one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1

Size: px
Start display at page:

Download "one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1"

Transcription

1 one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1

2 ( (coding theory)) (convolution code) (block code), Q q Q n Q n 1 Q n x, y x = (x 1 x 2... x n ), y = (y 1 y 2... y n ) n d H (x, y) = δ(x i, y i ) i=1 1 x i y i δ(x i, y i ) = 0 x i = y i d H (x, y) x, y (Hamming distance) w(x) = d H (x, 0) 2

3 x (weight) 0 x, y 0 B ρ (x) = {y Q n d H (x, y) ρ} x ρ (sphere) 2 δ(x i, y i ) x, y, z Q δ(x, z) = 0 δ(x, z) = 1 x z y x, z x = y, z y x y, z = y x y z δ(x, y)+δ(y, z) 1 = δ(x, z) Q n C (block code) (codeword) n (code length) (minimum distance) d(c) = min{d H (x, y) x, y C} w(c) = min{w(x) x C} (minimum weight) q = Q r(c) = log q C n (information rate, rate of code) ρ(c) = max{min{d H (x, c) c C} x Q n } (covering radius) ρ x Q n C x Q n ρ {B ρ (c) c C} Q n 3.3 ECC EDC 3 s s (s error detecting code) t t (t error cerrecting code) d(c) d(c) 2s s d(c) 2t + 1 t 4 2t + 1 C Q n (perfect code) x Q n t 2t + 1 t t t eror correcting code 3

4 5 MDD (minimum distance decoding) 1 (repetition code) Q = {0, 1}, n 0 1 n n 1/n 5 C = {x = (00000), y = (11111)} 5 5 2e MDD 0, 1 MDD ( ) x, y 1 Q = (n ) 2 (parity check code)) Q = {0, 1} Q k 0 1 ( Q k+1 ) 1 ( ) 1 1 ( ) 2 1 EDC k/(k + 1) 1 LAN Q = {0, 1} 2 0, 1 2 ε 1, n 1 > n 2 n 1 n 2 MLD(maximum likekihood decoding) ε 2 y x d H (x, y) = e x y P (x y) = ε e (1 ε) n e e MDD 4

5 n 2 f(x), g(x) lim x f(x)/g(x) 0 f(x) g(x) f(n) f(n) n, log n n n! MDD MLD C 4 (1) 4.1 Q ( Q = {0, 1} 2 ) Q GF (q) Q Q = q q p q = p r p Q Q Q = Q {0} Q α( ) Q = {0, 1, α, α 2, α 3,..., α q 2 } F q p F p Q = {0, 1, 2,..., p 1} p 0, 1 Q q = p r (p : prime) F q F p F p [x] r p(x) F p [x]/(p(x)) p(x) x 5

6 4.2 G H g 1 g 2 h H(g 1 = g 2 h) G H ( ) (1) H = {h 1 = e, h 2, h 3,..., h m } H e h 2 (2) g 2 G g 2 H g 2 H = {g 2 h 1 = g 2, g 2 h 2, g 2 h 3,..., g 2 h m } (3) g 3 G g 3 H g 2 H g 3 H = {g 3 h 1 = g 3, g 3 h 2, g 3 h 3,..., g 3 h m } (4) G (6) l G = H l G = H g 2 H g 3 g l H G/H {e, g 2, g 3,,..., g l } Q n C q ( q = Q ) C Q n C k C (n, k) d (n, k, d) x, y C x y C x y 3 C x, y x y C d H (x, y) = d H (x y, 0) = w(x y) C k C k ( ) {x 1, x 2,..., x k } ( ) c C (c 1 c 2... c k )(c = c 1 x 1 + c 2 x c k x k ) 6

7 k n G G = x 1 x 2.. x k C = {ag a Q k } G C G = (I k, P ) k P k n k P w Q k wg = (w, p) (p n k ) k (information symbols) (parity check symbols) I k 3 5 {(11111), (00000)} G = (11111) 7 {(e i 1) i = 1, 2,..., 7, e i = ( ) } G = (I 7 1 T 7 ) 1 7 = ( ) 1 T , 1 C = {(c 1 c 2... c 8 ) c 1 + c c 8 = 0} 7 2 C 1, C 2 (equivalent) k n k G = (I k, P ) P C 1, C 2 7

8 8 C k (systematic) C = q k k k (separable) 9 C (n, k) C (dual code) C = {y Q k x C (< x, y >= 0)} < x, y > C (n, n k) C C = {0} C = C C (self dual) G C n k n H GH T = O (n k) H C < x, y >= xy T a, b Q k x = ag, y = bh < x, y >= ag(bh) T = agh T b T < x, y >= 0 H n k dim{bh b Q k } = n k. C = {bh b Q k }. H x C xh T = O 10 (1) y C x C < x, y >= 0 ( ) C H C (2) C H x Q n xh T x (syndrome) G = (I k P ) C H G = (I k P ) GH T = O H = ( P T I n k ) 4 H R, H P 3 H R = (1 T 4 I 4 ) H P = ( ) 1 4 = (1111) 5.2 Q n C xh T = yh T (x y)h T = 0 x y + C 8

9 (1) e 0 = 0 e 1 = ( ) e 2 C (e 1 + C) e 3 C (e 1 + C) (e 2 + C),... C Q n (n, k) q n k ( (q = Q ) (2) 1 e 1 = ( ), e 2 = ( ),..., e n = ( ) C 1 2 (3) e n+1 = ( ), e n+2 = ( ) 2 (4) C 3 q n k (5) {e 1, e 2,... e r } {s i = e i H T i = 1,..., r} (r = q n k ) s 1, s 2,..., s n H s 1 s 2. = H T s ṇ. C H 10 x C e w = x + e wh T = (x + e)h T = eh T (1) w s = wh T (2) s s = s j (3) s j e j x = w e j MDD (n, k, d) C P (C) P (C) = d h w ε w (1 ε) n w w=0 9

10 0 d h w w ε {e j j = 1,..., r} x i {x i + e j j = 1,..., r} e j w x i x i + e j ε w (1 ε) n w w h w h w ε w (1 ε) n w x i P (x i ) C P (C) = 2 k i=1 P (x i ) d h w ε w (1 ε) n w w=0 P (x i ) = 1/2 k C 6 11 G F q (n, k) C G k n G 2 ( ) C (projective code) G C x 1 e( e = ae j = (0... 0a0... 0)) (x + e)g T G ( j ) G G C 1 C C Q = F q k Q k 2 f 1 0 Q k Q k s 1 Q q 1 s 1 = q 1 s 1 f 2 0 s 2 s 2 = q 1 l s i s j = Ø (i j) l (q 1) = q k 1 l = (q k 1)/(q 1). 12 n = (q k 1)/(q 1) F q (n, n k) (Hamming code) 2 F q k {f 1, f 2,..., f n } F q H = (f 1, f 2,..., f n ) C ch T = O 10

11 ECC C H = (f 1 f 2... f n ) f j k 2 c( n ) ch T = 0 c = (c 1 c 2... c n ) c 1 f 1 + c 2 f c n f n = 0 f j c i c j 0, c k = 0(k i, j) c i f i + c j f j = 0 f i, f j 3 3 C (n, n k) n = (q k 1)/(q 1) c 1 Q n B 1 (c) = 1 + n(q 1) = 1 + (q k 1)/(q 1) (q 1) = q k C = q n k q n k q k = q n = Q n. C 1 Q n 1 ECC 5 (1) q = 2 k = 2 n = (2 2 1)/(2 1) = 3 (n, n k, 3) = (3, 1, 3) k = 3 n = (2 3 1)/(2 1) = 7 2 (n, n k, 3) = (7, 4, 3) H = H T =

12 1 e j eh T H j ( ) q = = e = ( ) s = eh T = (100) 2 4. H G H = G = H = k = 4 n = (2 4 1)/(2 1) = 15 2 (15, 11, 3) (2) q = 3 Q = {0, 1, 2} k = 3 n = (3 3 1)/(3 1) = 13 3 (n, n k, 3) = (13, 10, 3) H = G G =

13 13 d (n, k, d) C H(n k n ) n k + 1 n H H = H T H T = (n + 1, k) C C C C n+1 C = {(c 1 c 2... c n c n+1 ) (c 1 c 2... c n ) C c j = 0} 6 d 2 (n, k, d) C C (n + 1, k, d + 1) C C d C d 1 1 d = d ECC 2 EDC j= H = (7, 4, 3) (8, 4, 4) (7, 4, 3) (8, 4, 4) (7, 4, 3) (8, 4, 4) 7 ( majority logic decoding) 13

14 14 C r < x, y (ν) >= 0 (x C, y (ν) C, 1 ν r) i (orthgonal system with respect to position i) (i) y (ν) = (y (ν) 1 y(ν) 2... y n (ν) ) y (ν) i = 1 (ν = 1, 2,..., r) (ii) j i (1 j n) y (ν) 0 ν (1 ν r) j x = (x 1 x 2... x n ) t t r/2 x e = (e 1 e 2... e n ) < x, y (ν) >=< e, y (ν) > 0 (1 ν r) x i e i = 0 e j 0 j t (ii) < x, y (ν) >=< e, y (ν) > 0 ν (1 ν r) t x i e i 0 e i y (ν) = e i 0 (1 ν r) e j 0 j t 1 < e, y (ν) >= e i + e j y (ν) 0 < x, y (ν) > 0 ν (1 ν r) r (t 1) t r/2 r (t 1) > r {ν < x, y (ν) >= 0} > {ν < x, y (ν) > 0} xi x i 2 i (1 i n) i 7 5 H 1 x 1 + x 2 + x 3 = 0 x 1 + x 4 + x 5 = 0 x 1 + x 6 + x 7 = 0 x 1 x 1 1, 1, 1 x ( 2-EDC ) 8 (2) 15 (1) R (ring) (2) R I (ideal) RI I 8 14

15 (1) Z F F F[x] (2) Z n Z {0, ±n, ±2n, ±3n,... } nz (n) (3) F[x] f(x) F[x] f(x) (f(x)) 16 (1) R p R pr = {px x R} (principal ideal) (2) R R (pricipal ideal ring) (3) I ab I = (a I or b I) (prime ideal) (4) R I (maximal ideal) I S R S S = I S = R (5) (local ring) 17 Z p Z {0, 1, 2,..., p 1} a+b c (mod p), ab d (mod p) Z/pZ Z/(p) ( ) (residual (class) ring) g(x) F[x] g(x) F[x] a(x)+b(x) c(x) (mod g(x)) a(x)b(x) d(x) (mod g(x)) F[x]/(g(x)) (residual polynomial ring) 7 Z, Z/(p), F[x], F[x]/(g(x)) Z Z I p s I s = pq + r (0 r < p) q, r r = s pq I p I r = 0 s = pq C (c 0 c 1... c n 1 ) C = (c n 1 c 0... c n 2 ) C 15

16 (c i c i+1... c i 1 ) C (i = 0, 1,..., n 1) 9.2 (c 0 c 1... c n 1 ) F n q c 0 + c 1 x + c 2 x c n 1 x n 1 F q [x]/(x n 1) C C 8 F n q C C F q[x]/(x n 1) (i) C F q [x]/(x n 1) C F n q c(x) = c 0 +c 1 x+c 2 x 2 +c n 1 x n 1 C C xc(x) = c 0 x + c 1 x c n 2 x n 1 + c n 1 x n c n 1 + c 0 x + c 1 x c n 2 x n 1 (mod x n 1) C (c n 1 c 0 c 1... c n 2 ) C. C (2) C F n q c(x) C xc(x) C. xi c(x) C (i = 1, 2,... ) a(x) a(x)c(x) C C F q [x]/(x n 1) C g(x) 1 (generator polynomial) g(x) x n 1 x n 1 = g(x)q(x) + r(x) (0 deg(r(x)) < deg(g(x))) x n 1 r(x) C g(x) C r(x) = 0 x n 1 = f 1 (x)f 2 (x)... f t (x) n, k, q x n 1 = f 1 (x)f 2 (x)... f t (x) {f 1 (x), f 2 (x),..., f t (x)} ( ) g(x) = f i1 (x)f i2 (x)... f is (x) deg(g(x)) = n k g(x) k n (1) a = (a 0 a 1... a k 1 ) (2) a k 1 a(x) = a 0 + a 1 x + + a k 1 x k 1 (3) a(x) a(x)g(x) = c 0 + c 1 x + + c n 1 x n 1 c = (c 0 c 1... c n 1 ) 16

17 9 2 (7, 4) 2 x 7 1 = (x + 1)(x 3 + x 2 + 1)(x 3 + x + 1) g(x) = (x 3 + x 2 + 1) a = (a 0 a 1 a 2 a 3 ) c (a 0 + a 1 x + a 2 x 2 + a 3 x 3 )(1 + x 2 + x 3 ) = a 0 + a 1 x + (a 0 + a 2 )x (a 2 + a 3 )x 5 + a 3 x 6 c = (a 0 a 1 (a 0 + a 2 )... (a 2 + a 3 )a 3 ) n k k 1 n k n 1 k (1) a(x) x n k x n k (2) a(x)x n k g(x) q(x), r(x) a(x)x n k = g(x)q(x) + r(x). r(x) d(x) = a(x)x n k r(x) = g(x)q(x). (3) d(x) deg(r(x)) < deg(g(x)) = n k. n k a(x)x n k n k 10 a(x)x 7 4 = (a 0 + a 1 x + a 2 x 2 + a 3 x 3 )x 3 = a 0 x 3 + a 1 x 4 + a 2 x 5 + a 3 x 6 g(x) = x 3 + x r(x) = (a 0 + a 1 + a 3 )x 2 + (a 1 + a 2 + a 3 )x + (a 0 + a 1 + a 2 ) d = ((a 0 + a 1 + a 3 )(a 1 + a 2 + a 3 )(a 0 + a 1 + a 2 ) a 0 a 1 a 2 a 3 ) 4 3 ( mod 2 ) 9.3 (n, k) C g(x) = g 0 +g 1 x+ +g n k x n k a = (a 0 a 1... a k 1 ) a(x) = a 0 +a 1 x+ +a k 1 x k 1 a(x)g(x) = n 1 l=0 ( l i=0 a ig l i )x l, w = (a 0 g 0 (a 1 g 0 + a 0 g 1 )... a k 1 g n k ) w = ag g 0 g 1... g n k G = 0 g 0... g n k 1 g n k g 0 g 1... g n k g(x) x n 1 h(x) = h 0 + h 1 x + + h k x k h(x)g(x) = x n 1 g 0 h l + g 1 h l g n k h l n+k = 0 (for l = 0, 1,..., n 1) h k... h 1 h h k... h 1 h 0 0 H =.. h k... h 1 h (in F q [x]) 17

18 GH T = O w = ag wh T = O. H C w(x)h(x) = a(x)g(x)h(x) = 0 h(x) (parity check polynomial) 10 BCH Bose Ray Chaudhurui(1960) Hocquenghem(1959) BCH H = (h 1 h 2... h n ) h i H i (n k ) c = (c 1 c 2... c n ) C ch T = 0 c 1 h T 1 + c 2 h T c n h T n = 0 H 9 (n, k, d) C H d 1 d w(c) = d x Q n with (w(x) < d) x C {h 1, h 2,..., h n } d 1 c C (with w(c) = d) c 0 H d 10 H {h 1, h 2,..., h n } d 1 d w(c) = d d 1 c = (c 1 c 2... c n ) w(x) = d 1 x C. d c i1 h T i 1 +c i2 h T i 2 + +c id h T i d = 0 c = (0,..., 0, c i1, 0..., 0, c i2,..., 0) ch T = O c C with w(c) = d Rank(H) d 1 d d 18

19 19 n, l 1 n β β l, β l+1,..., β l+δ 2 m l (x), m l+1 (x),..., m l+δ 2 (x) G(x) = L.C.M.(m l (x), m l+1 (x),..., m l+δ 2 (x)) F q n δ BCH (BCH code of designed distance δ) l = 1 (narrow sense)bch n = q m 1 (i.e β F q m ) BCH (primitive BCH code) 11 n δ q BCH ( 1 β ) l β l 2 ( 1 β ) l+1 β l+1 2 H = ( 1 β ) l+δ 2 β l+δ 2 2 (... ) β l n 1 (... ) β l+1 n (... ) β l+δ 2 n 1 w(x) v(x) w(x) v(x)g(x) (mod x n 1) w(x) = w 0 + w 1 x + w 2 x w n 1 x n 1 w(β i ) = w 0 + w 1 β i ( + w 2 β i ) 2 ( + + wn 1 β i ) n 1 = v(β i )G(β i ) = 0 (w 0 w 1 w 2... w n 1 )(1β i ( β i) 2... ( β i ) n 1 ) T = 0 i = l, l + 1,..., l + δ 2 H (w 0 w 1... w n 1 )H T = 0 H 12 δ BCH δ δ 1 n δ

20 ( ) β l j 1 ( ) β l j 2 ( )... β l j δ 1 ( ) β l+1 j 1 ( ) β l+1 j 2 ( )... β l+1 j δ 1 D(j 1 j 2... j δ 1 ) = ( ) β l+δ 2 j 1 ( ) β l+δ 2 j 2 ( )... β l+δ 2 j δ β j 1 β j 2... β j δ 1 = β l(j 1+j 2 + +j δ 1 ) ( ) β j 1 δ 2 ( ) β j 2 δ 2 ( )... β j δ 1 δ 2 = β l(j1+j2+ +j ( δ 1) β j s β jt) s>t 0 Vandermonde 11 F 2 6 α m 1 (x) = 1 + x + x BCH (63, 45, 7) BCH G 3 (x) G 3 (x) = L.C.M.(m 1 (x), m 3 (x), m 5 (x)) = (1 + x + x 6 )(1 + x + x 2 + x 4 + x 6 )(1 + x + x 2 + x 5 + x 6 ) = 1 + x + x 2 + x 3 + x 6 + x 7 + x 9 + x 15 + x 16 + x 17 + x BCH n k t G(x) G 1 (x) = 1 + x + x G 2 (x) = G 1 (x)(1 + x + x 2 + x 4 + x 6 ) 45 3 G 3 (x) = G 2 (x)(1 + x + x 2 + x 5 + x 6 ) 39 4 G 4 (x) = G 1 (x)g 3 (x) 36 5 G 5 (x) = G 4 (x)(1 + x 2 + x 3 ) 30 6 G 6 (x) = G 5 (x)(1 + x 2 + x 3 + x 5 + x 6 ) 24 7 G 7 (x) = G 6 (x)(1 + x + 3 +x 4 + x 6 ) G 10 (x) = G 7 (x)(1 + x 2 + x 4 + x 5 + x 6 ) G 11 (x) = G 10 (x)(1 + x + x 2 ) G 13 (x) = G 11 (x)(1 + x + x 4 + x 5 + x 6 ) 7 15 G 15 (x) = G 13 (x)(1 + x + x 3 ) F

21 m(x) α, α 2, α 4, α 8, α 16, α 32 m 1 (x) = 1 + x + x 6 α 3, α 6, α 12, α 24, α 48, α 33 m 3 (x) = 1 + x + x 2 + x 4 + x 6 α 5, α 10, α 20, α 40, α 17, α 34 m 5 (x) = 1 + x + x 2 + x 5 + x 6 α 7, α 14, α 28, α 56, α 49, α 35 m 7 (x) = 1 + x 3 + x 6 α 9, α 18, α 36 m 9 (x) = 1 + x 2 + x 3 α 11, α 22, α 44, α 25, α 50, α 37 m 11 (x) = 1 + x 2 + x 3 + x 5 + x 6 α 13, α 26, α 52, α 41, α 19, α 38 m 13 (x) = 1 + x + x 3 + x 4 + x 6 α 15, α 30, α 60, α 57, α 51, α 39 m 15 (x) = 1 + x 2 + x 4 + x 5 + x 6 α 21, α 42 m 21 (x) = 1 + x + x 2 α 23, α 46, α 29, α 58, α 53, α 43 m 23 (x) = 1 + x + x 4 + x 5 + x 6 α 27, α 54, α 45 m 27 (x) = 1 + x + x 3 α 31, α 62, α 61, α 59, α 55, α 47 m 31 (x) = 1 + x 5 + x BCH O(n log 2 2 n) (1) S(x) (2) S(x) σ(x) η(x) (3) σ(x) (4) σ(x) η(x) 2 q (q > 2) F q n 2t + 1 BCH (l = 1 ) β 1 n G(x) v = (v 0 v 1... v n 1 ) v(x) = v 0 + v 1 x + v 2 x v n 1 x n 1 w = (w 0 w 1... w n 1 ) w(x) = w 0 + w 1 x + w 2 x w n 1 x n 1 e = (e 0 e 1... e n 1 ) e(x) = e 0 + e 1 x + e 2 x e n 1 x n 1 E = {i 1, i 2,..., i s e ij 0} (s t) σ(x) = i E (1 βi x) η(x) = i E e iβ i x j E {i} (1 βj x) 21

22 1. w(x) = v(x) + e(x) w(β j ) = v(β j ) + e(β j ) = c(β j )G(β) + e(β j ) = e(β j ) (j = 1, 2,..., 2t) S j = w(β j ) = e(β j ) (j = 1, 2,..., 2t) E = {i 1, i 2,..., i s } (s < t) S j = e i1 (β j ) i 1 + e i2 (β j ) i e is (β j ) i s = e i (β j ) i i E Y l = e il X l = β i l (l = 1, 2,..., s) s S j = Y l X j l (j = 1, 2,..., 2t) l=1 S(x) = S 1 + S 2 x + S 3 x S 2t x 2t 1 ( ) 2t = e i (β j ) i x j 1 = 2t e i (β i ) j x j 1 = j=1 i E j=1 i E 1 1 αx = (αx) j S(x) = i E j=0 e i β i 1 β i x (mod x2t ) = s l=1 s l=1 Y l X l 1 X l x (mod x2t ) 2t Y l X j l xj 1 2. E = {i 1, i 2,..., i s } σ(x) = (1 β i1 x)(1 β i2 x)... (1 β is x) = (1 X 1 x)(1 X 2 x)... (1 X s x) j=1 22

23 σ(x) = 0 x x = X 1 = (β i l ) 1 (l = 1, 2,..., s) σ(x) S(x) σ(x)s(x) = (1 X 1 x)(1 X 2 x)... (1 X s x) l s l=1 = (1 X 2 x)(1 X 3 x)... (1 X s x)y 1 X 1 +(1 X 1 x)(1 X 3 x)... (1 X s x)y 2 X 2 Y l X l 1 X l x (mod x2t ) =. +(1 X 1 x)(1 X 2 x)... (1 X s 1 x)y s X s (mod x 2t ) s s Y l X l (1 X j x) (mod x 2t ) l=1 l=1 j l η(x) η(x) = s Y l X l l=1 s (1 X j x) (mod x 2t ) l=1 j l σ(x)s(x) = η(x) (mod x 2t ) φ(x) σ(x)s(x) + φ(x)x 2t = η(x) S(x) x 2t σ(x), φ(x), η(x) S(x) x 2t η(x) ( ) 3. σ(x) β 1 n β, β 2,..., β n 1 Chien (Chien search) 4. 2 q > 2 13 (Forney ) e il = Y l = η(x 1 l ) σ (X 1 l ) X l = α i l Chien σ (x) σ(x) 23

24 s η(x) = Y l X l l=1 x = X 1 l η(x 1 l ) = Y l X l s (1 X j x) (mod x 2t ) j=1 j l s (1 X j X 1 l ) (mod x 2t ) j=1 j l Y l = X l η(x 1 l ) s (1 X j X 1 j=1 j l σ(x) x l ) (mod x 2t ) (1) σ (x) = ( X 1 )(1 X 2 x)(1 X 3 x)... (1 X s x) +(1 X 1 x)( X 2 )(1 X 3 x)... (1 X s x).. +(1 X 1 x)... (1 X s 1 x)( X s ) s s = (1 X j x) l=1 x = X 1 l σ (X 1 l X l ) = X l j=1 j l s (1 X j X 1 l ) (mod x 2t ) (2) j=1 j l (2) (1) 12 Reed Solomon BCH Reed Solomon CD DVD 20 F q (q = p r, p : prime) n = q 1 BCH Reed Solomon l = 1 n n α g(x) = d 1 i=1 (x αi ) 14 Reed Solomon (n, k, d) d = n k

25 k, n g(x) n k g(x), xg(x), x 2 g(x),..., x k 1 g(x) Reed Solomon g(x) d 1 d 1 = n k 21 (n, k, d) d = n k + 1 (MDS:Maximum Distance Separable Code) MDS 12 (15, 11, 5) RS g(x) = (x α)(x α 2 )(x α 3 )(x α 4 ) = α 10 + α 3 x + α 6 x 2 + α 13 x 3 + x 4 u(x) = α 5 + αx 2 + α 3 x 10 w(x) v(x) = u(x)g(x) = 1 + α 8 x + α 7 x 3 + α 13 x 4 + α 14 x 5 + αx 6 + α 13 x 10 + α 6 x 11 + α 9 x 12 + αx 13 + α 3 x 14 u = (α 5 0α α 3 ) v = (1α 8 0α 7 α 13 α 14 α000 α 13 α 6 α 9 αα 3 ) Q = {0, 1} F α, α 2,... (0010), (0100),... RS F 2 4 ( x 4 + x + 1) α x 0010 α 2 x α 3 x α 4 x 4 x α 5 x 2 + x 0110 α 6 x 3 + x α 7 x 3 + x α 8 x α 9 x 3 + x 1010 α 10 x 2 + x α 11 x 3 + x 2 + x 1110 α 12 x 3 + x 2 + x α 13 x 3 + x α 14 x

26 13 2 ECC w = (1α 8 0α 11 α 13 α 14 α000 α 2 α 6 α 9 αα 3 ) w(x) = 1 + α 8 x + α 11 x 3 + α 13 x 4 + α 14 x 5 + αx 6 + α 2 x 10 + α 6 x 11 + α 9 x 12 + αx 13 + α 3 x g(x) α, α 2, α 3, α 4 w(x) S 1 = w(α) = α 2, S 2 = w(α 2 ) = α 9, S 3 = w(α 3 ) = α 13, S 4 = w(α 4 ) = α 6, S(x) = α 2 + α 9 x + α 13 x 2 + α 6 x 3 2. x 4 S(x) σ(x)s(x) + φ(x)x 4 = η(x) η(x) = α 2 + α 4 x σ(x) = 1 + α 12 x + α 13 x 2 3. F 2 4 α, α 2,..., α 14 σ(x) 0 σ(α 5 ) = σ(α 12 ) = 0 α 5 = α 10, α 12 = α 3. w(x) x 3 x σ(x) σ (x) = 2 α 13 x + 1 α 12 α 12 (mod 2) Y 3 = α4 (α 12 ) + α 2 α 12 = α 8 Y 10 = α4 (α 5 ) + α 2 α 12 = α 14 e(x) = α 8 x 3 + α 14 x 10 ˆv(x) = w(x) e(x) = v(x) 13 (3) 22 S v B S ( (block) ) (i) B B B = k. (ii) T S T = t T B B λ (S, B) t design( t (v, k.λ) ) S (point) λ = 1 (Steiner system) 26

27 t design t design incidence S = {a 1, a 2,..., a s } B = {B 1, B 2,..., B b } incidence A s b (i, j) a i B j 1, 0 j B j 1 B j s 3 B B incidence 27

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

(check matrices and minimum distances) H : a check matrix of C the minimum distance d = (the minimum # of column vectors of H which are linearly depen

(check matrices and minimum distances) H : a check matrix of C the minimum distance d = (the minimum # of column vectors of H which are linearly depen Hamming (Hamming codes) c 1 # of the lines in F q c through the origin n = qc 1 q 1 Choose a direction vector h i for each line. No two vectors are colinear. A linearly dependent system of h i s consists

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

II

II II 16 16.0 2 1 15 x α 16 x n 1 17 (x α) 2 16.1 16.1.1 2 x P (x) P (x) = 3x 3 4x + 4 369 Q(x) = x 4 ax + b ( ) 1 P (x) x Q(x) x P (x) x P (x) x = a P (a) P (x) = x 3 7x + 4 P (2) = 2 3 7 2 + 4 = 8 14 +

More information

p-sylow :

p-sylow : p-sylow :15114075 30 2 20 1 2 1.1................................... 2 1.2.................................. 2 1.3.................................. 3 2 3 2.1................................... 3 2.2................................

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac + ALGEBRA II Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 7.1....................... 7 1 7.2........................... 7 4 8

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

<4D6963726F736F667420576F7264202D204850835483938376838B8379815B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D6963726F736F667420576F7264202D204850835483938376838B8379815B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 誤 り 訂 正 技 術 の 基 礎 サンプルページ この 本 の 定 価 判 型 などは, 以 下 の URL からご 覧 いただけます http://wwwmorikitacojp/books/mid/081731 このサンプルページの 内 容 は, 第 1 版 発 行 時 のものです http://wwwmorikitacojp/support/ e mail editor@morikitacojp

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

2014 (2014/04/01)

2014 (2014/04/01) 2014 (2014/04/01) 1 5 1.1...................................... 5 1.2...................................... 7 1.3...................................... 8 1.4............................... 10 1.5 Zorn...........................

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

14 (x a x x a f(x x 3 + 2x 2 + 3x + 4 (x 1 1 y x 1 x y + 1 x 3 + 2x 2 + 3x + 4 (y (y (y y 3 + 3y 2 + 3y y 2 + 4y + 2 +

14 (x a x x a f(x x 3 + 2x 2 + 3x + 4 (x 1 1 y x 1 x y + 1 x 3 + 2x 2 + 3x + 4 (y (y (y y 3 + 3y 2 + 3y y 2 + 4y + 2 + III 2005 1 6 1 1 ( 11 0 0, 0 deg (f(xg(x deg f(x + deg g(x 12 f(x, g(x ( g(x 0 f(x q(xg(x + r(x, r(x 0 deg r(x < deg g(x q(x, r(x q(x, r(x f(x g(x r(x 0 f(x g(x g(x f(x g(x f(x g(x f(x 13 f(x x a q(x,

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S Riemnn-Stieltjes Polnd S. Lojsiewicz [1] An introduction to the theory of rel functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,, Riemnn-Stieltjes 1 2 2 5 3 6 4 Jordn 13 5 Riemnn-Stieltjes 15 6 Riemnn-Stieltjes

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x

15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x A( ) 1 1.1 12 3 15 3 9 3 12 x (x ) x 12 0 12 1.1.1 x x = 12q + r, 0 r < 12 q r 1 N > 0 x = Nq + r, 0 r < N q r 1 q x/n r r x mod N 1 15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = 3 1.1.2 N N 0 x, y x y N x y

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト 名古屋工業大の数学 年 ~5 年 大学入試数学動画解説サイト http://mathroom.jugem.jp/ 68 i 4 3 III III 3 5 3 ii 5 6 45 99 5 4 3. () r \= S n = r + r + 3r 3 + + nr n () x > f n (x) = e x + e x + 3e 3x + + ne nx f(x) = lim f n(x) lim

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h 009 IA I, 3, 4, 5, 6, 7 7 7 4 5 h fx) x x h 4 5 4 5 1 3 1.1........................... 3 1........................... 4 1.3..................................... 6 1.4.............................. 8 1.4.1..............................

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

1

1 1 1 7 1.1.................................. 11 2 13 2.1............................ 13 2.2............................ 17 2.3.................................. 19 3 21 3.1.............................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id 1 1.1 1.1 R R (1) R = 1 2 Z = 2 n Z (2) R 1.2 R C Z R 1.3 Z 2 = {(a, b) a Z, b Z Z 2 a, b, c, d Z (a, b) + (c, d) = (a + c, b + d), (a, b)(c, d) = (ac, bd) (1) Z 2 (2) Z 2? (3) Z 2 1.4 C Q[ 1] = {a + bi

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 電気電子数学入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/073471 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 14 (tool) [ ] IT ( ) PC (EXCEL) HP() 1 1 4 15 3 010 9 ii 1... 1 1.1 1 1.

More information

018 8 17 4 1 5 1.1.......................................... 5 1.1.1.................................. 5 1.1................................... 7 1............................................ 7 1..1...................................

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

ii-03.dvi

ii-03.dvi 2005 II 3 I 18, 19 1. A, B AB BA 0 1 0 0 0 0 (1) A = 0 0 1,B= 1 0 0 0 0 0 0 1 0 (2) A = 3 1 1 2 6 4 1 2 5,B= 12 11 12 22 46 46 12 23 34 5 25 2. 3 A AB = BA 3 B 2 0 1 A = 0 3 0 1 0 2 3. 2 A (1) A 2 = O,

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

J1-a.dvi

J1-a.dvi 4 [ ] 4. ( ) (x ) 3 (x +). f(x) (x ) 3 x 3 3x +3x, g(x) x + f(x) g(x) f(x) (x 3)(x +)+x+ (x 3)g(x)+x+ g(x) r(x) x+ g(x) x (x+)+ x r(x)+ g(x) x x 4x+5 r(x) g(x) x (f(x) (x 3)g(x)) g(x) x f(x) f(x)g(x) 4

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

http://know-star.com/ 3 1 7 1.1................................. 7 1.2................................ 8 1.3 x n.................................. 8 1.4 e x.................................. 10 1.5 sin

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3) < 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3) 6 y = g(x) x = 1 g( 1) = 2 ( 1) 3 = 2 ; g 0 ( 1) =

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' = y x = α + β + ε =,, ε V( ε) = E( ε ) = σ α $ $ β w ( 0) σ = w σ σ y α x ε = + β + w w w w ε / w ( w y x α β ) = α$ $ W = yw βwxw $β = W ( W) ( W)( W) w x x w x x y y = = x W y W x y x y xw = y W = w w

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

1. x { e 1,..., e n } x = x1 e1 + + x n en = (x 1,..., x n ) X, Y [X, Y ] Intrinsic ( ) Intrinsic M m P M C P P M P M v 3 v : C P R 1

1. x { e 1,..., e n } x = x1 e1 + + x n en = (x 1,..., x n ) X, Y [X, Y ] Intrinsic ( ) Intrinsic M m P M C P P M P M v 3 v : C P R 1 1. x { e 1,..., e n } x = x1 e1 + + x n en = (x 1,..., x n ) X, Y [X, Y ] Intrinsic ( ) Intrinsic M m P M C P P M P M v 3 v : C P R 1 f, g C P, λ R (1) v(f + g) = v(f) + v(g) (2) v(λf) = λv(f) (3) v(fg)

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

3 1 5 1.1........................... 5 1.1.1...................... 5 1.1.2........................ 6 1.1.3........................ 6 1.1.4....................... 6 1.1.5.......................... 7 1.1.6..........................

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1 No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1 1 (1) 1.1 X Y f, g : X Y { F (x, 0) = f(x) F (x, 1) = g(x) F : X I Y f g f g F f g 1.2 X Y X Y gf id X, fg id Y f : X Y, g : Y X X Y X Y (2) 1.3

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

18 5 10 1 1 1.1 1.1.1 P Q P Q, P, Q P Q P Q P Q, P, Q 2 1 1.1.2 P.Q T F Z R 0 1 x, y x + y x y x y = y x x (y z) = (x y) z x + y = y + x x + (y + z) = (x + y) + z P.Q V = {T, F } V P.Q P.Q T F T F 1.1.3

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

2011 8 26 3 I 5 1 7 1.1 Markov................................ 7 2 Gau 13 2.1.................................. 13 2.2............................... 18 2.3............................ 23 3 Gau (Le vy

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information