0, x = 0., x 0, f(x) 1, lim f(x) = 1 x 0.. ε > 0., δ = 1 *i, 0 < x 0 < δ x R, x 0 f(x) = 1, f(x) 1 = 1 1 = 0 < ε., ε > 0, δ > 0, x R(0 < x 0 < δ) : f(x) 1 < ε., f, lim f(x) = 1 x 0 ε > 0, δ > 0, x R( x 0 < δ) : f(x) 1 < ε *ii., ε = 1 *iii., δ > 0, 0 0 = 0 < δ, f(0) 1 = 0 1 = 1 ε. *i. *ii,. *iii 0 < ε 1. ε > 0, δ > 0, x R( x 0 < δ) : f(x) 1 ε

98 f(x) x a α. f(x) x a α ε > 0, δ > 0, x S(0 < x a < δ) : f(x) α < ε. ε > 0, δ > 0, x S(0 < x a < δ) : f(x) α < ε ε > 0, δ > 0, x S : 0 < x a < δ f(x) α ε. ε > 0, δ > 0, x S, 0 < x a < δ f(x) α ε. *i *i, a, f(x) α, x S. 16.7, 16.9, ( 16.7 ). x a f,,.. S f, α R, x a f. β R, α β. β *i. ε = α β /2 ε > 0. y R y α < ε., α β = α y + y β α y + y β < ε + y β, y β > α β ε = ε. α = lim x a f(x), ε, δ 1 > 0, 0 < x a < δ 1 f(x) α < ε., 0 < x a < δ 1 f(x) β > ε. *ii

99 17 91 δ > 0, min{δ, δ 1 } > 0, x S 0 < x a < min{δ, δ 1 } a S. x S, 0 < x a < δ, 0 < x a < δ 1 f(x) β ε., β. *i ε > 0, δ > 0, x S : 0 < x a < δ f(x) β ε *ii,., ([8, p.147], 16.9 ). f : S R, g : S R, lim f(x) = α, lim g(x) = β., α, β R. x a x a, lim (f(x) + g(x)), lim (f(x) g(x)), lim (f(x)g(x)), x a x a x a. 1. lim (f(x) + g(x)) = α + β, lim (f(x) g(x)) = α β. x a x a 2. lim (f(x)g(x)) = αβ. x a k R, lim kf(x), x a lim kf(x) = kα. x a x S : g(x) 0 β 0 lim x a f(x) g(x), 3. lim x a f(x) g(x) = α β.. 1. ε > 0. lim x a f(x) = α, δ 1 > 0, 0 < x a < δ 1 x S, f(x) α < ε 2., lim x a g(x) = β, δ 2 > 0, 0 < x a < δ 2 x S, g(x) β < ε 2. δ = min{δ 1, δ 2 } δ > 0, 0 < x a < δ x S, 0 < x a < δ 1 0 < x a < δ 2,

100 92 (f(x) ± g(x)) (α ± β) = (f(x) α) ± (g(x) β), lim (f(x) ± g(x)) = α ± β. n 2. ε > 0. { ε := min f(x) α + g(x) β < ε 2 + ε 2 = ε. ε 1 + α + β, 1, ε > 0. lim x a f(x) = α, ε, δ 1 > 0, 0 < x a < δ 1 x S, f(x) α < ε., lim x a g(x) = β, δ 2 > 0, 0 < x a < δ 2 x S, g(x) β < ε. δ = min{δ 1, δ 2 }., 0 < x a < δ x S, 0 < x a < δ 1 0 < x a < δ 2, f(x)g(x) αβ = (f(x) α)(g(x) β) + α(g(x) β) + β(f(x) α) f(x) α g(x) β + α g(x) β + β f(x) α < 1 ε + α ε + β ε = (1 + α + β )ε (1 + α + β ) = ε. ε 1 + α + β, lim x a (f(x)g(x)) = αβ. g(x) = k, ( ). f : S R, g : S R, α = lim x a f(x), β = lim x a g(x)., α, β R. h: S R. 1. δ 0 > 0, 0 < x a < δ 0 f(x) g(x)., α β. }

101 α = β., δ 0 > 0, 0 < x a < δ 0 f(x) h(x) g(x)., lim h(x), lim h(x) = α x a x a.. 1., α > β, δ > 0, 0 < x a < δ x S, f(x) > g(x). α > β. ε = α β ε > 0. f(x) g(x) x a α β, δ 0, 0 < x a < δ 0 x S (f(x) g(x)) (α β) < ε,, ε < f(x) g(x) (α β) < ε. ε = α β,, 0 < x a < δ 0 x S. f(x) g(x) > α β ε = 0 δ > 0, min{δ, δ 0 } > 0, 0 < x a < min{δ, δ 0 } x S. x S, 0 < x a < δ,, 0 < x a < δ 0, f(x) > g(x). 2. ε > 0. lim x a f(x) = α, δ 1 > 0, 0 < x a < δ 1 x S, f(x) α < ε, ε < f(x) α., lim x a g(x) = α, δ 2 > 0, 0 < x a < δ 2 x S, g(x) α < ε, g(x) α < ε. δ = min{δ 0, δ 1, δ 2 }., 0 < x a < δ x S, 0 < x a < δ 0 0 < x a < δ 1 0 < x a < δ 2, ε < f(x) α h(x) α g(x) α < 0< x a <δ 1 0< x a <δ 0 0< x a <δ 0, h(x) α < ε. 0< x a <δ 2 ε,

102 ([8, p.154]). S( ) R, f : S R. 1. a S. f x = a continuous lim f(x) = f(a). def x a 2. f S a S, f x = a. def 18.2., lim x a f(x), a a f, x = a f f(a). f x = a,, x = a f f x = a, ε > 0, δ > 0, x S( x a < δ) : f(x) f(a) < ε (3).,, f x = a, lim x a f(x) = f(a).,. ε > 0, δ > 0, x S(0 < x a < δ) : f(x) f(a) < ε (4) (3), (4). x 0 < x a < δ, x a < δ., x a = 0 x, x = a, ε > 0, f(x) f(a) = f(a) f(a) = 0 < ε, (4), (3). f x = a, (4),, (3), (3) f : R R f(x) = { 1, x 0 0, x = 0. f, x = 0., a 0, x = a.

103 18 95, lim x 0 f(x) = 1 0 = f(0), x = 0., a 0. ε > 0, δ = a, δ > 0. x a < δ x, a = a x + x a x + x < δ + x = a + x, x > 0, x 0.,, f x = a. f(x) f(a) = 1 1 = 0 < ε S( ) R, a S, f : S R.. 1. f x = a. 2. a, S {a n },. lim f(a n) = f(a) n f x = a. {a n } S, lim a n = a., lim f(a n) = f(a) *i n n. ε > 0. f x = a, ε, δ > 0, x a < δ x S, f(x) f(a) < ε. lim n a n = a, δ, N N, n N n N, a n a < δ., n N n N, f(a n ) f(a) < ε. *i, ε > 0, N N, n(n N) : f(a n ) f(a) < ε.

104 96. *i,, f x = a *ii, a, S {a n }, {f(a n )} f(a) *iii *iv. f x = a., ε > 0, δ > 0, x a < δ x S, f(x) f(a) ε. n N, 1/n > 0, x a < 1/n x S, f(x) f(a) ε. n N, x S, a n. {a n }.,, n N, a n S., n N, 0 a n a < 1/n,, lim n a n = a., N N, f(a N ) f(a) ε., {a n }, S a,, {f(a n )} f(a). *i, *ii 17.9, ε > 0, δ > 0, x S( x a < δ) : f(x) f(a) ε *iii, ε > 0, N N, n(n N) : f(a n ) f(a) ε. *iv {a n }(( n N : a n S) lim a n = a) : lim f(a n) = f(a) n n {a n }(( n N : a n S) lim n a n = a) : {f(a n )} {f(a)}., f : [a, b] R, f([a, b]),.

105 ,. [5].,,, ( ). f : [a, b] R, f(a) f(b)., f(a) f(b) k, f(c) = k a < c < b c.. 1. f(a) < f(b). f(a) < k < f(b), E := {x [a, b] f(x) k}. E [a, b] E, a E E., E. c := sup E. f(b) y k f(a) a E c b x f(c) = k , ε > 0, f(c) k < ε,, k ε < f(c) < k + ε.

106 98 ε > 0. f, δ > 0, x c < δ x [a, b], f(c) f(x) < ε,, f(x) ε < f(c) < f(x) + ε. c = sup E, x 0 E, c δ < x x 0 E, c = sup E, x 0 c. x 0 c < δ. f(c) < f(x 0 ) + ε. x 0 E, f(x 0 ) k., f(c) < k + ε., f(c) < f(b) *i c b., c < b. δ 0 := min{δ, b c}/2, c + δ 0 [a, b], c + δ 0 c = δ 0 < δ, f(c + δ 0 ) ε < f(c). c + δ 0 > c = sup E, c + δ 0 E., k < f(c + δ 0 )., k ε < f(c)., f(c) = k. f(c) = k f(a), a c. a < c < b. 2. f(a) > f(b). f(a) > k > f(b). g : [a, b] R, g(x) := f(x)., g *ii g(a) < k < g(b).,, g(c) = k a < c < b c. f(c) = g(c) = k, c. *i ε f(b) k.,, f(c) k. *ii. f(a) < f(b). f(a) < k < f(b), E, c. f(c) k. c = sup E, 16.16, E {a n } c.

107 18 99 n N, a n E, f(a n ) k., f, 18.5, lim n f(a n) = f(c)., , f(c) k. f(c) k. f(c) k < f(b), c b., c < b. {b n } b n = c + 1 n. lim n b n = c. b c > 0, N N, 1 N < b c. n N n N, a c < b n = c + 1 n c + 1 N < b, b n [a, b]., b n > c = sup E, b n E., n N, f(b n ) > k., f, lim n f(b n) = f(c) *i., , f(c) k., f(c) = k. a < c < b. *i, n < N b n [a, b], f(b n )., {f(b n )} n N,, b n [a, b] n f(b n ) , f : [a, b] R (a, b),,.., f : R R f(x) = { x, x 0 1, x = f, x = f, a 0, x = a.

108 f : R R x = a, f(a) > 0., a f(x),, δ > 0, x a < δ x R, f(x) > {a n } α R., N N, n(n N) : a n > {a n }, {b n }, lim a n = α, lim b n = β., n n n N, a n < b n., α < β,.

109 101 [1] H.D.,.., [2]. -., [3].. lecturenotes/. [4].., [5],.., [6].., [7].., [8].., [9].. ~tsukuda/lecturenotes/.

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1 sup inf (ε-δ 4) 2018 1 9 ε-δ,,,, sup inf,,,,,, 1 1 2 3 3 4 4 6 5 7 6 10 6.1............................................. 11 6.2............................... 13 1 R R 5 4 3 2 1 0 1 2 3 4 5 π( R) 2 1 0

More information

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1 2013 5 11, 2014 11 29 WWW ( ) ( ) (2014/7/6) 1 (a mapping, a map) (function) ( ) ( ) 1.1 ( ) X = {,, }, Y = {, } f( ) =, f( ) =, f( ) = f : X Y 1.1 ( ) (1) ( ) ( 1 ) (2) 1 function 1 ( [1]) (1) ( ) 1:

More information

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1 III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 1 1 1.1 ϵ-n ϵ-n lim n = α n n α 1 lim n = 0 1 n k n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n = α ϵ Nϵ n > Nϵ n α < ϵ 1.1.1 ϵ n > Nϵ n α < ϵ 1.1.2

More information

数学概論I

数学概論I {a n } M >0 s.t. a n 5 M for n =1, 2,... lim n a n = α ε =1 N s.t. a n α < 1 for n > N. n > N a n 5 a n α + α < 1+ α. M := max{ a 1,..., a N, 1+ α } a n 5 M ( n) 1 α α 1+ α t a 1 a N+1 a N+2 a 2 1 a n

More information

応用数学特論.dvi

応用数学特論.dvi 1 1 1.1.1 ( ). P,Q,R,.... 2+3=5 2 1.1.2 ( ). P T (true) F (false) T F P P T P. T 2 F 1.1.3 ( ). 2 P Q P Q P Q P Q P or Q P Q P Q P Q T T T T F T F T T F F F. P = 5 4 Q = 3 2 P Q = 5 4 3 2 P F Q T P Q T

More information

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ A S1-20 http://www2.mth.kyushu-u.c.jp/ hr/lectures/lectures-j.html 1 1 1.1 ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1)

More information

( ) ( ) Iverson

( ) ( ) Iverson ( ) ( ) 2012 1 2 1 2 1.1....................................... 2 1.2....................................... 2 1.3 Iverson........................................ 9 1.4.............................................

More information

i 2013 0.1. 0.2. JR 0.1 0.2 ii A B B A 0.2 0.1 0.1 0.2 iii 1 1 1.1............................. 1 1.2........................... 10 1.3............................... 17 2 21 2.1...........................

More information

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m 1 1 1 + 1 4 + + 1 n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m a n < ε 1 1. ε = 10 1 N m, n N a m a n < ε = 10 1 N

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

3 0407).3. I f x sin fx) = x + x x 0) 0 x = 0). f x sin f x) = x cos x + x 0) x = 0) x n = /nπ) n = 0,,... ) x n 0 n ) fx n ) = f 0 lim f x n ) = f 0)

3 0407).3. I f x sin fx) = x + x x 0) 0 x = 0). f x sin f x) = x cos x + x 0) x = 0) x n = /nπ) n = 0,,... ) x n 0 n ) fx n ) = f 0 lim f x n ) = f 0) 0407).. I ) f ) a I 3).) lim x a fx) = fa) a.) 4)5) lim fx) = fa) x a+0 lim x a 0 fx) = fa)). I f I I I I f I a 6) fx) fa) lim x a x a f a f a) I I 7) *) 03 0 8 ) an interval; ) an open a closed) interval.

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp 1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete space T1 T2 =, X = X, X X = X T3 =, X =, X X = X 2 X

More information

.1 1,... ( )

.1 1,... ( ) 1 δ( ε )δ 2 f(b) f(a) slope f (c) = f(b) f(a) b a a c b 1 213 3 21. 2 [e-mail] nobuo@math.kyoto-u.ac.jp, [URL] http://www.math.kyoto-u.ac.jp/ nobuo 1 .1 1,... ( ) 2.1....................................

More information

set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9..

set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9.. 12 -- 2 1 2009 5,,.,.,.. 1, 2, 3,., 4),, 4, 5),. 4, 6, 7).,, R A B, 8, (a) A, B 9), (b) {a (a, b) R b B }, {b (a, b) R a A } 10, 11, 12) 2. (a). 11, 13, R S {(a, c) (a, b) R, (b, c) S } (c) R S 14), 1,

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

記号と準備

記号と準備 tbasic.org * 1 [2017 6 ] 1 2 1.1................................................ 2 1.2................................................ 2 1.3.............................................. 3 2 5 2.1............................................

More information

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/005431 このサンプルページの内容は, 初版 1 刷発行時のものです. Lebesgue 1 2 4 4 1 2 5 6 λ a

More information

koji07-02.dvi

koji07-02.dvi 007 I II III 1,, 3, 4, 5, 6, 7 5 4 1 ε-n 1 ε-n ε-n ε-n. {a } =1 a ε N N a a N= a a

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h 009 IA I, 3, 4, 5, 6, 7 7 7 4 5 h fx) x x h 4 5 4 5 1 3 1.1........................... 3 1........................... 4 1.3..................................... 6 1.4.............................. 8 1.4.1..............................

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

2014 (2014/04/01)

2014 (2014/04/01) 2014 (2014/04/01) 1 5 1.1...................................... 5 1.2...................................... 7 1.3...................................... 8 1.4............................... 10 1.5 Zorn...........................

More information

Chap9.dvi

Chap9.dvi .,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

論理学入門 講義ノート email: mitsu@abelardfletkeioacjp Copyright c 1995 by the author ll right reserved 1 1 3 2 5 3 7 31 7 32 9 33 13 4 29 41 33 42 38 5 45 51 45 52 47 3 1 19 [ 1] Begin at the beginning [ 2] [

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2 1. 2. 3. 4. 5. 6. 7. 8. N Z 9. Z Q 10. Q R 2 1. 2. 3. 4. Zorn 5. 6. 7. 8. 9. x x x y x, y α = 2 2 α x = y = 2 1 α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn

More information

18 5 10 1 1 1.1 1.1.1 P Q P Q, P, Q P Q P Q P Q, P, Q 2 1 1.1.2 P.Q T F Z R 0 1 x, y x + y x y x y = y x x (y z) = (x y) z x + y = y + x x + (y + z) = (x + y) + z P.Q V = {T, F } V P.Q P.Q T F T F 1.1.3

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2 6 2 6.1 2 2, 2 5.2 R 2, 2 (R 2, B, µ)., R 2,,., 1, 2, 3,., 1, 2, 3,,. () : = 1 + 2 + 3 + (6.1.1).,,, 1 ,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = 1 + 2 + 3 +,

More information

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2 Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2 C II,,,,,,,,,,, 0.2. 1 (Connectivity) 3 2 (Compactness)

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

2010 IA ε-n I 1, 2, 3, 4, 5, 6, 7, 8, ε-n 1 ε-n ε-n? {a n } n=1 1 {a n } n=1 a a {a n } n=1 ε ε N N n a n a < ε

2010 IA ε-n I 1, 2, 3, 4, 5, 6, 7, 8, ε-n 1 ε-n ε-n? {a n } n=1 1 {a n } n=1 a a {a n } n=1 ε ε N N n a n a < ε 00 IA ε-n I,, 3, 4, 5, 6, 7, 8, 9 4 6 ε-n ε-n ε-n? {a } = {a } = a a {a } = ε ε N N a a < ε ε-n ε ε N a a < ε N ε ε N ε N N ε N [ > N = a a < ε] ε > 0 N N N ε N N ε N N ε a = lim a = 0 ε-n 3 ε N 0 < ε

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 32, n a n {a n } {a n } 2. a n = 10n + 1 {a n } lim an

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S Riemnn-Stieltjes Polnd S. Lojsiewicz [1] An introduction to the theory of rel functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,, Riemnn-Stieltjes 1 2 2 5 3 6 4 Jordn 13 5 Riemnn-Stieltjes 15 6 Riemnn-Stieltjes

More information

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia B2 ( 19) Lebesgue ( ) ( 19 7 12 ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purposes. i Riemann f n : [0, 1] R 1, x = k (1 m

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 電気電子数学入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/073471 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 14 (tool) [ ] IT ( ) PC (EXCEL) HP() 1 1 4 15 3 010 9 ii 1... 1 1.1 1 1.

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

04.dvi

04.dvi 22 I 4-4 ( ) 4, [,b] 4 [,b] R, x =, x n = b, x i < x i+ n + = {x,,x n } [,b], = mx{ x i+ x i } 2 [,b] = {x,,x n }, ξ = {ξ,,ξ n }, x i ξ i x i, [,b] f: S,ξ (f) S,ξ (f) = n i= f(ξ i )(x i x i ) 3 [,b] f:,

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) 1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) X α α 1 : I X α 1 (s) = α(1 s) ( )α 1 1.1 X p X Ω(p)

More information

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x 11 11.1 I y = a I a x I x = a + 1 f(a) x a = f(a +) f(a) (11.1) x a 0 f(a) f(a +) f(a) = x a x a 0 (11.) x = a a f (a) d df f(a) (a) I dx dx I I I f (x) d df dx dx (x) [a, b] x a ( 0) x a (a, b) () [a,

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A 91 7,.,, ( ).,,.,.,. 7.1 A B, A B, A = B. 1), 1,.,. 7.1 A, B, 3. (i) A B. (ii) f : A B. (iii) A B. (i) (ii)., 6.9, (ii) (iii).,,,. 1), Ā = B.. A, Ā, Ā,. 92 7 7.2 A, B, C. (1) A = A. (2) A = B B = A. (3)

More information

Solutions to Quiz 1 (April 20, 2007) 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T T T T T F T F F F T T F T F T T T T T F F F T T F

Solutions to Quiz 1 (April 20, 2007) 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T T T T T F T F F F T T F T F T T T T T F F F T T F Quiz 1 Due at 10:00 a.m. on April 20, 2007 Division: ID#: Name: 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T F T T F T T T F F T F T T T F T F T F F T T F F F T 2. 1.1 (1) (7) p.44 (1)-(4)

More information

http://know-star.com/ 3 1 7 1.1................................. 7 1.2................................ 8 1.3 x n.................................. 8 1.4 e x.................................. 10 1.5 sin

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a ... A a a a 3 a n {a n } a a n n 3 n n n 0 a n = n n n O 3 4 5 6 n {a n } n a n α {a n } α {a n } α α {a n } a n n a n α a n = α n n 0 n = 0 3 4. ()..0.00 + (0.) n () 0. 0.0 0.00 ( 0.) n 0 0 c c c c c

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

23 14 24 14 25 15 26 15 27 15 28 15 29 16 30 N = Q 17 31 R = R 2 18 32 N < R 18 33 19 34 20 35 20 36 21 37 21 38 21 39 22 40 22 2

23 14 24 14 25 15 26 15 27 15 28 15 29 16 30 N = Q 17 31 R = R 2 18 32 N < R 18 33 19 34 20 35 20 36 21 37 21 38 21 39 22 40 22 2 1 3 2 3 2.1...................................... 4 3 7 4 7 5 7 6 7 7 7 8 8 9 8 10 9 11 10 12 10 13 10 14 10 15 11 16 11 17 11 18 11 19 12 20 12 21 13 22 13 1 23 14 24 14 25 15 26 15 27 15 28 15 29 16

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト https://www.hmg-gen.com/tuusin.html https://www.hmg-gen.com/tuusin1.html 1 2 OK 3 4 {a n } (1) a 1 = 1, a n+1 a n = 2 (2) a 1 = 3, a n+1 a n = 2n a n a n+1 a n = ( ) a n+1 a n = ( ) a n+1 a n {a n } 1,

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

( ) P, P P, P (negation, NOT) P ( ) P, Q, P Q, P Q 3, P Q (logical product, AND) P Q ( ) P, Q, P Q, P Q, P Q (logical sum, OR) P Q ( ) P, Q, P Q, ( P

( ) P, P P, P (negation, NOT) P ( ) P, Q, P Q, P Q 3, P Q (logical product, AND) P Q ( ) P, Q, P Q, P Q, P Q (logical sum, OR) P Q ( ) P, Q, P Q, ( P Advent Calendar 2018 @Fukuso Sutaro,,, ( ) Davidson, 5, 1 (quantification) (open sentence) 1,,,,,, 1 1 (propositional logic) (truth value) (proposition) (sentence) 2 (2-valued logic) 2, true false (truth

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1, 17 ( ) 17 5 1 4 II III A B C(1 ) 1,, 6, 7 II A B (1 ), 5, 6 II A B (8 ) 8 1 I II III A B C(8 ) 1 a 1 1 a n+1 a n + n + 1 (n 1,,, ) {a n+1 n } (1) a 4 () a n OA OB AOB 6 OAB AB : 1 P OB Q OP AQ R (1) PQ

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

inkiso.dvi

inkiso.dvi Ken Urai May 19, 2004 5 27 date-event uncertainty risk 51 ordering preordering X X X (preordering) reflexivity x X x x transitivity x, y, z X x y y z x z asymmetric x y y x x = y X (ordering) completeness

More information

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト 名古屋工業大の数学 年 ~5 年 大学入試数学動画解説サイト http://mathroom.jugem.jp/ 68 i 4 3 III III 3 5 3 ii 5 6 45 99 5 4 3. () r \= S n = r + r + 3r 3 + + nr n () x > f n (x) = e x + e x + 3e 3x + + ne nx f(x) = lim f n(x) lim

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct 27 6 2 1 2 2 5 3 8 4 13 5 16 6 19 7 23 8 27 N Z = {, ±1, ±2,... }, R =, R + = [, + ), R = [, ], C =. a b = max{a, b}, a b = mi{a, b}, a a, a a. f : X R [a < f < b] = {x X; a < f(x) < b}. X [f] = [f ],

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4 20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

3 6 I f x si f x = x cos x + x x = x = /π =,,... x f x = f f x = f..4. [a, b] f a, b fb fa b a c.4 = f c, a < c < b.5. f a a + h θ fa + h = fa + f a +

3 6 I f x si f x = x cos x + x x = x = /π =,,... x f x = f f x = f..4. [a, b] f a, b fb fa b a c.4 = f c, a < c < b.5. f a a + h θ fa + h = fa + f a + I 6 I. I. f a I 3. fx = fa I a. fx fx 45 + I f I I I I f I a 6 fx fa. x a f a f a I I 7.. f a f a F, G F x = α, Gx = β F x ± Gx = α ± β, F xgx = αβ * 5 /5 5 5 a iterval; a ope a closed iterval. a fuctio.

More information

U( xq(x)) Q(a) 1 P ( 1 ) R( 1 ) 1 Q( 1, 2 ) 2 1 ( x(p (x) ( y(q(x, y) ( z( R(z))))))) 2 ( z(( y( xq(x, y))) R(z))) 3 ( x(p (x) ( ( yq(a, y) ( zr(z))))

U( xq(x)) Q(a) 1 P ( 1 ) R( 1 ) 1 Q( 1, 2 ) 2 1 ( x(p (x) ( y(q(x, y) ( z( R(z))))))) 2 ( z(( y( xq(x, y))) R(z))) 3 ( x(p (x) ( ( yq(a, y) ( zr(z)))) 4 15 00 ; 321 5 16 45 321 http://abelardfletkeioacjp/person/takemura/class2html 1 1 11 1 1 1 vocabulary (propositional connectives):,,, (quantifires): (individual variables): x, y, z, (individual constatns):

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information